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In this work we present a calculation of the quasi-normal modes of a Planck star, a supposed
state in the life of a large mass star in which quantum effects should reverse the collapse causing the
star to explode. In order to solve the Regge-Wheeler equations and to calculate the quasi-normal
modes, we apply the shooting method.
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I. INTRODUCTION

In the context of loop quantum cosmology, in [1], it was demonstrated that the initial singularity of the big bang
could be avoided thanks to quantum mechanics effects. In [2] it was conjectured that the same might happen during
the collapse of a high mass star: quantum effects might avoid the formation of the singularity and of a black hole by
reversing the collapse and leading to the explosion of the star. This final stage in the life of a massive star was called
Planck star. While in the reference system of the collapsing star this process is very brief, for an observer far from
the source the explosion might take millions of years, depending on the mass of the object, because of the general
relativistic slowing down of time close to high gravitational fields. More studies that deal with the possible existence
of Planck stars are [3–6].

Since the publication of [2], many papers have been published that look for observable effects that might lead to the
discovery of Planck stars: in [7] the possibility that the fast radio burst might be due to the explosion of a low-mass
Planck star is considered; in [8] the main spectral characteristic of the signal are discussed; finally in [9] the possibility
that the excess of GeV photons coming from the center of the Galaxy could be explained by the explosion of a Planck
star. For more studies on Planck stars see the review [10].

The final object produced by the merging of black holes (or Planck stars) is in general perturbed and distorted: this
leads to the emission of ring-down radiation consisting of quasi normal modes (QNM). These modes have a complex
frequency, whose real part is the oscillation frequency, while the imaginary part is the inverse of the damping time.
Since the proposed model of a Planck star is different from a Schwarzschild black hole, the QNMs are also different;
this might be another method to establish the existence of these objects, therefore, in this work we calculate the
QNMs for a perturbed Planck star and compare the results with those of a Schwarzschild black hole.

In Section II we review the model for the metric of a Planck star first described in [3]; in Section III we calculate
the Regge-Wheeler equation for our system; in Section IV we apply the shooting method to solve numerically the
Regge-Wheeler equations in order to calculate the QNM of a Schwarzschild black hole; in Section V we calculate the
QNM of the Planck star and compare the results with the QNM of a Schwarzschild black hole; finally in Section VI
we conclude our discussion.

We use the natural units system in which G = c = ~ = 1 so that masses are measured in meters and frequency in
m−1.

II. A MODEL FOR A BOUNCING BLACK HOLE

We follow [3] and assume that the system is spherical symmetric (and therefore non rotating), we consider a spherical
shell of null matter disregarding the thickness of the shell, we assume time reversal symmetry; we also assume that
quantum mechanics effects (which lead to the violation of the Einstein equations) are important in a limited region of
spacetime close to the central object, so that at large radii and in the far past and future the metric is again classic;
finally, we assume that there is no event horizon. With these assumptions we consider a bouncing metric for the
infalling shell divided in three regions, all of which are described by a metric of the form:

ds2 = −F (u, v)dudv + r2(u, v)(dθ2 + sin2 θdφ2) (1a)

See figure 1 for a Penrose diagram of the spacetime of a Planck star. Region I is the internal part of the black hole
and is a portion of a Minkowski spacetime described by the choice

F (uI , vI) = 1 r(uI , vI) =
vI − uI

2
(1b)



2

I

II

III

Δ

ℰ

ℰ

Figure 1: A Penrose diagram of the spacetime of a Planck star. See also [3].

Region II is a portion of Kruskal spacetime in which

F (uII , vII) =
32m3

r
exp

(
− r

2m

)
(1c)

and r is defined implicitly by: (
1− r

2m

)
exp

( r

2m

)
= uIIvII

which can be written in terms of the Lambert W function [15]:

r(u, v) = 2m
[
1 +W

(
−uIIvII

e

)]
(1d)

Finally, Region III is the portion of spacetime in which quantum effects are important; in [3] the authors chose the
ansatz:

F (uIII , vIII) =
32m3

r
exp

(
− r

2m

)
r =

vIII − uIII
2

(1e)

The three regions must be matched with one another. Region I is bounded by the past light cone of the origin
vI = 0 and region II is bounded by the null line vII = v0; this implies that the matching condition between region I
and region II is:

uII(uI) =
1

v0

(
1 +

uI
4m

)
exp

( uI
4m

)
(2)

The matching between the Kruskal region II and the quantum region III is obtained by imposing that the coordinates
(uIII , vIII) are equal to the coordinate (uII , vII) on the boundary.

