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We apply topspin network formalism to Loop Quantum Gravity in order to include in the theory
the possibility of changes in the topology of spacetime. We apply this formalism to three toy models:
with the first, we find that the topology can actually change due to the action of the Hamiltonian
constraint and with the second we find that the final state might be a superposition of states with
different topologies. In the third and last application, we consider an homogeneous and isotropic
Universe, calculating the difference equation that describes the evolution of the system and which
are the final topological states after the action of the Hamiltonian constraint. For this last case, we
also calculate the transition amplitudes and probabilities from the initial to the final states.
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I. INTRODUCTION

One of the biggest problems of modern physics is the difficult relation between general relativity and quantum
mechanics. They describe fairly well the physical world at different scales: quantum mechanics describes the micro-
scopical behavior of matter and its components, while general relativity, on the other hand, describes the physics of
the universe as a whole and of compact objects like black holes and neutron stars, where gravity is strong. Both are
confirmed by a number of experimental works, but even though general relativity is an extremely successful theory,
it has a flaw: it predicts the existence of singularities, regions of spacetime where the curvature is infinite. This is
interpreted as a sign that the physics quest to the description of the world is not complete: a new theory is needed,
a quantum theory of gravity that brings together general relativity and quantum mechanics. However, quantum
mechanics implies a very different view of the world which is hard to reconcile with that of general relativity. For
example, the former is formulated in terms of systems limited in space, but infinitely extended in time, while the latter
describes the world in terms of events limited both in time and in space [1]. Other problems are the non-locality of
the superposition principle and the locality implied by the equivalence principle and the entanglement [2]. On top of
that, in quantum mechanics spacetime is flat and governed by global global symmetries such as the Poincarré group
while in general relativity spacetime is curved and symmetries are not global [3]. Physicists are exploring many roads
in their quest to a quantum gravity theory, among them we cite string theory [4] and loop quantum gravity (LQG)
(see [3, 5, 6] for reviews and [7] for a complete mathematical introduction on the matter).

String theory approach to quantum gravity is perturbative: it fixes a background flat Minkowski metric that gives
the causal structure and defines on it all other fields. On the other hand, LQG approach is canonical: it starts with
the constrained Hamiltonian of general relativity and classical Poisson brackets between Ashtekar variables [8] and
quantizes them following Dirac’s approach [7, 9, 10]. Moreover, the theory is background independent, i.e. the theory
does not fix a background metric for the spacetime on which the dynamics takes place, but instead derives it from
the equations of motion. However this is not the most general approach, since the theory does fix the topology of the
spacetime. The topology, however, might be dynamical at quantum level, so it is important to find ways in which
the topology of the spacetime could be derived dynamically from the equations of motion. Many proposal have been
made in order to include dynamically the topology in the theory, see for example [11–14]; we focus on the approach
described in [14] based on branched coverings of 3-manifolds and the addition of a topological label on spin networks
edges.

A strong topology theorem due to Alexander, [14, 15], demonstrates that every compact, oriented 3-manifold can
be described as a branched covering over a knot embedded in the 3-sphere S3. A branched cover is a submersion
p : M 7→ S3 such that the restriction to the complement of a knot Γ (the branch locus) embedded in S3 is an ordinary
covering of degree n; this is indicated as p| : M −p−1(Γ) 7→ S3−Γ. A similar result also applies to compact connected
4-manifolds and the 4-sphere S4, but in this case the branch locus is a 2-complex [16]. A refinement of the Alexander’s
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theorem is due to Hilden and Montesinos [17, 18] who proved that every closed, oriented 3-manifold can be described
as a 3-fold branched covering over a link in S3. Yet another version of this theorem is due to Izmestiev and Joswig
[19] and states that a closed, oriented 3-manifold is described by a branched covering over a triangulation of S3. A
link between the second and the third form of the theorem is provided in [20, 21], where the authors construct a
triangulation of S3 starting from a link embedded in the hyper-sphere. The branch locus Γ completely describes
the branched covering and it can be obtained starting from a triangulation of the manifold M using the procedure
described in [22].

In [14], authors propose to use Alexander theorem to describe a manifold as a branched covering over S3, and to
add a topological color to the edges of a spin network obtaining what they call a topspin network. This new color
is selected from a representation of the fundamental group π1(S3 − Γ) of the unbranched space into the symmetric
group Sn; heuristically, this color describes how to stitch together over the branched locus the various branches of the
cover. A similar approach might be used to derive a topspin foam, a spin foam on which topological label have been
added. This is achieved with the notion of branched cover cobordism between two 3-manifolds (see [14]).1

Since with this new approach the topology of the manifold can change during evolution of the system, it is important
to have methods to characterize topologically the manifold. We follow [23] and use Fox free calculus [24–31]. With
this method, one can calculate the fundamental group of the manifold which is a topological invariant and can be
used to classify 3-manifolds [32, 33]. If it changes during the evolution of the system it means that the topology of
the manifold has changed. As we shall see, it is also possible that a system is found in a superposition of states with
different topologies: in this typically quantum situation, a probability is associated to the various states and there
will be transition amplitudes from one state to another.

The plan of the paper is as follows: in Section II we review spin and topspin network and their use in quantum
gravity; in Section III we show how the Hamiltonian constraint acts on topspin network; in Section IV we apply the
formalism to three simple models: the first two are intended to prove that the topology of the manifold can change
due to the action of the Hamiltonian constraint and that the final state can be a superposition of states with different
topologies; finally we apply the formalism of topspin network to a model of homogeneous and isotropic Universe and
also calculate the transition amplitudes between the various final states; in Section V we conclude our exposition.

II. SPIN AND TOPSPIN NETWORKS

In LQG, the state of a system is described by a spin network which can be defined as a triple (Γ, ρ, ι) where Γ is
a graph embedded in the manifold M , ρ is a coloring for the edges of Γ taken by the representation ρe of the group
SU(2) and ι is a labeling of the vertices v of Γ (called the intertwiners) given by:

ι : ρe1 ⊗ · · · ⊗ ρen → ρ′e1 ⊗ · · · ⊗ ρ
′
em

where ρei are the edges incoming in the vertex v and ρ′ei are the edges outgoing from the vertex.
Spin networks constitute a basis for the state of the system; these states are linearly independent and diagonalize

operators that describe the 3-geometry of space such as the area and volume operators. Finally, spin networks provide
a discrete picture of quantum geometry at Planck scale [34].

