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random variable and the random summands are Poisson and multivariate skew-normal, re-
spectively.
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1. Introduction

Let {x;, i € N} be a sequence of independent and identically distributed (i.i.d.) d-dimensional random vectors. Also, let
N be a random variable independent of the sequence whose support is the set of nonnegative integers. Finally, let s =
Xq + ...+ Xy be the sum of the first N components of the sequence, with the convention that s is the d -dimensional null
vector when N = 0. We refer to s as to the random sum of {x;, i € N} with aggregating variable N. The distributions of s, N
and x; are the compound, primary and secondary distributions, respectively (Lin, 2006). Compound distributions have been
mainly studied in actuarial science, where the random vector s, x; and N are the aggregated claim, the i-th claim size and
the claim counts, respectively (Ambagaspitiya, 1999). Random sums occur in many other research fields, including physics,
biology, reliability, queuing and finance (Gnedenko and Korolev, 1996), (Kalashnikov, 1997), (Klebanov et al., 2006). Analytic
expressions for compound distributions are available only for certain types of primary and secondary distributions (Bowers
et al., 1997, Chapter 13) and an approximation is required for a general case (Lin, 2006).

Asymptotic methods are often used to approximate the compound distributions, when the aggregating variable is ex-
pected to be high enough. Following an argument similar to the one used in central limit theorems, the aggregating variable
is embedded in a sequence of stochastically increasing random variables. More precisely, let {Ng, g € N} be a stochastically
increasing sequence of random variables independent of {x;, i € N}, whose support is the set of nonnegative integers. Also,
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let p, and X, be the mean vector and the positive definite covariance matrix of the g-th element sq of the sequence

{Sg=x%X1+... +Xng, G € N}. Finally, let {z4 = Zgl/z (Sq — Ig), q € N} be the associated sequence of standardized random vec-
tors, where X, 1/2 is the positive definite square root of the inverse of X4. Conditions for the convergence of {z;, e N} to a
standard normal distribution have been given in the univariate case in the pioneering work of (Robbins, 1948). In Klebanov
et al. (2006), the authors focused on geometric summation which leads to geometric stable distributions. In Daley et al.
(2007) the tail behaviour has been investigated when the secondary distribution is multivariate subexponential.

Alternatively, the compound distributions can be approximated by properly chosen parametric distributions, as it is often
done in actuarial sciences. There have been many proposals for fitting univariate compund distributions with parametric
ones (see Burnecki et al. (2011)). Multivariate compound distributions have been approximated with skew-normal distribu-
tions and their generalizations (Bolance et al., 2008), Eling (2012). Unfortunately, the information matrix of the distribution
in Bolance et al. (2008) is singular under normality, thus preventing the use of standard likelihood-based methods for test-
ing the hypothesis of normality (Franceschini and Loperfido, 2014), while the skew-normal distribution suffers from the
inferential problems discussed in Pewsey (2001). Multivariate compound distributions have also been approximated with
finite mixture distributions (Bernardi et al., 2012), which may require the estimation of many parameters. For example, a
mixture of k d-dimensional normal distributions is parametrized by k(d? + 3d + 2)/2 real values, unless some simplifying
assumptions are made.

In an interesting thread of research, the compound distributions can also be approximated by means of Edgeworth expan-
sions, which possess several attractive properties (Gray et al., 1975), (Bhattacharya and Ghosh, 1978), (Barndorff-Nielsen and
Cox, 1979). The simplest, nontrivial Edgeworth expansion of a compound distribution depends on its first three cumulants,
which have a simple analytical form. The third cumulant of a d-dimensional vector y with mean u and finite third-order
moments is the d? x d matrix K;(y) = E[(y— WY—M0) (Y- [L)T], where ® stands for the Kronecker product. Let v;
and $j (j=1,2,3) be the j—th cumulants of N and x;, so that the first, second and third cumulants of s are E(s) = v{&;,

Var(s) = v1&, + vz‘;']i;'}- and

K3(s) =vié; + 1, (82 ®& + VeC(Ez)’ﬂ +§ 9 £2> + 136, © g ®§,

(Loperfido et al., 2018), where vec(&,) is the vector obtained by stacking the columns of the matrix &, on top of each other.
Note that the Edgeworth expansions are closely connected to both asymptotic and parametric approximations. Van Hulle
(2005) used Edgeworth expansions to show that the approximation of a multivariate normal distribution with another dis-
tribution with the same mean vector and covariance matrix, as measured by the Kullback-Leibler divergence, tends to im-
prove when the third cumulants of the latter distribution become negligible. Loperfido (2019) used theoretical as well as
empirical arguments based on Edgeworth expansions to show that data generated by a distribution might be satisfactorily
fitted by another distribution, as long as the two distributions have the same first three cumulants.

Intuition suggests that the Edgeworth approximation of a given distribution improves when more terms are included in
the approximation itself. In particular, a third-order Edgeworth approximation might be improved by including the fourth-
order cumulants of the approximated distribution. Inclusion of fourth cumulants is particularly useful when the performance
of the chosen statistical method heavily depends on the fourth cumulants of the sampled distribution, as exemplified by the
following cases. Mardia (1974) showed that the performance of a likelihood test based on the erroneous assumption of
normality crucially depends on a measure of multivariate kurtosis which is a simple function of fourth cumulants. Fourth
cumulants of the sampled distribution impair the performance of widely used likelihood tests on covariance matrices, when
normality is assumed (Yanagihara et al., 2005). Rezvandehy and Deutsch (2018) addressed preferential sampling in spatial
statistics by means of fourth cumulants. Yanagihara (2007) stressed the importance of fourth cumulants in the multivariate
linear model. (Arevalillo and Navarro, 2012) investigated the effect of fourth cumulants on the Fisher discriminant function,
and found it to be nonnegligible. (Mutschler, 2018) provides analytical expressions for higher order cumulants for non-
Gaussian or nonlinear (pruned) solutions to DSGE models to provide means to gain more information for calibration and
estimation.

