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Dictionaries not only are the source of getting meanings of the word but also serve the purpose of comprehending the context in
which the words are used. For such purpose, we see a small sentence as an example for the very word in comprehensive book-
dictionaries and more recently in online dictionaries. *e lexicographers perform a very meticulous activity for the elicitation of
Good Dictionary EXamples (GDEX)—a sentence that is best fit in a dictionary for the word’s definition. *e rules for the
elicitation of GDEX are very strenuous and require a lot of time for committing the manual process. In this regard, this paper
focuses on two major tasks, i.e., the development of labelled corpora for top 3K English words through the usage of distant
supervision approach and devising a state-of-the-art artificial intelligence-based automated procedure for discriminating Good
Dictionary EXamples from the bad ones.*e proposed methodology involves a suite of five machine learning (ML) and five word
embedding-based deep learning (DL) architectures. A thorough analysis of the results shows that GDEX elicitation can be done by
both ML and DL models; however, DL-based models show a trivial improvement of 3.5% over the conventional ML models. We
find that the random forests with parts-of-speech information and word2vec-based bidirectional LSTM are the most optimal ML
and DL combinations for automated GDEX elicitation; on the test set, these models, respectively, secured a balanced accuracy of
73% and 77%.

1. Introduction

*e comprehensive dictionary of any language provides the
meaning of a word; at the same time, we find the correct
usage of that word with an example of a sentence. *us,
when we can think of a word, a suite of multiple sentences
can be set as examples to define it. All of these examples can
be accurate w.r.t grammatical structure, the metaphor it
delivers, and the context it is used into. In practice, with the
corpus of these many (hundreds of thousands of) sentences

against a single word, the lexicographers, under the activity
of considering Good Dictionary EXamples (GDEX), try to
elicit one particular sentence which best defines the very
word on the qualitative grounds of being typical, infor-
mative, and highly readable [1, 2].*ere are certain rules that
the lexicographers have to take care of during the elicitation
process. On these rules, for example, Kilgarriff et al. [2] have
maintained that a good sentence is one—in an adequate
length of 10–25 words, two—comprised of words that are in
the top 17,000, three—consisting of target collocation in the
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main clause, four—not engaging pronouns and anaphors,
five—provides a context, and et cetera. Overall, the activity is
quite dawdling and sometimes it is converged into a
compromising scenario when a good sentence is not good
enough to be an example in the context of contemporary
fashion. All of it eventually turns into a powerful need to
substitute an automated GDEX elicitation process with
artificial intelligence, which specifically deals with natural
language processing (NLP) and natural language under-
standing (NLU).

*e recent methods of automating such text classifica-
tion tasks are based on supervised machine learning (ML)
and Neural Network (NN) based deep learning (DL)
techniques. *ese systems heavily rely on the prelabelled
data, which mean, technically, a dataset that is labelled by
humans. *e accuracy of any such system is directly de-
pendent on the size of data and quality of data labelling.
However, recently, the researchers have produced abundant
datasets for various classification tasks, but for the problem
under study data is obscure, quite in deep relation to the fact
that a lot of data is available over the Internet in the form of
raw/unlabelled corpus; and if we aim to employ humans to
do data labelling, a huge amount of time and labours efforts
are required to complete it. In a parallel contrast, we have
seen techniques such as distant supervision, which makes
generalized assumptions for data labelling. For example
instead of labelling a relation of Barack and Michelle
marriage from the sentence “Michelle married Barack in
1992, and they have two daughters,” we consider every
sentence for marriage-relation where the terms Obama and
Michelle appear [3]. Similarly, for sentiment analysis of
product reviews, we can have binary star ratings supplied to
it (such as the reviews with 3 or above stars out of 5 are
positive, otherwise negative [4]).

*us, for automation of such manual procedure of
GDEX, in this paper, we have contributed to

(i) the development of a dataset using the distinct
supervision technique for GDEX classification.

(ii) the application of supervisedML and DL algorithms
to predict whether, for a given word, a sentence in
running English text is good or not.

(iii) the comparative analysis on the robustness and
trade-off between ML and DL approaches.

(iv) the competitive analysis between manual GDEX
elicitation routines and automated GDEX
classification.

However, it does not mean that the proposed meth-
odology explicitly examines the syntax and other linguistic
elements of good writing, nor does it deal with the inference
of polarity (under the computational study for effect) in the
given text, which, in general convention, refers to the task of
sentiment analysis. Instead, as prefatory research, it aims to
verify whether a discriminative classifier can be sought for
categorizing English sentences as either of the binary classes
good and bad through the supervised ML algorithms.

*is paper is systematically divided into 5 subsequent
sections, where the related work done for the same problem

is given in Section 2. Section 3 provides details on the
material and methods: data source, data labelling strategy,
and approaches followed bymaintaining information onML
and DL methods. *e insights into the results, critique, and
comparative and completive analyses on the results are
presented in Section 4. *e conclusion of the paper and
future work are given at the end.

2. Literature Review

On the problem under study, there are many significant
methodologies proposed by researchers; however, we
maintain that, in comparison to other classification tasks in
NLP, the amount of work for GDEX classification is small.

Pilán et al. [5] made the most relevant work for GDEX
classification; they have developed a system to evaluate ei-
ther the sentence suitability for dictionary examples or good
examples for teaching purposes. *ey argue that a good
example should be typical, informative, and intelligible and
should be easily readable for the learners. *e two tech-
niques based on natural language processing and machine
learning were used for sentence selection. *e content has
been taken from Swedish novels, newspapers, and blogs for
applying both techniques. From this work, 70% of the total
sentences were suitable for understanding by students and
teachers. Srdanović and Kosem [6] presented GDEX clas-
sification for the Japanese language; it was designed mainly
for the lexicography of the Japanese language and learning
purposes. In this research, a randomly extracted list of
lemmas was used for evaluating GDEX configurations.

Kilgarriff et al. [2] presented some rules and boundaries
for a good sentence; according to the study, the sentence
should hold the following characteristics (or comply with the
following rules):

(i) (Rule#1) A sentence consisting of 10 to 15 words
will be preferred.

(ii) (Rule#2) A sentence will be penalized when it does
not lie among 17,000 commonest words in a
language.

(iii) (Rule#3) A sentence containing pronouns and
anaphors will be penalized.

(iv) (Rule#4) Target collocation should be in the main
clause.

(v) (Rule#5)A sentence should start with a capital letter
and end with a full stop, exclamation sign, or
question mark.

Moreover, for a GDEX, Kilgarriff et al. [2] eulogize the
first two characteristics/features (sentence length and word
frequency) should be given the highest weight as compared
to other features. According to Kosem et al. [7], the most
important characteristics of a GDEX are authenticity, typ-
icality, informativeness, and intelligibility. *e developers of
Good Dictionary EXamples system and their configurations
are often lexicographers and lack programming skills in
many cases.

Geyken et al. [8] show that GDEX work can be extended
through ML techniques for mapping example sentences to
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dictionary sense. *ey performed the computations of all
collocations sets and then maximum entropy [9] was used
for learning the correct mapping between corpus sentences
and their correct dictionary sense. Ljubešić and Peronja [10]
presented another ML approach to extract GDEX. *e
dataset used in their experiment contains several examples
of sentences with annotations of four classes/levels (i.e., very
bad, bad, good, and very good). *ey used the Random
Forest regressor algorithm [11] and secured an average
precision of 90%.

