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Abstract—Reversible prime event structures extend the well-
known model of prime event structures to represent reversible
computational processes. Essentially, they give abstract descrip-
tions of processes capable of undoing computation steps. Since
their introduction, event structures have played a pivotal role
in connecting operational models (traditionally, Petri nets and
process calculi) with denotational ones (algebraic domains).
For this reason, there has been a lot of interest in linking
different classes of operational models with different kinds
of event structures. Hence, it is natural to ask which is the
operational counterpart of reversible prime event structures.
Such question has been previously addressed for a subclass of
reversible prime event structures in which the interplay between
causality and reversibility is restricted to the so-called cause-
respecting reversible structures. In this paper, we present an
operational characterisation of the full-fledged model and show
that reversible prime event structures correspond to a subclass of
contextual Petri nets, called reversible causal nets. The distinctive
feature of reversible causal nets is that causality is recovered
from inhibitor arcs instead of the usual overlap between post and
presets of transitions. In this way, we are able to operationally
explain also out-of-causal order reversibility.

I. INTRODUCTION

Event structures are a well-established model of concur-
rency. They were originally proposed by Nielsen, Plotkin and
Winskel [18] as an intermediate abstraction in between Scott
domains (i.e., a denotational model) and Petri nets (i.e., an
operational model). While Petri nets describe the behaviour of
a system in terms of the consumption and production of data
items (i.e., tokens) from repositories (i.e., places), an event
structure consists of a set of event occurrences and constraints
that regulate such occurrences (i.e., relations over events).
Consider the Petri net N depicted in Figure 1a, which consists
of five places s1, s2, s3, s4 and s5, three transitions a, b and
c and two tokens (depicted as bullets) respectively placed on
s1 and s3. The edges connecting places to transitions describe
the consumption and production of tokens; e.g., the firing (i.e.,
execution) of b consumes a token from each s2 and s3 and
produces a token in s4. The tokens available in N enable the
firing of the transitions a and c but not that of b because there
is no token in s2. That missing token is produced by the firing
of a; hence, b can be fired only after a is so. For this reason, we
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Fig. 1: A simple Petri net and its associated Event Structure

say that b causally depends on a. However, b can be fired only
if c is not (and vice versa) because each transition requires a
token from s3, which just contains one. In this case, we say
that b and c are in conflict. An abstract description of the
behaviour of N can be given in terms of an event structure,
which consists of the definition of the causal dependencies and
conflicts as binary relations over a set of events (each event
represents a firing of a transition). A graphical representation is
shown in Figure 1b, where causality (<) is drawn with straight
lines (to be read from bottom to top) and binary conflicts (#)
are represented by curly lines. In this case, b causally depends
on a (i.e., a < b), while b and c are in conflict (i.e., b#c).

The behaviour associated with an event structure is under-
stood in terms of a transition system defined over configu-
rations (i.e., sets of events), as illustrated in Figure 1c. For
instance, the transition ∅ → {a, c} indicates that the initial
state ∅ (i.e., no event has been executed yet) may evolve to
the state {a, c} by concurrently executing a and c. Note that
neither {b} nor {a, b, c} are configurations because, on the one
hand, b cannot occur without a and, on the other hand, b and
c cannot occur in the same run of the system.

Since the seminal work by Winskel [27] that shows a
tight connection (via a chain of correflections) between (the
category of) safe nets and (prime) event structures, a lot of
effort has been made to associate different guises of Petri nets
with the corresponding class of event structures (e.g., [4], [12],
[6], [26] to name a few). Recently, event structures have been
extended to account for reversible concurrent systems, namely
a class of systems that have lately received lot of attention
because of their applications in different fields [1], [16],
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including programming abstractions for reliable systems [8],
[13], [10], program analysis and debugging [11], modelling
bio-chemical simulations [9] and quantum computing [19].
The distinctive feature of a reversible system is that the
execution of actions is liable to be undone. Reversible prime
event structures (rPES) [21] accommodate the undoing of
executed actions by allowing configurations to evolve by
removing events. For instance, if c were an undoable event
of the event structure P in Figure 1b, then the associated
transition system would include the transition {a, c} → {a}.
This is a disruptive feature in event structures since it breaks
the underlying assumption by which configurations evolve by
adding events. In fact, if X and Y are two configurations of an
rPES then X → Y does not imply X ⊆ Y . As a consequence,
the existing approaches to recover Petri nets out of event
structures, even the most general ones [25], are not applicable.
As a matter of fact, we still lack a procedure to associate a Petri
net to a given rPES. Previous attempts [15] do this job just for
the subclass of cause-respecting rPESes, i.e., rPESes that allow
the reversing of an event once all events it caused have been
reversed. For instance, the transition system associated with a
cause-respecting reversible version of the event structure P in
Figure 1b is depicted in Figure 2a. Note that each transition
X → Y is paired with a reversing one Y → X; consequently,
the configuration {a, b} can be reversed only by undoing first
b and then a, i.e., {a, b} → {a} → ∅. Contrastingly, the
transition {a, b} → {b} is not included because it accounts
for the reversal of a before the reversal of the event b, which
causally depends on a.

As shown in [15], the transition system of a cause-
respecting rPES can be implemented (concurrently / distribut-
edly) as a Petri net where the undoing of events is achieved via
reversing transitions, i.e., each transition t (corresponding to
some event of the rPES) is accompanied by another transition t
that undoes the effects of the firing of t, i.e., t (i) consumes the
tokens produced by t; and (ii) produces the tokens consumed
by t. The transition system in Figure 2a is implemented by
the net N in Figure 2b, which is essentially the extension of
N (Figure 1a) with the reversing transitions a, b and c.

This approach however falls short when addressing the full
expressivity of rPESes, which accommodates different flavours
of reversibility [1], [16]. The reversing mechanism of an rPES
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Fig. 3: Prevention and reverse causality operationally

is defined in terms of two relations (additional to the classical
causality and conflicts): prevention and reverse causality. For
instance, an rPES can stipulate that some event can be undone
only when some other events have not occurred (prevention).
For instance, if we stipulate that c prevents the undoing of
a (written c . a), then {a, c} → {c} is banned from the
transition system even though a is undoable and c does not
causally depend on a. We can also specify that a particular
event can be undone only when some other events have already
occurred (reverse causality). For instance, if c is a reverse
cause of a (written c ≺ a) then a cannot be reversed until
c occurs, i.e., the transition {a} → ∅ is not admissible. We
note that these constraints can be translated into Petri nets in
the form of contextual arcs; in particular, inhibitor arcs [17],
[2] that prevent the firing of a transition if a token is present
in some place of the net. For instance, the prevention c . a
can be represented in a Petri net with an inhibitor arc in a,
as shown in Figure 3a; the added arc (depicted as () forbids
the firing of a when s5 contains a token. Note that s5 contains
a token only when c has been fired, hence a cannot be fired
if c has occurred. Along the same lines, the reverse causality
c ≺ a can be represented as shown in Figure 3b: in this case,
the inhibitor arc is connected to s3, which will contain a token
if c has not been fired. Hence, a will be enabled only after c
is fired.

Unfortunately, the previous observation is insufficient for
capturing the full spectrum of rPESes due to the interplay
among causality, prevention and reverse causality. This be-
comes clear when addressing rPESes enjoying out-of-causal
order reversibility, which is typical in bio-chemical reac-
tions [22]. Consider again the reversible system in Figure 1b.
Assume now that a can be undone also in an out-of-causal
order fashion, i.e., a can be reversed independently of the
events that it may have caused (which in this case is b).
Hence, the transition system would be extended to include the
transition {a, b} → {b}, in which a is reversed even though
b is not, and also {b} → {b, a}, in which the minimal event
a is executed. When looking at the net N in Figure 2b, the
transition {a, b} → {b} would require to be able to fire the
reversing transition a also when the place s2 does not contain
any token (because the firing of b has consumed that token).
Hence, a more involved definition of a would be needed for
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handling the undoing of a. Moreover, after reversing a we
should be able to fire a again, since the transition system
associated to the rPES allows both {a} → ∅ → {a} and
{a, b} → {b} → {a, b}. It should be noted that the execution
of a has different effects in the two computations above:
while the configuration {a} allows for the firing of b, the
configuration {a, b} does not (because, b has been already
fired). The way in which the causality relation between a
and b is described in N (Figure 2b) would be insufficient
to distinguish the cases above.