In this paper we derive a general formula for the fourth-order cumulants of the random sum of independent and identi-
cally distributed random vectors and show that the asymptotic approach based on stochastically increasing sequences does
not necessarily lead to valid asymptotic normal approximations. We address the problem by means of Edgeworth expan-
sions. Both theoretical and empirical arguments suggest that the distribution of a random sum where the summands and
their number are skew-normal and Poisson is satisfactorily approximated by a mixture of two multivariate normal distribu-
tions with proportional covariance matrices.

Sections 2 and 3 contain the theoretical results regarding the fourth cumulant of a multivariate random sum and Mardia’s
measure of multivariate kurtosis. These results are used in Section 4 to highlight some difficulties in the convergence of
multivariate random sums to a multivariate normal distribution, which are addressed in Section 5 by means of Edgeworth
expansions. Section 6 and the Appendix contain some concluding remarks and all theorems’ proofs, respectively.

2. Fourth cumulant

Let X = (xq,..., x4)T be a d -dimensional random vector with mean vector f = (i1, ..., 1q)T and covariance matrix X =
{oij}, i.j=1....,d. We assume that the fourth moments of x are finite, i.e. E(|x;x;jxpx|) < +oo for i,j,h.k=1,...,d. The
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fourth cumulant K4 = {x;j} of X is the d-dimensional, symmetric tensor of order 4 whose elements are the fourth-order
derivatives of the cumulant generating function of X: «;ju = logE[exp(Lth)]/at,-atjathatk, where 2 = —Tand t= (t;,...,t5)T
is an arbitrary vector of constants. An equivalent representation of iy is

IE3[(’<i — i) (%) = 1) (Xn — an) (X — Mk)] — 0jj0nk — Oin0jk — OikO jh- (2.1)

The elements «;j,c might be arranged into the d2 x d? block matrix Ky (X) = {%pq}, where &pq = log E[exp (it"x)]/9t,dtqdtotT
for p,q=1,...,d. The matrix K4(X) is the unfolded version of K4 (Qi and Wang, 2007) and can be represented as

KX =E[yoy eyey'| - (e +Ki)(Z e Z) - vec(T)vec(X)", (2.2)

where y =X — i, vec(X) is the vectorization of ¥ and K, 4 is the d? x d*> commutation matrix (Magnus and Neudecker,
1979). We refer to the matrix K4(x) as to the fourth cumulant of x. Some spectral properties of K4(x) are examined by
(Loperfido, 2011). Basic properties of the fourth cumulant that can be found in Kollo and von Rosen (2005) and Loperfido
(2014), among others.

In the next theorem, we present the fourth cumulant of the random sum of random vectors s. It is shown that the
fourth cumulant of s can be represented via the first fourth cumulants of the counting random variable N and the random
summands X;.

Theorem 2.1. Let N be a nonnegative counting random variable with finite fourth moment. Also, let X, ..., Xy be iid. random
vectors with finite fourth moment and independent of N. Then the fourth cumulant of s is

Ka() = i+ va[ (I + Kaa) (2 8 ) + vecovee@n) ] + 0o (60 81 + £ 0 61 + £ 085+ 51 08
+ 035 0 68 +vecls )8 0 & + £ 08,08 +§ 98 08 +Evec,) 0 f +§§ 08,
(B8 068,

where v; and Sj denote the j—th (j =1,2,3,4) cumulants of N and Xx;, respectively.

The next corollary is the direct consequence of Theorem 2.1 and considers the fourth cumulant of the random sum of
random variables. This result coincides with the formula obtained in Cummins and Wiltbank (1983).

Corollary 2.1. Let N be a nonnegative counting random variable with finite fourth moment. Let X1, ..., xy be i.i.d. random vari-
ables with a finite fourth moment, independent of N. Then the fourth cumulant of s is

Ky (5) = v1£4 + 3128 + 4026183 + 613578, + vaky,
where v; and &; denote the j—th (j=1,2,3,4) cumulants of N and x;, respectively.

When the summands are symmetric random vectors and the number of summands has a symmetric distribution the
fourth cumulant of s has a simpler form. This result is again the direct consequence of Theorem 2.1.

Corollary 2.2. Let N be a nonnegative counting variable with a symmetric distribution. Also, let Xy, ...,Xy be iid. symmetric
random vectors with a finite fourth moment, independent of N. Then the fourth cumulant of s is

Ka(s) = i€y + va[ (I +Kaa) (& ® &) + vec(&;)vec(&,)"] + vy (&ﬂ ® &aﬂ).

A nonrandom sum of random vectors is just a random sum where the number of summands N is a degenerate random
variable: P(N = n) = 1. It follows that v; = n, v, = v3 = v4 = 0 and the fourth cumulant of the random sum is just the prod-
uct of the first cumulant of the number of summands and the fourth cumulant of a summand: K,4(s) = v1&,, consistently
with ordinary properties of cumulants.

3. Mardia’s kurtosis

The kurtosis and the excess kurtosis of a random variable x with mean p, variance o2 and finite fourth moment E(x4)
are often measured by its fourth standardized moment and its fourth standardized cumulant:

B2 = E|:<X;M)4]. v2=PB2-3.

As remarked by Kollo (2008), the default measures of multivariate kurtosis and multivariate excess kurtosis have been pro-
posed in Mardia (1970) and Mardia (1974). Mardia’s kurtosis and Mardia’s excess kurtosis of a d-dimensional random vector
X with mean g, non-singular covariance matrix ¥ and finite fourth-order moments are given by

B0 =E{[x- = - ]| and plho0 = Y00 - d(d +2).

3
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Kollo and Srivastava (2004) first represented Mardia’s measures by means of moment matrices. More precisely, they showed
that Mardia’s kurtosis and Mardia’s excess kurtosis of a random vector are the traces of its fourth standardized moment and
its fourth standardized cumulant. Following the moment matrices approach in Kollo and Srivastava (2004), we represent
Mardia’s kurtosis and Mardia’s kurtosis of a random vector as quadratic forms involving the concentration matrix as well as
the fourth central moment and the fourth cumulant. This statement is made more precise in the next theorem.

