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A B S T R A C T

A common assumption in non-relativistic quantum mechanics is that self-adjoint operators mathematically
represent properties of quantum systems. Focusing on spin, we argue that a natural view considers observables as
determinable properties and their eigenvalues as their corresponding determinates. We provide a taxonomy of the
different views that one can hold, once it is accepted that spin can be modelled with the determinable-determinate
relation. In particular, we present the two main families of views, dubbed Spin Monism and Pluralism, and we
show that the current literature does not take a stance between the two. Then we put forward two arguments in
favour of the former. Finally, we present a new account of Spin Monism, that is absent in current literature; such a
view is worth discussing, or so we contend, because several compelling considerations support it, and it opens
new ways of thinking about the ontology of quantum mechanics.
1. Introduction

If a realist stance toward scientific theories is assumed, it is natural to
think that measurements are performed on physical entities, and their
outcomes reflect the value of the properties measured. Furthermore, it
has been proposed (Swoyer, 1987) to understand measurements
employing the determinable-determinate relation: the property
measured is a determinable, whose determinates are the possible out-
comes of the measurement.

The determinable-determinate relation (Wilson, 2017) is a meta-
physical tool to understand how general properties are related to more
specific ones: more general properties, like ‘having mass’, are called
determinable properties while their more specific ones, such as ‘having mass
3 kg’, ‘having mass 4 kg’ and so on, are called their determinate properties.
Moreover, the determinable-determinate relation is relative to some level
of determination: a determinate of a given determinable may be, in turn, a
determinable with some more specific determinates. The property of
‘being red,’ say, is a determinable of ‘being scarlet’ but a determinate of
‘being coloured’. The following definitions are instrumental for the point
we wish to make. A maximally unspecific determinable is a determinable
which is not a determinate of any other determinables; a determinate (of a
given determinable) which, in turn, is not a determinable of other
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determinates is called a maximally specific determinate. In the previous
example, ‘being coloured’ is the maximally unspecific determinable, and
‘being scarlet’ is one of its maximally specific determinates.

Wolff (2015) proposed a determinable-determinate based analysis of
spin in non-relativistic quantum mechanics (QM hereafter). However,
Wolff does not explain much about how to understand spin components,
i.e. spin along different spatial directions, in terms of
determinable-determinate relations.1 The first aim of the paper is that of
completing Wolff's analysis by giving a determinable-determinate ac-
count of spin components.

We argue that spin components, represented by operators like Ŝx, Ŝz,
and so on, are, in the light of the Eigenvector-Eigenvalue Link, naturally
interpreted as determinable properties whose determinates are the con-
crete orientations of spin, e.g. spin up along the x�axis. So far, the
literature seems to agree that the operators above represent some prop-
erties, but no explicit stance on whether they are maximally unspecific
determinables is taken. Hence, we propose a taxonomy which divides into
two main families the possible views: Spin Pluralism, according to
which the operators above are maximally unspecific determinables, and
SpinMonism, according to which there is a unique maximally unspecific
determinable of spin. Even if some authors might be read as implicitly
assuming Spin Monism, nobody proposes which operator is supposed to
rbino, Via Timoteo Viti 10, I-61029, Urbino, Italy.
iurb.it (M. Sanchioni).
n we need to look at the different spin components, and it is here that matters
respects like determinables, but they behave differently from components for
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represent such a unique determinable of spin. We propose two arguments
in favour of Spin Monism, based on some formal properties of spin

Hilbert spaces. By presenting them, we suggest that the operator
^
S
! � n! is

the best candidate to represent the unique maximally unspecific deter-
minable of spin.2

We then turn to the second aim of the paper, that is, to present a novel
account of spin monism according to which operators like Ŝx, Ŝz and so
forth, do not represent any property. Such an account is radical and
countertrend yet worth discussing. Indeed, according to our account, the
spin of a particle is always determinate, even before a measurement is
performed. Superpositions are then understood in terms of the intrinsic
indeterminacy of the dynamics of the quantum system, rather than by
introducing a new metaphysical state of affairs in which a quantum
system might be.3

Before starting, it is worth laying out some assumptions that we hold.
We assume a realist attitude towards QM (McMullin, 1984). Moreover,
we do not enter into the complexities of the interpretations of QM.
Instead, we limit ourselves to the formalism of textbook QM.4 This is so
for two reasons. First, some of our results cannot be accommodated in
some interpretations,5 but they might plausibly be in others.6 Hence, a
more general discussion is preferable. Second, textbook QM is considered
a formalism without an ontology, when not considered an anti-realist
view. Our view allows one to be a realist on textbook QM7 and to
retain an always definite spin ontology without modifying the formalism,
but only by refusing to consider some Hermitian operators as properties.
So far, our conclusions are limited to spin and single-systems only. Yet
our account suggests a general way of interpreting incompatible ob-
servables, which might lead to an explicit ontology of textbook QM.

Furthermore, our analysis is, due to length limitations, utterly
simplified: we talk only about idealised free single-particle systems in
pure states, neglecting experimental errors. We also bracket the contro-
versial problem of what quantum objects are, discussing properties
instantiated by quantum systems as if this concept were unproblematic.
Finally, the examples we present are drawn only from the more
straightforward case of spin�1

2 particles. Nonetheless, our account can be
straightforwardly generalised to any spin�n

2 particle since nothing in our
analysis hinges on the spin number.
2 To be clear, the operator
^
S
! � n! is know in physics (Hughes, 1989; Sakurai,

1994), and quoted in some works on the metaphysics of QM (Calosi & Wilson,
2021, fn.25). The original aspect of the present paper is the thesis that such an
operator corresponds to the maximally unspecific determinable of spin.
3 Examples can be found in Dorato (2007); Bokulich (2014); Calosi and Wil-

son (2018).
4 i.e. the currently taught quantum mechanics based on the Dirac-von Neu-

mann formulation of the theory. Sometimes called ‘Orthodox’ or ‘standard’ QM.
5 As an example, in some versions of Bohmian mechanics the only property

instantiated by a quantum object is its position. It is clear that in these frame-
works, the question of how many properties of spin there are is trivial since
there are not any, at least at the fundamental level. See Bell (1982); Daumer
et al. (1996).
6 For instance, Relational QM and, perhaps, GRW.
7 Whether scientific realists must be committed to the reality of spin has been

recently discussed in the literature. It has been argued that, insofar as the
ontological status of spin is underdetermined by different interpretations of QM,
scientific realists are not necessarily committed to spin (Saatsi, 2020; Vickers,
2020). Our attitude toward textbook QM nicely fits to Egg (2021)'s reply to
(Vickers, 2020) and (Saatsi, 2020). Albeit we are explicitly sympathetic with
Egg's view, we think such a debate is orthogonal to the result of our paper. As
Saatsi (2020, p.50) himself notices, ‘metaphysical assumptions should not need
to be part of the scientific realist account of the empirical successes of quantum
physics either. Such assumptions belong to the metaphysical foundations of
quantum theory, which is an extremely well-motivated and important
endeavour, but one that the realist need not engage with in articulating her
epistemic commitments.’ We owe an anonymous referee the connections of our
work with such a debate.
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The paper is structured as follows. In x2, we clarify what it means to
consider self-adjoint operators as properties. Then (x3), we present a
taxonomy of the views that accept to understand spin in terms of
determinable-determinate relations, dividing the possible views into two
main families dubbed Spin Pluralism and SpinMonism. We continue by
presenting (x4) two arguments against Spin Pluralism. Finally (x5), we
put forward a novel account of Spin Monism, and we discuss a natural
objection against it. Conclusions follow (x6).