In this paper, we take a different approach by observing that
inhibitor arcs can be used to model also causality. This simple
idea is rendered by the net in Figure 4a, which is an operational
counterpart of the event structure P in Figure 1b. The inhibitor
arc in Figure 4a is used to model causality among the events a
and b. Indeed, b can happen only after a has happened, hence
a < b. As previously discussed, we represent prevention and
reverse causality with inhibitor arcs, as illustrated in Figures 4b
and 4c. On the one hand, the inhibitor arc in Figure 4b models
the reverse causality b ≺ a, i.e., a can be reversed only when
b has been executed. On the other hand, the inhibitor arc in
Figure 4c models prevention b . a, i.e., the undoing of a
cannot be executed if the event b has happened. A liberal
usage of inhibitor arcs would not do the work. Therefore, we
impose some (structural) constraints on nets to achieve our
purpose, namely to identify a subclass of nets with inhibitor
arcs that corresponds to reversible prime structures. The main
contribution of our work is the definition of an operational
interpretation of rPESes in terms of (a proper subclass of) Petri
nets with inhibitor arcs, called reversible causal nets.

This paper is structured as follows: we start by recalling
the basics of prime event structures and reversible prime
event structures (Section II), and those of nets with inhibitor
arcs (Section III). Then, we introduce causal nets, which are
subclass of nets with inhibitor arcs, and show that they are
a suitable counterpart of prime event structures (Section IV).
In Section V, we introduce a reversible notion of causal nets
and prove that they fully correspond to reversible prime event
structures, thus giving a proper operational model of them. In
Section VI we compare and discuss the relationship between
a more classical operational model for prime event structures,
namely occurrence nets, with our proposal, and illustrates
the reasons that undermine the possibility of generalising

occurrence nets to cope with richer models of reversibility
as, e.g., out-of-causal order reversibility.

II. EVENT STRUCTURES

In this section we summarise the basics of prime event
structures and reversible prime event structures by following
the presentation in [21]. In what follows, we say that a binary
relation < ⊆ A×A is an irreflexive partial order whenever it
is irreflexive and transitive, and use ≤ to denote its reflexive
closure. We write bac< for the set {a′ ∈ A | a′ ≤ a} and shall
omit the subscript < when it is clear from the context.

A. pre-PES and PES

Pre-prime event structures are a relaxed form of prime event
structures in which conflict heredity may not hold. They play
a key role in the definition of reversible prime event structures.

Definition 1: A pre-prime event structure (pPES) is a triple
P = (E,<,#), where
• E is a countable set of events;
• # ⊆ E × E is an irreflexive and symmetric relation,

called the conflict relation; and
• < ⊆ E × E is an irreflexive partial order, called the

causality relation, defined such that ∀e ∈ E. bec< is
finite and ∀e′, e′′ ∈ bec<. ¬(e′ # e′′).

We say a pPES P is a prime event structure (PES) when
# is hereditary with respect to <, i.e., if e # e′ < e′′ then
e # e′′ for all e, e′, e′′ ∈ E.

We write CF(X) when X ⊆ E is a conflict-free set of
events, i.e., for all e, e′ ∈ X it holds that ¬(e # e′). Note that
for all Y ⊆ X ⊆ E, CF(X) implies CF(Y ).

Example 1: Let P = (E,<,#) be defined such that

E = {a, b, c, d} # = {(a, b), (b, a)} < = {(b, c)}

It is immediate to check that # is irreflexive and symmetric,
and < is an irreflexive partial order. Moreover, if e ∈ E and
e 6= c then bec = {e}, which is finite and conflict free.
Additionally, bcc = {b, c}, which is also finite and conflict
free. Hence, P is a pPES. However, P is not a PES because
conflicts are not inherited along < because a#b < c but
a#c does not hold. P would be a PES if # were defined
as {(a, b), (b, a), (a, c), (c, a)}.

The following definition introduces the notion of (labelled)
transitions between sets of events of a pPES.



Definition 2: Let P = (E,<,#) be a pPES and X ⊆ E a
conflict-free set of events. We say A ⊆ E is enabled at X if
• A ∩X = ∅ and CF(X ∪A), and
• ∀e ∈ A. if e′ < e then e′ ∈ X .

If A is enabled at X , then X A−→ Y where Y = X ∪A.
Example 2: Consider the pPES P in Example 1. The

sets {a}, {b}, {d}, {a, d}, and {b, d} are all enabled at ∅
because they are all conflict free and they contain just minimal
elements (according to <). Then, we can derive, e.g., the
transitions ∅ {a}−→ {a} and ∅ {b,d}−→ {b, d}. On the contrary,
neither {a, b} nor {c} are enabled at ∅. The former, because a
and b are in conflict; the latter because ∅ does not contain b,
which is a cause of c. Moreover, {c} is enabled at {b}, because

the unique cause of c is b; consequently, {b} {c}−→ {b, c} holds.
The notion of configurations of a pPES is formally defined

below.
Definition 3: Let P = (E,<,#) be a pPES. A set of events

X ⊆ E is a reachable configuration if it is conflict free, i.e.,
CF(X), and there exists a sequence A1, . . . , An, such that
Xi

Ai−→ Xi+1 for all i, X1 = ∅ and Xn+1 = X . We write
ConfpPES(P ) for the set of all reachable configurations of P .

We shall write ConfPES(P ) instead of ConfpPES(P ) when P
is a PES.

Example 3: Consider again the pPES P in Example 1 and
note that some conflict-free sets of events do not correspond to
a state of the computation of P . For instance, the set {c, d},
which is conflict free, is not a configuration of P because
it cannot be reached from the initial state ∅: c cannot be
introduced to a configuration that does not contain b.

The following definition and result from [21] highlight that
we can always recover a PES out of a pPES by making conflicts
hereditary.

Definition 4: Let P = (E,<,#) be a pPES. Then hc(P ) =
(E,<, ]) is the hereditary closure of P , where ] is derived by
using the following rules

e # e′

e ] e′
e ] e′ e′ < e′′

e ] e′′
e′ ] e

e ] e′

Proposition 1: Let P = (E,<,#) be a pPES, then
• hc(P ) = (E,≤, ]) is a PES,
• if P is a PES, then hc(P ) = P , and
• ConfpPES(P ) = ConfPES(hc(P )).

B. Reversible prime event structures

We now recall the notion of reversible prime event structure
following the presentation in [21]. Reversible event structures
extend PESes by allowing some of their events to be reversible
or undoable. A reversible event u (implicitly) has an associated
reversing event u capable of removing its effects, i.e., the exe-
cution of u followed by u cannot be observed. For this reason,
the configurations of a reversible prime event structure may
not evolve monotonically: reversible events can disappear to
account for the fact that its reversing event has been executed.
In order to account for different flavours of reversibility, a
reversible prime event structure is equipped with two relations,

dubbed prevention and reverse causality, dictating the way in
which reversing events can be executed.

Definition 5: A reversible prime event structure (rPES) is
a tuple P = (E,U,<,#,≺, .) where (E,<,#) is a pPES,
U ⊆ E are the reversible/undoable events (with reverse events
being denoted by U = {u | u ∈ U} and disjoint from E, i.e.,
U ∩ E = ∅) and

1) ≺ ⊆ E × U is the reverse causality relation and it is
such that u ≺ u for each u ∈ U and {e ∈ E | e ≺ u} is
finite and conflict-free for every u ∈ U ,

2) . ⊆ E ×U is the prevention relation defined such that
≺ ∩ . = ∅,

3) the sustained causation� is a transitive relation defined
such that if e� e′ then
• e < e′,
• if e ∈ U then e′ . e,

4) # is hereditary with respect to �: if e # e′ � e′′, then
e # e′′.