Lemma 3.1. Let X, My (x) and K4(x) be the variance, the fourth central moment and the fourth cumulant of the d-dimensional
random vector X. Then Mardia’s kurtosis and Mardia’s excess kurtosis are

BY,(x) = vec(E)My(x)vec(27") and 2 (x) = vec(Z ™)Ky (x)vec(Z7).
4. Asymptotic behaviour

In this section we derive a closed-form expression for the Mardia’s kurtosis of the random sums of normal random
vectors. It is a simple function of the first four cumulants of the aggregating variable, the Mahalanobis distance of the mean
from the origin and the vector’s dimension. We use this result to show that the same standardized random sum might not
converge to a normal distribution, even when it is embedded in a sequence of stochastically increasing aggregating variables.
For the sake of simplicity, the theorem is stated for random vectors having the identity matrix as the covariance matrix, but
it can be straightforwardly generalized to any positive definite covariance matrix.

Theorem 4.1. Let v; be the i-th cumulant of the nonnegative random variable N, for i=1,2,3,4. Also, let s =X; + ...+ Xy
be a random sum of independent, d-dimensional normal random vectors X; ~ Ny(p. 1), where p e R%. Then, by letting q =

1 . ) .
v (V7 + viv ') the Mardia’s kurtosis of s is

- 2 2 _ 2
Bra(s) = (v2+ i) 2<dv21 + 32> + (d ‘H"Tﬂ) +(v3+ Uﬂ)z)(ﬂTﬂ)(M + 5q>

2 2
1 2 V1 Vi )

2
q 2
+ (va+3v3) 5 (km)"
2
Theorem 4.1 provides some insights into the asymptotic behaviour of random sums. Let {Ng, q € N} be a stochastically
increasing sequence of random variables whose support is the set of nonnegative integers and are independent of {x; ~
Ny(E, W)}, where i e N, £ e RY, W e RY x RY, W = W'>0, Also, let Rq and X, be the mean vector and the positive definite
covariance matrix of the g-th element s; in the sequence {s; =x; + ... +Xn,, G € N}. Finally let {zg = ):le/z (Sq—Mg), g N}
be the associated sequence of standardized random vectors, where X, 172 is the positive definite square root of the inverse
of %4. A necessary, but not sufficient condition for the convergence of {z4, g € N} to a standard normal distribution is the
convergence of the sequence of Mardia’s kurtoses {8, 4(X; +...+qu)} to d(d + 2), that is the Mardia’s kurtosis of a d
-dimensional normal vector with positive definite covariance matrix. This condition is fullfilled if € is a null vector. The
following corollary shows that {8, 4(xq +--- + qu)} might not converge to d(d + 2) if & is not a null vector, thus highlighting
some differences between the convergence of random and nonrandom sumes.

Corollary 4.1. Let {x; ~ Nz ( # 04,15} and {a;} be a random sequence of mutually independent random vectors and a strictly
increasing sequence of positive integers, for i =1, 2,.... Also, let B, ;(w) be the Mardia’s kurtosis of a d-dimensional random vector
w. Finally, let {N; =Y + a;} and {M; = a;Y}, where P(Y = 1) = P(Y = 2) = 0.5. Then
lim Byg(X1+...+Xy) =d(d+2) and lim By 4(Xs +...+Xy,) = +oo.
1—>+00

1—>+00

5. Edgeworth expansions

When the normal approximation to a given distribution is not satisfactory we can improve it by means of Edgeworth
expansions. We can approximate either the characteristic function or the probability density function of a random vector by
means of its moments or cumulants (Kollo and von Rosen, 2005). In particular, from Corollary 2.1.5.1 and Theorem 2.1.7 of
Kollo and von Rosen (2005), the cumulant generating function and characteristic function of s can be expressed as

nook
L
Ys(t) =) H(tT)@”‘VGC(Kk(S))T +Tn,
k=1 "

n Lk
ps(t) =1+ 7l (t")®kvec(My(s))" + 1,
k=1 """

respectively, where t® stands for t@ t®---®t, and ry is the remainder term. The density function of s can be expressed
as

1 _utTs
58) = Gy fR et
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Utilizing the Proposition 2.1 of Kollo and Srivastava (2004) and Theorem 1 of Loperfido (2014), we get the following relation
between first four cumulants of s:

M; (s) = Ki(s),
M (s) = Ka(s) + K ($)K (s)",
Ms(s) = K3(s) + (Kz(s) + K1 ($)K1(5)") @ Ky (5) + Ky (5) ® (K () + Ki ($)Ky (5)")
+ vec(Ky (s) + Kq (8)Kq ($)T)K] ¢ — 2K ($)Ki (5)T @ K (5),
My (s) = Ky(s) + (Iz + Kp p)[ (K2(5) + K1 ()Kq (5)") ® (K (5) + Ki 5K )| + vec(Ka(s) + Ki ($)Kq (s)T)
x vec(Ka(s) + Ki ()K, (s)T)T +M;(s)T @ K () + M3(s) @ K; (5)T + K; (s)T ® M3(s)
+ Ki(8) @ Ms(5)" — (Kz(5) + Ki ($)K1 (5)T) @ K (5)Ki (8)" — vec(Kz (s) + Ki (5)Ki ()") @ Ki (5)" @ Ky (5)"
— Kg.a (K1 (9)K1 (5)" ® (Ka(S) + K1 (8)Kq (5)T)) — Ky a (K2 (5) + Kq ($)K; (5)T) @ Ky (5)Kq (5)T)
— Ki(s) ® K () ® vec(Ky (s) + K ($)K; (s)T)T —Ki (5)Kq(5)" ® (Kz(5) + K1 (8)K; (5)T)
+ 3K ($)K1 (8)" @ Kq ($)Kq (5)™.