As stated in the introduction, in the new mathematical setting of topspin network, by applying the Alexander
theorem and its later refinements, one views a 3-manifold as a branched covering of order n over the 3-sphere S3

branched over a graph Γ. In this way one can define a topspin network analogously to what is done for spin network
[14], but adding an additional coloring σ for the edges of the graph Γ taken from a representation of the fundamental
group of the complement of the graph into the symmetric group Sn, i.e. one considers the map σ : π1(S3 − Γ)→ Sn;
heuristically, this new coloring describes how to stitch together the various branches of the covering. The new
topological colors σ are not arbitrary but must satisfy the Wirtinger relations at vertices [14]:∏

i

σi =
∏
j

σj (1)

where i is an index running on edges incoming in the vertex and j a label for the edges outgoing from the vertex. With
this prescription, the topology is included in the description of the physical state through monodromies [14]. It must
be pointed out that the relation between 3-manifolds and branched covering is not bijective: a single manifold may be
described by different branch-loci; authors in [14] make the example of the homology sphere, which can be seen as a

1 Cobordism means that the union of the two manifolds constitutes the boundary of a 4-manifold.
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fivefold covering of S3 over the trefoil knot, or as a threefold covering over the (2,5) torus knot. Which representation
must be selected in this case of multiple possibilities depends on physical constraints, such as homogeneity and isotropy
of the manifold of the system under consideration.

Just like usual spin networks, also topspin networks constitute a basis for the state of the system. It is possible to
extend the usual Hilbert space used in LQG to the case of topspin networks by assuming that two topspin networks
are orthogonal if they are not related by the covering moves described below and assuming that the inner product
〈ψ,ψ′〉 of two topspin networks ψ and ψ′ that are equivalent by covering moves is defined as usual forgetting about
the topological coloring.

It is also possible that two different topspin networks (i.e. different branch-loci) describe the same physical state,
i.e. the same manifold. The condition for this to happen is that one topspin network can be transformed into the
other through covering and geometric moves [14]. A covering move [14] is a non isotopic modification of the labeled
branch locus Γ that results in another branch locus Γ′ giving a different description of the same manifold M, i.e.
the resulting manifolds are diffeomorphic to each other. There are two types of covering moves: at vertices and at
crossings. Covering moves at vertices are themselves of two types and are reported in figures 1 and 2: in figure 1
we show the case in which a representation σ of Sn is substituted by two representations such that σ = σ1σ2 (this
splitting is by no means unique): the valence of the vertices is changed by this move, but the Wirtinger relations are
satisfied; in figure 2 we see that a 4-vertices is removed: in this vertex there are two incoming edges colored as σ1
and σ2 and two outgoing edges also colored with σ1 and σ2: this move reduces by one the number of vertices and by
two the number of edges, but the Wirtinger relations are again satisfied. Covering moves at crossings are also of two
types: in figure 3, we see that an over crossing is changed by a redirection of the edges, while the move reported in
figure 4 is simply a change in the over/down crossings of the two edges; both of these moves satisfy the Wirtinger
relations. We notice that all the described moves are local, in fact they can be performed without affecting the graph
outside a cell.

With topspin networks, one must also ensure that topological and geometrical labeling are compatible, i.e. one must
ask: if the topological coloring is changed with the above covering moves how should the geometrical labeling change
in order to produces a manifold with the same geometry as the initial one? The answer to this question reduces to
the two moves reported in figures 5 and 6: in figure 5 we show a splitting of an edge like that of figure 1 into two
that satisfy the relation ρ = ρ1 ⊗ ρ2 (as above, this splitting is by no means unique), while in figure 6 we show that a
vertex with trivial intertwiner can be removed like in figure 2, see also [14].

Often, in LQG one considers graphs coming from triangulations of the manifold; in this new setting with topspin
network, one can take a triangulation of S3, Γ′, which contains as subgraph the branch locus Γ and assigns trivial
topological coloring to the edges that are not part of Γ (the new edges can carry, however, non-trivial geometrical
coloring). In LQG it is also common to refine a triangulation and the graph, for example by barycentral subdivision;
this can be done with topspin network too, in fact one may prescribe that the original edges keep their original
coloring, while the new edges carry trivial topological color. In this way, all the arguments usually applied in LQG
for nested graphs and directed limits carry over to the case of topspin network.

σ=σ1σ2

σ1

σ2

Figure 1: Vertex covering move: an edge with color σ can be splitted into two edges with color σ1 and σ2 such that σ = σ1σ2.

III. ACTION OF THE HAMILTONIAN CONSTRAINT ON TOPSPIN NETWORKS

The action of the Hamiltonian constraint on spin networks results in the addition of a new edge called the extraor-
dinary edge [35, 36]; this new edge is colored with a j = 1/2 label from the fundamental SU(2) representation and
the SU(2) coloring of neighboring edges is also modified consistently. The action on a topspin network is analogous,
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σ2

σ1

σ2σ1 σ1

σ2

Figure 2: Vertex covering moves: a vertex can be eliminated if the incoming and the outgoing edges have the same coloring σ1

and σ2 (this trivially satisfies the Wirtinger relation in the left configuration).