The reverse causality relation prescribes the events that are
required for the execution of each reversing event, i.e., e ≺ u
says that u can be executed (or equivalently, u can be undone)
only when e is present. Hence, the condition u ≺ u stands for
the fact that an event u can be undone only when it is present
in a configuration. The prevention relation models instead the
cases in which an event can be reversed only if some other
event is not in the configuration: e . u means that u can be
reversed only if e is not in the configuration.

Despite the underlying structure (E,<,#) is a pPES and,
hence, conflicts may not be inherited through causality, the
definition requires conflicts to be inherited through the new
sustained causation relation �, which is coarser that <, and
accounts for the fact that the causes of some events may
disappear from a configuration (see Example 8).

Example 4: Let P1 = (E,U,<,#,≺, .) be an rPES defined
such that
E = {a, b, c, d} U = {b, c}
< = {(b, c)} # = {(a, b), (b, a), (a, c), (c, a)}
≺ = {(b, b), (c, c))} . = {(c, b)}
While b and c are reversible in P1, a and d are not because

a, d 6∈ U . Moreover, c causally depends on b because b < c;
and a is in conflict with both b and c because of the definition
of #. Consequently, d is concurrent w.r.t. a, b and c. The
definition of the reverse causality contains the expected pairs
stating that each reversible event can be undone only if it has
been executed (i.e., b ≺ b and c ≺ c). The definition of the
prevention relation states that b cannot be reversed if c has
been executed, i.e., c . b, which is typical of causal reversible
models. In this example, sustained causation coincides with
causality, i.e., �= <, since b � c holds because b < c and
c . b do so. Note that conflicts are inherited along the sustained
causation (and also causality), i.e., a#b < c and a#c.

Example 5: Let P2 = (E,U,<,#,≺, .) be a variant of
P1 above obtained by extending the definition of ≺ with the
pair (d, c). In this case, the event c can be reversed only
after d has been executed. This is an example of non-causal



reversibility, in which concurrency interferes with reversibility:
c can only be reversed if a concurrent (hence, unrelated) event
is executed.

The following definition extends the notion of transitions
between sets of events to account for reversing events.

Definition 6: Let P = (E,U,<,#,≺, .) be an rPES and
X ⊆ E be a set of events such that CF(X). For A ⊆ E and
B ⊆ U , we say that A ∪B is enabled at X if
• A ∩X = ∅, B ⊆ X and CF(X ∪A),
• ∀e ∈ A, e′ ∈ E. if e′ < e then e′ ∈ X \B,
• ∀e ∈ B, e′ ∈ E. if e′ ≺ e then e′ ∈ X \ (B \ {e}),
• ∀e ∈ B, e′ ∈ E. if e′ . e then e′ 6∈ X ∪A.

If A ∪ B is enabled at X then X
A∪B−→ Y where Y = (X \

B) ∪A.
Example 6: Consider the rPES P1 introduced in Example 4.

We have, e.g., ∅ {a}−→ {a} {d}−→ {a, d}, and ∅ {b,d}−→ {b, d} {b}−→
{d}, and also ∅ {b}−→ {b} {c}−→ {b, c} {d,c}−→ {b, d} {c}−→ {b, c, d}.
Consider now the rPES P2 in Example 5, and note that the set
{d, c} is not enabled at {b, c}: despite c is present, the reverse
causality d ≺ c states that d is also required for the reversing
of c.

The reachable configurations of an rPES are the sets of
events that can be reached from the empty set by performing
events or undoing previously performed events, as stated
below.

Definition 7: Let P = (E,U,<,#,≺, .) be an rPES and
X ⊆ E a conflict-free set of events, i.e., CF(X) holds. We
say that X is a (reachable) configuration if there exist two
sequences of sets Ai and Bi, for i = 1, . . . , n, such that
• Ai ⊆ E and Bi ⊆ U for all i, and
• Xi

Ai∪Bi−→ Xi+1 for all i with X1 = ∅ and Xn+1 = X .
The set of configurations of P is denoted by ConfrPES(P).
We say that two rPESes P1 and P2 are equivalent, written
P1 ≡ P2, if they have the same set of configurations, i.e.,
ConfrPES(P1) = ConfrPES(P2).

Example 7: Consider the rPES P1 introduced in Example 4.
Its set of configurations ConfrPES(P1) is

{∅, {a}, {b}, {d}, {a, d}, {b, d}, {b, c}, {b, c, d}}

(the corresponding sequences of transitions are shown in
Example 6)

A feature of rPESes that is challenging to accommodate in
an operational model is the out-of-causal order reversibility,
which is illustrated with the example below.

Example 8: Consider P3 = (E,U,<,#,≺, .) as a variant
of the rPES P2 in Example 5 defined as follows

E = {a, b, c, d} U = {b, c}
< = {(b, c)} # = {(a, b), (b, a)}
≺ = {(b, b), (c, c), (d, c)} . = ∅

In this case, the induced sustained causation is empty, i.e.,
b 6� c because b < c holds but c . b does not. Since
c . b does not hold in P3, b can be reversed even when
c, which causally depends on b, has been executed, e.g.,

∅ {b}−→ {b} {c}−→ {b, c} {b}−→ {c} {a}−→ {a, c}. Note that
the configuration {a, c} would be banned in standard PESes
because a#b < c. However, it is allowed in rPESes because
conflicts are not necessarily inherited through causality, which
is essential to accommodate out-of-causal-order reversibility.

The previous examples highlight the main challenges to
address when developing a net semantics for rPESes, which
can be summarised as follows:
• configurations may drop events during computation, i.e.,
{b, c} {b}−→ {c} in P3;

• reachable configurations do not necessarily contain all the
causes, e.g., the configuration {c} in P3 does not contain
b though b < c;

• causes can be re-enabled, e.g., b is enabled at {c} in P3,
however the re-execution of a disables b again, i.e., b is
not enabled at {a, c};

• conflicts are not inherited through causality, as in P3;
• reversibility induces dependencies on concurrent events,

e.g., c in P2 can be reversed only after the concurrent
event d has been executed.

III. NETS

We start by recalling some notions that will be used
throughout this paper. N denotes the set of natural numbers.
A multiset over a set A is a function m : A→ N. We assume
multisets to be equipped with the usual operations of union
(+) and difference (−), and write m ⊆ m′ if m(a) ≤ m′(a)
for all a ∈ A. We shall write [[m]] for the underlying set of
a multiset m, i.e., the multiset defined such that [[m]](a) = 1
if m(a) > 0 and [[m]](a) = 0 otherwise. We often confuse a
multiset m with the set {a ∈ A | m(a) 6= 0} when m = [[m]].
In such cases, we write a ∈ m instead of m(a) 6= 0, and
m ⊆ A if m(a) = 1 implies a ∈ A. Furthermore, we will use
standard operations on sets, such as ∩, ∪ or \. The set of all
multisets over A is denoted by µA. We write 0 for the unique
multiset defined such that [[0]] = ∅.

A. Nets with inhibitor arcs

We summarise the basics of Petri net with inhibitor arcs
along the lines of [17], [2].

Definition 8: A Petri net is a 4-tuple N = 〈S, T, F,m〉
where S is a set of places, T is a set of transitions such that
S ∩ T = ∅, F ⊆ (S × T ) ∪ (T × S) is the flow relation, and
m ∈ µS is the initial marking.

Definition 9: A Petri net with inhibitor arcs (IPT for short)
is a tuple N = 〈S, T, F, I,m〉, where 〈S, T, F,m〉 is a Petri
net, and I ⊆ S × T is the inhibiting relation.