There are two important points in the above metric: the point E in which the infalling shell reaches the quantum
region and ∆ which is the maximal extension of the region in which the Einstein equations are violated [3]. Following
[3] we impose that E has coordinates (−2ε, 0) and that the point ∆ is in the point with t = 0 and r = 2m+ δ.

The above metric is described by the three parameters v0, δ and ε; all of them are functions of the mass of the black
hole m [3]:

ε ≈
(
m

mp

) 1
3

lp v0 ≈ exp

(
−k m

2lp

)
δ ≈ m

3
(3)

where k is a number depending on the curvature radius of the spacetime and on the bouncing time and whose
expression can be found in [3].

Now that we have a model for the infalling shell, we can calculate the Regge-Wheeler equations.
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III. REGGE-WHEELER EQUATION

Regge-Wheeler (RW) equations can be calculated starting from the perturbed Einstein equations. We consider a
metric of the form (see for example [13]):

g̃µν = gµν + hµν (4)

In [14] we have calculated the general expression for the perturbation of the Einstein equations:

δGµν =
1

2
gµνh

ρσRρσ −
1

2
hµνR−

1

2
hρρ;µ;ν +

1

2
h ρ
ν ;µρ +

1

2
h ρ
µ ;ν;ρ+

− 1

2
h ;ρ
µν ;ρ +

1

4
gµνg

ρσhττ ;ρ;σ −
1

2
gµνg

ρσh τ
ρ ;σ;τ +

1

4
gµνg

ρσh ;τ
ρσ ;τ

(5)

We notice that, since part of the metric is in a region in which quantum effects are non negligible, the actual equations
describing the system are not Einstein equations, but some effective equations; we however use Einstein equations as
a first approximation, since it is also of interest to study what they imply in this situation.

Using the Regge-Wheeler gauge, the axial part of the perturbation field hµν can be written as [13]:

haxialµν =

+∞∑
l=2

+l∑
m=−l

hBtlm(u, v)(tBtlm(θ, φ))µν +

∞∑
l=1

+l∑
m=−l

hB1
lm (u, v)(tB1

lm (θ, φ))µν (6)

where (tBtlm(θ, φ))µν and (tB1
lm (θ, φ))µν are the Zerilli tensor harmonics whose expression can be found in [13].

We are interested in the axial perturbations, so we have to choose the components (µ, ν) = (u, φ), (v, φ), (θ, φ) in
equation (5). Substituting the general expression for metric (1a) in equation (5), we find the following three equations
for the two perturbation fields hBtlm(u, v) and hB1

lm (u, v):

− ∂2uhB1
lm + ∂u∂vh

B0
lm −

2

r
(∂vr)(∂uh

B0
lm +

(∂uF )

F
(∂uh

B1
lm )− (∂uF )

F
(∂vh

B0
lm ) +

2

r
(∂ur)(∂vh

B0
lm )+

+ 2hB0
lmP1 + 2hB1

lmP2 = 0

(7a)

+ ∂u∂vh
B1
lm − ∂2vhB0

lm −
(∂vF )

F
(∂uh

B1
lm ) +

(∂vF )

F
(∂vh

B0
lm ) +

2

r
(∂vr)(∂uh

B1
lm )− 2

(∂ur)

r
(∂vh

B1
lm )+

+ 2hB1
lmQ1 + 2hB0

lmQ2 = 0

(7b)

(∂vh
B0
lm ) = −(∂uh

B1
lm ) (7c)

in the above equations we have suppressed the dependence on the coordinates in order to have a cleaner notations
and we have defined:

P1(u, v) =
(∂uF )(∂vF )

F 2
+

(∂vr)(∂uF )

Fr
− (∂ur)(∂vr)

r2
− (∂u∂vF )

F
− 3

(∂u∂vr)

r
+

F

4r2
l(l + 1) (8)

P2(u, v) = − (∂uF )(∂vr)

Fr
+

(∂ur)
2

r2
+

(∂2ur)

r
(9)

Q1(u, v) =
(∂uF )(∂vF )

F 2
+

(∂vF )(∂ur)

Fr
− (∂ur)(∂vr)

r2
− (∂u∂vF )

F
− 3

(∂u∂vr)

r
+

F

4r2
l(l + 1) (10)