Since the first three cumulants of s are known from Loperfido et al. (2018) and the fourth cumulant is delivered in
Theorem 2.1, we get the following approximations of the characteristic and density functions

4k
9s(®) ~ 14+ Y 1 () vec My (s))'.
k=1

fs(s) =~ L/ e t's 1+24:£(tT)®kvec(M (s)T |dt
T ey 2kl ¢ :

The density function of s depends on d integrals, therefore, it is more natural to simplify it further. In particular, we consider
the Edgeworth expansions which are based on simpler density function, say fy(y), with finite fourth cumulant. Following
Theorem 3.2.1 of Kollo and von Rosen (2005), we obtain the density function of s which is stated in the next theorem.

Theorem 5.1. Under the assumption of Theorem 2.1, the density function fs(y) can be represented via the density function fy(y)
as follows

fs¥) ~ fy(¥) — (Ki(s) — Ky ()" fy (9) + %Vec[Kz (8) — Kz (¥) + (Ki (5) — K1 () (K (5) — Ky ()] vec(f2 (1))
- %[vec(lca (s) —Ks(y))" + 3vec(Ka(s) — Ko (¥)) ® (K1 (s) — Ky (9))" + (Ki(s) — Ky ()" Jvec(f ()
+ 21—4 {vec(Ky(s) — Ka(y))" + (K1 (s) — Ky ()" ®* + 6vec((Kx(s) — K (¥)) ® (K1 (s) — Ki (¥))

X (K (5) — K (¥)") +dvec((Ks(s) - Ks (v)) ® (K (5) — Ky (y))T)T}vec(f;‘ ).

k
where f§(y) = d(df;,fy), k=1,2,3,4

The above mentioned Edgeworth expansion is based on the density function of y. Usually y is taken to be normally
distributed, i.e. y ~ A;(0, X). The main reason for that is based on the fact that many random statistics can be well approx-
imated by normal distribution in the asymptotic setting. Therefore, the density function of s can be written via the density
function of normal distribution by the Edgeworth expansion delivered in Theorem 5.1.

As remarked in Gupta and Kollo (2003), Edgeworth expansions might be used to approximate a distribution with a
nonnormal one with the same first cumulants. Loperfido (2019) showed that for any random sum with Poisson agregating
variable and skew-normal summands there is a mixture of two normal distributions with proportional covariance matrices
having its same first three cumulants. These theoretical results suggest that the latter distribution might satisfactorily fit
data generated from the former one. In order to empirically assess this conjecture we simulated 100 units from the random
sum where the number of summands is Poisson with mean 2 and the summands are i.i.d. skew-normal random vectors
with the null vector as the location parameter, the identity matrix as the scatter parameter and the unit vector as the shape
parameter: X; ~ SNy (04,15, 14), for d =2, 3, 4, 5, 6, 7, 8, 9, 10. The pdf of X; = (X;1, ... X;g)" is

d d
FXit,s oo Xig) =20 (Z Xij) l_[ ¢(Xij)v
= =1

where ¢(-) and ®(-) denote the pdf and the cdf of a standard normal distribution, respectively. The simulated data are
available as supplementary material to this paper. We used the R package (Scrucca et al., 2016) to fit a mixture model using

5
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the BIC criterion. For all the nine datasets, the chosen model was the mixture with two normal components and proportional
covariance matrices. This empirical result is consistent with the theoretical ones.

6. Concluding remarks

This paper derives the fourth cumulant of a multivariate random sum and highlights some difficulties in the asymptotic
approximation of its distribution with a multivariate normal one. The paper addresses the problem by means of Edgeworth
expansions. For example, the random sum of i.i.d. skew-normal random vectors with the Poisson distribution as the aggre-
gating variable has the same first three cumulants of a mixture of two normal distributions with proportional covariance
matrices, for appropriate choice of parameters. The paper shows that data generated from the former distribution might be
satisfactorily fitted by the latter.

The theoretical results in this paper are probabilistic in nature, but they also have potential statistical applications. For
example, the estimation of a covariance matrix is often of interest in both Statistics and Econometrics (Braione M. and
Storti, 2017); (Morana, 2019) and its default estimate is the sample covariance matrix. The covariance of the vectorized sam-
ple covariance matrix is closely related to the fourth centered moment and the fourth cumulant of the sampled distribution
(Loperfido, 2011). Unfortunately, these matrices might contain up to p(p+ 1)(p + 2)(p + 3)/24 distinct elements, thus ham-
pering the estimation procedure. The results in this paper might ease the problem when applied to a parametric model for
aggregate claims.

Fourth-order moments are well-known to be very sensitive to outliers, which is a blessing as well as a curse. It is a curse
when unnoticed outliers hamper the usage of Edgeworth expansions based on fourth-order moments. It is a blessing when
using kurtosis measures based on fourth-order moments to detect outliers (see, for example, Livesey (2007)). The theoretical
results in this paper pave the way in this direction, using an approach which might be informally described as follows. First,
assume a parametric model for both the claim number and the claim size, as done in Loperfido (2019). Second, use the
results in this paper to obtain the analytical formula of a multivariate kurtosis measure, as for example Mardia’s kurtosis.
Third, obtain robust estimates of the parameters and plug them into the analytical formula of this measure. Fourth, compare
this estimate with the sample counterpart of the kurtosis measure. Outliers will make the latter statistic much bigger than
the former one. The statistical significance of their difference hints at the presence of outliers. The plug-in estimate of the
fourth cumulant might lead the robust and accurate density expansions sought by Ronchetti (2020).

It would be interesting to know whether convergence to normality of a multivariate random sum holds for well-known
choices of the summands and their number. A first choice could be the random sum of skew-normal random vectors with a
Poisson random variable as the aggregating variable. A second choice could be the random sum of asymmetric generalized
Laplace random vectors with a negative binomial random variable as the aggregating variable. The third cumulants of both
choices have been derived by Loperfido et al. (2018). We are currently working on the derivation of their fourth cumulants.