Given an IPT N = 〈S, T, F, I,m〉 and x ∈ S ∪ T , the pre-
and postset of x are respectively defined as the (multi)sets
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. If x ∈ S
then •x ∈ µT and x• ∈ µT ; analogously, if x ∈ T then
•x ∈ µS and x• ∈ µS. The inhibitor set of a transition t is
the (multi)set ◦t = {s | (s, t) ∈ I}. The definition of •·, ·•, ◦·
generalise straightforwardly to multisets of transitions.

Example 9: Consider the simple IPT N1 depicted in
Figure 4a, which consists of six places depicted as circles



and three transitions drawn as boxes. The flow relation is
represented by black arrows while the inhibitor relation is
shown by red lines ended with a small circle. The initial
marking m = {s1, s2, s3} is represented by the bullets drawn
within the corresponding places. Consider the transition b,
which consumes tokens from s2 and s3, produces a token in
s5, and is inhibited by s1. Hence, its pre-, post- and inhibiting
sets are respectively •b = {s2, s3}, b• = {s5}, and ◦b = {s1}.

A (multiset of) transition(s) A ∈ µT is enabled at a
marking m ∈ µS, written m [A〉 , whenever •A ⊆ m and
∀s ∈ [[ ◦A]]. m(s) = 0 ∧ A•(s) = 0. The last condition
requires the absence of tokens in all places connected via in-
hibitor arcs to the transitions in [[A]]. Observe that the multiset
0 is enabled at every marking. A (multiset of) transition(s) A
enabled at a marking m can fire and its firing produces the
marking m′ = m − •A + A•. The firing of A at a marking
m is denoted by m [A〉m′. We assume that each transition t
of an IPT N is defined such that •t 6= ∅, i.e., it cannot fire
spontaneously in an uncontrolled manner without consuming
tokens.

Example 10: Consider the IPT introduced in Example 9 and
note that both a and c are enabled at the initial marking m.
On the contrary, b is not enabled because its inhibitor place
s1 contains a token. The firing of a produces the marking
m′ = {s2, s3, s4}, i.e. m [a〉m′, at which b becomes enabled
because its preset s2 and s3 is marked while its inhibitor place
s1 is not.

A marking m is reachable in N if there exists a firing
sequence σ = m [A0〉m1 · · · mn [An〉m from the initial
marking m to m. We write MN for the set of all reachable
markings of N . A multiset of transitions X is a state of
N if there exists a firing sequence σ = m0 [A0〉m1 · · ·
mn−1 [An〉mn such that X =

∑
0≤i≤nAi. We write St(N)

for the set of all states of N . We say that N1 and N2 are
equivalent, written N1 ≡ N2, if they have the same set of
states, i.e., St(N1) = St(N2).

Example 11: The set of reachable mark-
ings of the IPT in Example 9 is MN1

=
{m, {s2, s3, s4}, {s1, s2, s6}, {s4, s5}, {s2, s4, s6}} while
it set of states is St(N1) = {∅, {a}, {c}, {a, b}, {a, c}}.

An IPT N is safe if each reachable marking is a set, i.e.,
∀m ∈ MN .m = [[m]]. Hereafter, we will consider only safe
IPT.

Given a net N = 〈S, T, F,m〉, we write <N for the
transitive closure of F . We say N is acyclic if ≤N is a partial
order.

IV. CAUSAL NETS

We now restrict our attention to the representation of causal
dependencies through inhibitor arcs: we introduce a class of
contextual Petri nets, dubbed causal nets, in which causality is
recovered from the inhibiting relation instead of the usual flow
relation. The main result in this section (Theorem 1) states that
causal nets are an adequate operational counterpart of PESes.
As a matter of fact, they are tightly connected with occurrence
nets (as discussed in Section VI).

We define the relation l between transitions t, t′ of an IPT
by t l t′ iff •t ∩ ◦t′ 6= ∅, i.e., the firing of t consumes (at
least) one of the tokens that inhibit the firing of t′. Similarly,
we define \ by t\t′ iff •t ∩ •t′ 6= ∅.

Definition 10: Let C = 〈S, T, F, I,m〉 be an IPT. C is a
pre-causal net (pCN) if the following conditions are satisfied:

1) <C ∩ (T × T ) = ∅;
2) [[T •]] = T •;
3) ∀t 6= t′ ∈ T. •t ∩ •t′ ∩ ◦T = ∅,
4) ∀t ∈ T . ◦t is finite;
5) l is an irreflexive partial order;
6) ∀t′, t′′ ∈ btcl. t′\t′′ ⇒ t′ = t′′; and
7) m = •T and ◦T ⊆ m.
We say a pCN C is a causal net (CN) if it also satisfies the

following condition

∀t, t′, t′′ ∈ T. t\t′ ∧ t′ l t′′ ⇒ t\t′′

The conditions imposed on CNs share motivations with
those posed on occurrence nets, unravel nets [23], [6], [7] and
flow nets [5], which are aimed at explaining computations
without resorting to firing sequences. The first condition,
which can be equivalently written as ∀t ∈ T. ∀s ∈ •t. •s = ∅,
implies that causal dependencies in CNs do not arise because of
the flow relation since t•∩ •t′ = ∅ holds for all t, t′ ∈ T . The
second condition ensures that there are no backward conflicts,
i.e., a place belongs at most to the postset of one transition.
The third one states that any place appearing in the preset of
at least two transitions cannot be connected via inhibitor arcs
to other places of the net. In this way, we ban or-causality,
i.e., situations in which the firing of a transition may have
different causes. In combination with the fourth requirement,
they ensure that each transition has a finite set of causes,
i.e., the set {t′ ∈ T | t′ l t} is finite. The fifth condition
avoids cycles in the dependencies arising from inhibitor arcs.
Since l is irreflexive, none of the transitions is blocked (i.e.,
•t∩ ◦t = ∅ for all t). The sixth condition is reminiscent of the
requirement of pPES by which inheritance of conflicts holds
locally, i.e., any pair of different transitions t′, t′′ in btcl are
not in conflict. The last requirement states that the preset of
all transitions are initially marked (i.e., m = •T ). Moreover,
◦T ⊆ m together with the first requirement imply that inhibitor
places cannot appear in the postset of any transition.

The additional condition for CNs imposes conflict inheri-
tance along the relation l (recall that conflicts are modelled
through shared input places).

Example 12: The IPT C1 depicted in Figure 5a is a pCN,
as discussed below. Conditions 1 and 2 of Definition 10 hold
because every place appearing in the postset of some transition
has exactly one incoming and none outgoing arc. The only
place that belongs to the preset of at least two transitions is
s2. However, there is no inhibitor arc connected to s2. Hence,
Condition 3 also holds. Condition 4 follows immediately
because there is just one inhibitor arc. The induced causality
relation is the irreflexive partial order l = {(b, c)}, which
satisfies Condition 5. If t ∈ T and t 6= c then btcl = {t}.
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Fig. 5: Two pre-causal nets

For t = c we have bccl = {b, c} and •b and •c are disjoint,
which satisfies Condition 6. Condition 7 is immediate.

We remark that C1 is not a CN because conflicts are not
inherited along l. In fact, a\b and bl c but a\c. The IPT C2

in Figure 5b, which makes explicit the conflict between a and
c, is a CN.

Definition 11: Let C = 〈S, T, F, I,m〉 be a pCN. A set of
transitions X ⊆ T is a configuration of C if:
• ∀t, t′ ∈ X.t\t′ ⇒ t = t′ (conflict freeness), and
• ∀t ∈ X . btcl ⊆ X (left closedness with respect to l).

The set of configurations of a pCN C is denoted by
ConfpCN(C).

Should C be a CN, we write ConfCN(C) in lieu of
ConfpCN(C).