σ(jk)

σ(jk)

σ(ij) σ(ij)

σ(jk)

σ(jk)

σ(ij)
σ(ij)

Figure 3: Crossing covering moves: edges with an over-crossing can be rerouted as in figure. An edge passing below another is
indicated by two white stripes around the crossing.

but now the extraordinary edge must carry a color describing the particular topological state and the neighboring
edges must carry compatible topological colors. The topological label cannot be freely chosen, but must respect the
Wirtinger relations at the vertices. When a new edge is added, there are three Wirtinger relations to be satisfied,
in fact looking at the left panel of figure 7, if the initial edges carry indices σa, σb, σc satisfying σa = σbσc and the
coloring of the new edges created by the action of the Hamiltonian constraint are σ1, σ2, σ12, these new colors must
satisfy the three relations:

σ1σ2 = σa σ1 = σ12σb σ2σ12 = σc (2)

These relations constrain the possible values of the three σi’s. For example, consider the right panel of figure 7:
assuming that the covering has 3 branches, the group Sn that must be used to set the topological colors has three
letters and it can be checked that the new edges must be colored as follows in order to respect the Wirtinger relations:

σ1 = (012) σ2 = (12) σ12 = (02) (3)

In this example there is a unique possible solution due to the particular orientation of the edges, any other configuration
would violate the Wirtinger relations. On the other hand, in the situation of figure 8 there are six different possible
solutions, listed in table I. The fact that in this last case there are many possibile solutions is due to the different
orientations of the edges in the graphs of figures 7 and 8 which gives different Wirtinger relations. Each of these
coloring must be considered in the process of determining the topology of the system; as we shall see in Section IVC,
this might lead to a superposition of topologies in the final state.

The addition of the new edge changes the relations between the elements of the fundamental group π1(S3 − Γ)
of the unbranched covering and it can happen that the final topological state, i.e. the final fundamental group, is
different from the initial one; we shall show a simple example of this in the applications section (see section IVB).
This new state is characterized by a different fundamental group and also other topological invariants might change.
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σ(jk)

σ(jk)

σ(ij) σ(ij)

σ(jk)

σ(jk)

σ(ij) σ(ij)

Figure 4: Crossing covering moves: an over-crossing can be changed to an under-crossing and vice versa. An edge passing
below another is indicated by two white stripes around the crossing.

ρ=ρ1⊗ρ2

ι1 ι2

ρ1

ρ2

ι1 ι2

Figure 5: Geometric moves: an edge with geometric color ρ = ρ1 ⊗ ρ2 can be splitted into two edges with color ρ1 and ρ2.

IV. APPLICATIONS

In this section we consider three applications: in the first, we show that the fundamental group of the final manifold
might be different from the initial one; in the second, we show that the final sate might be a superposition of different
states with different topologies; in the last, we apply the formalism to the case of homogeneous and isotropic cosmology.
But first we describe the Fox algorithm to calculate the fundamental group of a branched-covering; we base our review
on the papers [23–31].

A. The Fox algorithm

Given a presentation for the fundamental group π1(S3−Γ) of the complement of the branch locus Γ, one chooses an
n-frame over the covering with end-points p′1 · · · p′n−1 where n is the order of the covering and identifies each of these
points with the base point p′ in S3 − Γ. The fundamental group of the resulting manifold is π1(M − p−1(Γ)) ∗ Fn−1,
where ∗ indicates the free products and Fn−1 is a free group with n − 1 elements. It can be shown that there is a
homomorphism between π1(S3 − Γ) and π1(M − p−1(Γ)) ∗ Fn−1 which maps any word in the former into a word in
the latter. A presentation of π1(M − p−1(Γ)) can be calculated from that of π1(S3 − Γ) as follows:

• if π1(S3 − Γ) has e elements, the number of elements in π1(M − p−1(Γ)) ∗ Fn−1 is n e. For example, if the
elements of π1(S3 − Γ) are x and y and the covering has 3 leaves, π1(M − p−1(Γ)) ∗ F2 has 6 elements given by
x0, x1, x2, y0, y1, y2.

σ1 σ2 σ12 σ1 σ2 σ12

(02) (01) id (12) (02) (021)
(021) (012) (12) (01) (12) (012)
(012) id (01) id (021) (02)

Table I: Possible configurations of the colors for the graph of figure 8. id means identity.
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ρ2

ρ2

ρ1ρ1

Id
ι1 ι2

ι3

ι4

ρ1

ρ2
ι1 ι2

ι3

ι4

Figure 6: Geometric moves: the identity intertwiner can be removed.

σa=(012)

σb=(12)

σc=(02)

σa=(012)

σ1

σ2

σ12

σb=(12)

σc=(02)

Figure 7: Left : the initial graph. Right : Graph obtained by the action of the Hamiltonian constraint; the extraordinary edge
is the one labeled σ12. Wirtinger relations imposes strong constraints on the topological colors and in this case uniquely fixes
them (see main text).

• if π1(S3 − Γ) has r relations, the group π1(M − p−1(Γ)) ∗ Fn−1 has n r relations. For example if π1(S3 − Γ)
has one relation given by xy, and if it has the representations x→ (0 1) and y → (0 1 2) on S3, there are three
relations for π1(M − p−1(Γ)) ∗ F2 given by:

x0y1 x1y0 x2y2 (4)

• One has now to remove the free group Fn−1. This is done by identifying a Schreier tree (a set of word such
that the final segment of a word is the initial segment of the following word) and by adding the relations to the
others of π1(M − p−1(Γ)) ∗Fn−1. In our example above a Schreier tree is given by w1 = 1, w2 = x,w3 = x2 and
the relations one must add are x0 = 1, x0x1 = 1. To these relations one must also add those coming from the
cover representation; continuing with the above example, the relations to be added are x0x1 and y0y1y2.

(012)

σ1

σ2

σ12

(01)

(02)

Figure 8: Situation similar to figure 7, but in this case there are many possible solutions to the Wirtinger relations (see main
text and table I).
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(012)

(12)

(02)

(012)

(12)

(02)

(12)

(012)

(02)

a

b

c

d

e

f

Figure 9: Left : initial state. Right : Graph produced by the action of the Hamiltonian constraint on the graph on the left.

• Finally one has to work out all the consequences of the relations reducing the set of relations to the most simple
one and so arrives at the presentation the group π1(M − p−1(Γ)).

B. A change in topology due to the action of the Hamiltonian constraint

For an example of a change in the topology of a manifold, consider the situation depicted in figure 9: the Hamiltonian
constraint acts on the graph on the left (call it Γ0) producing that on the right (Γ1); we shall now prove using Fox
algorithm described above that the fundamental groups π1(M − p−1(Γ0)) and π1(M − p−1(Γ1)) are different: this
means that the action of the Hamiltonian constraint has changed the topology of the manifold.