2. Spin operators as properties

In this section, we lay down some groundwork for what follows. In
particular, we provide a brief introduction to the mathematics of spin
(x2.1), and we show what does it mean to consider spin operators as
representing determinable/determinate properties (x2.2). Readers
already familiar with the formalism of QM and the notation of spin op-
erators, eigenvalues and eigenstates, may jump directly to x2.2.

2.1. The mathematics of spin

In QM, spin is an infinitesimal generator of the rotation group SU(2),

described by a vector S
!

(which in turn can be represented as a self-

adjoint operator on Hs). The fact that S
!

is a generator of SU(2) means
that its components should obey the following commutation relations:

�
Ŝi; Ŝj

� ¼ iℏεijk Ŝk; (1)

where εijk is the Levi-Civita symbol. The fact that the spin components do
not commute and that they all are self-adjoint operators acting on the
same domain jointly imply that there is an indeterminacy relation be-
tween them, namely:

ΔŜiΔŜj �
ℏ
2

��εijk〈Ŝk〉��: (2)

Operators corresponding to spin along different directions are not the

only spin operators. Indeed, it is possible to build up the operator Ŝ
2 ¼

S
!� S!, which is the Casimir operator of the SU(2) group. An interesting
feature of operators of this latter kind is that they commute with any

other operator of the group. From (1), one can show that Ŝ
2
commutes

with every component Ŝi, for every i, and also with P̂ and X̂. In other

words, Ŝ
2
commutes with every element of the irreducible set of ob-

servables
n ^
X
!

;
^
P
!

;
^
S
!o

, and so it is a multiple of the identity. Being a

multiple of the identity entails that an eigenvalue of Ŝ
2
will characterise

every particle. Finally, since Ŝ
2
commutes with Ŝi, it is possible to arbi-

trarily choose a component of spin to characterise the spin states of the
particle as follows:8

Ŝ2js; sii ¼ ℏ2sðsþ 1Þjs; sii; s 2 ℕ
�
2; (3)

Ŝijs; sii ¼ ℏ sijs; sii; si 2 fs; s� 1; …;�sg; (4)

where i is a generic axis upon which the spin can be measured. An
operator of spin – that will behave as (4) – will be associated to every
measurement of spin along given spatial directions, e.g. the x�axis or the
z�axis. For instance, the eigenvalue relation of the operator corre-
sponding to the property of having spin along the x�axis is:
8 Note that when s and si are inside the ket, they label the eigenstate, whereas

when they are outside the ket, they refer to the eigenvalues of the operators Ŝ
2

and Ŝi.
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Ŝxjs; sxi ¼ ℏ sxjs; sxi; sx 2 fs; s� 1; …;�sg; (5)
after a measurement of spin along the x�axis, the state of the system will
be js; sxi, where the eigenvalue sx will be the outcome of the measure-
ment. For a spin�1

2 particle, for example, such a measurement has only
two possible outcomes: þ 1 when the state of the particle after the
measurement is spin up along the x�axis, i.e. j↑ix, and �1 when it has
spin down on that axis, i.e. j↓ix.9 The same happens for all the possible
axes upon which spin can be measured.

2.2. The metaphysics of spin

The well-known empirical fact that spin cannot be measured simul-
taneously along different axes has its mathematical explanation in (1).
This equation is usually taken in textbook QM as a forewarning that an
indeterminacy relation will hold between the values of spin along
different axes. Moreover, further mathematical theorems show that if a
system is in a definite state of spin along an axis, the spins along different
directions cannot have any definite value whatsoever, showing that these
indeterminacy relations do not concern an epistemic limitation. Theo-
rems such as those found in Kochen and Specker (1967) and Gleason
(1957) show indeed that if one tries to ‘cheat’, so to speak, by assigning
definite values to spin along all the different directions, then a logical
contradiction or a violation of empirical data occurs. As such, these re-
sults are taken to suggest - if one is a realist about QM - that the inde-
terminacy relations describe something fundamental about the
microphysical world. What precisely these indeterminacy relations tell us
about the world is a matter of controversy.

In textbook QM, it is often assumed that physical properties are
represented by self-adjoint10 operators. In the case of spin, such an
assumption is natural given the connection between the operators of spin
along different directions (Ŝx, Ŝz and so forth) and the experimental
outcomes of spin measurements along those axes. How natural it is to
assume that operators formally represent some physical quantities, i.e.
what metaphysicians call ‘properties’ of the system measured, is attested
by the fact that one of the principles of orthodox QM is the so-called
eigenvector-eigenvalue Link - (EEL) hereafter:11

(EEL) The eigenvector-eigenvalue link: Given a physical quantityO
represented mathematically by a self-adjoint operator Ô :

1. A system in a state jψi possesses a definite value of O if and only if jψi
is an eigenstate of Ô , Ô jψi ¼ oijψi.

2. In this case, the definite value is the associated eigenvalue oi.

The role of the (EEL) is that of connecting the mathematical
description of a quantum system (operators, eigenvectors and states)
with its metaphysical description in terms of properties instantiated.

Even if we share this assumption, we argue that (EEL) shifts between
two different understandings of the claim that ‘a self-adjoint operator
represents a physical property.’ Such a claim may mean either that:
9 Formally speaking, the eigenvalues of every Ŝi operator of a spin-12 particle
are þℏ

2 and � ℏ
2 . In what follows, we use ‘þ’ and ‘�’ as shorthands when it is

clear that ℏ
2 is implicit.

10 In the case of finite-dimensional Hilbert spaces, self-adjointness and sym-
metry coincide. For further discussions on the features of operators acting on
Hilbert spaces, see (Moretti, 2018, Ch. 5) Since we deal only with this kind of
Hilbert spaces in the paper, we avoid a pedantic notation in favour of the
readability of the text.
11 The definition of (EEL) used here is a slightly modified version of the one
presented by Wallace (2019, p. 2). Note that Wallace (2019) himself argues that
(EEL) is not a part of orthodox QM. See Gilton (2016) for some replies to
Wallace's arguments. In what follows, we assume that (EEL) is a part of QM, at
least as an effective principle.
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(i) the operator stands for a determinate property. This conception
seems to be what is expressed in the first bullet of (EEL), where it
says under what condition the quantity O has a definite value. In
this first sense, we postulate that a determinate property is rep-
resented in the formalism of QM by the tuple composed of the
operator and one of its eigenvalues, i.e. ðÔ ; o1Þ,
ðÔ ; o2Þ…ðÔ ; ôi Þ.12 For instance, the property of ‘having spin up
along the x�axis’ is represented by ðŜx; þ Þ, where þ is the
eigenvalue corresponding to the state of spin up;

(ii) or that the operator stands for a determinable property. To us, the
first line of (EEL) - a physical quantity O (is) represented by a self-
adjoint operator Ô - clearly states that the operator Ô represents
a determinable property O. Indeed, if the first line assumed that O
is a determinate, then the first bullet - which introduces the con-
dition under which O has a definite value, i.e. is a determinate -
would be redundant. In this second sense, we postulate that a
determinable property is represented in the formalism of QM by
the tuple made of the operator and its eigenvalues, i.e. ðÔ ; oiÞ. For
instance, the property of ‘having spin along the x�axis’ is repre-
sented by ðŜx; sxÞ, where sx stands for all the possible eigenvalues
of Ŝx. To avoid a pedantic notation, sometimes we will speak
loosely of an operator representing a determinable, e.g. we say
that Ŝx – rather than the tuple ðŜx; sxÞ – stands for the determinable
‘having spin along the x�axis.’