Example 13: Consider the pCN C1 and the CN C2 in
Figure 5. Their sets of configurations coincide and are shown
below

ConfpCN(C1) = ConfCN(C2) = {{a}, {b},
{d}, {a, d}, {b, c}, {b, d}, {b, c, d}}

There is a close correspondence between the configurations
of a pCN and its reachable markings: any reachable marking
determines a configuration of the net and vice versa. This is
formally stated by the proposition below.

Proposition 2: Let C = 〈S, T, F, I,m〉 be a pCN. Then,
1) if m′ ∈MC then •m′ ∈ ConfpCN(C); and
2) if X ∈ ConfpCN(C) then m− •X +X• ∈MC .
Example 14: Consider the CN C2 in Figure 5b. The marking

m′ = {s1, s7, s8, s9} is reachable because of the following
firing sequence:

m [{b, d}〉 {s0, s1, s4, s7, s9} [{c}〉m′

Then, it holds that •m′ = {b, c, d} is a configuration of C2

(where ConfCN(C2) is defined in Example 13). Conversely,
take X = {b, c, d} ∈ ConfCN(C2), and note that •X =
{s0, s2, s3, s4, s5} and X• = {s7, s8, s9}. Then, we have that

({a, c},#)

(∗, a)

({a, b},#)

(∗, b)
(∗, c) (∗, d)

(a, ∗) (b, ∗) (c, ∗) (d, ∗)

a b c d

Fig. 6: A(P)

m− •X+X• = {s1, s4, s7, s9} = m′ is a reachable marking
of C2.

The notion of equivalence for causal nets specialises to con-
figurations, i.e., C1 ≡ C2 iff ConfpCN(C1) = ConfpCN(C2).

A. From pPESes to pCNs

We now show that every pPES can be associated with a pCN
that has the same configurations. We start by introducing the
mapping A from pPESes to pCN.

Definition 12: Let P = (E,<,#) be a pPES. The associated
pCN is A(P) = 〈S,E, F, I,m〉 where
• S = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E}

∪ {({e, e′},#) | e # e′},
• F = {(s, e) | s = (∗, e) ∨ (s = (W,#) ∧ e ∈W )}

∪ {(e, s) | s = (e, ∗)},
• I = {(s, e) | s = (∗, e′) ∧ e′ < e}, and
• m = {(∗, e) | e ∈ E} ∪ {({e, e′},#) | e # e′}.

The construction associates the pPES P with a pCN that has
as many transitions as events are in P. Places are identified
with pairs, which may have one of the following forms: (i)
(∗, e) for the precondition of e, (e, ∗) for the postcondition of
e, and ({e, e′},#) for the conflict e # e′. The flow relation
is defined so that each transition e consumes tokens from
(∗, e) and every (W,#) where e ∈ W ; and only produces
a token in (e, ∗). Different from the classical construction of
occurrence nets out of PESes [27], places do not convey causal
dependencies, which are modelled here via inhibitor arcs: if e
causally depends on e′ (i.e., e′ < e), then there is an inhibitor
arc between the transition e and the place (∗, e′), i.e., a place
of the preset of e′. The initial marking m assigns a token to
any place appearing in the preset of a transition.

Example 15: Let P = (E,<,#) be a pPES where

E = {a, b, c, d} < = {(b, c)}
# = {(a, b), (b, a), (a, c), (c, a)}

The associated pCN is shown in Figure 6. Note that the
transition c is not enabled because of the inhibitor arc from
(∗, b); all remaining transitions are enabled; also a and b are
in conflict because they both consume from ({a, b},#).

The adequacy of A is formally stated by showing the
equivalence of the respective sets of configurations.

Proposition 3: Let P is a pPES. Then, A(P) is a pCN and
ConfpPES(P) = ConfpCN(A(P)).



Corollary 1: Let P be a PES. Then A(P) is a CN and
ConfPES(P) = ConfCN(A(P)).

B. From pCNs to pPESes

The definition of the mapping Q from pCNs to pPESes relies
on the facts that l is an irreflexive partial order, and conflicts
are locally preserved in a pCN.

Definition 13: Let C = 〈S, T, F, I,m〉 be a pCN. The
associated pPES is Q(C) = (T,l,#) where

# = {(t, t′) | t 6= t′ ∈ T ∧ t\t′}.

Example 16: Consider the pCN C1 of Example 12. Note
that, b l c holds because ◦c ∩ •b 6= ∅ and a#b (also b#a)
because •a ∩ •b 6= ∅. Hence,

Q(C1) = ({a, b, c, d}, {(b, c)}, {(a, b), (b, a)}).

The PES associated with the CN C2 of Example 12 is

Q(C2) = ({a, b, c, d}, {(b, c)}, {(a, b), (b, a), (a, c), (b, c))}

which is actually a PES because conflicts are hereditary.
Proposition 4: Let C be a pCN. Then Q(C) is a pPES and

ConfpPES(Q(C)) = ConfpCN(C).
Corollary 2: Let C be a CN. Then Q(C) is a PES and

ConfPES(Q(C)) = ConfCN(C).
The following result ensures that the notion of causal nets is

adequate for PESes. It is obtained by combining Proposition 3
and Corollary 1 (in Section IV-A) with Proposition 4 and
Corollary 2 above.

Theorem 1: Let C be a causal net. Then C ≡ A(Q(C)).
Let P be a PES. Then P ≡ Q(A(P)).

V. REVERSIBLE CNS AND REVERSIBLE PESES

In this section we introduce a reversible version of pCNs
and show that they are an operational counterpart for rPESes.

A. Reversible causal nets

The intuition behind the definition of a reversible causal
net is that of extending a (pre) causal net with transitions,
dubbed backward, that reverse / undo the effects of previously
fired ordinary transitions, which we call forward. Given an
IPT N = 〈S, T, F, I,m〉 and a transition t ∈ T , we write St

for the set of places {s ∈ S | s ∈ •t ∧ s• = {t}}, i.e., the
places in the preset of t that do not appear in the preset of
other transitions.

Definition 14: An IPT V = 〈S, T, F, I,m〉 is a reversible
causal net (rCN) if there exists a partition {T , T} of T , with
T the forward transitions and T the backward ones, such that:

1) 〈S, T , F|T×T , I|T×T ,m〉 is a pCN net;
2) [[ •T ]] = •T and ∀t ∈ T . ∃! t ∈ T such that t• = •t,
•t = t•, and St ∩ ◦t 6= ∅;

3) ∀t ∈ T . K = {t | t ∈ T ∧ ◦t ∩ •T 6= ∅} is finite and
[[ •K]] = •K;

4) ∀t ∈ T .∀t ∈ T . if •t ∩ ◦t 6= ∅ then t• ∩ ◦t = ∅;
5) ≪ ⊆ T × T is a transitive relation defined such that

t ≪ t′ if t l t′ and if there exists t ∈ T such that
•t = t• then ◦t ∩ t• 6= ∅; and

6) ∀t, t′, t′′ ∈ T . •t∩ •t′ 6= ∅ ∧ t′ ≪ t′′ ⇒ •t∩ •t′′ 6= ∅.
We write V T for an rCN V with backward transitions T .
The first condition states that the subnet consisting of

just forward transitions is a pre causal net. The second one
establishes that each backward transition t reverses exactly
one forward transition t; consequently, t consumes the tokens
produced by t (i.e., t• = •t) and produces the tokens
consumed by t (i.e., t• = •t); the condition St ∩ ◦t 6= ∅
ensures that t causally depends on t. By requiring [[ •T ]] = •T ,
we ensure that a forward transition has at most one reversing
transition. The remaining conditions recast the ones imposed
on rPES, where inhibitor arcs are used to model the reverse
causality relation (≺) and the prevention relation (.): when an
inhibitor arc connects a backward transition with a place in the
preset of some forward transition, then the modelled relation is
the reverse causality; on the contrary, prevention is represented
by linking a backward transition to a place in the the postset
of a forward transition. Consequently, the third condition can
be read just as requiring each backward transition to causally
depend on a finite number of forward transitions (i.e., the
ones in K); which moreover should be conflict free (i.e., they
do not share places in their preset). By the fourth condition,
a backward transition t causally dependant on a forward
transition t (i.e., •t ∩ ◦t 6= ∅) cannot be prevented by the
same transition (i.e., t• ∩ ◦t = ∅). The relation ≪ defined
by the fifth condition is analogous to the sustained causation,
i.e., it coincides with causality only when prevention enforces
causal reversibility. The last condition states that conflicts are
inherited along ≪.