Q2(u, v) = − (∂vF )(∂ur)

Fr
+

(∂vr)
2

r2
+

(∂2vr)

r
(11)

By substituting the expression of the functions F (u, v) and r(u, v) into the definition of the potentials, we get:

• Region I: F (u, v) = 1 and r(u, v) =
v − u

2

P1(u, v) =
l(l + 1)

(v − u)2
+

1

(v − u)2
(12)

P2(u, v) =
1

(v − u)2
(13)

Q1(u, v) =
l(l + 1)

(v − u)2
+

1

(v − u)2
(14)

Q2(u, v) =
1

(v − u)2
(15)
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• Region II F (u, v) is given by (1c) and r(uv) given by (1d):1

P1(u, v) =
8m3

r
exp

[
− r

2m

] l(l + 1)

r2
+

(
−3

(∂ur)(∂vr)

r2
− (∂ur)(∂vr)

2mr
+

(∂u∂vr)

2m
− 2

∂u∂vr

r

)
(16)

P2(u, v) =
(∂ur)(∂vr)

r2
+

(∂ur)
2

r2
+

(∂ur)(∂vr)

2mr
+

(∂2ur)

r
(17)

Q1(u, v) =
8m3

r
exp

[
− r

2m

] l(l + 1)

r2
+

(
−3

(∂ur)(∂vr)

r2
− (∂ur)(∂vr)

2mr
+

(∂u∂vr)

2m
− 2

∂u∂vr

r

)
(18)

Q2(u, v) =
(∂ur)(∂vr)

r2
+

(∂vr)
2

r2
+

(∂ur)(∂vr)

2mr
+

(∂2vr)

r
(19)

• Region III F (u, v) is given by (1c) and r(u, v) =
v − u

2
:

P1(u, v) = − 256m3

(v − u)5
exp

(
− r

2m

)
l(l + 1) +

28m+ v − u
4m(v − u)2

(20)

P2(u, v) =
16m+ v − u
4m(v − u)2

(21)

Q1(u, v) = − 256m3

(v − u)5
exp

(
− r

2m

)
l(l + 1) +

28m+ v − u
4m(v − u)2

(22)

Q2(u, v) =
16m+ v − u
4m(v − u)2

(23)

We notice that P1 and Q1 are equal in all regions.
We have now to solve the two coupled differential equations (7) with the potentials given above. We start by using

equation (7c) in the terms:

∂uh
B1
lm

(∂uF )

F
− ∂vhB0

lm

(∂uF )

F
= −2∂vh

B0
lm

(∂uF )

F

−∂uhB1
lm

(∂vF )

F
+ ∂vh

B0
lm

(∂vF )

F
= −2∂uh

B1
lm

(∂vF )

F

−∂2uhB1
lm = ∂u∂vh

B0
lm

−∂2vhB0
lm = ∂u∂vh

B1
lm

We now sum and subtract the first two equations (7) and introduce the functions Σlm = hB0
lm+hB1

lm and ∆lm = hB0
lm−hB1

lm
and we get (using the fact that P1 and Q1 are equal):

2∂u∂vΣlm − 2
(∂vr)

r
∂uΣlm − 2

(∂ur)

r
∂vΣlm −

(∂uF )

F
∂vΣlm −

(∂vF )

F
∂uΣlm+

+
(∂uF )

F
∂v∆lm −

(∂vF )

F
∂u∆lm + (2P1 + P2 +Q2) Σlm + (Q2 − P2)∆lm = 0

(24a)

2∂u∂v∆lm − 2
(∂vr)

r
∂u∆lm − 2

(∂ur)

r
∂v∆lm −

(∂uF )

F
∂v∆lm −

(∂vF )

F
∂u∆lm+

+
(∂uF )

F
∂vΣlm −

(∂vF )

F
∂uΣlm + (2P1 + P2 +Q2) ∆lm − (Q2 − P2)Σlm = 0

(24b)

Finally, we make the following ansatz for the solution of the two equations above:

Σlm(u, v) = R(u, v)
√
F (u, v)φ(u, v) ∆lm(u, v) = R(u, v)

√
F (u, v)ψ(u, v) (25)

1 Note that it depends on the product of the coordinates u and v.
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where F (u, v) has the form described in the previous section in the three regions and R(u, v) is defined as:

