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We report on gravitational-wave discoveries from compact binary coalescences detected by Advanced
LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15∶00
UTC and 1 October 2019 15∶00 UTC. By imposing a false-alarm-rate threshold of two per year in each of
the four search pipelines that constitute our search, we present 39 candidate gravitational-wave events.
At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were
reported previously in near-real time through gamma-ray coordinates network notices and circulars; 13 are
reported here for the first time. The catalog contains events whose sources are black hole binary mergers up
to a redshift of approximately 0.8, as well as events whose components cannot be unambiguously identified
as black holes or neutron stars. For the latter group, we are unable to determine the nature based on
estimates of the component masses and spins from gravitational-wave data alone. The range of candidate
event masses which are unambiguously identified as binary black holes (both objects ≥ 3 M⊙) is increased
compared to GWTC-1, with total masses from approximately 14 M⊙ for GW190924_021846 to
approximately 150 M⊙ for GW190521. For the first time, this catalog includes binary systems with
significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also
find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our
default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased
sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in approximately
26 weeks of data (approximately 1.5 per week) is consistent with GWTC-1.
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I. INTRODUCTION

Since the discovery of gravitational waves from a binary
black hole (BBH) coalescence in 2015 [1], the Advanced
LIGO [2] and Advanced Virgo [3] gravitational-wave
detectors have opened a new window on our Universe
[4–8]. Binary black hole observations allow us to probe
gravity in the strong-field regime [9,10] and to establish the
rate and population properties of BBH coalescences [11].
In addition to BBHs, Advanced LIGO and Advanced Virgo
detected the first gravitational-wave signal from a binary
neutron star (BNS) coalescence, GW170817 [12], which is
also the first joint detection of gravitational waves and
electromagnetic emission [13,14]. Gravitational-wave dis-
coveries have a profound impact on physics, astronomy,
and astrophysics [13,15–19], and the public release of
LIGO and Virgo data [20,21] enables groups other than the

LIGO Scientific Collaboration and Virgo Collaboration
(LVC) to perform analyses searching for gravitational-wave
signals [22–28] and to report additional candidate events
in some cases.
We present the results of searches for compact binaries in

Advanced LIGO and Advanced Virgo data taken between
1 April 2019 15∶00 UTC and 1 October 2019 15∶00 UTC.
This period, referred to as O3a, is the first six months of
Advanced LIGO and Advanced Virgo’s 11-month-long
third observing run. The first gravitational-wave transient
catalog (GWTC-1) of compact binary coalescences (CBCs)
includes candidate events observed by Advanced LIGO and
Advanced Virgo during the first (O1) and second (O2)
observing runs [8]. The increased sensitivity of Advanced
LIGO and Advanced Virgo during O3a enables us to
increase the number of confident gravitational-wave
detections more than threefold over GWTC-1. Together,
GWTC-1 and the new candidate events presented here
comprise GWTC-2. Figure 1 shows this consistent increase
in both the effective binary neutron star volume time (BNS
VT) of the gravitational-wave network and the number of
detections across these observing runs. The BNS VT is a
Euclidean sensitive volume of the detector network [29,30]
multiplied by the live time of the network and should
be approximately proportional to the total number of
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detections. Our analysis of the O3a dataset results in
39 gravitational-wave candidate events passing our false
alarm rate (FAR) threshold of 2.0 per year. Given our use of
multiple search pipelines to identify candidate events, we
expect approximately three false alarms, i.e., candidate
events caused by instrumental noise, to be present in this
catalog. It is not possible to determine with certainty which
specific candidate events are due to noise; instead, we
provide statistical measures of false alarm rate and prob-
ability of astrophysical origin. Among these candidate
events, 26 have been reported previously in real-time

processing via GCN notices and circulars [31].
Furthermore, four gravitational-wave candidate events
from O3a are already published separately due to their
interesting properties: GW190425 [32] is the second
gravitational-wave event consistent with a BNS coales-
cence; GW190412 [32] is the first BBH observation with
definitively asymmetric component masses, which also
produced detectable gravitational radiation beyond the
leading quadrupolar order; GW190814 [33] is an even
more asymmetric system having an approximately 23 M⊙
object merging with an approximately 2.6 M⊙ object,
making the latter either the lightest black hole or heaviest
neutron star known to be in a double compact object
system; GW190521 [34,35] is a BBH with total mass of
approximately 150 M⊙ having a primary mass above
65 M⊙ at 99% credibility.
Here, we present 13 candidate events for the first time

along with the 26 previously reported candidates. Among
the 39 candidates, we find gravitational-wave emission
consistent with the coalescence of BBHs, BNSs, and
neutron star–black hole binaries (NSBHs).
We report on the status of the Advanced LIGO and

Advanced Virgo gravitational-wave detectors (Sec. II) and
the properties and quality of the data taken during the
analyzed period (Sec. III). We then describe the analysis
methods that lead to the identification of the 39 gravita-
tional-wave candidates (Sec. IV), as well as the inference
of their parameters (Sec. V). Next, we report the signifi-
cance of the identified candidates, as well as a comparison
to the public gravitational-wave alerts (Sec. VI). Finally, we
discuss the properties (Sec. VII) and the reconstructed
waveforms (Sec. VIII) of each event. Further interpretation
of the binary population is conducted in companion papers
[36,37]. We will analyze the second half of Advanced
LIGO and Advanced Virgo’s third observing run (O3b) in
future publications.