Stanković et al. [12] gave a similar work for the se-
lection of GDEX for Serbian and it was used for the
development of preliminary components of the model.
*eir approach analyses the lexical and syntactic aspects
of a corpus consisting of five digitized volumes of ex-
amples from the Serbian Academy of Sciences and Arts
(SASA) dictionary. *ey compared the feature distribu-
tion of examples from their corpora with the feature
distribution of sentence samples extracted from corpora
comprising various other texts. *is way, selected can-
didate 140 examples were represented as feature vectors,
and supervised machine learning classifiers were used for
standard and nonstandard Serbian sentences.

Koppel [13] presented work for GDEX classification in
the Estonian language. *e group used the web corpus of
etTenTen13; in their approach, they focus on the sentence
length, word length, the number of subordinate clauses, and
keyword position. In another similar study, Uprety and
Shakya [14] conducted a test to analyse the effectiveness of
context clue sentences amongNepalese students.*eir study
results showed that context clue sentences were more useful
in learning vocabulary words than GDEX sentences. Based
on their research results they concluded and recommended
that context clue sentences should be included in the Good
Dictionary EXamples to help the new learners.

3. Materials and Methods

*is section is divided into three subsections; each one is
dealing with the focusedmethodology such as data gathering
and labelling (Subsection 3.1), preprocessing and feature
selection (Subsection 3.2), and an overview about experi-
ment setup employing the suit of predictive algorithms for
machine learning (Subsection 3.3).

3.1. Data Source andData Labelling. We prepared our dataset
in the fashion of distant supervision. Using BeautifulSoup
(https://www.crummy.com/software/BeautifulSoup/bs4/doc/)
we scraped sentences from the website sentence.yourdictionary.
com (YD.com). *e scraping is made for the top 3K English
words listed by Oxford Learner’s Dictionaries (https://www.
oxfordlearnersdictionaries.com/wordlist (accessed May 20,
2021)). On average we have got ≈250 sentences for a single
word and more than 785K English sentences in total.
Furthermore, the website not only provides the example
sentences, but it also presents the count of thumbs-up and
thumbs-down for every sentence against the very word.
Hence we maintain the corpus in dictionary structure

where, for every word as a key, a list of tuples is retained.
To mean it mathematically, consider equation (1) below:

C←

w0⟶ 〈Sw0
0 , U0, D0〉, 〈S

w0
1 , U1, D1〉, · · ·􏼂 􏼃,

w1⟶ 〈Sw1
0 , U0, D0〉, 〈S

w1
1 , U1, D1〉, · · ·􏼂 􏼃,

⋮

wn⟶ 〈Swn

0 , U0, D0〉, 〈S
wn

1 , U1, D1〉, · · ·􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

where C is a dictionary with key-value pairs such as word w

being the key, against whom a list of tuples is retained;
further, the contents of the tuple shows the example sentence
Sw

i along with its thumbs-up votes (Ui) and thumbs-down
votes (Di); the subscript i indicates the index of sentence
respectively. *e target label of a sentence, i.e., good or bad
(or 1 and -1 in respective order), is determined by the count
of thumbs-up and thumbs-down votes. In further analysis,
we notice that YD.com holds different votes for the same
sentence if the very sentence is referenced as an example to
the different words. Hence, C is of no use if there exist
redundant sentences with different votes. To restructure the
dataset we extract a set of distinct sentences S∗ from C as per
the following equation:

S
∗← C[w][i][0]|w ∈ C; ∀i ∈ I � 0, 1, . . . , C[w]

����
���� − 1􏽮 􏽯􏽮 􏽯.

(2)

Further, we prepared different datasets—corresponding
to the pooling function Ψ(·)—having sentences and their
labels in the form of tuples with the manner shown in the
following equation:

􏽢C← s0, λ0( 􏼁, s1, λ1( 􏼁, · · · sn, λn( 􏼁,􏼈 􏼉 (3)

where s· ∈ S∗ and λi is the label of respective i
th sentence in 􏽢C

and determined on the criteria under functionΦ given in the
following equation:

λi←Φ a1, a2( 􏼁←

none, if a1 � a2 � 0,

good, if a1 ≥ a2,

bad, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(4)

In equation (4), aj is a real number yielded through a
pooling function Ψp(·) (explained later in the following
text). InΦ(a1, a2); subscript j for aj specifically indicates the
incidences for U· and D·; hence, j ∈ 1, 2{ }, to mean thumbs-
up votes aj � 1 and thumbs-down votes aj � 2. Lastly, the
value of aj is calculated as per the following equation:

aj←Ψf C[w][i][j]|s ∈ S
∗ ∧w ∈ C∧ s � C[w][i][0];∀i ∈ I􏽮 􏽯􏼐 􏼑,

(5)

where p is a final score calculating function,
f ∈ max , average, sum􏼈 􏼉. *e index set I in the equation
above has already been defined in equation (2). *us, we
utilized these votes as the crowdsourced labelling and ad-
judged a sentence to be good if the total thumbs-up votes are
equal to or greater than thumbs-down votes (see equation
(4)).
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Table 1 gives the statistical information on the labelled
dataset that is employed in this experiment. *e dataset for
every scoring function is balanced, i.e., each class contains
20K records (which alternatively means 40K sentences, in
total, are used in the experiments.) One key observation we
can get from the table is the average sentence length of good
examples is approximately half of its counterclass. It further
asserts that the distinct supervision (or nearly crowdsourced
data) appeared to have aligned with rule#1 (i.e., already
stated in Subsection 2.2).

3.2. Machine Learning-Based Classification: Feature En-
hancement, Transformation, and Algorithms. At the begin-
ning of this section, the authors would like to maintain a
summarized idea of experiments conducted for the GDEX
classification based on the conventional ML algorithms; in
the same context, the following itemized text provides a brief
commentary on the components depicted in Figure 1.

(i) We experimented with two different approaches for
the feature enhancement, such as the following:

(1) Bag of Word (BoW).
(2) Usage of Part of Speech (PoS) tags alongside the

words.

(ii) Besides the above two approaches, we set two
feature transformation (or vectorization) tech-
niques for the sentences in the dataset, such as the
following:

(1) Word frequency-based count vectorization.
(2) Term Frequency-Inverse Document Frequency

(TF∗ IDF) features normalization-based
vectorization.

(iii) *e combination of these feature enhancement
approaches and feature vectorization techniques are
evaluated under the five conventional ML algo-
rithms in the 10 randomly generated training and
testing subsets under the Monte Carlo method. *e
ML algorithms used in this paper are enumerated
below:

(1) k-nearest neighbours (k-NN).
(2) Näıve Bayes (NB)/Gaussian Näıve Bayes (GNB).
(3) Random Forest Trees (RFT).
(4) Linear Support Vector Machines (linear-SVM).
(5) SVM with radial basis function kernel (rbf-

SVM).

*us, the total number of experiments set for ML-based
GDEX classification is 60, i.e., 2 (feature enhancement
approaches)× 2 (feature vectorization)× 5 (ML algo-
rithms)× 3 (datasets yield from the three different final
scoring functions)� 60. *e details of each of these com-
ponents are provided in the subsequent subsections.