In this paper, the fourth cumulant of a multivariate random sum is derived under several assumptions, as for example
the aggregating variable and the summands being independent. More general assumptions are discussed in Cummins and
Wiltbank (1983) and Loperfido et al. (2018). In particular, the aggregating mechanism might be modelled by a random
vector, rather than by a random variable. At present time, the derivation of the fourth cumulant of a multivariate random
sum under these more general assumptions appers to be quite a formidable task.
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Proof of Theorem 2.1.. The mean of s is equal to v{&;. Then the fourth cumulant of s is given by

Ka(s) = B[ (s - i) & (s~ i) @ (s m) ® (s - é,)']

0,
= (lg2 + Kqq) (Var[s] ® Var(s]) — vec(Var[s])vec(Var[s])" . (6.1)

o, 0;

The first component of the expression may be represented as

O =E[W+meW+w)' ®W+u)® W+u)']
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with w = (x1 — 51) +...4 (xN - El) and u = &, (N — vq). Using the standard properties of the Kronecker product (Harville,
1997, Chapter 16) we obtain that
O =E[(wow' +weu' tuew +ugu") o (wew +weu' +ugw' +ugu’)]
=E[(wew' eawaw')+(wew ewau')+ (wWew sugw') + (wow gueu')
+ (weu'ewew')+ (weu'gweu')+ (Weu'guew') + (Weu'gueu’)
+ (uew owew) +(uew eweu')+ (ugw guew') + (ugw eugu')
+ (ugu'ewew')+(ugu'egweu') + (ugu'guew') + (ugu'gugu’)].
Now we apply expectation on each term in the bracket
0, =E[wew ewew' | +Ewew sweu'|+Ewew sugw' | +Ewew sugu’
+Eweou"oweow |+Eweu' eweu'|+Eweu'guew'|+Eweu' gugu']
+Euew oweow'|+Eugw eweu'|+E[uew guew'|+Elugw' sugu’)
+Eugu’'owew' |+Eusu’eweu'|+E[ugu’euew'|+E[ugu’ gugu'].

First, we evaluate E[w Qw! ®W®WT]. Since {xi}f’: ; and N are independently distributed we get that
n n n n
E[W®WT®W®WT|N= n] =E| > y® ) y®> yi®e ) y/IN=n|.
i=1 i=1 i=1 i=1

where y; =x; — &, i=1,...,n. Because yy, ..., yn are independent and identically distributed, it holds that
n n n n o n
E| D ¥i®) Vi®o) vie) yilN=n|=M|} xIN=n
i=1 i=1 i=1 i=1 i=1

By noticing that

M, Z XiIN=n| =n§, + ”2[(Id2 +Kia)(§;®8;) + vec(Ez)vec(sz)T],
i=1

and by taking expectations over N we obtain that
Ewew' e wWew'| = 11§, + (v, + v])[ (g + Kqq) (&, ® &) + vec(§;)vec(£,)"].

Next, we evaluate E[W®WT®W®UT] starting from the conditional expectation. Applying the properties of expected
values and Kronecker products we get

n n n
Ewew gweu' [N=n]=n-vDE|Y ye Y y/e Y viIN=n|&.
i=1 i=1 i=1

The above expectation is the third cumulant of the sum X; + ...+ X,. The random vectors Xy, ..., X, are independent
and identically distributed, so that the third cumulant of their sum equals to the third cumulant of the i-th summand x;,
multiplied by the number of summands n:

Eweow eweu'|[N=n]=nn-v)ée§.
By taking expectations over N we obtain
Ewew eweu'| =E[E[wew' e weu'|N =n]] =E[N(N-v)]& @ 3

The expectation in the right-hand side of the above equation is just the variance (that is the second cumulant) of N.
Hence, we obtain

Ewow' gweu'] =& ok
Now we evaluate IE:[w@wT ®u ®WT], starting from the identity

n n n
Ewew euew N=n]=E|) y® > yi@&nh-v)e ) y/IN=n|
i=1 i=1 i=1
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which may be simplified as follows, by remembering that a® bT = b ® a, for any two vectors a and b:
n n n
Ewew @uaw'N=n]=E[Y yf®) vie ) y@&m-v)N=n|.
i=1 i=1 i=1
The above expectation is the third cumulant of the sum x; + ... + X;. An argument similar to the one used before leads
to
E[W®WT®u®wT] = ]E[]E[W®WT®u®wT|N: n]] =& ek,
Next, we consider the identity,
n n T
Ewew @ueu'N=n]=E|> yi® > y/IN=n|e&n-v)@&Hn-).
i=1 i=1
The above expectation is the second cumulant of the sum Xy + ...+ X;, therefore, it leads to

Ewew' gugu'| =E[E[wew @ueu'|N=n]] = (v;+v11n)§ 0§ ® £,

where the last identity follows from the relation between cumulants and moments (Stuart and Ord, 1994, Chapter 3.12).
In order to evaluate E[w uewe® WT], we recall that w" @ w = ww"™ = w @ w' and use arguments similar to the above

ones to obtain
Ewou'oweow' | =Eu'owewew'| = EN(N - )& ©& = 1§ ©&.

Next, we consider E[w ul W® uT], which can be simplified as

n n
Eweweu gu'[N=n]=E|> ye > yi® ﬂ(n—vl)@ﬂ(n—vl)wzn]

i=1 i=1
n n T T

=E ZY@ZWWZH ®&n-v)e&m-w)
i=1 i=1

=n(n—vy)?vec(,) ® &) ® &},

where we have used the fact that for any vector a, a®a is equal to vec(aa). Now taking expectation over N would lead
to

Eweweu gu'| =E[Eweweu' @ u'|N=n]]
= (13 +viv)vec(d,) ® & @ &;.

Next we consider E[W®uT ®u®wT]. Using again the fact that a® bT =bT @ a, for any two vectors a and b, we get
that

Ewgu' @uew'|[N=n] =E[u"ewew' @ u|N =n]
T n n
=E[&n-v)® ) yi® Y ¥y ®&(n-v)|N=n
i=1 i=1
2&T
=nn-v)§ 0 ef.
Taking expected value over N leads us to
Eweu' @uew'| =E[E[weu' e uew'|N =n]]
T
=3 +vin)§ e 8.