The distinction between determinables and determinates is not just a
piece of metaphysical theorising, useless for the philosophy of physics. As
we will soon see, it helps characterise the received view of spin properties
and the contrasting view that we are proposing.

At a first look, equations (3) and (4) tell us that two different quan-
tities characterise the spin of a particle. Given (EEL) and the
determinable-determinate relation, (3) tells us that the first determinable

property of spin is the spin number, represented by ðŜ2; sÞ. Such a
determinable represents how much spin, so to speak, a particle has. Its
determinates, i.e. 1

2 , 1,
3
2, 2 and so on (see Fig. 1)13, partition the spin

Hilbert space in superselection sectors; as a consequence, they divide
particles into kinds, that is, spin�1

2 particles, spin �1 particles, etc … As
Wolff (2015) already showed, to analyse spin number as a determinable
is quite straightforward and natural.

Analogously, Equation (4) may be seen as saying that spin compo-
nents have the same determinable-determinate structure as the spin
Fig. 1. The spin number as a determinable.

12 This is not a postulation we came up with; rather, it is the common ways in
which the idea that operators stands for properties is captured in QM. See, for
example, Hughes (1989, Ch. 6).
13 In all the figures of the paper, determinables/determinates on the same level
of determination are drawn with the same shape; determinables are positioned
above their determinates. The arrows represent the determination relations that
hold between a determinable and its determinates. Reasonably, when there are
infinite determinates, we avoid drawing all of them in the figure. In Fig. 1, for
example, n

2 followed by ‘ …’ is a shortcut for the infinite determinates that one
obtains by substituting to n an integer.



Fig. 2. Diagram of Spin pluralism for spin�1
2 particles.
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number, as captured by (i) and (ii): given an arbitrary direction i, ðŜi; siÞ
represent the determinable property of ‘having spin along the i-axis’
where ðŜi;þÞ and ðŜi;�Þ represent, respectively, the properties of having
spin up and spin down along that very axis. We now turn to how to
understand more precisely the determinable-determinate relation for
spin components.
14 See for example Bigaj (2012); Cetto et al. (2020).
15 Even though in the original paper Einstein et al. (1935, p. 778) talk of po-
sition and momentum, rather than different components of spin (as in the
well-known version of the EPR paradox presented by Bohm (1951)), it seems
uncontroversial to read their ‘physical quantities’ as what metaphysicians call
‘properties.’
3. Varieties of spin realism

Having laid down the groundwork, we enter in the hearth of the
paper. In the rest of the paper, we present:

� a taxonomy, which is supposed to be exhaustive, of broad families of
views that understand spin as determinable/determinate properties.
We dub these broad families Spin Monism and Spin Pluralism (x3);

� reasons for preferring a broadly monistic view to forms of Spin
Pluralism (x4);

� within the monistic camp, a new account of spin which, we contend,
is worth discussing and developing (x5).

Let us start by noticing that in discussions concerning spin observ-
ables, it is not unusual to read claims like ‘when an electron has a
determinate value of spin along the x�axis, the value of the spin along
the z�component is indeterminate.’ If the eigenvalues of spin along
different spatial directions are the values of properties instantiated by a
system, then claims like the one above hinge on the idea that (poten-
tially) there are an infinite number of determinable spin properties - one
for every spatial axis upon which spin can be measured. The
determinable-determinate machinery introduced above is helpful to
characterise the possible ways of considering spin as a property. The
main bipartition between the possible views is obtained once the ques-
tion “Are Ŝx, Ŝy and Ŝz maximally unspecific determinables?” is
answered. Such a question separates what we dub Spin Pluralism from
Spin Monism:

(SP) Spin Pluralism: a quantum system could instantiate an infinite
set of maximally unspecific determinable spin properties that stand
on the same level of determination. These determinables are the
properties of having spin along the x�axis, having spin along the
z�axis and spin along all the other continuously many possible axes.
The maximally specific determinates corresponding to the de-
terminables above are the concrete orientation of spin a particle could
have, e.g. spin up along the x�axis.
(SM) Spin Monism: a quantum system instantiates a unique maxi-
mally unspecific determinable property of spin that is independent of
any axis. Its maximally specific determinates are the concrete orien-
tation of spin a particle could have.

We defined the determinables of spin components as the tuples con-
sisting of an operator of spin along a given axis and its eigenvalues. For
instance, the determinable corresponding to the property of having spin
along the x�axis is defined as ðŜx; sxÞ; the determinates of a given
determinable of spin components are represented by the tuple consisting
of the same operator along a given axis and one of its particular eigen-
values. For a spin�1

2 particle for instance, the determinates of ðŜx; sxÞ are
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spin up and spin down along the x�axis, which in our notation are
respectively ðŜx;þÞ and ðŜx;�Þ (see Fig. 2). The ðŜi; siÞ appearing in Fig. 2
stand for all the possible properties of spin one obtains by substituting for
i every possible spatial direction; ðŜx;sxÞ, ðŜy ; syÞ and ðŜz; szÞ are pictured
as an example, i.e. i ¼ x, i ¼ y and i ¼ z, to emphasize that all these
determinables stand on the same level of determination. Finally, ac-
cording to (SP) all of these determinables are maximally unspecific: they
are not determinates of a further determinable(s).

According to Spin Monism the maximally specific determinates of
spin are, unsurprisingly, the same accepted by spin pluralists. What does
change between the two views is that according to (SM) there is a unique
maximally unspecific determinable of spin.

Spin Pluralism and Spin Monism, as defined above, are families of
accounts, rather than single views. Indeed, different variants of the two
can be crafted once more metaphysical theses are added. For example,
Glick (2017)'s Sparse view - according to which determinables are
instantiated only if one of their determinates is - can be added to both
Spin Pluralism and Spin Monism. The way of crafting some variants of
Spin Monism which matters here is that of considering the possible
answers to the following questions:

(1) Which mathematical object represents the unique maximally un-
specific determinable property of spin (if any)?

(2) What is the metaphysical counterpart of the operators of spin
along different components, like Ŝx, Ŝz, and so forth, i.e. the op-
erators that according to spin pluralists represent the maximally
unspecific determinable properties of having spin along all the
possible axes?