3.2.1. Feature Enhancement Approaches. *e BoW ap-
proach is considered a very basic approach in any task in
NLP [15]. It consists of tokenization of a running text/

document and submission of tokens for further process.
However, we can think that these sequences of words are of
more importance and become meaningful and informative
when they are analysed with the corresponding PoS tags.
*us, hundreds of papers in the domain of NLP and NLU
utilized such information of words’ PoS alongside words in
their capacities [16, 17]. In the same regard, we can antic-
ipate the words in addition to respective PoS tag information
(BoW+PoS) will attain more robustness in the predictive
ML model with two significant hypotheses:

(i) BoW+PoS creates highly discriminative features for
classifying a GDEX.

(ii) Forbye the previous point, BoW+PoS embodies a
writing pattern that exists for a comparatively longer
sequence in n-grams—we surmise that it may engage
better syntactic and semantic attributes.

On a technical note, we have used Natural Language
ToolKit (NLTK) based word tokenizer (https://www.nltk.
org/api/nltk.tokenize.html; there are many tokenizers pro-
vided in the module; function, which is precisely used in this
paper, is, namely, word_tokenize) for the sentence toke-
nization; followed by it, the PoS tagging is also done with
NLTK-based PoS tagging module (https://www.nltk.org/
api/nltk.tag.html#module-nltk.tag). We concatenated the
word and its respective PoS tag with an underscore, as it is
shown for a single sentence in Table 2; however, the in-
formation on the tag-set can be accessed in the online
documentation of NLTK (https://www.nltk.org/book/ch05.
html).

3.2.2. Feature Vectorization Techniques. ML algorithms are
not supposed to work directly on the running texts. Since
there are thousands of terms in the vocabulary and a few of
them are appearing in a sentence, we are required to
transform every sentence through a specific mechanism that
applies to all of the sentences in the dataset and is hence
workable for the ML algorithms. Typically, the sentence
transformation mechanism takes a sentence and projects it
into a high-dimensional vector space [15].*e final structure
of the dataset will be a matrix. It contains the number of rows
equal to the number of sentences and the number of col-
umns as per the size of vocabulary (or in other words, the
dimensionality of a single vector is equal to the size of
vocabulary). *us, we can think of the values on the di-
mensions, corresponding to the words present in the sen-
tence and carry nonzero numeric values; otherwise, they are
zero (in the case of nonsparsity). *e very matrix can be
sparse by ignoring the indexing of words/dimensions that
are not present in the sentence and retaining the records for
the words that appear in the sentence.

Count vectorization, which is the first vectorization tech-
nique used in this paper, involves sentence vectorization by
keeping the count of words that appear in the sentence and zero
at the remaining dimensions. Figure 2 illustrates the count
vectorization process, inwhich the first step includes generating
a dictionary for word-indices, followed by utilizing very dic-
tionary for the transformation of sentences in vector space.
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We may think of the cases where the most frequent words
(i.e., a, an, the, of, to, et cetera, known as stop words) dominate
in a sentence—diminishing the impact on least frequent
words—hence, resulting in a larger value on their respective
dimensions. In this regard, the TF∗ IDF approach sets a trade-
off between the high-frequent and less-frequent words [15, 18].
It works by calculating a product of term frequency relative to a
document (TF) and inverse document frequency of the very
term in the corpus (IDF). To mean the TF and IDF mathe-
matically, consider the following equations; moreover, Figure 3
uses these formulae to illustrate TF∗ IDF calculations.

TF(t, d) �
frequency of term t in document d

total number of terms in the document

�
ft,d

􏽐t′∈dft′, d

,

IDF(t, D) � log
total number of documents in the dataset

number of documents containing the term t

� log
|D|

d ∈ D: t′ ∈ d􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(6)

On a technical note, we have used the n-gram range [1, 3] in
sklearn, which assumes the formation of unigrams, bigrams,
and trigrams in the input string. Alongside it, we kept the same
tokenization function for both of the vectorization processes,
which has already been discussed in the previous subsection.

3.2.3. Machine Learning Algorithms. K-Nearest Neighbours
is among the instance-based lazy learning techniques in
conventional ML algorithms [19, 20]. Functionally, it
computes the distance between the target document vector
and all of the document vectors, followed by selecting k
documents where the distance is minimum. In last, it decides
the class for the target document through voting in the k-
nearest neighbour vectors.*e number of neighbours set for
this work is five (i.e., k� 5). Furthermore, we like to maintain
that there are many measures for computing distances be-
tween documents, and the one we have employed in this
paper is cosine similarity. Since similarity is inversely pro-
portional to the distance, with the case of similarity, the k-
NN algorithm will perform voting on the k documents with
the maximum similarity. *e value of the cosine similarity
ranges in [0, 1], where the similarity score 0 indicates no
similarity whereas 1 indicates absolute similarity. *e cosine
similarity between two document vectors (A and B) is
calculated through the following equation [15]:

Similarity(A, B) � cos(θ) �
A · B

‖A‖‖B‖
�

􏽐
n
i�1 AiBi������

􏽐
n
i�1 A

2
i

􏽱 ������

􏽐
n
i�1 B

2
i

􏽱 .

(7)

Naı̈ve Bayes is a conventional ML algorithm for classi-
fication tasks [4, 15]. It classifies the sentences by exploiting
conditional probability using Bayes’ theorem; however, the
basic assumptions naı̈ve Bayes holds are of the conditional
independence between the features. *e basic calculation

Table 1: Class distribution and statistical insights into the labelled dataset.

Class Final scoring function Ψf Count of tokens Count of distinct terms Average words in sentence

Good (1)
f � avg

302,389 22,200 15.12≈15
Bad (−1) 536,604 40,232 26.83≈ 27
Total 838,993 47,028 20.97≈ 21
Good (1)

f � sum
287,794 26,228 14.39≈14

Bad (−1) 627,952 57,686 31.4≈ 31
Total 915,746 64,840 22.89≈ 23
Good (1)

f � max
279,894 25,738 13.99≈14

Bad (−1) 610,676 57,604 30.53≈ 31
Total 890,570 64,728 22.26≈ 22

Datasets

avg sum max

Bag of Words

Bag of Words + PoS

Count Vectorization Naïve Bayes

Rand. Forests

SVM (linear)
Result

Evaluations

ML AlgorithmsFeature
Vectorization Techniques

Feature
Enhancement Approaches

Scheme for conventional Machine Learning (ML)-based experiments

k-NN

SVM (rbf)TF-IDF Vectorization

Figure 1: Overall scheme of experiments designed for conventional machine learning.

Table 2: Example for the simple word tokenization and PoS tag induction.
Example Laura always remained an object of curious study.
BoW features [‘Laura’, ‘always’, ‘remained’, ‘an’, ‘object’, ‘of’, ‘curious’, ‘study’, ‘.‘]
BoW+PoS features [‘Laura_NNP’, ‘always_RB’, ‘remained_VBD’, ‘an_DT’, ‘object_NN’, ‘of_IN’, ‘curious_JJ’, ‘study_NN’, ‘._.‘]
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done by the naı̈ve Bayes for classifying a sentence (X) is
given in the following equation:

f Ck|X( 􏼁 �
p X|Ck( 􏼁p Ck( 􏼁

p(X)
. (8)

Equation (7) is expanded w.r.t the individual features
(X � x0, x1, . . . , xn􏼈 􏼉); see equation (9) below:

f Ck|x0, x1, . . . , xn( 􏼁 � p Ck( 􏼁p x0|Ck( 􏼁p x1|Ck( 􏼁 · · · p xn|Ck( 􏼁

≈ p Ck( 􏼁 􏽙

n

i�0
p xi|Ck( 􏼁.