R(u, v) =


v − u

2
in Region I

r(uv) in Region II
v − u

2
in Region III

(26)

where r(uv) is defined in equation (1d). By substituting this ansatz in (24), after some algebra, we find that the
equations reduce to the coupled differential equations system:

∂u∂vφ+
1

2

[
(∂uψ)

(∂vF )

F
− (∂vψ)

(∂uF )

F

]
+W (u, v)φ+ V ψ = 0 (27a)

∂u∂vψ +
1

2

[
(∂uφ)

(∂vF )

F
− (∂vφ)

(∂uF )

F

]
+W (u, v)ψ − V φ = 0 (27b)

where the potentials are given by:

W (u, v) = P1 +
Q2 + P2

2
+

− 3

4

(∂uF )(∂vF )

F
− 1

2

(∂ur)(∂vF )

rF
− 1

2

(∂vr)(∂uF )

rf
− 2

(∂ur)(∂vr)

r2
+

1

2

∂u∂vF

F
+
∂u∂vr

r

(28a)

V (u, v) =
Q2 − P2

2
+

1

2

(
(∂uF )(∂vr)

rF
− (∂ur)(∂vF )

Fr

)
(28b)

It can be checked, that with the definition of F given in section II the second term in equation (28b) vanishes.

IV. APPLICATION TO THE SCHWARZSCHILD BLACK HOLE

In this section we apply the shooting method as described in [11, 12] in order to calculate the QNM of the
Schwarzschild black hole.

In the Schwarzschild black hole case, we deal with only the Region II extended to the whole spacetime. We can
make the ansatz that the φ(u, v) and ψ(u, v) function have the following form:

φ(u, v) = A1(u+ v)B1(r(uv)) ψ(u, v) = A2(u+ v)B2(r(uv)) (29)

and we impose that t =
u+ v

2
, so that the system (27) reduces to:

A1(t)B′1(r) + 2tȦ1(t)B′1(r) exp
(
− r

2m

)
+ Ä1(t)B1(r) + uvA1(t)B′′1 (r) +W (t, r)A1(t)B1(r)+

+
1

2

[
(∂uA2(t)B2(r))

(∂vF )

F
− (∂vA2(t)B2(r))

(∂uF )

F

]
+ V (u, v)A2(t)B2(r) = 0

(30a)

A2(t)B′2(r) + 2tȦ2(t)B′2(r) exp
(
− r

2m

)
+ Ä2(t)B2(r) + uvA2(t)B′′2 (r) +W (t, r)A2(t)B2(r)+

+
1

2

[
(∂uA1(t)B1(r))

(∂vF )

F
− (∂vA1(t)B1(r))

(∂uF )

F

]
− V (u, v)A1(t)B1(r) = 0

(30b)

where a dot indicates a derivative with respect to the time t and a prime a derivative with respect to the coordinate
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r. The potentials are given by:

W (t, r) = exp
(
− r

2m

)[
−20m4

r4
+

30m3

r3
− 8l(l + 1)

r3
− 7m2

r2
+
m

2r

]
− 8m3

r3
exp

(
− r

2m

)
t2 (31)

V (t, r) = exp
(
− r

m

) 4m3

r3
(v2 − u2) (32)

(∂uF )

F
=

1

u

(
4m2

r2
− 1

)
(33)

(∂vF )

F
=

1

v

(
4m2

r2
− 1

)
(34)

(35)

By substituting the above potentials in the system (30), one can see that the first line of each equation has the
following form:[

Äi(t) + 2t
B′i(r)

B(r)
− 8m3

r3
exp

(
− r

2m

)
t2Ai(t)

]
Bi(r)+

+ exp
(
− r

2m

)[(
1− r

2m

)
r−2B′′i (r)− 2mr−3B′i(r) +

(
−20m4

r4
+

30m3

r3
− 8l(l + 1)

r3
− 7m2

r2
+
m

2r

)]
Ai(t)

(36)

which is separable; we therefore assume that the second lines of equations (30) are a small perturbation2, so that we
can decouple the system and solve separately for Ai(t) and Bi(r). The separated equations have the form:

Äi(t) + 2t
B′i(r)

B(r)
exp

(
− r

2m

)
− 8m3

r3
exp

(
− r

2m

)
t2Ai(t) = −ω2Ai(t)

exp
(
− r

2m

)[(
1− r

2m

) 1

r2
B′′i (r)− 1

r3
B′i(r) +

(
−20m4

r4
+

30m3

r3
− 8m3l(l + 1)

r3
− 7m2

r2
+
m

2r

)]
= ω2Bi(r)

(37)

By looking at the the first equation, we note the presence of the exponentials which kill off the last two terms on
the left hand side for large distances, so we are left with the equation:

Äi(t) = −ω2Ai(t) (38)

which has solutions of the form Ai(t) ∝ exp (±iωt), so that we see that the separation constant ω is the quasi normal
mode frequency.