Concerning (1), no definite answer has been presented in the litera-
ture yet. Some authors speak as if spin were a single property, but they
never point to a specific operator that should represent such a maximally
unspecific determinable.14 For example Calosi and Mariani (2020, Fn.
38), implicitly claim that operators like Ŝx, Ŝz and the like, are not
maximally unspecific determinables; at the same time though, they do
not explicitly assess what the maximally unspecific determinable(s) is
(are). One of the tasks of the next sections is to suggest a definitive
answer to (1).

Concerning (2), it seems to be accepted unanimously by the literature
that Ŝx, Ŝz, etc …, represent determinable properties. Sometimes spins
along different axes are not explicitly called ‘properties.’ Nonetheless, it
is quite clear from the context that they are often implicitly considered as
such.15 Examples abound. They can be found in textbooks both on the
foundations of QM – from now-classic texts (Hughes, 1989, ch. 6) to
recent ones (Norsen, 2017, p. 217) – and on the philosophy of physics
(Albert, 1992, p. 1).

One could say that our focus - the question ‘Howmany spin properties
are there?’ - is intrinsically a metaphysical question. As such, we should



Fig. 3. Pictorial of (SMCR) for spin�1
2 particles.

16 For spin�1
2 particles in a pure state, the point lies on the surface of the Bloch

Sphere; for the states of composite systems the point lies inside the sphere. Note
that particles with a spin number larger than 1

2 are formally treated as composite
system.
17 The vector a!¼ aiêi (where Einstein's rule is intended) has components ai

that contravary with a change of basis. The vector a! itself is an object that is
independent of any coordinate êi one chooses.
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be charitable and allow that physicists and less metaphysically inclined
philosophers could use more freely the word ‘property’ without being
committed to the views here under scrutiny. Nevertheless, the same way
of talking about spin can be easily found in analytic metaphysics. Again,
this is true from textbooks about metaphysical aspects of QM (Lewis,
2016, p. 10), to more research-oriented papers (Dorato, 2007; Bokulich,
2014; Calosi & Wilson, 2018; Darby & Pickup, 2019, pp. 1–26). Finally,
some authors, like Darby (2010, p. 233), also make an explicit reference
to the determinable-determinate machinery when talking about spin
along different axes.

As remarked above, there is no evidence of which view - Spin
Pluralism or Spin Monism - is the most accepted in the literature.
Indeed, nobody explicitly states yet which is/are the maximally unspe-
cific determinable/s of spin. Since the literature seems to agree that spins
along different axes are determinables, the mainstream view must be
either a form of Spin Pluralism or the following variant of SpinMonism:

(SMCR) SpinMonism - Component Realism: a particle instantiates a
unique maximally unspecific determinable property of spin that is in-
dependent from any axis. Its maximally specific determinates are the
particular directions along which the spin of the system could be polar-
ised. There is a third level of determination that stands in between the
maximally unspecific determinable and the maximally specific de-
terminates; such a level is made of the properties of ‘having spin along the
x�axis’, ‘having spin along the z�axis’, and so forth, for each of the
uncountably many axes upon which spin can be measured (see Fig. 3).

So far, we have shown that spin monism and spin pluralism are two
broad families of views, and we argued that the current literature is
ambiguous on which of these families is the correct one. Furthermore, we
outlined some possible ways of crafting different forms of spin monism/
pluralism, and we remarked that it has yet to be specified which is the
mathematical object which represents the unique maximally unspecific
determinable, if any. The aim of what follows is to provide an answer to
the following questions:

� Is there an argument for preferring Spin Pluralism over Spin
Monism, or vice-versa?

� Is there a particular account of Spin Pluralism/Monism, undiscussed
in the literature, that deserves further attention?

We tackle these questions, respectively, in x4 and x5. Moreover, we
argue, in x4, that the answer to the first question strongly suggests a
particular mathematical structure as representing the maximally unspe-
cific determinable of spin.

4. In favour of spin monism

In this section, we present two arguments in favour of Spin Monism.
As we will soon see, the first argument (x4.1) holds only if a controversial
assumption is accepted. Nonetheless, its presentation is instrumental in
formulating a stronger argument. Section 4.2 consists of a mathematical
interlude necessary for the statement of the second argument, which is
presented in x4.3. Such an argument incidentally reveals that the
115
operator
^
S
! � n! is the best candidate for representing the maximally

unspecific determinable of spin.
4.1. The Uniqueness Argument

When a system has a definite value of spin along a component, it is
well-known that it is in a superposition on the spin along the other axes.
Moreover, the symmetry group SU(2) guarantees that there is no privi-
leged basis that should be preferred. Indeed, given an arbitrary direction
of space, and as a basis two orthogonal vectors that represent the possible
orientations of spin along that axis, then one can describe any other
possible state of spin as a linear combination of our basis. The fact that a
system has a definite value of spin along a given direction does not
merely entail that it is in a superposition on the others. Rather, having a
definite value of spin along an axis and being in a superposition on
another is the very same state. Since there is no privileged basis, we claim
that descriptions on different bases cannot have a strong metaphysical
import. In other words, since one does not change the physics of the
system by performing a change of basis, then a definite state of spin on an
axis and a superposition of spin on other axes must correspond to the
same metaphysical structure. Spin states represented in different bases
are mathematically equivalent descriptions of a single vector.

How can we better characterise such a unique spin vector? The
clearest way to do so is to represent the spin of the particle as a sphere,
the well-known Bloch Sphere (see Fig. 4). In this representation, once one
chooses a basis, say, the eigenvectors of Ŝz, a point in the sphere repre-
sents a generic spin state jψis with following coordinates:16

jψ si ¼ cos
�
θ

2

�
j↓iz þ eiφsin

�
θ

2

�
j↑iz: (6)

The sphere is invariant under rotations (see Fig. 4): we can rotate the
sphere so that any pair of orthonormal vectors (say, spin up and down
along the x�axis) take the place of spin up and down along the z�axis.
Upon performing the rotation, what changes is just the basis upon which
the state jψ si is described; and the only structures invariant under this
rotation are the state jψ si and the vector a! - also called the Bloch vector -
which connects the centre of the Bloch Sphere to the state jψ si itself.17 It
is the vector a! that represents, independently from the coordinates in
which it is expressed, the physically relevant information concerning the
spin of the system. This graphically shows why writing the spin of a
system along different directions is merely changing the basis upon

which we describe the unique vector of spin a!. Since the physics



Fig. 4. The Bloch sphere.
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concerning the spin of the system of the particle is captured by a!which,
in turn, picks a unique jψ si, the latter is the only mathematical structure
to which one should give a metaphysical weight.18 The uniqueness of the
spin vector entails there is a unique property of spin.

Unfortunately, this argument - that we dub the ‘Uniqueness Argu-
ment’ - hinges on a controversial assumption that badly limits its scope.
According to Glick (2017, pp.205–206), there are three broad ways in
which the ontology could be read off QM:

(1) “one can view the quantum state non-ontologically,” interpreting
it as a “book-keeping” device that just informs us about the
fundamental properties described in QM by self-adjoint operators;
(ibid.)