It was demonstrated in [23] that for the graph in the left panel of figure 9 we have that π1(M − p−1(Γ0)) is trivial;
we therefore try to calculate the fundamental group of the graph in the right panel.

In the case of the right panel of figure 9, a presentation of the group π1(S3 − Γ1) is:

π1(S3 − Γ1) = 〈a, b, c, d, e, f ; e = ac, ef = ab, b = fc〉 (5)

where we have used the letters as reported in figure 9. The presentation for the group π1(M − p−1(Γ1)) ∗ F2 is given
by:

π1(M − p−1(Γ1)) ∗ F2 =
〈 a0 b0 c0 d0 e0 f0
a1 b1 c1 d1 e1 f1
a2 b2 c2 d2 e2 f2

;

e0 = a0c1 e0f0 = a0b1 b0 = f0c1
e1 = a1c2 e1f2 = a1b2 b1 = f1c2
e2 = a2c0 e2f1 = a2b0 b2 = f2c0

〉
(6)

The free group F2 must be removed. We therefore consider the words w0 = 1, w1 = a,w2 = a2, which imply
a0 = a1 = 1. This simplifies greatly the relators, but we have also to add the conditions coming from the cover
representation, which are:

a0a1a2 = 1 b1b2 = 1 = b0 c0c2 = c1 = 1

d0d2 = 1 = d1 e1e2 = 1 = e0 f0f1f2 = 1
(7)

which are read off from the graph colors. By considering all these relations and the fact that a0 = a1 = 1, we find
that the group of the manifold is given by:

π1(M − p−1(Γ1)) = 〈e1, e2; e1 = e−12 〉 ' Z (8)

So we can see that the addition of the new edge led to a change of the fundamental group from the trivial group to
one isomorphic to Z.

C. A superposition of topologies

We consider now the tetrahedral graph reported in figure 10a along with its modifications due to the action of the
Hamiltonian constraint (figures from 10b to 10j). By applying the formalism described in the subsection IVA, we can
calculate the fundamental group of the manifold associated to the graphs. In this case, however, there are multiple
subcases for each graph. This is because the Wirtinger relations do not fix uniquely the various topological colors for
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the new edges. The results of the calculations for all the graphs are reported in table II. As an example we report
the calculation for the figure 10f.

The fundamental group of S3 − Γ for the case 10f has presentation:

π1(S3 − Γ) = 〈a, b, c, d, ef, g, h, i|g = fh, i = hb, i = cg, ae = b, b = cf, f = de〉 (9)

The Wirtinger relations are:

σb = σiσh σgσh = σf σi = σgσc. (10)

where σb, σc and σf are given. One can prove that there are two different solutions for the above relations as reported
in table II, which are:

f1) σi = (01) σg = (012) σh = id
f2) σi = id σg = (02) σh = (01)

(11)

where id means the identity. For the case f1) the group π1(M − p−1(Γ1)) ∗ F2 has presentation:

π1(M−p−1(Γ1))∗F2 =
〈 a0, b0, c0, d0, e0, f0, g0, h0, i0 |g0 = f0h1, i0 = h0b0, i0 = c0g2, a0e1 = b0, b0 = c0f2, f0 = d0e1
a1, b1, c1, d1, e1, f1, g1, h1, i1 |g1 = f1h2, i1 = h1b1, i1 = c1g1, a1e2 = b1, b1 = c1f1, f1 = d1e0
a2, b2, c2, d2, e2, f2, g2, h2, i2 |g2 = f2h0, i2 = h2b2, i2 = c2g0, a2e0 = b2, b2 = c2f0, f2 = d2e2

〉
(12)

As words for the Schreier tree we choose w1 = 1, w2 = a,w3 = a2, which give the relation a0 = a1 = 1. The relations
coming from the coloring of the graph are:

a0a1a2 = 1 b0b1 = 1 = b2 c0c2 = 1 = c1
d0d1 = 1 = d2 e0e2 = 1 = e1 f0f1f2 = 1

g0g1g2 = 1 h0 = h1 = h2 = 1 i0i1 = 1 = i2

Now, with some algebra, one can reduce all the relations to the following presentation:

π1(M) = 〈c0; c20〉 (13)

which is a presentation for the group Z2, therefore the manifold is a lens space L(2, q) for some q.
For the case f2) one has to proceed in the same way: the fundamental group π1(M−p−1(Γ1))∗F2 has presentation:

π1(M−p−1(Γ1))∗F2 =
〈 a0, b0, c0, d0, e0, f0, g0, h0, i0 |g0 = f0h1, i0 = h0b2, i0 = c0g2, a0e1 = b0, b0 = c0f2, f0 = d0e1
a1, b1, c1, d1, e1, f1, g1, h1, i1 |g1 = f1h2, i1 = h1b1, i1 = c1g1, a1e2 = b1, b1 = c1f1, f1 = d1e0
a2, b2, c2, d2, e2, f2, g2, h2, i2 |g2 = f2h0, i2 = h2b0, i2 = c2g0, a2e0 = b2, b2 = c2f0, f2 = d2e2

〉
(14)

as words for the Schreier tree we choose again w1 = 1, w2 = a,w3 = a2, giving a0 = a1 = 1. The relations coming
from the coloring are:

a0a1a2 = 1 b0b1 = 1 = b2 c0c2 = 1 = c1
d0d1 = 1 = d2 e0e2 = 1 = e1 f0f1f2 = 1

g0g2g1 = 1 h0h1 = 1 = h2 i0 = i1 = i2 = 1.

After some algebra, one finds that the fundamental group π1(M − p−1(Γ)) is trivial and therefore the manifold is S3.
We see that starting from a manifold (S3 in this case) one can obtain different final manifolds after the action of

the Hamiltonian constraint. This means that the final state of a system can be found in a superposition of topologies.
From table II, we see, however, that the action of the Hamiltonian constraint does not always lead to different
topologies, in fact, it is the particular coloring of the initial graphs and the need to satisfy the Wirtinger relations
that are responsible for the topology change.