We move on to consider IE[W euTgue uT]. It holds that
. T T
Eweu @ueu|N=n]=n-v)’El Y yiIN=n|ef e o =0.
io1

As a direct consequence, we get that Efu@w! e ugu'|=Eugu' eweu'|=Eugu'gugow!]=0.

8
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Next, we consider E[u @ w! @ w ® w']. It holds that
n n n
Elugw' ewew' [N=n]=E[§n-v)e ) y/o) yi® Y yIN=n
i=1 i=1 i=1

=nn-v)§ ®E;
Hence, we get
Elugw @ wew'| =E[N(N - v1)]§ ® & = 1,§, ® &.

Now we evaluate E[u wl ew® uT]. We have that

Elugw' ewgu'[N=n] = E|:§1(n—v1)®Zﬂébzyi@ﬂ(n—w)ll":n}

io1 =1
n n T
=n-v)’ ®E|) yo) yiIN=n|c§
i=1 i=1
2 T
=nn-v)§ ek
Consequently, we obtain
Elugw' eweu'| = E[E[lugw' e weu'|N =n]]
=W3+v1)é e ﬂ
Next, we consider E[u® w' ® u@wT'], starting from
Elugw' @u@w'|[N=n| =E[lugw' e w' @ u|N =n]
n n
=E|&Mm-v)e) y®) ¥y o&m-v)N=n
P i=1
=n(n—v)’§, @vec§,) @&,
With expectation over N, we get
Elugw guew'| =E[E[uew' e ug@w'|N =n]]
=W +v)é ® Vec('Sz)T ®§.

We move on to evaluate E[u uTowe® wT]. It holds that

Elugu"@wew'[N=n] = ]E|:§1(n—u1)®§'¥(n—v1)®Zyi®Zy,-T|N=n}

i=1 i=1

i=1 i=1

(n—v1)%& ®£¥®E[Z Vi® Y y/IN= n}

n(n—vi)’ 0§ o,
Hence, we obtain

Eugu'ewew'| =E[E[ugu"gwew'|N =n]]

= (s +V)E & 0,

Next, we consider E[u® u’ @ u®u'], that is

B[ (V- )@ (N -v) @& (N -v) @ 5N -v) | = (v + 31D ol w &y 0 8.
Combining all the terms involved in @4, we finally get

O1 =vi§,+ (1 + V%)[(ldz +Kia) (6, ®8;) + vec(Ez)vec(Ez)T] +0E @& + b e + (s +v)E 0§ ek

+ V261 @ &3+ (3 + vivp)vec(Ey) © £ @ & + (V3 + Vi) @ & @ + 0+ 126 @& + (3 + V) @,

® &+ (13 V)& @vecE) & +0+ (13 + 1116 08 06 +0+0+ (1 +3v))E 0k 08 of

9
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= iyt 49D U + o) (6 9E,) + vecy)vee®)] + v G 0 8 + B 0k +£ 08+ 5 0 |
+ Oa o6 0 (5.8]) + (veek)8]) 0 8 + £ 06 0 +£ 08 08 + (Bivecd)") 0,
+(88) o8]+ 0er3D(88]) o (88]).
Utilizing the results for variance of s already derived in Loperfido et al. (2018), we get that

0, = (Ip + Kd,d)[(wéz + V2§1§¥> ® (Vl'Ez + v2§1§$)],
0; = VeC(”lEz + VZE@DV@C(W& + V2§1§$>T~

Putting all the components of equation (6.1), we finally get the expression as
Ki(s) = vi€y + (2 + v) [ (e + Ky o) (€, ® &) + vec(&;)vec(E,)T] + v, [53 o +505+85 08 +E 0 ﬂ]
+ (3 + V1V2)|:§2 ® (Elﬂ) + (vec(Sz)ﬂ) ok +E 0Lk +§ 0Lk + (EvecE)) &
(58] 06 |+ 0+ 30D (88 @ (88]) — U+ Ka) | (18 + 02617 ) @ (i + 26,6 )|
— vec(vify + va8 8] vec g, + v2§1§$)T_

Standard matrix algebra yields the identities

(& +v28181) ® (6 + 26181 ) = VPG @8+ viva 0 EE] + Vel @ s 36 6] 0 616

and

vec(vl’g'z + vzslﬂ)v%(w&z + U2§1§¥>T

= vivec(&;)vec(£,)T + vivvec(y) ® & ® &) + vi0sE] ® & @ vec(§,) + v3E £ ® & &)

Straightforward application of basic properties of the commutation matrix (Kollo and von Rosen, 2005, p. 80) yields the
identities

Kia(:066) = £ 06 08 Kb o) —Hlehek,
T T T T T T T T
vec(§,)8] ] = vec(t,) @ 8] @ & = vec(§) @ vec(§,8]) =Ky (vec®)g] o 8]

(8 0 8 )vectt,) = & o &1 m vecey) = vec(£,8]) @vec(t) = Ko (& o & Jvectty)].

Putting al above together we obtain the expression for the fourth cumulant stated in the theorem. O

Proof of Lemma 3.1.. Let z= X 2 (x — 1) be the standardized version of X, where p is the mean of x and »172 is the
positive definite square root of the concentration matrix ¥~
271/2 — E*T/Z 271/2 -0 271/2271/2 — Eil.