(2) one can consider “the properties to be ontologically derivative and
quantum states to be fundamental; ” (ibid.)

(3) or “one can advocate a flat ontology for standard QM”, and
consider states and properties as on “equal foot ontologically”.
(ibid.)

Now, by itself, the Uniqueness Argument is valid only if one is willing
to assign the ontological status of ‘property’ to the quantum state
(Monton, 2004; Belot, 2012; Dorato & Esfeld, 2010). That is, the
Uniqueness Argument is valid only if the ontological stance assumed is
(2) or (3). Indeed, the Uniqueness Argument only shows that the spin
vector, and as a consequence, the quantum state, is invariant under a
change of basis. Hence, the uniqueness of the spin property follows from
the argument only if one gives a metaphysical import to the quantum
state.

True to the spirit of the (EEL), we accepted above that the values of a
property are represented by self-adjoint operators and eigenvalues,
rather than by eigenvectors (as discussed in x2), i.e. our ontological
18 Alternatively, one may give an ontological weight only to a!, rather than to
the state it selects. We think that such a view would be interesting, and it was
discussed in previous drafts. Nonetheless, we think there are good reasons to be
dissatisfied with such a view which, unfortunately, lay outside the scope of the
paper.
19 Stance (1) has also been defended in the context of different interpretations
of QM, e.g., Bohmian mechanics (Su�arez, 2015), Relational (Rovelli, 2018;
Calosi & Mariani, 2020) and Modal QM (Lombardi, 2019).
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stance towards QM is (1).19 Therefore, we reckon that this argument is
not conclusive in favour of Spin Monism but for those that read onto-
logically quantum states. Yet, it provides a basis to formulate a more
convincing argument in favour of (SM), that we present in x4.3.

4.2. Intermezzo - the spin-polarisation principle

It is essential now to pause our discussion to briefly discuss a theorem
of QM. Given a spin state, there exists a unique polarisationation vector
n!, which is determinate at all times. This result is called the Spin-
polarisation Principle,20 and its statement is the following:

Spin-polarisation principle: Any state of a single spin is an eigen-
vector of some component of the spin. In other words, given a generic
state jψi 2 ℂ2, there exists some direction n! such that:

^
S
! � n! jψi ¼ ℏ

2
jψi (7)

where
^
S
!

is the spin vector:

^
S
! ¼ ℏ

2

�
σx; σy; σz

	
; (8)

constructed with the Pauli matrices σx, σy and σz, i.e. a possible repre-
sentation of the SU(2) group.

Now, what does the theorem entail? Equation (7) means that for a
generic spin state jψi, a unique vector n! always exists – the so-called
‘polarisation vector’ – along which the component of spin predictably
is þ ℏ

2.
The relevance of the theorem - for our purposes - is that the polar-

isation vector is nothing but the Bloch vector a! itself. To see why, take an

eigenvector jψi of the operator
^
S
! � n! which is aligned along the direc-

tion n̂. How can we write this state in terms of the eigenvectors of, say,
Ŝz? We rotate the state jψi by two angles to make n̂ and ẑ coincide. The
mathematically correct way of doing so is employing (6). As a conse-

quence, the eigenstates of
^
S
! � n! and the states individuated by the Bloch

vector are the same. Since the polarisation vector and the Bloch vector
always individuate the very same spin state, we conclude that they are
nothing but two names attached to the very same vector.

Even though the Spin-polarisation principle is trivial from a
mathematical point of view, it is not so from a metaphysical one. This
theorem guarantees that a system always has a defined polarisation
vector n! even before any spin measurement is performed. In other
words, a particle with spin necessarily has a definite state of spin along a
given axis even before a measurement is performed. However, even if the
property of spin is definite at all times along a given axis, it does not
follow that it is always possible to know in which direction the spin is
aligned. To put it explicitly, the spin of a (free) particle is always meta-
physically determinate in one direction, even if such a direction could be
epistemically indeterminate.

4.3. The Invariance Argument

The Uniqueness Argument above (x4.1) suggests that the descriptions
of spin along particular directions are, somehow, arbitrary. In other
words, not only the very same vector can be written in two different ways
using different bases, but none of the spin components is privileged. In-
sofar as the unique basis-independent vector of spin does not change
20 The “Spin-polarisation Principle,” is the name used by Susskind and Fried-
man (2014, p.90). The polarisation vector is seldom presented in textbooks as
explicitly as we do in the paper. A pedagogical (yet quite technical) recon-
struction of the polarisation vector, a proof of the uniqueness of n! and a

detailed discussion of
^
S
! � n!, can be found in (Sakurai, 1994, pp. 165–168).
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when we perform a change of basis, one should conclude that we must
give some metaphysical weight to this very vector rather than to its
description in different bases. Indeed, a common practice in reading the
metaphysics out of physics is that of looking for invariant structures.

If one accepts that the values of a property are the eigenvalues of a self-
adjoint operator, rather than the vectors themselves, one may start
wondering whether there is some relationship between the unique spin
vector and the eigenvalues of some particular operator. If such an operator
exists, thenone shouldgivemetaphysical import to this very operator rather
than to those associatedwith the descriptions of spin along a particular axis.

We argue that such an operator is the
^
S
! � n! that appeared in (7).

Let us start by noticing that the polarisation vector n! can be para-
metrised through three angles (α, β and γ). Selecting three directions in

space, say î; ĵ and k̂, one can define the following angles:

cos α ¼ n!� î
j n!j; cos β ¼ n!� ĵ

j n!j ; cos γ ¼ n!� k̂
j n!j; (9)

where j n!j is the modulus of the polarisation vector. The polarisation
vector itself will be then fully characterised by:

n!¼ j n!j
0
@ cos α

cos β
cos γ

1
A (10)

Specifying the values of α, β and γ, one characterises the polarisation
vector.

We can now see how
^
S
! � n! captures all the possible states of spin in

which a particle could be. As we have seen, the spin states are captured
univocally by the polarisation vector n!. If we take a unit polarisation
vector n! ¼ fcosðαÞ; cosðβÞ; cosðγÞg,21 the explicit form of this spin

operator
^
S
! � n! is given by:

^
S
! � n!¼ ℏ

2

�
cosðγÞ cosðαÞ � icosðβÞ

cosðαÞ þ icosðβÞ �cosðγÞ
�
: (11)

Once the values of the three angles α, β and γ that characterise the
polarisation vector are given (together with the spin number), they fix a

particular value of
^
S
! � n!. For instance, if we take



α ¼ 0;β ¼ π

2;γ ¼ π
2

�
,
^
S
! �

n!will take the form of S � x̂; or if we choose instead


α ¼ π;β ¼ π

2;γ ¼ π
2

�
,

^
S
! � n! will be

^
S
! � ð� x̂Þ.22 And so on for all the possible measures of α, β

and γ. That is, all the possible spin states are eigenstates of
^
S
! � n!. More-

over, the operator
^
S
! � n! is the only spin operator that is invariant under

rotations. Indeed, a change of basis modifies both the Pauli matrices, i.e.
^
S
!