D. Application to cosmology

In this subsection we will apply the topspin network formalism to cosmology in the case in which topology is allowed
to change; we shall also calculate the transition amplitudes between the various final states.
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Figure 10: Tetrahedral graph and its modification due to the action of the Hamiltonian constraint.

1. Variable topology

If the topology is allowed to change, the basis of the system can be written as:

|µ〉 = |µ1〉 ⊗ |µ2〉 ⊗ |µ3〉 = |µ1, µ2, µ3〉 (15)

where |µi〉 is the basis relative to the i-th cover and each 〈c|µi〉 has the form [38]:

〈c|µi〉 = exp

(
iµic

2

)
. (16)

If the manifold is described as a branched covering, a curve for the calculation of the holonomy does not necessarily
lie in one leaf of the cover, but in general will be in all of them; this means that there are three holonomies, one for
each leaf of the cover, each with the form [38]:

h(i)γ = exp

(
iδc

2

)
(i) = {(1), (2), (3)} (17)

where δ is a function of µ [41]. Each of the h(i)γ acts by shifting the index of the base state of the corresponding leaf
of the cover, thus, for example:

h(1)γ (δ)|µ1, µ2, µ3〉 = |µ1 + δ, µ2, µ3〉 (18)
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Graph Permutations Fundamental group Manifold
a) Trivial S3

b)

σg = id, σh = (02), σi = (01) Z2 Lens space L(2, q)
σg = (12), σh = (021), σi = (012) Z4 Lens space L(4, q)
σg = (01), σh = (012), σi = id Trivial S3

σg = (021), σh = (12), σi = (02) Trivial S3

σg = (012), σh = (01), σi = (12) Trivial S3

σg = (02), σh = id, σi = (021) Trivial S3

c) σg = (02), σh = (01), σi = (012) 〈c0, g0; g20 , g0c0g0c−1
0 〉a

σg = id, σh = (021), σi = (01) Trivial S3

d) σg = (012), σh = (01), σi = id Trivial S3

σg = (02), σh = id, σi = (01) Trivial S3

e)
σg = (01), σh = (012), σi = (12) Trivial S3

σg = (02), σh = id, σi = (01) Trivial S3

σg = (12), σh = (021), σi = (02) Trivial S3

f) σg = (012), σh = id, σi = (01) Z2 Lens space L(2, q)
σg = (02), σh = (01), σi = id Trivial S3

g)
σg = (012), σh = (021), σi = (12) Z4 Lens space L(4, q)
σg = (021), σh = id, σi = (01) Z2 Lens space L(2, q)
σg = id, σh = (012), σi = (02) Z2 Lens space L(2, q)

h)
σg = id, σh = (01), σi = (02) Z2 Lens space L(2, q)

σg = (021), σh = (02), σi = (12) Z2 Lens space L(2, q)
σg = (012), σh = (12), σi = (02) Z2 Lens space L(2, q)

i)
σg = (012), σh = id, σi = (02) Trivial S3

σg = id, σh = (021), σi = (01) Z2 Lens space L(2, q)
σg = (021), σh = (012), σi = id Trivial S3

j)
σg = (012), σh = (12), σi = (01) Trivial S3

σg = id, σh = (01), σi = (02) Trivial S3

σg = (021), σh = (02), σi = (12) Trivial S3

Table II: Fundamental groups of the manifolds represented by the graphs in figure 10. id means identity and Zn is the cyclic
group of order n.
(a) This group is the Higman-Neumann-Neumann extension of Z2 with c0 as a stable letter, see [31].

In this way, the action of the Hamiltonian constraint is given by a sum of terms:

H|µ1, µ2, µ3〉 ∝
sgn(µ1)

δ21
(Vµ1+δ1,µ2,µ3

− Vµ1−δ1,µ2,µ3
) (|µ1 + 4δ1, µ2, µ3〉 − 2|µ1, µ2, µ3〉+ |µ1 − 4δ1, µ2, µ3〉) +

+
sgn(µ2)

δ22
(Vµ1,µ2+δ2,µ3 − Vµ1,µ2−δ2,µ3) (|µ1, µ2 + 4δ2, µ3〉 − 2|µ1, µ2, µ3〉+ |µ1, µ2 − 4δ2, µ3〉) +

+
sgn(µ3)

δ23
(Vµ1,µ2,µ3+δ3 − Vµ1,µ2,µ3−δ3) (|µ1, µ2, µ3 + 4δ3〉 − 2|µ1, µ2, µ3〉+ |µ1, µ2, µ3 − 4δ3〉) = 0

(19)

where Vµ1,µ2,µ3
is the eigenvalue of the volume operator and is given by:

V |µ1, µ2, µ3〉 = Vµ1,µ2,µ3
|µ1, µ2, µ3〉 =

(
4πβ

3
`2P

) 3
2 (
µ

3
2
1 + µ

3
2
2 + µ

3
2
3

)
|µ1, µ2, µ3〉 (20)

The generic state of the system is Ψ =
∑
µ1,µ2,µ3

ψµ1,µ2,µ3
|µ1, µ2, µ3〉; the result of the action of H on this state is
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again a difference equation:

sgn(µ1 + 4δ1)

δ21
(Vµ1+5δ1,µ2,µ3 − Vµ1+3δ1,µ2,µ3)ψµ1+4δ1,µ2,µ3 − 2

sgn(µ1)

δ21
(Vµ1+δ1,µ2,µ3 − Vµ1−δ1,µ2,µ3)ψµ1,µ2,µ3+

+
sgn(µ1 − 4δ1)

δ21
(Vµ1−3δ1,µ2,µ3

− Vµ1−5δ1,µ2,µ3
)ψµ1−4δ1,µ2,µ3

+

+
sgn(µ2 + 4δ2)

δ22
(Vµ1,µ2+5δ2,µ3

− Vµ1,µ2+3δ2,µ3
)ψµ1,µ2+4δ2,µ3

− 2
sgn(µ2)

δ22
(Vµ1,µ2+δ2,µ3

− Vµ1,µ2−δ2,µ3
)ψµ1,µ2,µ3

+

+
sgn(µ2 − 4δ2)