II. INSTRUMENTS

The Advanced LIGO [2] and Advanced Virgo [3]
detectors are kilometer-scale laser interferometers [38].
The current generation of detectors started operations in
2015 and since then have been alternating periods of
observation with periods of tuning and improvement.
Since O1 [39] and O2 [8], the sensitivity and robustness
of the detectors improved significantly.
The LIGO detectors underwent several upgrades

between the end of O2 and the start of O3a [40]. The
main laser sources were replaced to allow for higher
operating powers. The LIGO Hanford detector operate
with 37 W of input power and the Livingston detector with
40 W. Those levels can be compared to 30 and 25W during
O2 for Hanford and Livingston, respectively. The laser
sources replacement also reduces fluctuations in the input
beam pointing and size that were previously detrimental for
the detector sensitivity [41]. At both LIGO detectors, the

FIG. 1. The number of compact binary coalescence detections
versus the effective VT to which the gravitational-wave network
is sensitive to BNS coalescences. The effective VT is defined as
the Euclidean sensitive volume [30] of the second-most-sensitive
detector in the network at a given time, multiplied by the live time
of that network configuration. The Euclidean sensitive volume of
the network is the volume of a sphere with a radius given by the
BNS inspiral range [29,30] (shown in Fig. 3) of the second-most-
sensitive detector in the network. To account for the addition of
single-detector candidates in O3a, a single-detector Euclidean
sensitive volume is also included, defined using the inspiral range
of the most sensitive detector divided by 1.5. The effective BNS
VT does not account for differences in sensitivity across the entire
population of signals detected, necessary cosmological correc-
tions, or changes to analysis pipeline efficiency between observ-
ing runs but, as shown in this figure, is consistent with the
currently observed rate of detections. The colored bands indicate
the three runs: O1, O2, and O3a. The black line is the cumulative
number of confident detections of all compact binary coales-
cences (including black holes and neutron stars) for GWTC-1 [8]
and this catalog. The blue line, dark blue band, and light blue
band are the median, 50% confidence interval, and 90% con-
fidence interval, respectively, of draws from a Poisson fit to the
number of detections at the end of O3a. The increase in detection
rate is dominated by improvements to the sensitivity of the LIGO
and Virgo detectors with changes in analysis methods between
observing runs being subdominant.
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two end test masses were replaced with mirrors with lower
scattering losses [42], allowing for higher circulating
power. Additionally, annular test masses were installed
to reduce noise induced by residual gas damping [43]. In
the Hanford interferometer, one of the two input test masses
was also replaced, because the one which was previously
installed had a large point absorber [44] that limited the
amount of power that could be handled in the arm cavities.
The buildup of electric charge on the test masses was

also an issue during previous runs; therefore, several
actions were undertaken to mitigate the contribution of
this noise source: Electric field meters were installed in end
stations to monitor the local electric field; baffles were
installed in front of the vacuum system ion pumps to
mitigate charging, and a test mass discharging system was
put in operation and successfully deployed on all LIGO
Hanford test masses.
Parametric instabilities [45], i.e., radiation-pressure-

induced excitation of the test masses’ mechanical modes,
also limit the maximum power allowed into the interfer-
ometer. This problem is mitigated with the installation of
acoustic mode dampers [46] that reduce the mechanical
quality factor of the test mass resonant modes and, thus,
suppress parametric instabilities.
The high-frequency (≳1 kHz) sensitivity of both detec-

tors is significantly improved compared to the O2 observ-
ing run (a factor of 1.68 for the Hanford detector and 1.96
for the Livingston detector), partially due to the increased
circulating power made possible by the improvements
already discussed and by the installation of squeezed light
sources [47,48] to reduce the quantum vacuum noise
entering the interferometers [49], making O3 the first
observing run of the LIGO detectors that routinely imple-
ments quantum noise-reduction techniques. GEO600 has
been using the same approach since 2011 [50,51] but has
not detected gravitational waves so far due to an overall
too-low sensitivity.
Additionally, many beam dumps and baffles were

installed at both LIGO sites, to mitigate the effect of scattered
light [52] that can be the source of nonstationary disturb-
ances. Finally, the feedback control systems for the seismic
isolation and for the angular and longitudinal control of the
instruments were improved, increasing the detectors’ duty
cycle and robustness against external disturbances. With
respect to O2, the LIGO Hanford median BNS inspiral
range, as defined in Ref. [29], increased by a factor 1.64
(from 66 to 108 Mpc) and the LIGO Livingston median
range by 1.53 (from 88 to 135 Mpc).
Also, in Virgo between the O2 and the O3a observing

runs, many upgrades have been implemented to boost the
sensitivity. The most important upgrade is the replacement
of the steel wires suspending the four test masses with
fused-silica fibers [53] to improve the sensitivity below
100 Hz. This upgrade was achieved by changing the design
of the final stage of the mirror suspension to improve the