, and the components of n!, while, crucially, preserving the form of the

operator
^
S
! � n!. In other words,

^
S
! � n! captures the fact that when we

rotate the Bloch sphere, the spin vector (and the state connected to it) does
not change. Since this operator is a general and invariant spin operator
representing spin independently from the choice of basis, this very oper-
ator must represent a determinable property of having spin. Since every
spin state is an eigenvector of such an operator, and so there are no
determinate properties of spin that are not determinates of this deter-

minable, we claim that
^
S
! � n!must be a maximally unspecific determinable.
21 Since in the examples that follows, we consider only spin�1
2 particles, we

take j n!j ¼ 1.
22 This notation may seems puzzling at first. But note that the determinate

ð ^S! � ð�x̂Þ;þÞ corresponds to what was previously defined as ðŜx; � Þ, as

ð ^S! � ðx̂Þ;þÞ is equal to ðŜx; þ Þ. Ditto for all the other possible axes.
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The uniqueness of
^
S
! � n! straightforwardly entails that SpinMonism is the

correct way of understanding the spin property. This concludes what we
dub the “Invariance Argument” in favour of Spin Monism.

5. A new account of spin monism

Section 3 endedwith twomain questions whichwe aimed to answer. So
far, we have addressed just the first by arguing that SpinMonism has to be
preferred to Spin Pluralism. Moreover, the considerations above showed

that
^
S
! � n! is the mathematical counterpart of the maximally unspecific

determinable of spin. We now turn to the second question by investigating
whether there is any spin monist view – different from (SMCR) – worth
exploring. We answer affirmatively by presenting a novel account of Spin
Monism. A full-fledged defence of such a view is left for future works. Here,
we limit ourselves to present the view, offer some prima faciemotivations in
favour of its plausibility and defend it from a straightforward objection.

In the literature to date, only one version of (SM) different from
(SMCR) has been presented. Namely, the view cursorily sketched by
Funkhouser (2006) and heavily criticised byWolff (2015). We argue now
that there is a new variant of Spin Monism - which we dub “Component
Nihilism” - worth discussing:

(SMCN) Spin Monism - Component Nihilism: a particle instantiates
a unique maximally unspecific determinable of spin, represented by

ð ^S! � n!; þ Þ. Here, n! must be understood as a shorthand for all the
possible directions along which the polarisation vector could be

aligned.23 The maximally specific determinates of ð ^S! � n!;þÞ are the
particular directions along which the spin of the system could be polar-
ised, i.e. what we obtain by substituting n! with a precise spatial direc-
tion. For example, having spin up and spin down along the x�axis will be

respectively represented by ð ^S! � x̂;þÞ and ð ^S! � �̂x;þÞ (cf. fn. 23). There
are no further levels of determination for the property of spin, e.g. there
are no spin properties such that they are both determinables of maxi-
mally specific determinates and determinates of the unique maximally
unspecific determinable (see Fig. 5).

We think there are several motivations for seriously considering
(SMCN). To start, note that there are two main ways in which (SMCR)
could be read: (a) one could accept that the determinables are instanti-
ated even when none (or more than one) of its determinates are, as the
friends of metaphysical indeterminacy contend (Calosi & Wilson, 2018);
or (b) endorse the Sparse view, and deny that determinables are
instantiated when none of their determinates is (Glick, 2017). A full
comparison of the three views is, for length reasons, reserved for future
work. Briefly, (SMCN) seems to be, prima faciae, a better alternative than
the ones above. First, it retains what we take to be the intuition that
underlies the Sparse View, without claiming that determinable proper-
ties are miraculously created when a measurement is performed or
denying that determinables are instantiated only when their de-
terminates are. Moreover, (SMCN) crucially avoids some problematic
features of the Sparse view (Calosi & Wilson, 2021). Second, (SMCN) is
not committed either to the problematic idea that a particle instantiates
infinitely many determinables of spin or that the
determinable-determinate relation has to be modified - as the friends of
metaphysical indeterminacy contend.

Moreover, the arguments against (SP) hinge on the meta-
metaphysical principle that one has to give an ontological weight, pref-
erably, to invariant structures only.24 It is true that (SMCN) is quite
23 In the same way in which in our general characterizations of determinables
(cf. x2), the oi in (Ô ;oi) stands for all the possible eigenvalues of Ô , rather than
for one in particular.
24 Such an assumption remained implicit below, insofar as it is widely shared
among philosophers of physics. A classic reference on this point is van Fraassen
(1989).



Fig. 5. Diagram of (SMCN) for spin�1
2 particles.

26 For example, see Hughes (1989, p. 159).
27 For example, GRW modifies Schr€odinger's equation, Bohmian mechanics
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radical, insofar as it denies what seems to be unanimously endorsed in
the literature, namely, that Ŝx, Ŝz and the like, stand for determinable
spin properties. As we have seen, though, these operators are non-
invariant descriptions of spin. Hence, if the assumption that motivates
Spin Monism in the first place is seriously embraced, it naturally follows
that no metaphysical role has to be assigned to these operators. Surely,
one can contend that invariant structures may be as real as non-invariants
ones and that the only difference between the two is a question of fun-
damentality.25 Even if we understand why in some theories one would
want to give some derivative reality to some non-invariant structures, it
seems problematic to argue that Ŝx, Ŝy , Ŝz somehow ‘emerge’ from amore
fundamental property.

Furthermore, once it is accepted that ð ^S! � n!;þÞ represents a
maximally unspecific determinable, one could see that Ŝx, Ŝy , Ŝz are
redundant, and they arbitrarily partition the maximally specific de-
terminates of spin. If one agrees that adding redundant and/or
arbitrary metaphysical structures to a theory should be avoided at all
costs, then these operators should not be understood ontologically. It
remains to be argued that the properties which should correspond to
these operators are redundant and arbitrary. Ŝx, Ŝy , Ŝz, and the like,
are redundant because they do not explain anything more than what
could be explained in terms of the maximally unspecific determin-
able of spin and its maximally specific determinates. The reader may
object here that Ŝx, Ŝz and so on, are necessary to explain experi-
mental results. A reply to such an objection is provided below (pp.
23 ff.). An argument for their arbitrariness is the following. From the
point of view of the polarisation vector, pairing two aligned vectors
is no better than pairing, say, vectors rotated by 90� clockwise. As
we argue in x4.3, the concrete orientations of the polarisation vec-
tors correspond to the maximally specific determinates of spin. From
the perspective of the three-dimensional space, there is no privileged
way of pairing these maximally specific determinates: ‘having spin
up along the x�axis’ is not more similar to ‘having spin down along
the x�axis’ than it is to, say, ‘having spin up along the z�axis.’
Considering Ŝx, Ŝy , Ŝz as representing determinable properties im-
plies that, instead, there is a privileged way of pairing maximally
specific determinates.