(9)

However, when the documents are normalized and
transformed through the TF∗ IDF vectorization, the values
for features are no longer discrete. *us, for the continuous
features, we cannot employ the above conventional näıve
Bayes algorithm. Instead, we have to use its variant that uses
Gaussian distribution (and hence, known as Gaussian näıve
Bayes) [21, 22]; the substitution of (x0|Ck) in the Gaussian
naı̈ve Bayes is defined in the following equation:

p x � v|Ck( 􏼁 �
1

����

2πσ2k
􏽱 e

− v− μk( )
2/2σ2

k
( 􏼁

. (10)

Finally, the target class 􏽢y (by either of conventional näıve
Bayes or Gaussian naı̈ve Bayes) is elicited where (.) is
maximum; to mean it mathematically, see equation (11),
where K is the set of classes:

􏽢y � argmax
k∈ 1,...,K{ }

p Ck( 􏼁 􏽙

n

i�1
p xi|Ck( 􏼁. (11)

Random Forest is an ensemble approach in ML classification
algorithms, which is based on Decision Trees (DT) [23]. Instead
of relying on a single decision tree, the basic aim is to draw
multiple decision trees from the bootstrapped-random samples
of training data. *e testing data will be predicted on each of the
DT, followed by eliciting the final label through voting [11].*us,
we can think of RF overcoming the issue of overfitting through
ensemble technique. Figure 4 shows how the RF classifier works
and outputs a final class from all of the DTs. In the experiment,
we have used 200 trees (or DT estimators) for building a forest.

Support Vector Machine is one of the widely employed
classifiers in conventional ML algorithms [24]. It is well
suited for the classification of complex, imbalanced ones but
should be small or medium-sized datasets. *e SVM aims to
draw a hyperplane in an n-dimensional vector space, such
that the hyperplane separates data points into two distinct
partitions of data, representing the respective classes [25].
*e SVM can be used for linear or nonlinear classification.
However, the basic SVM, which fits a hyperplane, is con-
ventionally known as linear-SVM [25, 26]. Equation (12)
gives the mathematical semantics for understanding linear-
SVM.

􏽢yi �
1, if w

T
· Xi − b≥ 1,

−1, if w
T

· Xi − b< 1.

⎧⎨

⎩ (12)

In this work, we have used linear-SVM and radial basis
function (rbf) SVM (through kernel trick). *e basic ob-
jective rbf-SVM sets are to fit a circular boundary margin for
nonlinear datasets. *e illustration in Figure 5(a) shows the
linear-SVM, and in contrast, Figure 5(b) shows the situation
where a hyperplane is not suitable for separating datasets
into two distinct parts; and instead, this can be achievable
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only with the rbf kernel trick. *e red and blue dots are
representing separate classes. *e solid line in grey colour is
the decision boundary; dots coinciding with the dashed line
are termed as support vectors.

3.3. Feature Engineering for Deep Learning-Based
Classification. In this section, a discussion on the DLmodels
and input data encoding schemes are given in detail.
Likewise, in an earlier summary methodology involving ML
in Subsection 3.3, the authors would like to maintain a brief
commentary on DL-based models; Figure 6 shows the
overall scheme for these experiments.

(i) Since we empirically found, in the suite of ML-based
algorithms, the most optimal result was secured
with the dataset based on a final scoring function
Ψf�sum, all of the DL-based experiments are per-
formed only on the aforesaid dataset.

(ii) Since the NN essentially requires input data to be
encoded in a numeric form, for doing the needful,
we used 3 different data encoding approaches,
which are as follows:

(1) One-hot encoding.
(2) Global Vectors (GloVe) based embedded

encoding.
(3) word2vec-based embedded encoding.

(iii) A combination of these data encoding approaches
was made with the following 5 DL algorithms/
networks:

(1) Recurrent Neural Network (RNN).
(2) Gated Recurrent Unit (GRU).
(3) Long-Short Term Memory (LSTM).
(4) Bidirectional GRU (Bi-GRU).
(5) Bidirectional LSTM (Bi-LSTM).

(iv) We did not perform any feature engineering (for
example, extraction and usage of PoS tags) in the
DL-based experiments, because, congenitally, the
NNs are taken as to learn and accommodate and
intrinsic features present in the data.

(v) All of the DNNs used in the methodology are pro-
grammed with the Python-based Keras (https://

keras.io) library, which uses Tensor Flow 2
(https://www.tensorflow.org) at the backend for
processing. Moreover, the experiments are run at
Google Colaboratory (https://colab.research.google.
com) on the GPU-accelerated runtime.

*us, the total number of experiments done with DL-
based methods is 15, i.e., 3 (data encoding approaches) × 5
(DNNs)� 15. *e detail of these components is given in the
subsequent subsections.

3.3.1. Data Encoding Approaches. *e NNs need data to be
in numeric form for which we have got many transformation
or encoding approaches. One-hot encoding is one of the
techniques among them, which generates a single vector
against every word in a sentence, such that the index cor-
responding to the very word is 1 and the rest of all incidences
are 0.*us, we can see a sparse matrix-like structure (or a list
of four one-hot vectors) for the sentence “*is is a cat” as is
illustrated in Figure 7(a). Each row of the yellow block is a
vector where there exists only a single entry of 1, indicating
the presence of the very word in the vector. Hence, with this
technique, we can think that input data is sparse and exists in
a very high-dimensional space.

In contrast, the second approach for data encoding is
based on NN inspired word embeddings and statistical
means, which are dense and adjustable to any of the n-di-
mensional spaces, provided that n> 0; Figure 7(b) illustrates
the example of word embedding where each row in blue
colour is a dense representation of the word in 4-D space.
*e word embeddings render meanings to Firth’s philoso-
phy “You shall know a word by the company it keeps!” [27]
through realizing the capability of retaining the context of
words, such that every word will exist alongside the similar
words (using GloVe, the examples of the nearest words for
the word “king” are “kings,” “queen,” “monarch,” et cetera;
retrieved through online tool available at http://bionlp-www.
utu.fi/wv_demo) in the n-dimensional space of word em-
beddings. In this work, we have employed two different
word embeddings, namely, word2vec [28] and GloVe [29],
developed by Google and Stanford, respectively. In addition
to this, the word2vec employs continuous BoW in NN for
learning the prediction of the current word (given the input
of context of words) and skip-grams for learning the similar
words (given a source/input word), whereas the GloVe
utilizes matrix factorization techniques such as Latent Se-
mantic Analysis (LSA) [30] on word-word context matrix
for generating word vector representations. On a technical
note, the representation used in this work is based on 300
dimensions (these vectors can be accessed at http://vectors.
nlpl.eu/repository).