screening of the fused-silica fibers [54] from residual
particles injected by the vacuum system. In parallel, the
vacuum system was modified to avoid dust pollution of the
environment.
Another upgrade to improve the low-frequency sensi-

tivity is the suspension of the external injection bench (used
to manipulate and steer the input laser beam into the
interferometer). In this way, the seismic motion of the
optics is reduced and, consequently, the beam jitter noise
contribution [55,56].
The major upgrade to boost the Virgo high-frequency

sensitivity is the installation of a more powerful laser that can
deliver more than 65 W output power. After some commis-
sioning activities at different power values, the laser power
injected into the interferometer is set to 19 W, improving
both the sensitivity and the stability of the interferometer at
the same time. The laser power is almost doubled compared
to the 10 W injected during O2 [57]. In this configuration,
due to the marginally stable power-recycling cavity, the
aberration induced by thermal effects prevents a reliable and
robust interferometer longitudinal control and worsens the
alignment performances. Therefore, the thermal compensa-
tion system actuators were used to stabilize the power-
recycling cavity. The end test masses’ radii of curvature were
tuned with the ring heaters, maximizing the power circulat-
ing in the arm cavities [59,60].
The squeezing technique adopted by LIGO to improve

the high-frequency sensitivity of the detectors is also
implemented in the Virgo interferometer [61]. This system
was fully operational also in Virgo for the first time during
O3. To reduce the optical losses optimizing the squeezing
performance, the photodiodes installed at the interferom-
eter dark port to measure the gravitational-wave signals
were replaced by high quantum efficiency ones [62].
Moreover, complementary activities have been carried

out in parallel to the main upgrades, reducing the overall
contribution of the various technical noises. In particular,
the improvement of the control strategy for the suspended
benches allows the reduction of the noise contribution
below 30 Hz, and the installation of baffles and diaphragms
on the optical benches and inside the vacuum tanks reduces
the impact of the scattered light on the sensitivity. Finally,
sources of environmental noises have been identified and
removed. All these upgrades increase the Virgo median
BNS range by 1.73 (from 26 to 45 Mpc) with respect to the
O2 run.
Figure 2 shows representative sensitivities of the three

detectors during O3a, as measured by the amplitude
spectral density of the calibrated strain output. Figure 3
shows the evolution of the detectors’ sensitivity over time,
as measured by the binary neutron star range. The up time
of the detectors is kept as high as possible but is
nevertheless limited by many factors, such as earthquakes,
instrumental failures, and planned maintenance periods.
The duty cycle for the three detectors is 76% (139.5 days)
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for Virgo, 71% (130.3 days) for LIGO Hanford, and 76%
(138.5 days) for LIGO Livingston. With these duty cycles,
the full three-detector network is in observing mode for
44.5% of the time (81.4 days). Moreover, for 96.9% of the
time (177.3 days), at least one detector is observing, and for
81.9% (149.9 days) at least two detectors are observing.
For comparison, during the O2 run, the duty cycles are 62%
for LIGO Hanford and 61% for LIGO Livingston, so that

two detectors are in observing mode 46.4% of the time and
at least one detector is in observing mode 75.6% of the
time. The goal is, of course, to obtain the highest possible
duty cycle. The current performance is limited by planned
maintenance periods and the time needed to recover the
control of the interferometers after large transients trig-
gered, for example, by earthquakes. Work is ongoing at all
detectors to improve the duty cycle.

III. DATA

Before analyzing LIGO and Virgo time-domain data for
gravitational waves, we apply multiple data-conditioning
steps to accurately calibrate the data into strain and mitigate
periods of poor data quality [63]. Segments of data where
each interferometer is operating in a nominal state, free from
external intervention, are recorded [64]. Data from outside
these time periods are not used in analyses unless additional
investigations are completed to understand the state of the
interferometer [6,33]. The data-conditioning process
involves calibration of the data, both in near-real time and
in higher latency; subtraction of noise from known instru-
mental sources; and identification of short-duration noise
transients, which we refer to as glitches [65], that should be
excluded from any searches for astrophysical candidates
either by not considering the data containing the glitches or
mitigating the glitches with methods such as gating.
For time periods containing gravitational-wave candi-

date events, additional investigation of the data quality is
completed as a part of event validation to evaluate if
instrumental artifacts could impact the detection and
analysis of the candidate events [66]. These investigations
sometimes lead to additional data-processing steps such as

FIG. 2. Representative amplitude spectral density of the three
detectors’ strain sensitivity (LIGO Livingston 5 September
2019 20∶53 UTC, LIGO Hanford 29 April 2019 11∶47 UTC,
and Virgo 10 April 2019 00∶34 UTC). From these spectra, we
compute BNS inspiral ranges of 109, 136, and 50 Mpc for LIGO
Hanford, LIGO Livingston, and Virgo, respectively.

FIG. 3. The BNS range of the LIGO and Virgo detectors. Left: the evolution in time of the range over the entire duration of O3a.
Each data point corresponds to the median value of the range over one-hour-long time segments. Right: distribution of the range and the
median values for the entire duration of O3a.
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modeling and subtraction of glitches beyond what is
completed to mitigate glitches before searching the data.
This section further outlines the procedures used to

calibrate the data collected by LIGO and Virgo, character-
ize the data quality, validate any identified gravitational-
wave candidates, and subtract glitches that may impact the
analysis of candidates.