Furthermore, our account of Spin Monism fully captures the physi-
cists' intuition about the meaninglessness of asking the value of spin
along a direction when the system is not in one of the eigenstates of the
operator connected to it. According to (SMCN), it is meaningless to ask,
but the reason why is not the empiricists' dogma that one cannot ask
about properties before measurements. Indeed, according to (SMCN) the
spin of a (free) quantum system is definite even before any measurement.
Instead, it is meaningless in the same way in which it is meaningless to
ask “Which determinate of the determinable ‘being red’ is instantiated?” -
when referring to a blue object.
25 Frame of references in relativity are a paradigmatic example; see: Lipman
(2020). For arguments in favour of giving ontological weight preferably to in-
variants only in relativity, see: Gilmore et al. (2016).
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(SMCN) is, in a way, an orthodox but realist account of spin. Indeed, it
can still provide an answer to many paradoxes in an orthodox way. Take,
for instance, Bohm (1951)'s retelling of the EPR paradox, where we have
a couple of particles entangled on their spin, and we simultaneously
measure their spin along different axes. The conclusion of the argument
is a disjunction: either the quantum description before the measurement
is incomplete or spin along different axes do not correspond to different
‘elements of reality,’ to put it in Einstein et al. (1935)'s terminology.
Friends of (SMCN) explicitly say that components of spin are not prop-
erties of the quantum systems under investigation, mimicking the or-
thodox way of answering that paradox.26 Historically, the answers to
these paradoxes presented by defenders of orthodox QM ended either by
accepting a form of antirealism, or by assuming that it is meaningless to
ask questions before measurements, or by claiming that QM signals an
epistemic limitation intrinsic of human beings' condition (Dorato, 2020).
Spin Monism allows one to avoid both by presenting a realist under-
standing of spin in QM. The usual strategies for building a realistic
interpretation of QM have been to modify the formalism of orthodox
QM.27 Our account shows instead - as far spin goes - that one can retain a
realist and always determinate ontology of quantum properties by
removing part of its metaphysical structure, that is, by refusing to consider
some operators as properties.

The reasons above, we contend, clearly show that (SMCN) is
worth considering as a serious contender among the accounts of
spin. Such an account is, admittedly, quite radical. Indeed, the fact
that the whole literature endorses what (SMCN) denies – i.e. that Ŝx,
Ŝz, and the like, are properties – does not come out of the blue. We
are aware of how controversial such a view might sound: if one
accepts that every observable is a determinable property that can be
measured,28 then (SMCN) can be understood as denying that Ŝx, Ŝz
and Ŝy are different observables. We suspect that the reason why so

many accept that Ŝx, Ŝy , Ŝz stand for some property has to do with
their empirical value: the result of measuring the spin along an axis
is that the system measured ends up in an eigenstate of the operator
associated to that same axis. Since the state of a system is an
eigenstate of some operator after a measurement is performed upon
it, given (EEL), it is natural to assume that the operators above of
spin along different axes stand for as many measurable determinable
properties. Therefore, to be taken seriously, friends of (SMCN) must
provide a convincing answer to the following:

The Experimental Challenge: If the operators of spin along different
axes are not properties, how can spin monists explain their empirical
role, i.e. that they are used in concrete experimental situations to obtain
reliable predictions?
adds the pilot wave, Everettian QM rejects the collapse principle (and some old
formulations of it add to each term infinite sets of worlds and a measure given
by the Born's rule (Deutsch, 1985)), and so forth. A remarkable exception is
Relational QM.
28 See for instance: Heisenberg (1958).
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The following - we contend - is a plausible way of defending (SMCN).
It is true that in the light of (EEL) it is natural to read Ŝx, Ŝy and Ŝz as
properties. However, (EEL) by itself does not tell us which operators must
be understood as determinable properties. The correlation between op-
erators and properties must be argued on other grounds. (SMCN) can
explain experimental results as well as Spin Pluralism and (SMCR),
without rejecting (EEL). Eigenstates of Ŝx (or any other operator of spin

along a particular axis) are also eigenstates of
^
S
! � n! (because any spin

state is an eigenstate of it). Therefore, after a spin measurement, the

system is always also in an eigenstate of
^
S
! � n!. Hence, friends of (SMCN)

must not renounce to (EEL).
Furthermore, our way of articulating Spin Monism does not deny that

Ŝx, Ŝy and Ŝz are important from pragmatical point of view.29 Instead, our
view is that these criteria are not by themselves reasons enough to give
the operators above an ontological weight. Indeed, physical interactions
of a particle and another system, like an inhomogeneous magnetic field,
can be explained as an evolution of the polarisation vector only. That is,
adding the properties of having spin along different axes to our ontology
does not explain more than what is already explained by the determin-

able represented by
^
S
! � n! and its determinates, i.e. the concrete orien-

tations of the polarisation vector. Roughly, according to (SMCN), all the

metaphysics of spin is contained in
^
S
! � n! because the polarisation vector

n! can represent all the physics (concerning spin). Nonetheless, to fulfil
pragmatical roles, one has to extract information about the evolution of

the system by projecting the eigenstates of
^
S
! � n! along particular axes -

i.e. to use the operators of spin along a given axis. Therefore, we can say
that Ŝx, Ŝy and Ŝz play many fundamental roles, but not a metaphysical
one.

It is now time to answer what we measure when performing a spin
measurement along a given axis. We answer that taking some cases of
experimental practices seriously clearly suggests that measurements of
spin along different axes are not measures of different properties. Instead,
they are measures of the direction of the polarisation vector. Conse-
quently, measurements of spin along a definite axis always measure the

unique spin property represented by
^
S
! � n!, rather than Ŝx, Ŝz, and so

forth. As an example, we briefly consider a problem of quantum to-
mography: we have a beam of electrons, and we know that the particles
in the beam all have the same state of spin, but we ignore which it is. How
can we reconstruct it through an experimental procedure? Answer: we
perform three measurements of spin along mutually orthogonal di-
rections. We start, for example, by orienting the Stern-Gerlach apparatus
along the z�axis. The experimental apparatus measures the z component
of spin of every particle in the beam. The measurement's result will be
that a certain number |α|2 of particles have spin up along the z�axis
(those deviated upward), and a certain number |β|2 have spin down
(those deviate downward). If the number of electrons measured is suf-
ficiently large, we can reconstruct30 from |α|2 and |β|2 (by ‘reversing’, so
to speak, the Born's rule), the state of the electrons in the polarised beam
written in the z�basis. In particular, such a state is a superposition of this
form:

jψi ¼ αj ↑ iz þ βj ↓ iz; (12)
29 With ‘pragmatical role,’ we mean that, from a mathematical point of view,
these operators are useful to reconstruct, e.g., the polarisation vector or the
probabilities of the possible outcomes of a measurement (when the polarisation
vector is unknown; when it is known instead,

^
S
! � n! suffices).