δ22
(Vµ1,µ2−3δ2,µ3 − Vµ1,µ2−5δ2,µ3)ψµ1,µ2−4δ2,µ3+

+
sgn(µ3 + 4δ3)

δ23
(Vµ1,µ2,µ3+5δ3 − Vµ1,µ2,µ3+3δ3)ψµ1,µ2,µ3+4δ3 − 2

sgn(µ3)

δ23
(Vµ1,µ2,µ3+δ3 − Vµ1,µ2,µ3−δ3)ψµ1,µ2,µ3

+

+
sgn(µ3 − 4δ3)

δ23
(Vµ1,µ2,µ3−3δ3 − Vµ1,µ2,µ3−5δ3)ψµ1,µ2,µ3−4δ3 = 0

(21)

If there is matter, its Hamiltonian constraint must be added to the RHS of the above equations.
What about the topology? If we assume that the initial state is homogeneous and isotropic, as discussed in [38], one

has to consider a graph similar to the lattice reported in the left panel of figure 11. The only closed, homogeneous and
isotropic 3-manifold is S3, whose fundamental group is trivial; given the graph in the left panel of figure 11, it is easy to
prove that the only way one can get a trivial fundamental group is to impose that all the topological colors are trivial.
In this case, the colors of the new edges σ1, σ2, σ12 created by the Hamiltonian constraint (for the notation see the right
panel of figure 11) are undetermined, so there are 6 possibilities for σ12, i.e.: σ12 = {id, (01), (02), (12), (012), (021)};
the corresponding colors for σ1,2 are reported in table III along with the fundamental groups of the new manifolds:
we see that there is a superposition of three states and only one of them is S3 again; the other possibilities are the
full torus (i.e. T 2 with the interior) and the lens space L(3, q).

Case σ1 σ2 σ12 π1 Manifold
(a) id id id Trivial S3

(b) (01) (01) (01) Z Full torus
(c) (02) (02) (02) Z Full torus
(d) (12) (12) (12) Z Full torus
(e) (012) (021) (021) Z3 Lens space L(3, q)
(f) (021) (012) (012) Z3 Lens space L(3, q)

Table III: The fundamental group of the new manifold created by the action of the Hamiltonian constraint on the graph of
figure 11 with the identity as topological color.

σ1

σ2

σ12

Figure 11: Left : The graph for an homogeneous and isotropic manifold. Right : the graph after the action of the Hamiltonian
constraint.
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2. Calculation of transition amplitudes and probabilities

In this subsection we calculate the transition amplitudes and probabilities between the three final topologies of the
cosmological model described above.

If the transition amplitudes from the initial state S3 to the final state Fi are given by WS3 7→Fi for Fi =
{S3, torus, L(3, q)}, the transition probabilities are:

PS3 7→Fi =
|WS3 7→Fi |2

|WS3 7→S3 |2 + |WS3 7→torus|2 + |WS3 7→L(3,q)|2
. (22)

In order to include topological colors in the calculation, one has to calculate the transition amplitude WS3 7→Fi for
each color combination in table III.

With a moment of reflection, one can deduce that in order to calculate the transition amplitudes, one has to focus
on the thick part of the spinfoam reported in figure 12.

Figure 12: Spin foam used in the calculation of the transition amplitude. Only the thick part must be considered in the
calculation. The red links must be considered for the calculation of the initial state S3, while the blue part must be considered
for the calculation of the final state Fi.

Following [3, 42], the transition amplitude can be calculated using the formula:

WS3 7→Fi =

∫
SU(2)

dhWS3 7→Fi(h)ψS3 7→Fi(h) (23)

where ψS3 7→Fi(h) is the state of the system with hl ∈ SU(2) and

WS3 7→Fi(h) =
∑

colorings

∫
SL(2,C)

dg
∏
f

Pf (g, g′, hl). (24)

where the sum runs over all the topological colorings and Pf (g, g′, hl) will be defined shortly. Following [42], it can
be calculated that the coherent state ψS3 7→Fi(h) is given by:

ψS3 7→Fi(h) = ψS3(h)ψFi(h) (25)

where we have defined, following [42] (see also [43–45]):

ψs(h) =
∏
`

∑
j

dj exp

(
−j(j + 1)

2σ

)
Trj

[
Dj(n−1h−1n′)Dj(e

zσ3
2 )
] (26)

where dj = 2j + 1 and ` are the links, while n is a SU(2) element given by

n = exp(−iφσ3/2) exp(iθσ2/2) exp(iφσ3/2). (27)
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When s = S3 one has to consider the red part of figure 12, while if s = Fi one has to consider the blue part. In the
above equation z is a complex number, while σ gives the peakedness of the state. In order to have a state peaked
both in the area and in the extrinsic curvature, one has to impose [42]:

σ =
√
j0 (28)

where j0 is the value of the angular momentum that minimizes the quantity

j(j + 1)

2σ
−Re(z)j (29)

which is j0 = Re(z)σ, thus from equation (28), we find Re(z) =
√
j0. The imaginary part of z is ζ, the extrinsic

curvature of the manifold [42].
WS3 7→Fi(h) can be splitted in a way similar the the state ψS3 7→Fi(h); in fact, defining:

PS
3

(g, g′, hl) =
∏
red

∑
j

djD
βj,j
j,m,l,p(g

′)Dβj,j
l,p,j,n(g−1)Dj

m,n(hred)

 (30)

which is calculated with the red part of figure 12, and

PFi(g, g′, hl) =
∏
blue

∑
j

djD
βj,j
j,m,l,p(g

′)Dβj,j
l,p,j,n(g−1)Dj

m,n(hblue)

 (31)

which is calculated with the blue part, we have:

WS3 7→Fi(hl) =
∑

coloring

∫
SL(2,C)

dg PS
3

(g, g′, hl)P
Fi(g, g′, hl). (32)

Putting it all together and performing the integration over SU(2), we find:

WS3 7→Fi =
∑

coloring

∫
SL(2,C)

dg
∏
`

∑
j

dj exp

(
−j(j + 1)