A. Calibration and noise subtraction

The optical power variations at the gravitational-wave
readout ports of the LIGO and Virgo detectors are cali-
brated into a time series of dimensionless strain measured
by the detectors before use by astrophysical analyses
[67,68]. The calibration process requires data-conditioning
filters whose response is complex valued, frequency
dependent, and informed by detailed modeling of the
feedback control system along with the interferometric,
optomechanical response of the detectors [69]. Some
control system model parameters vary slowly with time
throughout operation of the interferometer. These param-
eters must be monitored, and, when possible, the filters
are corrected in near-real time (low latency) [70]. Other
parameters may change at discrete times and cause sys-
tematic error in the data stream that cannot be accounted for
in low latency. Examples of such an error can arise from
poorly compensated changes in electronics configurations,
accidental application of incorrect control parameter val-
ues, model errors not yet known at the start of the observing
period, and hardware problems such as failures of analog
electronics within the control system. Most of these sources
of error are subtle and can be assessed only once they are
measured and quantified a posteriori.
All three detectors use photon calibrator (Pcal) systems

[71–73] for absolute reference. These reference systems are
used to develop each static detector model, measure para-
metric time dependence, and establish residual levels of
systematic error in each strain data stream once con-
structed. Each of these measurements required to evaluate
the systematic error is done by using the Pcal systems to
drive forces on the end test masses via radiation pressure,
creating displacement above other detector noise.
Validating the strain data stream in low latency for all
time, by establishing carefully quantified estimates of the
systematic error with these excitations, competes with the
desire for unhampered astrophysical sensitivity. As a
compromise, systematic error is measured continuously
only at a select few frequencies at the edges of the sensitive
frequency band of the detector with monochromatic exci-
tations during observation. The data stream is validated
only at high-frequency resolution, and across the entire
detection band, at roughly weekly cadence: The detectors
are fully functional but are declared out of observation
mode, and swept-sinusoid and colored-random-noise Pcal
excitations are driven above the noise. These measurements
can provide only approximate, point-estimate bounds on

the data stream’s error in low latency; they cannot reflect
the error distribution for all time.
Once an observing period with a stable detector configu-

ration is completed, estimates of the probability distribution
of systematic error for all observation time are created [74].
These estimates leverage the power of hindsight, the
collection of measurements mentioned above, and other
measurements of individual components gathered while the
detector is offline. During this error characterization process,
if any identified systematic error is egregious and well
quantified, where possible, the control system model and
data-conditioning filters are modified to remove the error.
The data stream is then regenerated offline from the optical
power variations and control signals, and the systematic error
estimate is updated accordingly [67].
Results in this paper are derived from either low-latency

(C00) or offline, recalibrated (C01) strain data, depending
on whether offline data were available and whether the
results are sensitive to calibration error. Detection algo-
rithms for gravitational-wave candidates, described in
Sec. IV, are insensitive to typical levels of systematic error
in calibration [75], so low-latency data may be used for
additional offline analyses without concern. However, if
available, offline data are preferred for improved accuracy
and completeness. At the time the data were searched for
candidate events, offline data were available only for a
portion of O3a. The candidate events presented in this
paper detected prior to 5 June 2019 are identified using
LIGO offline data, whereas those from 5 June 2019 until 1
October 2019 are identified using LIGO low-latency data.
Once candidate events are found by detection algorithms

using either LIGO data stream, all estimations of the
candidates’ astrophysical parameters use the C01 LIGO
version of strain data using methods described in Sec. V. The
C01 LIGO version of strain data was available for the
entirety of O3a at the time these additional analyses were
completed. As such analyses are more sensitive to calibration
error [76], it is advantageous to use the definitive charac-
terization of error at the time of each event available with
LIGO C01 data. The probability distributions of error for
LIGO C01 strain data in O3a are characterized in Ref. [74].
Analysis of Virgo’s collection of validation measurements
during the run does not lead to a significant improvement to
the low-latency strain data stream offline. As such, only low-
latency strain and its bounds on systematic error from point-
estimate measurements are used for all detection and
astrophysical parameter estimation results presented in this
paper. The bounds of systematic error of Virgo strain in O3a
are reported in Ref. [77].
Numerous noise sources that limit detector sensitivity

are measured and linearly subtracted from the data using
witness auxiliary sensors that measure the source of the
noise [41,78,79]. In O3a, the sinusoidal excitations used for
calibration and noise from the harmonics of the power
mains are subtracted from LIGO data as a part of the
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calibration procedure [79]. This subtraction is completed
for both online and offline versions of the calibration. For
time periods around a subset of identified candidate events,
additional noise contributions due to nonstationary cou-
plings of the power mains are subtracted [80].
The Virgo online strain data production also performs

broadband noise subtraction during O3a [77]. The sub-
tracted noises include frequency noise of the input laser,
noise introduced controlling the displacement of the beam
splitter, and amplitude noise of the 56 MHz modulation
frequency. An additional offline strain dataset is produced
for 14 September 2019 through 1 October 2019 using the
same calibration as the online data but with improved noise
subtraction, resulting in a BNS range increase of up to
3 Mpc [81], and is used in source parameter estimation of
candidate events that occur during this time period.