3.3.2. Deep Neural Networks. *eNNs are the computational
system of connected units that loosely simulate the working of
biological neurons in the brain of living beings. *e story of
ideas and advancements made in the file of NN is historic. (*e
earlier NNs are devised byMcCulloch andWalter [45], in 1943,
for artificially simulating the working of a biological neuron

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-NResult-2Result-1

Majority Voting / Averaging

Dataset

Final Result

Figure 4: Illustration of random forest trees.
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[39, 46]. *is earlier work is rendered with computational
means known as “Calculators” and “Perceptron,” respectively,
in 1954 by Farley and Clark [47] and in 1958 by Rosenblatt
[48]; however these works were limited to present the working
of single neuron [39, 44]. Upgrading NN with several layers
(thus, called DNN) was made in 1965 by Ivakhnenko and Lapa
[49]. In 1975, Werbos [50] presented that the backpropagation
technique can be used for new weights learning for the training
of multilayer networks [46]; the further work done by
Rumelhart et al. [51] showed that the backpropagation tech-
niques learn interesting features for text processing.) However,
the authors would like to maintain a brief introduction to the
basic working of these connected units or a NN (which is also
illustrated in Figure 8), where inputs (or signals) received at the
input layer are analysed and transmitted to further neurons to
which they connected.We know the input should be a numeric
value (for which we have maintained information in the
previous section); thus, the input (X � x0, x1, . . . , xn􏼈 􏼉) re-
ceived at the units of the hidden layer and the respective
weights (W � w0, w1, . . . , wn􏼈 􏼉) that are correspondingly
associated with the edges are taken for the dot product
(􏽐 � X · W)— creating a linear output. In the next step, bias
(b) is added to this linear output (z � X · W + b), and the
result is converted into nonlinearity through passing it to a
nonlinear activation function, that is, in our case, tan h
function, which is given in equation (13).

tanh(z) � fh(z) �
e
2z

− 1
e
2z

+ 1
. (13)

Similarly, the output of hidden neurons is transmitted to
the final output neuron that takes a step function to compute

the class of given input data.*e step function, which is used
in this paper is sigmoid that returns a number in the range of
[0, 1], where we consider the prediction is relating to the
positive class if the value is above 0.5; otherwise it belongs to
the negative class. *e sigmoid function is given in the
following equation:

􏽢yi � σ(z) �
1

1 + e
− z. (14)

*e backpropagation technique is used to update
weights considering the prediction errors that occurred
during the training. In this context, DNN typically divides
training set into multiple batches; thus, with one batch it
calculates the error followed by updating the new values for
the weights. Executing the same process on each batch will
mark one run, which is technically called an epoch.

In this paper, we have used three types of NN that were
specifically developed for text (or generally known for se-
quence) processing. *e RNN [31] is one of the first DNNs
that attempted to involve input history in the sequential data
such that the process of RNN moves onwards with subse-
quent inputs alongside incorporating the result (of the
hidden state) of the previous input units.

W.r.t Figure 9, the RNN works for every timestamp t,
and the hidden state a〈t〉 and the output 􏽢y〈t〉 are expressed as
per equations (15) and (16).

a
〈t〉

� g1 Waaa
〈t−1〉

+ Waxx
〈t〉

+ ba􏼐 􏼑, (15)

􏽢y
〈t〉

� g2 Wyaa
〈t〉

+ by􏼐 􏼑, (16)

one which outperfoms
rest of all in ML-based experiment
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Figure 6: Overall scheme of experiments designed for deep learning.
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where Waa, Wax, Wya, ba, and by are the coefficients, and f is
the activation function; comprehension of these coefficients
and the internal structure of the blue box (illustrated in
Figure 9) are given in Figure 10.

*e RNNs though were developed to retain memory but
instead, they failed on doing it for the longer sequences.
Alternatively, Hochreiter and Schmidhuber [33] presented
another RNN-based architecture, namely, LSTM, which
served better for the problem of input retaining. *e LSTM
introduced the concept of the gate for remembering the
inputs; however, later an upgraded form of LSTM is pre-
sented by Gers et al. [34], which added forget gate in the
architecture; further, with the induction of forgetting gate
LSTM became capable of resetting its state [35]. *e LSTM
though is the wonderful RNN architecture but it takes more
memory and processing time [36, 37]. Cho et al. [38] in-
troduced GRU, which is alike LSTM but contains fewer
parameters. Traditional RNNs suffer the vanishing gradient
problem, which is handled at the optimal level in LSTM and
GRU [32, 33, 39]. *e bidirectional LSTM and GRU are the
variant of vanilla LSTM and GRU, which are capable of
making the DNN process string in forward and backward
directions [39]. In Table 3 the summary of gates used in
LSTM and GRU is presented, in addition to which we can
see their usage in the illustrations of LSTM and GRU in
Table 4, where ⊙ shows elementwise multiplication between
two vectors.

*e networks we have employed in this paper have the
same input and output layer.

However, the hidden layer varies w.r.t the architecture.
*is DNNs are programmed with Keras using the sequential
model. Information on the layers hyperparameters used in
this work is given in Tables 5 and 6.

4. Results and Discussion

In this section, we presented a thorough discussion on the
evaluation and comparisons of the ML and DL models.
However, before proceeding any further, it should be in the
knowledge that the evaluation is done on a validation set
which is extracted from the labelled corpus with Pareto
principle or 80/20 rule [15, 40]. *ese details are maintained
in separate subsequent subsections.

4.1. Evaluation Criteria and Metrics. *e classification task
in a supervised learning domain is often evaluated through
the confusion matrix (CM), which statistically presents the
number of correct and incorrect predictions w.r.t. the actual
labels in the validation set. A sample CM is given in Table 7,
where TNs are the true negatives, which logically means the
number of actually negative documents and predicted
negative as well; TP (true positives) will mean exactly the
opposite to TN (i.e., consider a positive class in place of
negative). *e FP is the false positives, which logically means
the number of documents that are actually negative but
misclassified as positives; FNs (false negatives) are the exact
opposite of FP, such that they were the misclassified doc-
uments that were actually negative but falsely predicted as
negative.

We can drive several evaluation statistics for assessing
the quality of the Predictive System (PS) using the CM. *e
statistics and their derivations used for the assessment of ML
and DL models in this work are defined in Table 8.
Moreover, for the ideal PS, we expect to have the highest
value on the left diagonal of every individual CM, whereas, at
the right diagonal of the matrix, we expect the least value.

For the evaluation of performance in this paper, we
consider R and BA are of more importance. *e R is critical
because we consider losing or misclassifying a positive
document into another category is perilous—as we have got
little data for the GDEX classification in comparison to the
colossal dataset—thus, we will consider an ML or DL model
with an optimal where the R is higher. In a similar context,
this will not mean the small value of S; hence, the BA is the
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Figure 7: Illustration of the one-hot encoding and word embeddings. (a) One-hot encoding, and (b) word embedding.
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ultimate choice for the fair evaluation, which encompasses
both of the statistics relating to TP and TN.

4.2. Analysis of ML Models and Results. *e quantified
statistics of all evaluation metrics are given (respectively, for
the final scoring functions, i.e., Ψf�avg,Ψf�max,Ψf�sum) in
Tables 9–11 . *e overall result of the ML-based models is
positive. We can see an obvious insight into the better
performance of all ML models (in all respective datasets
corresponding to the final scoring functions) that are vec-
torized through the TF∗ IDF approach. On the collective
ground, the dataset created with Ψf�sum, parse, indicates the
most optimal method for the dataset creation through
distant supervision. In contrast, the results with the Ψf�avg
show the least significance for making the discriminant
dataset for predictive modelling; hence, we canmaintain that
the distant supervision cannot be used with the averaging
methods for data curation in supervised learning tasks.

Since the dataset with Ψf�sum shows better results, we
will consider it (considering Table 11) for the discussion in
the remaining text. Coming towards the evaluation of fea-
ture enhancement technique, we see the BoW+PoS tags
show better results in comparison to the only BoW ap-
proach. However, a drastic change in accuracy of k-NN (i.e.,
w.r.t Ψf�sum, improvement of +12% with count vectoriza-
tion and +2% with the TF∗ IDF vectorization) is seen when
the PoS information is inducted alongside the simple words.
However, in comparison to the count vectorization tech-
nique, we maintain that the improvement with the

additional PoS information is slightly more visible in the
TF ∗ IDF vectorization technique.