By introducing the reduced radial coordinate R = r/(2m), the second equation can be rewritten:

B′′i (R)R2(R− 1) +RB′i(R) =

(
−5

4
+

15

4
R− l(l + 1)R− 7

4
R2 +

1

4
R3

)
Bi(R) +R4 exp(R)ω2Bi(R) (39)

This equation must be solved numerically for each value of the angular momentum l. We solved it with shooting
method and calculated the values of ω by matching the two equations at the radial coordinate R = 10. As discussed
in [11], with the shooting method only the lowest modes can be reliably computed. Our results are reported in the
third column of table I for l = {2, 3, 4} along with the QNM calculated in [12], reported in the second column: we see
that the modes calculated with our method are in agreement with those of Chandrasekhar-Detweiler to within a few
percent, this means that our derivation of the Regge-Wheeler equation and the assumption made in order to simplify
it are correct.

V. PLANCK STAR

In order to find the quasi normal mode for the Planck star, we have to solve the differential equations (27) separately
in the three regions and match the resulting functions. We shall now derive the solution to the system (27) in each
region.

2 This can be verified only at the end of the calculation, by substituting the expressions for the first order functions Ai(t) and Bi(r) or
by comparing the results with classical ones.
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A. Region I

In the region I, the spacetime is described by a Minkowski metric. Here we have F (u, v) = 1, r =
v − u

2
and

t =
v + u

2
. We look for functions of the form:

φ(u, v) = AM1 (u+ v)BM1 (v − u) = AM1 (t)BM1 (r)

ψ(u, v) = AM2 (u+ v)BM2 (v − u) = AM2 (t)BM2 (r)
(40)

By substituting these expression into (27), we get:

−AM1 (t)BM ′′1 (r) + ÄM1 (t)BM1 (r)− 1

4

(
− 4

r2
− 1

m2
+
l(l + 1)

r2

)
AM1 (t)BM1 (r) = 0 (41a)

−AM2 (t)BM ′′2 (r) + ÄM2 (t)BM2 (r)− 1

4

(
− 4

r2
− 1

m2
+
l(l + 1)

r2

)
AM2 (t)BM2 (r) = 0 (41b)

which are separable; we find:

AMi (t) ∝ exp(±iωt) (42)

BM ′′i (r) +
1

4

(
− 4

r2
− 1

m2
+
l(l + 1)

r2

)
BMi (r) = ω2BMi (t) (43)

B. Region II

In region II the metric is that of Scharzschild. We have already solved the spatial differential equation in the
previous section. The time differential equation is given by:

ÄSi (t) + 2t
BS′i
BSi

exp
(
− r

2m

)
ȦSi (t)− 8m3

r3
exp

(
− r

2m

)
ASi (t) = −ω2ASi (t) (44)

We can again assume that the second an third elements are small for large r, so the solution is again oscillating. The
radial part has the same form of that reported in equation (39).

C. Region III

In region III F (u, v) is given by equation (1c), while r =
v − u

2
and t =

v + u

2
. We look for solutions of the form

φ(u, v) = AQ1 (u+ v)QQ1 (v − u) = AQ1 (t)QQ1 (r)

ψ(u, v) = AQ2 (u+ v)BQ2 (v − u) = AQ2 (t)QQ2 (r)
(45)

The system (27) reduces to:

ÄQ1 (t)BQ1 (r)−AQ1 (t)BQ′′1 (r) +

[
256m2 − 32mr + 4r2

256m2r2
− exp

(
− r

2m

) l(l + 1)

4r2

]
AQ1 (t)BQ1 (r) = 0 (46a)

ÄQ2 (t)BQ2 (r)−AQ2 (t)BQ′′2 (r) +

[
256m2 − 32mr + 4r2

256m2r2
− exp

(
− r

2m

) l(l + 1)

4r2

]
AQ1 (t)BQ1 (r) = 0 (46b)

Both of the above equations are separable. The solution for the time equation is again of the form AQi (t) ∝ exp(±iωt).
The differential equation for the spatial function is (again introducing the reduced radial coordinate R = r/(2m)):