B. Data quality

During O3a, the data quality is closely monitored using
summarized information from the detectors and their
subsystems [82,83]. Deeper studies are conducted to
identify the causes of data quality issues, which enable
instrumental mitigation of the sources during the run. For
example, at Livingston, glitches from a mechanical camera
shutter and beats of varying radio-frequency signals are
identified and eliminated. At Hanford and Livingston,
strong frequency peaks that wander in time are tracked
down to the amplitude stabilizer for the laser used to
provide squeezed light. At Hanford, broad features in the
spectrum at 48 Hz and multiples are tracked to scattered
light from vacuum chamber doors and mitigated with
absorptive black glass. These studies are a part of ongoing
efforts to improve the data quality and the up time of the
detectors [40,82].
For analyses of gravitational-wave transients, the most

common data quality issue is the presence of glitches. The
rate of glitches with signal-to-noise ratio (SNR) > 6.5 in
the LIGO and Virgo detectors in O3a is shown in Fig. 4.
In all three detectors, the glitch rate is dominated by
glitches with peak frequencies below 100 Hz. This rate
is higher than in previous observing runs [66] for both
LIGO detectors and is especially problematic at LIGO
Livingston, where the rate of glitches is 0.8 per minute in
O3a, compared to 0.2 per minute in O2. The Virgo glitch
rate decreases significantly between O2 and O3a, thanks to
the work done during the O2–O3a shutdown to improve the
accuracy of Virgo’s operating point control and to identify,
fix, or mitigate several sources of noise. The increased
rate of glitches in the LIGO detectors limits the overall
sensitivity of searches for gravitational waves in O3a and
creates challenges for analysis of candidate events.
The most problematic source of glitches in O3a is

caused by laser light scattered out of the main laser beam,
which is reflected off walls of the vacuum systems and
other equipment back into the main beam [52,86–88].

Scattered light noise is correlated with periods of high
seismic activity. For this reason, daily cycles of scattered
light glitches are present throughout O3a, especially at
LIGO Livingston, tied to ground motion driven by human
activity. This noise is often visible as arch-shaped features
in time frequency [86,89], as shown in Fig. 5, and is present
at or near the time of many of the candidate events in this
catalog. A significant portion of the increase in glitch rate
between O2 and O3a at the LIGO detectors can be
accounted for by the increased rate of scattered light
glitches [88]. A potential major source of this noise for
O3a is light scattered from the gold-coated electrostatic
drives mounted to the fused silica reaction masses that are
suspended directly behind the LIGO test masses to provide
a stable platform for low-noise actuation [88]. Changes are
implemented during O3b that reduce scattered light noise
entering through this path [88].
Broadband short-duration glitches also occur often in

all detectors during O3a. A subclass of those, blip

FIG. 4. The rate of single interferometer glitches with
SNR >6.5 and frequency between 10 and 2048 Hz identified
by Omicron [84,85] in each detector during O3a. Each point
represents the average rate over a 2048 s interval. Dotted black
lines show the median glitch rate for each detector in O2 and O3a.
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glitches [90], is one of the most problematic sources of
transient noise in previous observing runs and is still
present in O3a at a rate of 1.4 per hour. These glitches
are one of the limiting sources of noise for searches for
gravitational waves from high-mass compact binaries [91],
and no sources or witnesses for the majority of these
glitches have been identified. In O3a, there was also
an additional population of short-duration glitches with
SNR > 100. These loud glitches occur in both LIGO
detectors, with unknown origin. Additional description of
these glitches, along with details of potential sources that
have been ruled out, can be found in Ref. [82].
Many glitches in LIGO and Virgo data have well-

understood sources and couplings, making it possible to
identify short time periods where excess power from
environmental or technical sources is present in the strain
data. Flagging these time periods as containing poor data
quality, either by removing the data from the search or
decreasing the significance of any candidate events iden-
tified, is shown to improve the overall sensitivity of
searches for gravitational waves from compact binaries
[82,92,93]. While a select number of LIGO and Virgo data
quality issues are flagged in low latency, such as hardware

injections and digital signal overflows, the majority of data
quality flags are available only for offline searches.
Before performing searches for gravitational-wave sig-

nals, periods of poor data quality are flagged at various
levels, called categories [63,66,82]. In O3a, data from an
observatory not operating in a nominal state are flagged
(category 1) and not used in any search. Additional periods
likely to contain excess power in each LIGO detector are
flagged based on detailed follow-up of identified sources of
noise (category 2), statistical correlation between witness
sensors (category 3), and machine-learning-based predic-
tions (iDQ) [93,94]. No additional data quality products for
Virgo are used beyond category 1. The specific set of data
quality products used in O3a is search specific, as described
in Sec. IV. Category 2 flags are tuned separately for
searches for both gravitational waves from CBC and
minimally modeled (burst) sources. Category 3 flags are
tuned only for burst searches. The amount of time removed
by each category of veto in O3a is shown in Table I.