Example 17: Consider the IPT V in Figure 7, which is an
rCN with reversing transitions T = {b, c}. First note that
〈S, T , F|T×T , I|T×T ,m〉 is the CN C2 shown in Figure 5b.
There are two backward transitions: b, for reversing b, and
c for reversing c. Each of them reverses the markings of its
associated forward transition, e.g., b consumes from s7 and
produces on s2 and s3. The inhibitor arcs connecting s3 to b
and s4 to c reflect causality, e.g., b causally depends on b. In
this case the behaviour of the net would remain unaltered if
such inhibitor arcs were omitted. However, we require them
in order to uniformly capture causality in terms of l instead
of resorting to the flow relation. The inhibitor arc connecting
s5 to c also accounts for causality: c cannot be fired until d
is fired and the token in s5 is consumed. The inhibitor arc
connecting s8 to b models prevention since b is not enabled if
s8 is marked (i.e., if c has been fired).

B. From rPESes to rCNes

This section introduces a mapping from rPESes to rCNes.
(We prove the adequacy of its definition in Section V-D.)

Definition 15: Let P = (E,U,<,#,≺, .) be an rPES.
Then, Ar(P) = 〈S, T, F, I,m〉 where A(E,<,#) =
〈S, T ′, F ′, I ′,m〉 and

1) T = T ′ ∪ {(u, r) | u ∈ U};
2) F = F ′ ∪{(s, (u, r)) | s ∈ u•}∪ {((u, r), s) | s ∈ •u};
3) I = I ′ ∪ {((∗, e), (u, r)) | e ≺ u}

∪ {((e, ∗), (u, r)) | e . u}.
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Fig. 7: A simple rCN
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Fig. 8: Ar(P1)

The construction uses the mappingA( ) for obtaining a pCN
out of the underlying pPES consisting of just forward events,
which is then extended with as many backward transitions as
reversible events in P. A backward transition (u, r), which
reverses u, is defined such that its preset is the postset of u,
and its poset is the preset of u. Inhibitors arcs are as expected:
the reverse causality e ≺ u translates into an arc connecting
the backward transition (u, r) to the enabling condition of e,
i.e., (∗, e); the prevention e.u is mapped to an arc connecting
(u, r) to the post condition of e, i.e., (e, ∗).

Example 18: Consider the rPES P1 = (E,U,<,#,≺, .) in
Example 4. Note that (E,<,#) and its associated CN are the
ones discussed in Example 15. Then, Ar(P1), which is shown
in Figure 7, is obtained by extending the CN in Figure 6 with
the transitions (b, r) and (c, r) corresponding to the reversing
events b and c. The inhibitor arcs from (b, ∗) to (b, r) and (c, ∗)
to (c, r) indicate that the backward transitions are enabled
only after the corresponding forward transitions are fired. The
inhibitor arc from (∗, c) to (b, r) indicates that b cannot be
fired if c has been executed.

The rCN A(P3) associated with the rPES P3 in Example 8 is
depicted in Figure 9. Note the absence of the place ({a, c},#)
(because a and c are not in conflict in P3) and the inhibitor
arc from (∗, c) to (b, r) (since b can be reversed even when
(∗, c) is marked). Moreover, the inhibitor arc from (d, ∗) to
(c, r) prevents c to be reversed until d is fired.

The encoding of the rPES P2 in Example 5 produces a net
isomorphic to the one shown in Figure 7 (just places and
transitions are named differently).

Proposition 5: If P is an rPES then Ar(P) is an rCN.

(∗, a)({a, b},#) (∗, b) (∗, c) (∗, d)

(a, ∗)
(b, ∗)

(c, ∗) (d, ∗)

a b

(b, r)

c
(c, r)

d

Fig. 9: Ar(P3)

C. From rCNes to rPESes

The encoding of rCNs into rPESes is given below.
Definition 16: Let V T = 〈S, T, F, I,m〉 be an rCN with

backward transitions T . Then, Qr(V
T ) = (E,U,<,#,≺, .)

where:
1) E = T \ T ;
2) U = {t | t ∈ T ∧ t ∈ T ∧ •t = t•};
3) < = l|E×E ;
4) # = {(e, e′) | e 6= e′ ∈ E ∧ e\e′};
5) ≺= {(t, t′) | t ∈ E ∧ t′ ∈ T ∧ •t ∩ ◦t′ 6= ∅};
6) . = {(t, t′) | t ∈ E ∧ t′ ∈ T ∧ t• ∩ ◦t′ 6= ∅}.
The construction maps an rCN V T to an rPES whose events

are the forward transitions T \ T of V T . Only the forward
transitions that have a reversing transition in T are undoable
events (i.e, they belong to U ). The causality < and conflict #
relations are obtained as the proper restrictions of those defined
on V T . Finally, the reverse causation ≺ and the prevention .
are recovered from inhibitor arcs.

Example 19: Consider the rCN in Figure 7. The events
of the associated rPES are {a, b, c, d}, from which {b, c} are
reversible. The only causal dependency is bl c. Conflicts are
induced from shared places in the presets of transitions, which
in this case are s0 and s2. Hence, a#c and b#d. The inhibitor
arc connecting s3 to b is mapped to the reverse causality b ≺ b
because s3 belongs to the preset of b. Analogously, the arc
from s4 to c (resp., from s5 to c) is mapped to c ≺ c (resp.,
d ≺ c). On the contrary, the arc from s8 to b gives c.b because
s8 belongs to the postset of c. Hence, the obtained rPES is the
one defined in Example 5.

Proposition 6: If V T is an rCN then Qr(V
T ) is an rPES.

D. rCNes and rPESes correspondence

We show that the mappings introduced in the previous
sections establish a tight correspondence between rPESes and
rCNs in terms of configurations.

Definition 17: Let V T = 〈S, T, F, I,m〉 be an rCN. A
pre-configuration X of V T is a conflict-free set of forward
transitions, i.e., X ⊆ T \ T and ∀t, t′ ∈ X. •t ∩ •t′ 6= ∅ ⇒
t = t′. Its associated marking is mX = m− •X +X•.

If X is pre-configuration of V T , observe that mX may not
be a reachable marking. For instance, the pre-configuration
{c, d} of the rCN in Figure 7 has the associated reachable
marking mX = {s1, s2, s3, s8, s9} which is not reachable
because c cannot be fired if s3 is marked.



Definition 18: A pre-configuration X of an rCN V T is a
configuration if mX is a reachable marking of V T . We write
ConfrCN(V

T ) for the set of all configurations of V T .
The remaining results in this section establish the opera-

tional correspondence between rPESes (resp., rCNs) and their
associated rCNs (resp., rPESes). We start by showing that a set
of events is enabled at a configuration X of P if and only if
the corresponding set of transitions is enabled at the marking
mX of Ar(P).

Lemma 1: Let P = (E,U,<,#,≺, .) be an rPES and
X ⊆ E a conflict-free set of events.
• If A∪B is enabled at X then mX [A ∪ {(u, r) | u ∈ B}〉

holds in Ar(P).
• If Y ⊆ E ∪ (U × {r}) is a set of transitions of Ar(P)

such that mX [Y 〉 then (Y ∩ E) ∪ {u | (u, r) ∈ Y } is
enabled at X .

As a consequence of the above result, we have the opera-
tional correspondence for Ar( ) as stated below.

Theorem 2: Let P be an rPES. Then, X ∈ ConfrPES(P) iff
X ∈ ConfrCN(Ar(P)).