30 Clearly, such an operation is not devoid of experimental errors. The accuracy
of the reconstructed superposition, shown in (12), is proportional to the number
of measured electrons. Given the theoretical focus of the paper, we work here
under the idealistic assumption that the number of electrons tends to infinite,
thus minimizing any experimental error.
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where |α|2 þ |β|2 ¼ 1. It is possible to compute the mathematical
expression of the spin state along the z�axis by writing down n! in polar
coordinates:

� j ↑ in
j ↓ in

�
¼

0
BBB@

e�
iφ
2 cos

�
θ

2

�
e
iφ
2 sin

�
θ

2

�

e�
iφ
2 sin

�
θ

2

�
�e

iφ
2 cos

�
θ

2

�
1
CCCA
� j ↑ iz
j ↓ iz

�
: (13)

From α (or β) of (12), one can determine a first angle in (13), i.e. θ or
φ, along which the spin polarisation vector is pointing. Repeating the
same process on two other axes, say the x and y�axis, using identically
prepared particles, we can fully reconstruct the initial spin state of the
system. The measure on the second axis, the x�axis say, fixes the angle
not fixed by the first measurement, i.e. θ or φ of (13). Finally, the third
measure on the y�axis fixes the direction of the initial state of spin of the
system, i.e. it selects between j↑in and j↓in.

In this case, measurements of spin upon a particular axis just fix
the angle between the polarisation vector and the spatial axes upon
which the Stern-Gerlach apparatuses are aligned. In this example, it
seems indubitable that the measurements of spin along different
axes are not measurements of different properties, but measures of
the direction of the polarisation vector. We take the example above
as a paradigmatic case of what happens, according to (SMCN),
whenever we measure the spin along a particular axis: rather than
measuring a different spin determinable that the system could
instantiate, we measure the angle between the directions of the
magnetic field and its currently instantiated maximally specific
determinate, represented by the spatial direction along which the
polarisation vector is aligned to. Since measurements of spin along
different axes correspond to different spatial angles of n!, three of
them are necessary to gather enough information to reconstruct the
initial spin of the system. Nevertheless, one must not be led astray
by the pragmatical necessity of these measurements and be
convinced that, given their empirical role, then they must have
some metaphysical counterparts.

Finally, a further reason supports the idea – that is a direct
consequence of (SMCN) – that every measurement of spin is a mea-
sure of the angle between the polarisation vector and the axis along
with the measurement is performed. The direction of the polar-
isation vector alone pictorially illustrates why the evolution of the
system is intrinsically indeterministic. Consider the simplest
example of an electron with spin up along a particular axes n̂ that is
measured using a Stern-Gerlach with its magnetic field aligned along
the x�axis. The polarisation vector will form an angle α with the
x�axis, as illustrated in Fig. 6. There are two ways in which the
vector can align itself to x, i.e. two directions in which it can rotate:
it can go over angle α or angle β, and thus end up in state spin up or
spin down along the x�axis. The evolution is indeterministic
because there are no physical reasons why spin should rotate in one
direction or the other. Even if the evolution is intrinsically indeter-
ministic, a ‘principle of least action’, so to speak, seems to hold: the
vector has higher chances to rotate through the shortest angle - in
Fig. 6, through α rather than β. Indeed, to predict the probability
with which the vector will rotate in one sense or the other, one
should write the state of the system in the x�basis, which means:

j↑in ¼ cos

α
2

�
j↑ix þ sin


α
2

�
j↓ix: (14)

When cos2


α
2

�
> sin2



α
2

�
, i.e. when α < π/2, it is more probable that

the polarisation vector will align itself along j↑ix. It is more likely that it
ends up in j↓ix instead when α > π/2. Pictorially, when the polarisation
vector is more tilted towards the direction x̂, it is more likely that the
outcome of the experiment will be spin up along the x�axis. Vice versa,
when it is more tilted towards � x̂, spin down will be the more probable



Fig. 6. A particle with polarisation vector n! passing through a Stern-Gerlach magnet aligned along the x�axis.
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result. When n! is perpendicular to the magnetic field, spin up and down
are equally probable, as it should be.31

6. Conclusions

We presented two ways of interpreting spin operators as properties:
Spin Pluralism, according to which Ŝx, Ŝz and Ŝy stand for maximally
unspecific determinables of spin and Spin Monism, according to which
there is a unique maximally unspecific determinable of spin. We pro-
ceeded by presenting two arguments in favour of Spin Monism and by
pinpointing which operator should be considered as representing the
unique maximally unspecific determinable of spin. Then we presented a
new account of Spin Monism, dubbed Component Nihilism, accord-
ing to which the operators of spin along different axes are just mathe-
matical tools helpful from pragmatic viewpoints but devoid of any
ontological meaning. We presented several reasons in favour of such a
radical view, and we provide an answer to a compelling question: if
these operators are not properties, what do we measure when we
perform measurements of spin along different axes? Our answer has
been: the angle between the polarisation vector and the direction upon
which the measurement is performed. We want to conclude by high-
lighting some interesting consequences that follow naturally from the
work here presented. There have been presented many accounts of
superposition in the literature of metaphysics of science (Dorato, 2007;
Calosi & Wilson, 2018; Darby & Pickup, 2019, pp. 1–26; Simon, 2018).
Prima facie, some of these accounts are incompatible with (SMCN). The
upshot of our view is that superpositions of spin must not be read in
metaphysical terms, insofar as the property of spin is always determi-
nate. According to (SMCN), spin superposition reflects just the intrin-
sically indeterministic evolution of quantum properties. Hence, it
denies that superposition signals either that the properties above might
be indeterminate or that asking about properties before measurements
is meaningless.
31 We assumed here that the evolution of the state of a system after an inter-
action with a Stern-Gerlach is instantaneous, in line with the ‘collapse principle.’
We know that there are better explanations of how a quantum system evolves,
i.e. decoherence. We left decoherence out the discussion, for reasons of length.
However, note that decoherence would strengthen our claim: decoherence is a
gradual process that could show the unitary evolution of the polarisation vector
towards x̂ or � x̂.
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Finally, the topic faced in the present paper could be interesting to
philosophers of physics for a couple of reasons. Both the points are
limited to the case of spin, given the scope of the paper; that being
said, we think they point to new ways of thinking about quantum
properties in general that are worth exploring. Firstly, quantum in-
determinacy has been considered for ages as the litmus test of the
impossibility of interpreting QM realistically. Almost every realist
interpretation of QM, indeed, has tried to ‘wash away’ such an inde-
terminacy by modifying the orthodox formulation. (SMCN) exemplifies
a way of arguing that a quantum property is always determinate -
while still exhibiting indeterministic dynamics (see Fig. 6) - without
adding any mathematical or metaphysical structure to the theory.
Secondly, in the context of QM, people usually speak of observables as
if they were determinable properties. If (SMCN) is the right view, then
it suggests a different interpretation of incompatible observables from
the received view: being incompatible is not due to obscure relations
between different properties, but because they are mathematically
equivalent ways of describing a unique underlying property. As of
now, this is just a hypothesis, insofar as our paper is limited to spin
only.

Nevertheless, we think that such a hypothesis is interesting and worth
exploring. Indeed, if one would show that this approach could be
extended to composite systems and other incompatible observables32

different from - and more interesting than - spin itself, then one may hope
to put forward a new realist understanding of QM. The present work aims
to be the first step in this direction.
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