C. Event validation

Event validation procedures similar to those used for
previous gravitational-wave candidate events [8,66,82] are
used for all candidate events in this catalog to evaluate if
instrumental artifacts could impact analysis. Within tens of
minutes of low-latency candidate event identification, time-
frequency visualizations and monitors of the gravitational-
wave strain data [95–100] are used to identify any data
quality issues present. On the same timescale, data from
hundreds of auxiliary sensors monitoring the detectors and
their environments are used to identify potential auxiliary
witnesses to instrumental artifacts [94,101,102]. Tools that
rely upon deeper information about glitches and data
nonstationarity gathered offline, such as long-term mon-
itors of the instruments and their subsystems [83,103,104]
and identification of likely sources of glitches by correla-
tion with auxiliary sensors [85,105,106], are also used to
vet candidate events in this catalog. These procedures do
not identify evidence of instrumental origin for any of the
candidate events in this catalog but do identify a number of

FIG. 5. Top: time-frequency representation of the data sur-
rounding event GW190701_203306 at LIGO Livingston, show-
ing the presence of scattered light glitches (modulated arches).
Bottom: the same data after glitch identification and subtraction
as described in Sec. III D. In both plots, the time-frequency track
of the matched-filter template used to identify GW190701_
203306 is overlaid in orange. Investigations identify seven
candidate events in coincidence with similar scattering glitches
and require mitigation before further analysis. Despite the clear
overlap of the signal with the glitch, the excess power from the
glitch is successfully modeled and subtracted.

TABLE I. Percent of single-detector time removed by each
category of veto for each detector. Category 1 vetoes are applied
in all analyses described in Sec. IV. CBC category 2 vetoes are
applied only by the PyCBC search. Burst categories 2 and 3 are
applied only by the cWB search.

Detector
Category

1
CBC

category 2
Burst

category 2
Burst

category 3

LIGO
Hanford

0.27% 0.37% 0.83% 0.19%

LIGO
Livingston

0.08% 0.10% 0.64% 0.15%

Virgo 0.15% � � � � � � � � �
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data quality issues that could potentially impact analyses of
these candidate events.
Candidate events with data quality issues identified by

these event validation procedures require further mitigation
before analysis. In cases when glitches occur in time
coincidence with a candidate event (but cannot account
for the candidate event itself), additional data-processing
steps are completed to mitigate the effect of those glitches
on estimation of the candidate event parameters. If possible,
the identified glitches are subtracted using the methods
described in Sec. III D. In cases when sufficient subtraction
is not possible, customized configurations of parameter
estimation analyses are used to exclude the time period or
frequency bandwidth impacted by glitches. An example of
a glitch coincident with a signal that requires glitch
subtraction is shown in Fig. 5. While the presence of
excess power from transient noise does not prevent con-
fident identification of this event, glitch subtraction is
required before the source properties of the event can be
evaluated. Although only data recorded from detectors in
observing mode are used to identify candidate events in this
catalog, some candidate events occur at times when one
detector in the network is operating but not in observing
mode. If it is concluded that data from the additional
detector would substantially impact the scientific conclu-
sions reached from analyzing the candidate, the additional
data are investigated. For those cases, the data quality and
calibration for the nonobserving detector are evaluated to
determine whether the data could be used in the estimation
of candidate event source properties. Such data are used for
one candidate event, GW190814 [33]. The full list of
candidate events requiring specific mitigation steps, due to
either the presence of glitches or the state of a detector, is
found in Sec. VII. The total number of candidate events
requiring mitigation is consistent with the number expected
based on the glitch rate in each detector.

D. Glitch subtraction

Data containing gravitational-wave candidate events and
glitches in the same time-frequency volume are prepro-
cessed through a glitch-subtraction procedure prior to being
analyzed by the parameter estimation pipelines. The glitch-
subtraction procedure evolved from the BayesWave (BW)
algorithm [107–109] used for glitch subtraction in the
Livingston detector at the time of the GW170817 binary
neutron star merger [12,110], where the non-Gaussian,
incoherent, noise is modeled as a linear combination of
wavelets which is subtracted from the data. The number of
wavelets used in the fit is determined using a transdimen-
sional Markov chain Monte Carlo (MCMC) algorithm that
balances using fewer wavelets against the quality of the
fit [107].
To prevent the glitch-subtraction procedure from cor-

rupting the signal candidate event, the time segment and
bandwidth of the wavelet-based analysis are chosen, when

possible, to exclude from subtraction the strongest part of
the signal. For cases where the signal and glitch overlap
in time-frequency space, a more robust application of the
glitch-subtraction algorithm is used which simultane-
ously fits for the signal and the glitch. In the signal-
plus-glitch application, signal wavelets are included in
the model if they are coherent over the detector network
(marginalizing over sky location, etc.), while the glitch
wavelets are independent in each detector [108]. Only the
glitch model wavelets are then used in the subtraction.
The signal-plus-glitch procedure is tested by injecting
simulated coherent BBH signals onto known single-
detector glitches from O2 and verifying that the signals
are unaffected in the process.
The glitch-subtraction procedure is used only as a

preprocessing step for the parameter estimation analysis
(described in Sec. V) and is not part of the analyses that
determine the presence, or significance, of gravitational-
wave candidate events. As shown in Fig. 5, the glitch-
subtraction methods described here are able to successfully
remove excess power caused by glitches present near the
time of candidate events.