We proceed analogously for Qr( ) to show that the encod-
ing preserves both enabling and configurations.

Lemma 2: Let V T = 〈S, T, F, I,m〉 be an rCN, X ⊆ T \T
a pre-configuration of V T , A ⊆ T \ T a set of events, B =
{t | t ∈ B} a set of reversing events, with B ⊆ T \ T .
• If mX [A ∪B〉 then A∪B is enabled at X in Qr(V

T ).
• If A∪B is enabled at X in Qr(V

T ) then mX [A ∪B〉 .
Theorem 3: Let V T be an rCN. X ∈ ConfrCN(V

T ) iff
X ∈ ConfrPES(Qr(V

T )).
From the previous results, we conclude that rCNs are a

proper counterpart of rPESes.
Theorem 4: If V T is an rCN then V T ≡ Ar(Qr(V

T )). If
P is an rPES then P ≡ Qr(Ar(P)).

VI. CAUSAL NETS AND OCCURRENCE NETS

The developments in Sections IV-A and IV-B have shown
that CNs are an adequate counterpart for prime event structures
(Theorem 1). We now study the connections between CNs
and occurrence nets, which are standardly associated with
PESes. Finally, we provide further evidence suggesting that
occurrence nets cannot be easily adapted to model out-of-
causal order reversibility.

We start by introducing some notions about nets that will
be used throughout this section. An IPT N is single execution
if its states are sets, i.e., ∀X ∈ St(N).X = [[X]]. Intuitively,
each transition of a single execution net can be fired at most
once in a firing sequence. Single execution nets (albeit without
inhibitor arcs) are also known as 1-occurrence nets [24], [26].
The net N1 in Figure 4a is single execution.

An IPT is said conflict-saturated whenever any pair of
transitions that do not appear in any firing sequence of the
net have a common place in their presets.

Definition 19: Let N = 〈S, T, F, I,m〉 be an IPT. Two tran-
sitions t, t′ ∈ T are in conflict if they do not simultaneously
appear in any state of N , i.e., {t, t′} 6⊆ [[X]] for all X ∈ St(N).

N is conflict-saturated whenever for all t, t′ ∈ T , if t and t′

are in conflict then •t ∩ •t′ 6= ∅.
A conflict-saturated net is one in which conflicts are char-

acterised structurally.

Example 20: The net in Figure 10 is conflict-saturated
because the pairs a and c, as well as b and c, do no appear in
any configuration of the net but each pair of transitions shares
a place in their preset (s7 for a and c, and s3 for b and c).

s1 s2 s3

s7s4

s5

s6

a b c

Fig. 10: A conflict-saturated net

Every single execution IPT can be transformed into a
conflict-saturated, equivalent one, i.e., without changing the
executions of the net. This can be achieved by adding a
new place for any pair of conflicting transitions, and then
extends the presets of the transitions with the corresponding
new places. This procedure can be formalised as follows.

Consider a single execution IPT N = 〈S, T, F, I,m〉. Define
the set confl(N) of pairs of transitions in conflict as

confl(N) = {T ′ ⊂ T | |T ′| = 2 ∧ ∀X ∈ St(N). T ′ 6⊆ X}.

Then, the conflict-saturated version of N is given by
N confl(N) = 〈S′, T, F ′, I,m′〉 where

• S′ = S ∪ {sT | T ′ ∈ confl(N)},
• F ′ = F ∪ {(s′T , t) | t ∈ T ′};
• m = m ∪ {sT | T ′ ∈ confl(N)}.

It should be noted that for each transition t ∈ T and each
reachable marking m ∈ MN such that m [t〉 , there exists
a reachable marking m′ ∈ MN confl(N) such that m′ [t〉 and
∀s ∈ S. m′(s) = m(s), i.e., the transformation preserves the
behaviour despite m and m′ may differ in the added places.
The correspondence holds also in the opposite direction: for
each transition t ∈ T and each reachable marking m′ ∈
MN confl(N) such that m′ [t〉 , there exists a reachable marking
m′ ∈MN such that m′ [t〉 and ∀s ∈ S. m′(s) = m(s).

The construction above gives a procedure for obtaining an
equivalent, conflict-saturated version of an IPT.

Proposition 7: Let N be a single execution IPT, then there
exists a conflict-saturated IPT N confl(N) such that N confl(N) ≡
N .

Remark 1: It is worth stressing that pCNs and CNs are single
execution nets; moreover, CNs are also conflict-saturated.



A. Occurrence nets

We recall the notion of occurrence nets1. We adopt the
usual convention by which places and transitions are called
conditions and events; and write B and E for their respective
sets (instead of S and T ) and c for the initial marking.
We may confuse conditions with places and events with
transitions. Moreover, we will omit the inhibiting relation I
since occurrence nets do not have inhibitor arcs (i.e., I = ∅).

Definition 20: An occurrence net (ON) O = 〈B,E, F, c〉
is an acyclic, safe net satisfying the following restrictions:
• ∀b ∈ B. •b is either empty or a singleton, and ∀b ∈ c.
•b = ∅,

• ∀b ∈ B. ∃b′ ∈ c such that b′ ≤O b,
• for all e ∈ E the set {e′ ∈ E | e′ ≤O e} is finite, and
• # is an irreflexive and symmetric relation defined as

follows:
– e #0 e

′ iff e, e′ ∈ E, e 6= e′ and •e ∩ •e′ 6= ∅,
– x # x′ iff ∃y, y′ ∈ E such that y #0 y

′ and y ≤O x
and y′ ≤O x′.

Each condition b in an ON represents the occurrence of a token.
Hence, b either belongs to the initial marking c or is produced
by the unique event in •b. The flow relation is interpreted
as the causality relation among the elements of the net; for
this reason we say that x causally depends on y iff y ≤O x.
Observe that ≤O∩(E × E) is a partial order and # is inherited
along ≤O; hence, e # e′ ≤O e′′ implies e # e′′.

Proposition 8: Let O = 〈B,E, F, c〉 be an occurrence net.
Then, O is a single execution net.

As for Proposition 7, every single execution IPT can be
converted into an equivalent conflict-saturated net. Since the
construction does not modify the inhibitor relation, the same
holds for occurrence nets.

Definition 21: Let O = 〈B,E, F, c〉 be an ON. A set of
events X ⊆ E is a configuration of O if:
• ∀e, e′ ∈ X.e 6= e′ ⇒ ¬(e # e′), i.e., it is conflict-free;

and
• ∀e ∈ X . bec ⊆ X , i.e., it is left-closed.

The set of configurations of O is denoted by ConfON(O).
If a ON is conflict-saturated then the first condition can be
rewritten as ∀e, e′ ∈ X. •e ∩ •e′ 6= ∅ ⇒ e = e′. Moreover,
observe that each configuration of an ON is also a state.

B. From ON to CN

We show that every occurrence net can be turned into a
causal one, and hence that the latter notion is a conservative
extension of the former one.

Definition 22: Given an occurrence net O = 〈B,E, F, c〉
we can associate to it a net O(O) defined as 〈S,E, F ′, I,m〉
where

1Occurrence nets are often the result of the unfolding of a (safe) net. In
this perspective an occurrence net is meant to describe precisely the non-
sequential semantics of a net, and each reachable marking of the occurrence
net corresponds to a reachable marking of the unfolded net. Here we focus
purely on occurrence nets and not on the nets they are the unfoldings of, nor
on the relation between the net and its unfolding.