*e most optimal ML algorithm and combination found
with maximum accuracy of 77.3% are rbf-SVM+TBP. (TBP
will be the acronym for the combination of TF∗ IDF
vectorization +BoW+PoS tags features. Similarly, CBP will
be combination of count vectorization + BoW+PoS tags
features. TB will stand for the combination of TF∗ IDF +

BoW features; and CB will be count vectorization +BoW
features.) Ignoring the trivial difference of linear-SVM with
its other variant, we can consider RFT+TBP secures the
second position by attaining accuracy of 76.8%. For BA, k-
NN+TBP is found the best combination with a 75.5% score,
followed by RFT+TB with securing a 73.9% score. Besides
accuracy and balanced accuracy, the highest recall (i.e.,
75.4%) is seen in a dataset with Ψf�max with RFT+CB and
linear-SVM+TB. Forbye it, we see that the R is high with
SVM everywhere.

Figure 11 shows the improvement of the BoW+PoS
approach on the conventional BoW approach. *e sub-
figures in the top row indicate improvement w.r.t count
vectorization, and in contrast, the bottom row carries in-
formation on the TF∗ IDF vectorization. *e overall ob-
servation on the improvement gives a piece of mixed
information except for the TF∗ IDF features on an average
dataset, where the positive trend of improvement is steady.
However, the least improvement, i.e., ≈0.8% on an average
basis, is seen for the same dataset. In the same context, on
average the maximum pointer of improvement (i.e., ≈3%) is
found with the dataset with Ψf�sum.

Figure 12 shows the CM of all conventional ML algo-
rithms, separated w.r.t feature enhancement and vectori-
zation techniques. However, instead of multiplying the
figure space three times for each of the datasets with re-
spective final scoring functions, we have presented the ag-
gregated-normalized CM. *e colour bar on the right of
Figure 13 is set to serve a specific purpose such that the
maximum value is 0.5 (≈50%) which corresponds to the size
of data in one class.

We maintain that the SVM+TBP with its both linear
and rbf variants is the most optimal algorithm among all.
*is is so because linear-SVM achieved TN+TP� 0.35 + 0.4
≈ 0.75 ≡ 75% accuracy; however, the other variant, rbf-SVM,
stood second. *e authors would like to maintain the
performance of the RFT+CBP; 0.34 + .41≈ .75 also similar
to the previously mentioned linear- and rbf-SVM. Forbye it,
we must maintain that the competition between the
SVM+CBP and RFT+CBP is near equal, but the
RFT+CBP is found champion such that it has got minimum
value on right diagonal (i.e., FP + FN� 0.16 + 0.09≈ 0.21),
and in a similar context, it has got the least FN which, per se,
is an additive advantage.

4.3. Analysis of DL Models and Results. *e NN-based DL
models are used on the dataset with the scoring function
Ψf�sum, as it has produced the most optimal result in
comparison to the remaining two scoring functions.
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Figure 10: Depiction of the internal architecture of RNN. Image
courtesy [32].
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Table 12 shows the metrics for the validation set only.
Among the three input encoding techniques, the word2vec is
found for better GDEX classification. However, the unidi-
rectional or vanilla GRU and LSTM are found biased towards
the negative class. Alternatively, in other words, the afore-
mentioned DL networks failed to discriminate between a
GDEX and bad examples and hence developed a propensity
towards the negative class only. (*e authors would maintain
that the biasedness of unidirectional NN can be overcome by
introduction of dropouts but we are afraid of doing it for the
reason of being unjust to the rest of NNs employed in this
work.) Moreover, this behaviour is seen for both of the dense
embedding techniques word2vec and GloVe. In contrast, the

bidirectional variant of these two techniques achieved ap-
proximately equal and comparatively optimal results. We
maintain that word2vec with Bi-LSTM is the optimal algo-
rithm for GDEX as it has achieved 77% accuracy (and bal-
anced accuracy as well). Alongside it, the highest recall, i.e.,
86%, is also on record for this setting. *e NNs with the one-
hot encodings though have shown the least but steady results.

Figure 14 shows epochwise loss and accuracy achieved in
training and validation sets. We have got the typical be-
haviour in counting the increment in epochs; the loss, in the
validation set, minimizes to an extent, and afterwards, it gets
propensity to increase; in contrast, the loss continues to
diminish in the training set [39, 42, 43]. We can see this
behaviour in all DL models—except for the Bi-LSTM and
Bi-GRU with word2vec and GloVe, which show steady
performance. Furthermore, since we know that the DL is
more appropriate for the largescale datasets, and currently
the data employed for this experiment is comparatively
smaller, we can expect a few numbers of epochs are enough
for the training (or not indulging in the overfitting model on
training data). In this regard, the authors maintain that the 3
epochs are enough for any of the DL-NNs used in the ex-
periments. *is is so because we see in the validation dataset
that the accuracy is declining after the 3rd epoch.

Figure 13 shows the improvement in accuracy and
balanced accuracy achieved by one DNN over the other
networks; the quantified value of these metrics is subtracted
as NNx–NNy provided that x ≠ y, where x is DNN (alongside
the input encoding method used in it) defined on the x-axis
and y is DNN in the y-axis. *e cells with the shades of red
colour in the figures indicate negative improvement; in
contrast, the cells with grey shades indicate improvement.
*e intensity of shades is directly proportional to the value of
the improvement. Likewise, in the observation reported in
Table 8, we found that, except for the few network com-
parisons, the improvement in the accuracy and balanced

Table 3: Summary of gates involved in LSTM and GRU architecture.

Type of gate Description Utilized in
Update gate (Γu) How much of the past should be remembered now? LSTM, GRU
Relevance gate (Γr) Drop previous information LSTM, GRU
Forget gate (Γf) Erase cell or not? LSTM
Output gate (Γo) How much information of cell should be revealed? LSTM

Table 4: Architecture and variables’ information the LSTM and GRU.

Variables LSTM GRU

Illustration

c<t–1>

Γf Γu Γr
Γoa<t–1> a<t>

c<t>

x<t>

c<t>

⌃

Γu Γr

c<t–1>

a<t–1> a<t>

x<t>

c<t>
c<t>

⌃

č〈t〉 tanh(Wc[Γr ⊙ a〈t− 1〉, x〈t〉] + bc) tanh(Wc[Γr ⊙ a〈t− 1〉, x〈t〉] + bc)

c〈t〉 Γu ⊙ č
〈t〉 + Γf ⊙ c〈t− 1〉 Γu ⊙ č

〈t〉 + (1 − Γu)⊙ c〈t− 1〉

a〈t〉 Γu ⊙ c〈t〉 ct

Table 5: Summary of DNN used in this paper.

Layer Input unit Output units Activation
Input Max # of words 32 —
Hidden 32 32 tanh
Dense/output 32 1 Sigmoid

Table 6: Configuration of DNN.

Model settings Values
Optimizer Adam
Loss Binary cross-entropy
Epochs 10
Batch size 128

Table 7: A sample confusion matrix.

Predicted
N P

Actual N TN FP
P FN TP
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Table 9: Results of conventional ML algorithms. Dataset with the final scoring function Ψf�avg.