IV. CANDIDATE IDENTIFICATION

Candidate identification happens on two timescales.
First, five low-latency gravitational-wave pipelines
[111–115] process the data immediately after acquisition
with the goal of generating public detection alerts to the
broader astronomical community within minutes [116].
Second, an offline reanalysis of gravitational-wave data is
conducted to produce the curated candidate event list here.
The offline analysis may benefit from updated data
calibration, data quality vetoes, the ability to estimate
event significance from the full data, and further algo-
rithmic development that takes place over the course of an
observing run. Although the candidate events presented
here are derived from offline analysis, we provide a
comparison with the public alerts in Sec. VI.
Candidates are identified using two methods. The first
method searches for minimally modeled sources. The
second method searches for signals from a bank of
template waveforms [117] modeled after the expected
gravitational-wave emission from coalescing compact
binaries in general relativity. In Sec. VI, we present results
from one search for minimally modeled transient sources,
coherent WaveBurst (cWB) [112,118–121], and two
searches for modeled sources, GstLAL [111,122,123] and
PyCBC [29,124–127]. cWB, GstLAL, and PyCBC are also
three of the five low-latency pipelines in O3. The two
remaining low-latency pipelines, MBTAOnline [114,128]
and SPIIR [115], were not configured for offline reanalysis
at the time of this publication and are, therefore, not
included in GWTC-2. Below, we summarize the methods
used by each of cWB, GstLAL, and PyCBC to identify
candidate events.
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A. Coherent WaveBurst search for minimally
modeled transient sources

cWB is a search pipeline for detection and reconstruction
of transient GW signals that operates without a specific
waveform model [129] and was used in previous searches
by the LVC [1,8,130]. cWB identifies coincident signal
power in multiple detectors, searching for transient signals
with durations up to a few seconds in the detector
bandwidth. The analysis is performed on the time-
frequency data obtained with the Wilson-Daubechies-
Meyer wavelet transform [118,131] and normalized by
the amplitude spectral density of the detector noise. cWB
selects the time-frequency data samples above fluctuations
of the detector noise and groups them into clusters. For
clusters correlated in multiple detectors, cWB reconstructs
the source sky location and signal waveforms with the
constrained maximum likelihood method [112]. The signal
SNR is estimated from the signal waveforms reconstructed
by cWB, and the network SNR is calculated combining the
SNRs of individual detectors.
The cWB detection statistic is based on the coherent

energy Ec obtained by cross-correlating the normalized
signal waveforms reconstructed in different detectors.
It is normalized by a chi-squared statistic χ2 ¼ En=Ndf ,
where En is the residual noise energy estimated after the
reconstructed waveforms are subtracted from the data and
Ndf is the number of independent wavelet amplitudes
describing the event. The cWB detection statistic is
ηc ∝ ½Ec=maxðχ2; 1Þ�1=2, where the χ2 correction is applied
to reduce the contribution of non-Gaussian noise. To
improve the robustness of the algorithm against glitches,
cWB uses signal-independent vetoes, which reduce the
FAR of the pipeline; this includes category 2 burst data
quality flags in the processing step and hierarchical vetoes
in the postproduction phase [105,132]. Other vetoes
applied to candidate events are on the network correlation
coefficient cc ¼ Ec=ðEc þ EnÞ and the χ2. To further
reduce the background, the cWB analysis employs addi-
tional signal-dependent vetoes based on the properties of
the time-frequency evolution of compact binary signals:
(a) The frequency of the signal is increasing in time [133],
and (b) the central frequency of the signal fc is inversely
proportional to the total mass of the system [134]. cWB
searches are performed with two pipeline configurations
targeting detection of high-mass (fc < 80 Hz) and low-
mass (fc > 80 Hz) BBH systems. They use different
signal-dependent vetoes defined a priori to alleviate the
large variability of nonstationary noise in the detectors’
bandwidth.
We estimate the significance of candidate events by

systematically time shifting the data of one detector with
respect to the other in each detector pair, with a time lag so
large that actual astrophysical events are excluded, and
repeating this for a large number of different time lags over
a total time Tbkg. We count the number of events N due to

instrumental noise that have a ranking statistic value, such
as the SNR that is at least as large as that of the candidate
event, and we compute the FAR as the number of back-
ground events divided by the total background time [135].
The detection significance of a candidate event identified
by either configuration in a single-frequency range is
determined by its FAR measured by the corresponding
cWB configuration. Whenever the low-mass and high-mass
configurations overlap, the trials factor of 2 is included to
determine the final FAR [34]. In the end, each configuration
reports the selected candidate events and their FAR.
The sensitivity of the cWB search pipeline approaches

that of matched-filter methods for coalescing stellar mass
BBHs with high chirp masses, where most of the signal
energy is concentrated in just a few wavelets of the cWB
representation [136]. It is less competitive for low-chirp-
mass events, where the signal power is spread over large
time-frequency areas. cWB can also detect sources that are
not well represented in current template banks (e.g.,
eccentric systems or high-mass ratio precessing systems)
[137]. Tests with cWB show that the detection efficiency
for a given FAR threshold is slightly smaller with the
inclusion of Virgo. Therefore, also to reduce computing
time, all cWB detection candidates and waveform consis-
tency tests reported in this catalog use the Hanford-
Livingston network only.