• S = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E}
∪ {({e, e′},#) | e # e′};

• F ′ = {(s, e) | s = (∗, e) ∨ (s = (W,#) ∧ e ∈W )};
∪ {(e, s) | s = (e, ∗)};

• I = {(s, e) | s = (∗, e′) ∧ e′ <C e}; and
• m : S → N is such that m(s) = 0 if s = (e, ∗) and

m(s) = 1 otherwise,
The construction resembles the one from PESes to CNs:

each event e of an occurrence net is associated with an
homonymous transition and two places (∗, e) and (e, ∗) in the
corresponding causal net. When marked, (∗, e) represents the
fact that e has not been fired yet, while (e, ∗) describes the
fact that e has been executed. Moreover, there is one additional
place ({e, e′},#) for any pair of conflicting events e#e′ in O.
As expected, the preset of an event e consists of the place (∗, e)
and all the places of the form ({e, e′},#), which represent the
conflicts of e with some other event e′. Causal dependencies
are mapped into inhibitor arcs so that (e′, ∗) belongs to the
inhibitor set of e only if e causally depends on e′ in O. The
initial marking assigns a token to every place belonging to the
the preset of some transition.

Example 21: Figure 11 shows the encoding of the ON O in
Figure 11a as the CN O(O) in Figure 11b.

a b

c

d

(a) O

({a, c},#)

(∗, a)

({a, b},#)

(∗, b)
(∗, c) (∗, d)

(a, ∗) (b, ∗) (c, ∗) (d, ∗)

a b c d

(b) O(O)

Fig. 11: An occurrence net as a causal net

Proposition 9: Let O be an occurrence net. Then O(O) is
a CN and O ≡ O(O).

We stress that O(O) is conflict-saturated for any ON O.

C. From pCN to ON

The encoding from pCNs to ONs basically requires to embed
causal dependencies expressed in terms of inhibitor arcs into
the the flow relation. For this reason, the encoding incorporates
new places of the form (t, t′) as a way for representing the
dependency tl t′.

Definition 23: Let C = 〈S, T, F, I,m〉 be a pCN. The
associated ON is a net Z(C) = 〈B, T, F ′, c〉 where
• B = S ∪ {(t, t′) | tl t′};
• F ′ = F ∪{(s, t) | s = (t′, t)}∪ {(t, s) | s = (t, t′)}; and
• c : B → N is such that c(b) = m(b) if b ∈ S and c(b) = 0

if b 6∈ S.
Note that the flow relation is extended to account for causal
dependencies: each transition t produces tokens in the places
(t, t′) (i.e., (t, (t, t′)) ∈ F ) and consumes tokens from (t′′, t)



(i.e., (t, (t′′, t))). In this way, a transition t is enabled when
all its causes have been already fired (i.e., the places (t′′, t)
are marked).

The following results highlights that the transformation
preserves the behaviour of the net.

Proposition 10: Let C be a pCN, then Z(C) is an ON and
C ≡ Z(C).
The net Z(C) in not necessarily conflict-saturated, as C could
be not conflict-saturated.

Example 22: In Figure 12 we depict a pCN C (on the left)
and the associated ON (on the right).

s0 s2 s3 s5

s1 s4 s6

a b c

(a) C

s0 s2 s3 s5

s1 s4 s6(b, c)

a b c

(b) Z(C)

Fig. 12: A causal net as an occurrence net

By combining Proposition 9 and Proposition 10 we obtain the
following result.

Theorem 5: Let C be a causal net. Then C = O(Z(C)).
Let O be an occurrence net. Then O ≡ Z(O(O)).

Despite we can directly obtain a PES from an ON (and
vice versa) [27], the mappings introduced in Sections IV-A
and IV-B give us an alternative procedure that relies on the
intermediate representation of PESes in terms of CNs, as stated
below.

Theorem 6: Let P be a PES. Then Z(A(P)) is an ON
and ConfPES(P) = ConfON(Z(A(P))). Let O be an ON. Then
Q(O(O)) is a PES and ConfON(O) = ConfPES(Q(O(O))).

D. Reversible occurrence net

A causal-consistent reversible version of ONs has be pro-
posed in [14], [15]. The model associates each reversible event
of an occurrence net with a reversing transition, analogously
to our rCNs. As already noticed in [15], this approach fails
when considering the full generality of rPES due to the tight
correspondence between the configurations of an occurrence
net and their associated reachable markings: given an ON
O = 〈B,E, F, c〉 and a configuration X , its associated
reachable marking mX can be computed as (c∪ [[X•]])\ [[ •X]]
This equation makes clear that some effects (i.e., the produced
tokens) of the executed events may not be observable on the
reachable marking, i.e., if e ∈ X and e• ∩ •X 6= ∅, then
e• 6⊆ mX . This is the case for the configuration {b, c} of the
ON depicted in Figure 12b, where the condition (b, c) is used
by the firing of c, and does not hold after c is executed. Assume
that we expect b to be an out-of-causal-order reversible event
and add the reversing transition b that consumes from s4 and
(b, c). Then it is clear that b is not enabled at mX ; hence, the
undoing of b would require the undoing of c, which imposes
a causally-order reversibility model.

rCN rPES

CN PES rONON

crPES

[27]

Th. 6
[21]

[15]

[15]

[21]

Th. 1

Th. 4

Th. 5

Fig. 13: Recap of results. Solid arrows represent known
results/works in the literature while dashed arrows stand for
results in this paper. Double-headed arrows are used for
correspondences while curly tailed arrows are for inclusions
and reversible extensions.

VII. CONCLUSIONS

The main contribution of this paper is the characterisation
of a class of Petri nets with inhibitor arcs, dubbed reversible
causal nets (rCN), which provides an operationally counterpart
for the reversibility model behind reversible prime event struc-
tures (rPES) [21]. The key observation is that three out of the
four (primitive) relations that rPESes define over events can be
captured by inhibitor arcs: both forward and reverse causality
can be modelled as inhibitor arcs that connect an event (either
forward or reversing) to (some of the conditions in) the presets
of its immediate causes, while prevention is translated to
arcs that connect an event to (some of the conditions in)
the postsets of the preventing events. The remaining conflict
relation corresponds, as usual, to overlapped presets.

Figure 13 briefly recaps our results with respect to the
state of the art. The correspondence between occurrence
nets and prime event structures is due to Winskel’s seminal
work [27]. We have introduced a new class of Petri nets, called
causal nets, and showed their correspondence with prime event
structures (Theorem 1). We have then presented the reversible
variant of causal nets (rCNs), and showed that they are an
operational counterpart of the reversible prime event structures
of [21] (Theorem 4). Finally, we showed that causal nets are
tightly connected to occurrence nets (Theorem 5), and give
a revisitation of Winskel’s correspondence via Theorem 6.
To give a complete picture of known results, we depict the
extension of occurrence nets into reversible occurrence nets
proposed in [15]; where the latter ones correspond to a proper
subclass of rPES that just accounts for causally-consistent
reversibility (crPES).

Besides contributing to the well-established line of work
initiated in [18], [27] that links classes of nets with classes of
event structures, our work explains the reversing mechanisms
of rPESes by relying on a well-studied concurrent model. In
this respect, our contribution constitutes a step forward with
respect to [15], which just deals with the subclass of causal-
reversible rPESes which, e.g., do not provide out-of-causal-
order reversibility. Remarkably, our reversible causal nets do
not appeal to original elements to achieve reversibility as, e.g.,



the bonds of [20]. As a matter of fact, causal nets do not rely
either on the information (i.e., colours) carried on by tokens
(as done in [3], [14]).

The characterisation of rPESes as restrictions over the
structure of the nets enables the study of less constrained
models. For instance, an undoable event in an rPES can be
undone just by performing one reversing event. This excludes
the possibility of defining alternative conditions for reversing
an event. We can overcome this limitation in the operational
model just by dropping the requirement of non-overlapping
backward transitions (i.e., [[ •T ]] = •T ). This kind of analysis
seems an interesting line to explore in future work.

Causal nets and their reversible versions play a role anal-
ogous to occurrence nets (in their connection with PESes).
Consequently, we may ask ourselves about the class of (re-
versible) nets whose unfoldings are (reversible) causal nets,
or, alternatively, which are the suitable categories that would
allow us, if possible, to extend Winskel’s chain of coreflection
to reversible event structures.
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