The Mardia’s kurtosis of x coincides with the trace of the fourth moment of z (Kollo and Srivastava, 2004):

B, (X) = tr{My(2)]

The trace of the fourth moment My(w) of any d-dimensional random vector w admits the representation
vec(I;) ™My (w)vec(l,), where 1 is the d-dimensional identity matrix (Loperfido, 2011). Also, the fourth moment of Qw
is

Qe QM;w)(Q" 2 Q").
where Q is a k x d real matrix (Franceschini and Loperfido, 2012). Hence, the fourth moment My (z) of z is a simple function
of the fourth moment of y = X — u, i.e. the fourth central moment of x:

My (z) = ():71/2 ® 2’1/2)M4(x)():’1/2 ® 271/2).
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We recall a fundamental property of the tensor product and the vectorization operator (see, for example, Rao and Rao (1998,
page 201)):
vec(ABC) = (C" @ A)vec(B).

where A € RP x RY, B e RY x R and C e R" x RS. This property and the identity £~/2%~2 = £ imply

vec(X7) = (272 @ Z7?)vec(ly) and vec(E7)T =vec(ly) (T2 @ 7).

Hence we have $, 4(X) = vec(X~)TM, (x)vec(E 1) and this completes the first part of the proof.

We now prove the second part of the theorem. Let p; and o; be the i-th columns of ¥ 'and ¥, so that

vec(Z ) vec(X) = yloy + -+ ylog=d.

The last equality is a direct consequence of £~ being the inverse of X: ﬂa] =1fori=1,...,d. The same property of

¥ 1, together with the above mentioned property of the vectorization operator and the tensor product imply
vec(ZHT(Z @ Z)vec(E7") = vec(E ) vec(ZX ' X) = vec(Z7') vec(X) = d.

We now recall two properties of the commutation matrix Kpq € RPY x RP4 (Magnus and Neudecker, 1979): vec(AT) =

Kp qvec(A) for any p x g matrix A and l(}_q =Kg,p. These properties and the symmetry of ! imply vec(E”)TKd’d =

vec(ZT~HT.
The fourth cumulant K4 (X) of X is a function of its variance X and its fourth central moment M, (X):

Ky (x) = My(x) — vec(Z)vec(2)" — (I + Kqq) (T ® 2),
where I, is the d2-dimensional identity matrix (see, for example, Kollo (2008)). The identities

Br.a(x) =vec(T HTMy(x)vec(Z"), vec(T™")Tvec(T) =d,

vec(Z ) Ky g =vec(Z™H)T and vec(ZTH)(Z® Z)vec(T) =d
which appear in previous part of the proof lead to
vec(Z Ky (x)vec(T ") = B 4(x) —d(d +2).
The right-hand side of the identity is just Mardia’s excess kurtosis of x and this completes the proof. O
Proof of Theorem 4.1.. We first recall some fundamental properties of the Kronecker product and the vectorization operator
(see, for example, Rao and Rao (1998, p. 194-201)): (P1) the Kronecker product is associative: (AQ B) C=A® (B®C) =

A®B®C; (P2) if matrices A, B, C and D are of appropriate size, then (A B)(C® D) =AC®BD; (P3) A=cA=c®A=
A®c, where ce R and A € RP x RY; (P4) vec(ABC) = (CT ® A)vec(B), where A € RP x RY, Be RY x R" and C € R x RS; (P5)
vec(aa") = vec(a® a') = vec(a'®a) = vec(a® a) = vec(a'®a') =a®a, where a e RP.

The variance of s is ¥ = v{I; + v,uuT (see Loperfido et al. (2018)). By the Sherman-Morrison formula, the inverse of X
is

_ 1 vl Ty 1
>l - 24Pl d - T,
v ¢ vZ+ v pTlyp vy ¢ aRR
The following identities will be used several times in the proof:
1 e L vl VEEViETR - v g
V1 Vi V2 vnppte v+ v2u,uTp vy

By Theorem 2.1, the fourth central moment of s is
M, (s) = (v2 +v7) (Kgq + Ige + vec(Ig)vec(Ig)™) + (v3 + vivo)[Ig ® e’ + vec(Ip) ' @ p*
' eliepn+pelyep"+pvecly)' @ w+pp" @1+ (va+3v3) (np’ © pt).
By Lemma 3.1 the Mardia’s kurtosis of s is
Bra(s) = vec(Z™ ) My(s)vec(E™") = (va +v7) Qs + (V3 + v112)(Q2 +2Qs +2Qu) + (va +3v3)Qs,
where Q; = vec(Z’l)T(Kde +1p +vec(ld)vec(ld)T)vec(E’]), Q= vec(Eil)T(Id ® IL;LT)vec():’l), Q3 = vec(X~HT

(vec)n™ ® MT)vec(Z‘1), Q4= VEC(E_])T([.LT Ql;® ;L)vec(E_l) and Qs = vec(E_l)T(uuT ® [L[LT)VeC(Z_l) might
be simplified by means of properties (P1)-(P5).
We first evaluate the quadratic form

1 1
Q= (v—]vec(llj,)T - qlLT®;LT> (Kg.a + 1z + vec(Ig)vec(Iy)T) (U—]vec(ld) —qpn® [L).

1
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The d? x d?> commutation matrix K, 4 satisfies the identity K, yvec(A) = vec(AT) for any d x d matrix A (see Magnus and
Neudecker (1979)), so that

1 1

(\)—]vec(ld)T —qu'® MT)Kd,d(U—]veC(ld) —qn e u)
1 1

= (—veC(Id)T —qu'® uT) (V—veC(ld) —qu® u)

1 2q
= —gvec(ly)vec(ly) - < (u @ u')vecly) + @ (n" @ n") (L@ 1)
1
d 2 2
= q(u ) +q*(n'p).
A little algebra and the identity ”1 —qn"p = qu vy T yield

d—1+(l_ T)Z_d—1+f
v? V1 k) = v? v’

1 1
(U—vec(la)T —qu'® uT>Kd,a (U—vec(ld) —qu® M) =
1 1
In a similar way it can be shown that
1 1 d 2
(V—vec(ld)T —qu'® uT)veC(ld)veC(ld)T(V—veC(ld) —qu® /u) = (U - quTu) ,
1 1 1
thus leading to the simplified expression

2
d-—1 ¢? d
=2 = ——qu'n ) .
Q1 < l)1 " v2>+ <U1 ar IL)

We now simplify the expression of the quadratic form

1 1
Q= (U—]vecaaz)T —qu'® ILT> (lio pp )(—veC(ld) —qr® u)
Repeated application of properties (P1)-(P5) yield

Q

%vec(ld)T(ld @ up)veclly) + @ (" o u")(ly e pu")(m @ 1) — ‘27? (n" @ u") (g ® pp")vec(ly)
1

vec(hf& +@ (" on") (e pp'p) - 127? (=R (72-73)
l

3 2 2
_mn L *(mTw)” - ‘T?(ILTIL) .
v
Further application of the identity v;! — qu"p = quv; ! yields
T 2
wn @y
T v
(vi+vapTpe) 2
The following identities allow for a simpler expression of Qs:
(vec(ly) u™ ® pM)vec(ly) = vec(u'lgpvec(ly)”) = (w'p)vec(vec(ly)") = (n'p)vec(ly).