BQ′′i (R) =

[
1

16
+

1

R2
− 1

4R
− exp (−R)

l(l + 1)

4R2

]
BQi (r) + ω2BQi (r) (47)
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D. Calculation of quasi normal frequencies

The three solutions reported above must be matched at the points in which the three patches of the spacetime metric
meet. We saw in section II (see also [3]) that the Minkowski and Schwarzschild region match when r(u, v) = r(uI , vI)
where:

vI = v0 u =
1

v0

(
1 +

uI
4m

)
exp

( uI
4m

)
(48)

while the quantum region has as boundary the point between E = (±2ε, 0) and ∆ which is located at the point with
r = 2m+ δ and t = u+ v = 0. δ and v0 are defined in section II (see also [3]).

We assume that the observer is located at infinity in the point u = 0, so we have to match the solutions in the
quantum and Schwarzschild region at the point E with

r0 = ε =

(
m

mp

)1/3

lp (49)

We also calculate the QNMs at the point ∆ as a double check of our results, so, in this second case,

r0 = 2m+
m

3
. (50)

l = 2

n Chandrasekhar Schwarzschild Planck star at E Planck star at ∆

Detweiler [12]
0 0.74734 + 0.17792 i 0.74629 + 0.18245 i 0.82053 + 0.00181 i 0.81542 + 0.00082 i
1 0.69687 + 0.54938 i 0.72099 + 0.57401 i 0.44531 + 0.23963 i 0.43821 + 0.22852 i

l = 3

n Chandrasekhar Schwarzschild Planck star at E Planck star at ∆

Detweiler [12]
0 1.19889 + 0.18541 i 1.19000 + 0.18500 i 0.54405 + 0.11844 i 0.19201 + 0.53348 i
1 1.16402 + 0.56231 i 1.60577 + 0.56177 i 0.36380 + 0.14967 i 0.57942 + 0.15785 i
2 0.85257 + 0.74546 i 0.85071 + 0.74871 i 0.51967 + 0.24554 i 0.49875 + 0.25784 i

l = 4

n Chandrasekhar Schwarzschild Planck star at E Planck star at ∆

Detweiler [12]
0 1.61835 + 0.18832 i 1.67507 + 0.19514 i 0.45484 + 0.10130 i 0.45879 + 0.12486 i
1 1.59313 + 0.56877 i 1.59305 + 0.56892 i 0.45627 + 0.19286 i 0.45794 + 0.18727 i
2 1.12019 + 0.84658 i 0.92223 + 0.82797 i 0.54294 + 0.26059 i 0.53482 + 0.24879 i

Table I: In the second column we report the QNM calculated by Chandrasekhar and Detweiler in [12], in the third and in the
fourth columns we report our results: in the third our QNM for a Schwarzschild black hole and in the fourth those for a Planck
star at the point E and in the fifth those for a Planck star at ∆. We only report the lowest modes, because we use the shooting
method, see main text and [11].

The values of the QNM calculated for a Planck star are reported in the fourth column of table I. By comparing
the QNMs of a Schwarzschild black hole to the ones of a Planck star, it is possible to notice that imaginary parts
are smaller for the star, so that the damping time is longer; this means that the QNMs of a Planck star die off more
slowly with time than the one of a Schwarzschild black hole. From a comparison between the fourth and fifth column,
we see that the QNM calculated at E and at ∆ are similar (except for the cases l = 3 n = {0, 1} where the difference
is significant), proving our method is robust.

VI. CONCLUSIONS

In this work we have considered the model presented in [3] in order to calculate the QNMs of a Planck star with a
method similar to that of Chandrasekhar and Detweiler described in [12]. The application of our method based on
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the use of the shooting method to the Schwarzschild black hole case has shown that it gives the correct QNM up to
a few percent, thus validating our derivation of Regge-Wheeler equations. With this method we have also calculated
the QNM for a Planck star, finding that the imaginary part of the QNMs of a Planck star is smaller than that of a
Schwarzschild black hole: this means that the QNMs of a Planck star die off more slowly with time with respect to
Schwarzschild black hole QNMs. As far as the real part is concerned, we notice that the values for a Planck star are
very different from the Scwarzschild case: this might be due to the use of the classical Einstein equations in place
of some effective quantum equations in the quantum region. It might be of interest to see the change in the QNM
calculated using effective equations: we leave this for a future work.
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