Algo. Vec.
Only BoW BoW+PoS tags

P R S F A BA P R S F A BA

k-NN Count 55.9 55.9 45.8 55.9 57.2 50.8 62 62 53.4 62 64.8 57.7
TF∗ IDF 62.2 62.2 54.6 62.2 64.6 58.4 67.7 67.7 70.5 67.7 66.1 69.1

NB Count 63.1 63.1 56 63.1 65.6 59.5 63.5 63.5 58.4 63.5 65.4 60.9
TF∗ IDF 64.3 64.3 60.4 64.3 65.9 62.4 64.9 64.9 62.2 64.9 66.1 63.6

RFT Count 65.2 65.2 56.7 65.2 69 61 67.2 67.2 62 67.2 70 64.6
TF∗ IDF 67.2 67.2 62.9 67.2 69.5 65.1 67.4 67.4 62.8 67.4 69.9 65.1

Linear-SVM Count 67.5 67.5 62.9 67.5 70 65.2 65.5 65.5 56.4 65.5 69.7 61
TF∗ IDF 68.1 68.1 64.4 68.1 70.1 66.2 69.1 69.1 66.2 69.1 70.9 67.6

Rbf-SVM Count 66.7 66.7 60.2 66.7 69.9 63.4 66.8 66.8 60.7 66.8 69.9 63.7
TF∗ IDF 68.7 68.7 65.9 68.7 70.5 67.3 69.4 69.4 66.5 69.4 71.2 67.9

Table 8: Summary of evaluation statistics used in this paper.

Name
(abbreviation) Derivation Definition/Notes

Precision (P) P � (TP/(TP + FP))
Precision (or alternatively known as positive predictive value) reveals the

ratio of TP to the documents that are predicted positive by the PS

Recall (R) R � (TP/(TP + FN))

Recall (or true positive rate) shows the right potential of the PS for
predicting positive documents in the subset of all positive documents in the

system

Specificity (S) S � (TN/(TN + FN))
Specificity (or true negative rate) is the exact opposite of R. It gives the

potential of the PS for negative documents

F1-measure (F) F � 2 · ((P · R)/(P + R))

F1-measure is a harmonic mean of P and R. It is important to use where the
dataset is imbalanced; further, it is a strict measure, which has a propensity

towards the minima of P and R [41]
Accuracy (A) A � ((TP + FP)/(TP + TF + TN + FN)) Accuracy gives the overall creditability of the PS
Balanced accuracy
(BA) BA � (R + S)/2 Likewise F, the balanced accuracy is also a mean statistic, which gives an

arithmetic mean of R and S

Table 10: Results of conventional ML algorithms. Dataset with final scoring function Ψf�max.

Algo. Vec.
Only BoW BoW+PoS tags

P R S F A BA P R S F A BA

k-NN Count 57.9 57.9 44.8 57.9 60.4 51.4 67.1 67.1 57.6 67.1 72.1 62.4
TF∗ IDF 66.3 66.3 57.3 66.3 70.7 61.8 74 74 75.1 74 73.1 74.5

NB Count 68.4 68.4 62.9 68.4 71.6 65.6 67.9 67.9 64.2 67.9 70 66
TF∗ IDF 69.8 69.8 66.6 69.8 71.9 68.2 69.8 69.8 68 69.8 70.9 68.9

RFT Count 70 70 62.8 70 74.8 66.4 73.4 73.4 69.5 73.4 77 71.4
TF∗ IDF 75.4 75.4 72.8 75.4 78 74.1 74.3 74.3 71.3 74.3 77.2 72.8

Linear-SVM Count 75.4 75.4 74.9 75.4 76.1 75.1 74.2 74.2 71.7 74.2 76.5 72.9
TF∗ IDF 75 75 72.4 75 77.5 73.7 75.2 75.2 72.1 75.2 78.3 73.6

Rbf-SVM Count 73.7 73.7 69.1 73.7 77.9 71.4 73.8 73.8 69.8 73.8 77.5 71.8
TF∗ IDF 74.7 74.7 71.9 74.7 77.3 73.3 75.2 75.2 72.3 75.2 78.1 73.7

Table 11: Results of conventional ML algorithms. Dataset with final scoring function Ψf�sum.

Algo. Vec.
Only BoW BoW+PoS tags

P R S F1 A BA P R S F1 A BA

k-NN Count 58.1 58.1 42.1 58.1 61.3 50.1 67.3 67.3 57.9 67.3 72.3 62.6
TF∗ IDF 66.2 66.2 57.1 66.2 70.5 61.6 74.4 74.4 76.7 74.4 72.3 75.5

NB Count 68.6 68.6 63.6 68.6 71.5 66.1 67.9 67.9 64.5 67.9 69.8 66.2
TF∗ IDF 69.6 69.6 67.3 69.6 71.0 68.4 70.3 70.3 69.5 70.3 70.9 69.9

RFT Count 70.5 70.5 63.9 70.5 75.2 67.2 73.5 73.5 69.9 73.5 76.6 71.7
TF∗ IDF 74.9 74.9 73.0 74.9 76.8 73.9 74.3 74.3 71.8 74.3 76.8 73

Linear-SVM Count 72.3 72.3 68.7 72.3 75.3 70.5 72.7 72.7 68.7 72.7 76 70.7
TF∗ IDF 74.8 74.8 72.6 74.8 76.9 73.7 74.4 74.4 71.7 74.4 77 73

Rbf-SVM Count 73.8 73.8 70.2 73.8 77.1 72.0 74.5 74.5 71.8 74.5 77.2 73.1
TF∗ IDF 74.5 74.5 72.1 74.5 76.9 73.3 74.9 74.9 72.5 74.9 77.3 73.7
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accuracy yielded in DNN are equivalently identical. We find
that bidirectional DNNs with word embeddings drew a
major improvement on the rest of all DNNs. In a similar
context, though the highest accuracy and balanced accuracy
are seen over unidirectional NN we neglect this case on the
ground of biased performance shown by the unidirectional
DNNs (with word embeddings). Except for the previously
mentioned case, the real highest gain in accuracy and bal-
anced accuracy is seen over RNN+word2vec; i.e., Bi-GRU
and Bi-LSTM have secured ≈23% improvement with
word2vec, followed by attaining ≈22% improvement by the

same DNNs with GloVe. Keeping the focus on Bi-GRU and
Bi-LSTM, the most optimal word embedding scheme is
word2vec such that it achieved ≈4% and ≈5% improvement
over vanilla one-hot encodings used for the same DNNs and
≈1% improvement over GloVe.

Observing CMs presented in Figure 15, we confirm that
the bidirectional LSTM with word2vec is the most optimal
NN and inputs data embedding pair for resolving the
problem under study. We also maintain that, in comparison
to the GloVe and word2vec, the one-hot encoding is the
most underperforming input encoding scheme.
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4.4. Comparative Analysis onML vs. DLModels. As reported
in several different studies on the comparison of ML and DL
models [16, 39, 43, 44], the authors of this paper reassert that
the DL models outperform conventional ML models. In
addition to it, we also maintain that DL-based models are
revealed to attain balanced scores in accuracy and balanced
accuracy. However, the DL-based unidirectional algorithms
failed, which we consider specific to the problem under study;
in contrast, the bidirectional DL algorithms are found the
most optimal ones.