2σ

)
Dβj,j
j,m,l,p(g

′)Dβj,j
l,p,j,n(g−1)Dj

m,n(n′e
zσ3
2 n−1)

 . (33)

where ` are the links, both blue and red.
Following [42], the D-matrices Dj

m,n(e
zσ
2 ) are dominated by the contribution of the higher-valued angular momenta,

and can be substituted by:

Dj
m,n(e

zσ
2 ) 7→ δjmδ

j
ne
zj . (34)

The integration in SL(2,C) can be performed by substituting it with two SU(2) integrations and one over a
parameter r as follows [42]: ∫

SL(2,C)
dg 7−→

∫ ∞
0

dr
sinh2 r

4π

∫
SU(2)

du

∫
SU(2)

dv. (35)

Similarly, the Wigner matrices Dβj,j
j,m,l,p can be substituted with Wigner-D matrices:

Dβj,j
j,m,l,n = Dj

m,p(u)dj,l,p(r)D
l
p,n(v−1) (36)

where [42]:

dj,l,p(r) =
√
dj
√
dl

∫ 1

0

dt

[
dljp

(
te−r − (1− t)er

te−r + (1− t)er

)
djjp(2t− 1)(ter + (1− t)er)iβj−1

]
(37)

and djlp(cos δ) are Wigner SU(2) matrices, while β is the Barbero-Immirzi constant. Finally, Wigner D-matrices have
the following property [46]:

Dj
m,n(U) = (−1)m−n

[
Dj
−m,−n(U)

]∗
(38)
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where the star indicates complex conjugation; with this and the fact that the D-matrices satisfy the orthogonality
condition [46]: ∫

SU(2)

dUDj1
m1,n1

(U)
[
Dj2
m2,n2

(U)
]∗

=
8π2

2j1 + 1
δj1,j2δm1,m2δn1,n2 , (39)

we find that the integral of the product of two D-matrices is given by:∫
SU(2)

dUDj1
m1,n1

(U)Dj2
m2,n2

(U) =
8π2

2j1 + 1
(−1)m2−n2δj1,j2δm1,−m2

δn1,−n2
. (40)

Substituting all the SL(2,C) integrations in (33) with SU(2) integrations as in (35), substituting formulae (34) and
(36) in the result and performing all of the integrations over u and v using equation (40), we find:

WS3 7→Fi =
∑

coloring

∏
`

∑
j`

[
(2j` + 1)−1 exp

(
−j`(j` + 1)

2σ
+ zj`

)
I`,j`

]
(41)

where we have defined:

I`,j` = 16π3
∑
n`

∫ ∞
0

dr` sinh2 r`

(
dj`,j`,n`(r`)⊗ dj`,j`,−n`(r`)

)
. (42)

For the transition S3 7→ S3, all the links have trivial colors and we are in the usual situation of LQG. One can find
the semiclassical state by using saddle-points method [3]; noting that all the eleven links give the same contribution,
one finds that the transition amplitude is given by:

WS3 7→S3 ∝ exp

(
−11

(i+ 2zσ)2

8σ

)
(43)

The classical limit is obtained by the rapidly oscillating phase [3]:

WS3 7→S3 ∝ exp

(
−i11

8
j0ζS3

)
(44)

where ζS3 is the extrinsic curvature of the hypersphere.
For the case of the transition S3 7→torus, one has to deal with links of different colors: eight (four links in the

initial state and four in the final state) have again trivial colors, while the other three may be colored (01),(01),(01)
or (02),(02),(02) or (12),(12),(12), therefore there will be three different contributions to the amplitude:

WS3 7→torus ∝ exp

(
− i

2
j0ζS3

)
exp

(
− i

2
j0ζT

)[
exp

(
−i3

8
j0ζT

) ∣∣∣∣∣
(01)

+

+ exp

(
−i3

8
j0ζT

) ∣∣∣∣∣
(02)

+ exp

(
−i3

8
j0ζT

) ∣∣∣∣∣
(12)

]
=

WS3 7→torus ∝ 3 exp

[
−ij0

(
ζS3

2
+

7ζT
8

)]
(45)

where ζT is the extrinsic curvature of the torus; in the above equation, we have indicated with a vertical bar on the
right of the summation term the topological color of the link.

Finally, the transition amplitude S3 7→ L(3, q) is given by:

WS3 7→L(3,q) ∝ exp

(
− i

2
j0ζS3

)
exp

(
− i

2
j0ζL

)[
exp

(
−i1

8
j0ζL

) ∣∣∣∣∣
(012)

exp

(
−i1

4
j0ζL

) ∣∣∣∣∣
(021)

+

+ exp

(
−i1

8
j0ζT

) ∣∣∣∣∣
(021)

exp

(
−i1

4
j0ζL

) ∣∣∣∣∣
(012)

]
=

WS3 7→L(3,q) ∝ 2 exp

[
−ij0

(
ζS3

2
+

7ζL
8

)]
(46)

where ζL is the extrinsic curvature of the lens space.



15

V. CONCLUSION

Motivated by the fact that in quantum gravity, quantum mechanics might lead to the evolution of the topology of
the manifold, we have used the formalism of topspin network in the context of LQG to characterize the topological
state of a system. We have described a method based on Fox algorithm to calculate the fundamental group of the
manifold and applied this formalism to three toy models: with the first, we have shown that the topology can actually
change after the action of the Hamiltonian constraint; in the second, we have found that the final state of the system
might be a superposition of states with different topologies; finally, we have applied the formalism to a homogeneous
and isotropic cosmological model calculating the difference equation that describes the state of the system and finding
that the final system is in a superposition of three topologies: S3, the full torus or a lens space; for this last case we
have also calculated the transition amplitudes and transition probabilities from S3 to the three final states.