We can then represent Qs as

Q= (ILIL)( QILIL)=

1 1
(U—]vec(ld)T —qu'® MT) (vec)p" @ p )(—vec(ld) —qne® /L)

_2 (n" e pu")(vec) u™ @ uMvec(ly) +¢* (1" @ p') (vecl) w' @ wT) (n @ p)

1 T T T\1V
= —2vec(ld) (vecg)n" ® p )Id >

= l vec(l)T (1" p)vec(ly) — = (uT ® ") (1 p)vecy) + ¢* (1" @ uh) (vecl)u'mw & p' )

V2

1
d 2
(') - v—? (RT)" +?(nTh)’

Vi

)& - 2 )+ |
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d-1 T
SO gy ]
1 1 1

d-1 ¢
_ T i
-wn ()
A simpler expression of Q4 = (v;'vec(Iy)T —quT @ p") (" ® 1y ® p) (v 'vec(ly) — qu ® ) might be derived using the
identities

(n" @1y ® p)vec(ly) = vec((lg ® p)lap) = vec((ly ® p)p) = vec((ly @ p) (R ® 1)) = L ® M,

(Weoliopn)(peop) =p e (e mp=(n"r)J;e ) (Rel)=(1"1)(Le p).

We can then represent Q4 as

1 2
—gvecly)' (n' @1y @ pjvec(ly) - U—?vec(ld)T(/uT elhop)(pemw) +@ (kT eon’) (k' eliopn) (e pn)
1
_ Ly 24 0010V o 2 (0T ) — (4T (l T)z_ ' _ @t
=—(n'n)-= +@*(n'n) = ——qu'p) =————— == :
vz () = o) () = (et (5 s o) 3 ()

We evaluate Qs in a similar way:

Qs

1 1
(V—]vec(ld)T —qu'® MT) (mp" @ pp') (V—]vec(ld) —qu® /L)

1 2
—zvecly) (pp' & ppu)vec(ly) — V—?veC(la)T(uuT oun’)(mep) + ¢ (ke u") (nn e pp)(ne 1)
1

2
n 2q 3 4 2/ 1 P ¢ 2
_ v%) =5, W)+ (nTn) = (r7w) (—v1 —cmTu) -2 (n'p)”.

We conclude the proof by reprenting the Mardia’s kurtosis of s by means of the simplified expressions for recalling the
definitions of Qq, Qy, Q3, Q4and Qs:

d-1 ¢ d 2 2d-2  5¢
Boa(s) = (v2+17) {2<2 + %) + ( - qﬂTﬂ) } + (V3 +vyvy) (T pe) (z + qz>
v V2 Vi Vi V3

1
N (1,2
+(v4+3v2)ﬁ(u n). 0
2

Proof of Corollary 4.1.. We first prove the theorem for {N; =Y +q;}. The first four cumulants of Y are E(Y)=1.5,
E[(Y —1.5)°] =025, E[(Y —1.5)’] =0 and E[(Y - 1.5)*] - 3E2[(Y — 1.5)*] = —0.125. As a direct consequence, the first
four cumulants of N; are v;; = a; + 1.5, v, =0.25, v;3 =0, v;4 = —0.125. Let q; = v; (vf1 + v,-Jv,lzqu,)_], so that

! and lim q;- v = 1

qi = 44‘)51 FULMTH oo 4

The Mardia’s kurtosis B, 4 (x1 +... +XN,-) of Xq +... + Xy, is then

2
d-1 d d-1 2
(0.25+v7) {2( S+ 16q,.2> + (11,-1 _ q,-[LT[L> } + vi,l(MTM)< >3 +20q,.2) + @ (1r)”
i1 » i

i1

The definitions of g; and v; 1, together with standard calculus techniques, yield
) lim ﬁzyd(xl +... +XN[.) = d(d + 2)
1—> 400

We now prove the theorem for {M; = a;Y}. The first four cumulants of M; are n;; = 1.5a;, 9, = 0'25‘11'2' ni3=0and n;4 =
-1
—0.125a}. Let r; = ni5(n?; + M1 M2k ™M), so that

w|u

1
li= and  lim q;-vi; =
" (22540375 uTh) m_ gi - Vi
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By Theorem 4.1, the Mardia’s kurtosis of Xq +... + Xy, is

) 2
Bra(Xi+...+Xu) = (niz2 + 1) 2((1 1+r_>+<ni—ﬂll- ﬂ)
i1

ni,1 nl 2
2d—2 512
+ iz + miani2) (1 p) (T + ,%) (mia+3n7 z) n ('L w'.
i1 i,2 i.2

By recalling the definitions of 7; 1, 12, 1;3 and n; 4 the Mardia’s kurtosis of X; + ... + Xy, might be simplified into
-1 1 d ’
252 == 4+ i
> (2.25 +0.0625) - (1 570" ") *

2d -2 512
0.375(11"1 ([LT[L) (ﬁ + 0. 0225> + rz ([L [l,)

The assumption p # 04, the definitions of r; and 7; 1, together with standard calculus techniques, yield

lim 182 d(X1 +. +XM) = +00. O

i—>+
Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ecosta.2021.04.
005.
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