*us, w.r.t the results compiled in Table 13, if we look at
the averages of all ML models (for the dataset Ψf�sum) and
compared them with the averaged values of DL-based
models (i.e., RNN, Bi-LSTM, and Bi-GRU; leaving unidi-
rectional LSTM and GRU due to their biasedness) then, we
see only an improvement of ≈+3.56% and ≈+2.47%, re-
spectively, in recall and balanced accuracy for GDEX clas-
sification. However, the principal reason for such small
improvement lies with the lower scores of RNN in com-
parison to the remaining two bidirectional NNs. In contrast,
the ML-based models took very little time in preprocessing
and training. In a similar context, we can see the one-hot

encoding turned training time longer, whereas the DL
models with 300-dimensional dense word embeddings were
trained in a small amount of time.

4.5. Competitive Analysis onML andDLModels withManual
GDEX Elicitation Routines. Table 14 shows the selected
examples of sentences from the test/validation set and the
prediction made by the most optimal ML and DLmodels for
them. In addition to it, we also show the GDEX rules
presented in the seminal work by Kilgarriff et al. [2]. *ese
were actually 5 rules, which are already mentioned in the
literature review (see Subsection 2.2); however, rule 3 is
omitted in discussion as it deals with the penalization of a
sentence containing anaphors and pronouns (though there
are sentences which deal the aforesaid matters, ML/DL do
not explicitly deal with such penalization). Examples 1–8
show TP and TN, wherein, specifically rule#4 is false when
the actual label is bad. Examples 9 and 10 show FP, where
rule#4 is false. Examples 11 and 12 are real mistakes, as these
are the FN, and the sentence not only complies with all rules
but also appears to be very succinct in structure.
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Figure 14: Epochwise insights into the loss and % accuracy w.r.t training and validation datasets.

Table 12: Results of conventional DL algorithms employed for the dataset with final scoring function Ψf�sum.

One-hot encoding word2vec GloVe
Algo. P R S F1 A BA P R S F1 A BA P R S F1 A BA
RNN 72.5 74.2 70 73.3 72.2 72.1 55.4 57 51 56 54 54 70.4 70.3 68.5 70.3 69.4 69.4
GRU 72.8 73 70.9 72.9 72 72 — 0 100 — 48 50 — 0 100 — 48.4 50
LSTM 74.1 72.2 73.2 73.2 72.7 72.7 — 0 100 — 48 50 — 0 100 — 48.4 50
Bi-GRU 73.8 70.2 73.5 72 71.8 71.8 77.8 77 77 78 77 77 73.1 85.5 66.5 78.8 76.3 76
Bi-LSTM 73.4 73.3 71.8 73.4 72.6 72.6 74.3 86 69 80 77 77 75 80.9 71.2 77.8 76.2 76.1

Complexity 15



RNN
O

ne
-H

ot
En

co
di

ng
G

lo
Ve

w
or

d2
ve

c
GRU LSTM Bi-GRU Bi-LSTM

0.34 0.15

0.13 0.38

0.33 0.15

0.15 0.36

0.25 0.24

0.22 0.29

0.34 0.14

0.14 0.38

0.5 0

0.5 0

0.5 0

0.5 0

0.35 0.13

0.14 0.37

0.5 0

0.5 0

0.5 0

0.5 0

0.36 0.13

0.15 0.36

0.32 0.16

0.075 0.44

0.37 0.11

0.12 0.4

0.35 0.14

0.5

0.4

0.3

0.2

0.1

0.0

0.14 0.38

0.34 0.14

0.099 0.42

0.33 0.15

0.072 0.44

-1 1

1
-1

1
-1

1
-1

-1 1 -1 1 -1 1 -1 1

Figure 15: *e confusion matrices (of validation set relating to the max scoring functions).

Table 13: Comparative averages of ML and DL performances. *e ∗ in the last row indicates the number of seconds elapsed more than the
average of ML-based model preprocessing and training.

Models
Evaluation metrics Running time (in seconds)

P R S F A BA Preprocessing Training
ML+CB 68.66 68.66 61.7 68.66 72.08 65.18 1.72 36.86
ML+TB 72 72 68.42 72 74.42 70.18 1.96 48.14
ML+CBP 71.18 71.18 66.56 71.18 74.38 68.86 9.15 33.05
ML+TBP 73.66 73.66 72.44 73.66 74.86 73.02 9.06 46.4
ML average 71.38 71.38 67.28 71.38 73.94 69.31 5.47 41.1
DL+ one-hot enc. 73.23 72.57 71.77 72.9 72.7 72.17 1.23 272.33
DL+word2vec 69.17 73.33 65.67 71.33 69.33 69.33 325.68 32
DL+GloVe 72.83 78.9 68.73 75.63 73.99 73.83 32.48 31.66
DL average 71.74 74.93 68.72 73.29 72.01 71.78 119.80 112.0
Improvement in DL 0.37 3.56 1.44 1.91 -1.93 2.47 114.32∗ 70.8∗

Table 14: Selected examples for the discussion of errors in GDEX classification.

Examples Actual label
Prediction information

Did the example comply with
rules for GDEX as defined in

[2]?
Label Classifier R#1 R#2 R#4 R#5

(1) Not wanting to abandon Lori, she did nothing. Good Good RFT+TBP Yes Yes Yes Yes
(2) *e French have abandoned the left bank? Bad Bad RFT+TBP Yes Yes No Yes
(3) She closed the cabinet door, troubled. Good Good Bi-LSTM+w2v Yes Yes Yes Yes
(4) At a cabinet meeting on June 5th it is said that M. Bad Bad Bi-LSTM+w2v Yes Yes Yes Yes
(5) Each dog knew its master and its call. Good Good RFT+TBP Yes Yes Yes Yes
(6) *e redcoats are coming, they said to each other. Bad Bad RFT+TBP Yes Yes No Yes
(7) You love him very much. Good Good Bi-LSTM+w2v Yes Yes Yes Yes
(8) Very. I’m so glad we have you and Jonathan Bad Bad Bi-LSTM+w2v Yes Yes No No
(9) *e sack and dog moved about two feet. Bad Good Bi-LSTM+w2v Yes Yes No Yes
(10) For the sowing of seed see Sowing. Bad Good RFT+TBP Yes Yes No Yes
(11) I see no point in telling him. Good Bad Bi-LSTM+w2v Yes Yes Yes Yes
(12) He set the sack on the table. Good Bad RFT+TBP Yes Yes Yes Yes
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We can draw another meaningful insight into dataset
curation through distant supervision. *e unanimous true
for rules 1 and 2 and correct assessment of rules 4 and 5
confirm the reliability of the usage of web-based data
available at YD.com alongside the method for label as-
signment with the scoring function Ψf�sum for GDEX
classification and similar other problems.

5. Conclusions

*is paper provides the implementation of both ML and DL
models for the GDEX classification. Following the results
compiled in the experiments, we conclude that the proposed
methodology is accomplishable for the automation of manual
GDEX elicitation routine. *e dataset of 50K example is
extracted with the distant supervision technique, for which
the summation method is found better than vote aggregation
(averaging and max) methods. For the conventional ML-
based methods, the distinction of TF∗ IDF normalization
over count vectorization is revisited during experiments. Also,
we have analysed that PoS features are important and better
for the easy classification and discrimination of GDEX. For
the DL-based models, Bi-LSTM+word2vec is the champion
among the rest of all DL-based combinations.

In the future, this work could be extended by incor-
porating supervised learning for the GDEX elicitation
against the given target word. We would also like to evaluate
the current system on the attention-based DL models. At
last, we would like to apply and evaluate the current tech-
nique on oriental languages such as Arabic, Persian, and
Urdu—where the GDEX is considered to have historic
relevance in the poetic work.
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