For the cosmology application, we notice that even if observations favor the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) model [47, 48], these observations are limited to the local part of the observable Universe and,
moreover, while the three FLRW models are derived with the requirement of homogeneity and (local) isotropy, this
does not mean that the spatial slices are necessarily S3, R3 (i.e. flat) or H3 (i.e. hyperbolic with negative curvature),
these models are only the three simplest possibilities and the global topology of the Universe might be different from
that implied by these models and more exotic, see for example the review [49]. In fact S3,R3 and H3 are the universal
cover of any homogeneous and (locally) isotropic Universe; this means that any other space can be constructed by
topological operations such as gluing together or identifying some parts of these manifolds. One could hope to see
the signature of the topology of the Universe with observations: for example one could hope to see the light from
the same source coming from different directions in the case of a toroidal topology; the absence (up to now) of these
particular signatures leads to a lower bound on the volume of the Universe and, by themselves, do not rule out exotic
topologies. Changes in the topology in the history of the Universe might be observable in a similar way, for example
hidden in the cosmic microwave background, or in changes in the propagation of light from distance sources, or, if
they happened in the early Universe, they might be observable in the gravitational waves background.

As a consequence of the three examples considered above, we see that the change of the topology of the manifold is
a general phenomenon due to the particular color configuration of the initial graph and to the Wirtinger relations that
do not always give a unique result for the colors of the extraordinary edges added by the action of the Hamiltonian
constraint. This shows the need to extend the LQG approach to include in the theory the modification of the manifold
topology during the evolution of the system under study. Situations more general than the simple ones considered
in this paper will lead to the same conclusion that the topology will evolve in time along with the geometry of the
manifold, stressing this need to extend LQG, since more complicated graphs will lead to more possible combinations
of colors and topologies.

[1] L. Maccone Foundation of Physics 49 (2019) 1394;
[2] R. Y. Chiao, arXiv:gr-qc/0303100;
[3] C. Rovelli. & F. Vidotto, Covariant loop quantum gravity - An elementary introduction to quantum gravity and spin foam

theory, 1st ed. Cambridge University Press, Cambridge, (2015);
[4] M. Kaku, Strings, conformal fields, and M-theory Springer, New York, 2nd ed. (2000);
[5] C. Rovelli, Quantum gravity Cambridge University Press, Cambridge 1st ed. (2004);
[6] C. Rovelli Living Reviews in Relativity 11, Article No. 5.;
[7] T. Thiemann, Modern canonical quantum general relativity Cambridge Universty Press, Cambridge 1st ed. (2007);
[8] A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244;
[9] P. A. M. Dirac, Lectures on quantum mechanics Academic Press, New York 1st ed. (1965);

[10] H. Matschull, Dirac’s canonical quantization programme, arXiv:quant-ph/9606031;
[11] H. F. Dokre & R. S. Garcia, Class. Quantum Grav. 15 (1998) 1859;
[12] R. Loll & W. Westra, Class. Quantum Grav. 23 (2006) 465;
[13] R. Loll & W. Westra, Acta Phys. Pol. B 34 (2003) 4997;
[14] D. Denicola et al., Class. Quantum Grav. 27 (2010) 205025;
[15] J. W. Alexander, Bull. Amer. Math. Soc. 26 (1920) 370;
[16] R. Piergallini, Topology 34 (1995) 497;
[17] H. M. Hilden, Amer. J. Math. 98 (1976) 989;
[18] J. M. Montesinos, Q. J. Math. 27 (1976) 85;
[19] I. Izmestiev & M. Joswig, Adv. Geom. 3 (2003) 191;
[20] H. M. Hilden et al. Rev. Col. de Matem. 39 (2005) 63;
[21] H. M. Hilden et al. Math. Proc. Camb. Phil. Soc. 141 (2006) 443;
[22] G. Burde & H. Zieschang, Knots, Chapter 11, pag 191, De Gruyter, Berlin, 2nd ed., (2003);



16

[23] C. L. Duston, IOPSciNotes 1 (2020) 025205;
[24] R. H. Fox Annals of Math. 57 (1953) 547;
[25] R. H. Fox Annals of Math. 59 (1954) 196;
[26] R. H. Fox Annals of Math. 64 (1956) 407;
[27] K. T. Chen, et al., Annals of Math. 68 (1958) 81;
[28] R. H. Fox A quick trip through knot theory in Topology of 3-manifolds and related topics, Proceedings of the University of

Georgia University, Prentice-Hall, INC. Englewood Cliffs, N.J. (1962);
[29] R. H. Crowell & R.H.Fox, Introduction to knot theory, Springer-Verlag, New York (1963);
[30] J. M. Montesinos, Bol. Soc. Mat. Mexicana 11 (2005) 19;
[31] R. C. Lyndon & P. E. Schupp, Combinatorial group theory Springer, Berlin, 1st ed. (1977);
[32] J. Hempel, 3-Manifolds, AMS Chelsea Publishing, Providence, Rhode Island, 1st ed. (1976);
[33] M. Aschenbrenner et al., 3-Manifold groups arXiv:1205.0202 [math.GT];
[34] C. Rovelli & L. Smolin, Phys. Rev. D 52 (1995) 5743;
[35] T. Thiemann, Class. Quantum Grav. 15 (1998) 875;
[36] T. Thiemann, Class. Quantum Grav. 15 (1998) 839;
[37] C. L. Duston, Class. Quantum Grav. 29 (2012) 205015;
[38] M. Bojowald, Quantum cosmology - A fundamental description of the Universe, Springer, New York, 1 st ed. (2011);
[39] M. Bojowald, Class. Quantum Grav. 19 (2002) 2717;
[40] A. Ashtekar et al., Adv. Theor. Math. Phys. 7 (2003) 233;
[41] A. Ashtekar et al., Phys. Rev. D 74 (2006) 084003;
[42] M. Christodoulou et al., Phys. Rev. D 94 (2016) 084035;
[43] T. Thiemann & O. Winkler, Class. Quantum Grav. 18 (2001) 2561;
[44] L. Freidel & S. Speziale, Phys. Rev. D 82 (2010) 804040;
[45] E. Bianchi et al., Phys. Rev. D 82 (2010) 24012;
[46] E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra Academic Press, New York,

1st ed. (1959);
[47] The Planck collaboration, Astronomy and Astrophysics 641 (2020) A1;
[48] The Planck collaboration, Astronomy and Astrophysics 641 (2020) A6;
[49] J. P. Luminet, Universe 2 (2016) 1.