B. GstLAL and PyCBC searches for modeled sources

Both the GstLAL pipeline [111,122,123] and the PyCBC

[138] pipeline [29,124–127] implement independently
designed matched-filter analyses. Both are used in previous
LVC searches for gravitational waves [1,4–8,39].
The matched-filter method relies on a model of the

signal, dependent on the source physical parameters. Most
important for the phase evolution of the source (and,
therefore, the matched filter) are the intrinsic parameters:
two individual component masses m1 and m2 and two
dimensionless spin vectors χ⃗f1;2g, where the dimensionless
spin is related to each component’s spin angular momen-
tum S⃗ by χ⃗i ¼ cS⃗i=ðGm2

i Þ.
We also make use of combinations of these intrinsic

parameters that are typically well constrained by gravita-
tional-wave measurements; the binary chirp mass [139]

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

ð1Þ

determines to lowest order the phase evolution during the
inspiral and is typically better constrained than the com-
ponent masses. At higher orders, the mass ratio q ¼ m2=m1

(where m2 ≤ m1) and effective inspiral spin χeff affect the
binary phase evolution. The effective inspiral spin is
defined as [140]
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χeff ¼
ðm1χ⃗1 þm2χ⃗2Þ · L̂N

M
; ð2Þ

where M ¼ m1 þm2 is the total mass and L̂N is the unit
vector along the Newtonian orbital angular momentum.
The spin tilt angle for each component object θLSi ¼
cos−1 ðχ⃗i · L̂N=jχ⃗ijÞ quantifies the angle between the orbital
angular momentum vector and its spin vector. Since the
spin and angular momentum vectors vary if the system
precesses, by convention we use the spin parameters at a
reference frequency of 20 Hz, with the exception of
GW190521, where we use 11 Hz for consistency with
previous publications [34,35]. Additional intrinsic param-
eters are needed to describe eccentricity, which we assume
to be zero in our modeled analyses. The timescale for
circularization of isolated binaries with nonzero eccentric-
ity at birth is sufficiently short that sources are expected to
have negligible eccentricity when they enter the sensitive
bands of the LIGO and Virgo detectors [141]. However,
dynamically formed binaries may have residual eccentricity
as the signal enters the sensitive band of the detector. These
systems are the target of unmodeled searches of previous
observing runs but with no candidate events reported [137].
Seven extrinsic parameters provide the orientation and

position of the source in relation to Earth: the luminosity
distanceDL, two-dimensional sky position (right ascension
α and declination δ), inclination between total angular
momentum and line of sight θJN , time of merger tc, a
reference phase ϕ, and polarization angle ψ .
In general, as the signal travels from the source to the

detector, its frequency is redshifted by a factor of (1þ z). For
a system involving only black holes, the observed signal is
identical to that from a source in the rest frame of the detector
with total mass Mdet ¼ ð1þ zÞM [142,143]. For conven-
ience, the templates used by the modeled searches are
defined in the rest frame of the detectors which subsumes
the factor (1þ z) into the definition of masses.
For this work, the GstLAL analysis uses a template bank

with component masses between 1 M⊙ and 400 M⊙ with
total masses Mdet between 2 M⊙ and 758 M⊙ and spins
that are aligned or antialigned with the binary’s orbital
angular momentum, such that only the spin components
χi;z ¼ χ⃗i · L̂N are nonzero. The bank is constructed in five
regions via a stochastic placement algorithm [144,145]
satisfying different minimal match (MM) [117] criteria
with waveforms starting at fmin as described in Table II.
Template placement is augmented to improve the collection
of background statistics in the last region shown in Table II
by a grid of templates distributed uniformly in the loga-
rithm of component mass to improve detection efficiency
for systems with primary mass mdet

1 above 50 M⊙ [8,146].
The TaylorF2 waveform approximant [139,147–156]
is used for templates with Mdet < 1.73 M⊙ and the

SEOBNRv4_ROM waveform approximant [157] for templates
with M ≥ 1.73 M⊙.
The PyCBC analysis uses a template bank covering the

same parameter space as for GWTC-1 [8] shown in Figs. 3
and 7 of Ref. [158]. Unlike the previous work, the template
bank here is created using a hybrid geometric-random
method described in Refs. [159,160]. This new method
provides a more efficient template bank—in terms of
covering the full parameter space with fewer template
waveforms—than the stochastic method [144,145]. This
bank is broadly similar to the parameter space covered in
the GstLAL search described above with a key difference
being that only templates longer than 0.15 s are kept.
Details about this cut and its effect on the explored mass
and spin range can be found in Ref. [158].
Both GstLAL and PyCBC scan data from each gravita-

tional-wave detector against the above-described banks
of template waveforms to produce SNR time series [29].
The SNR time series are maximized over short time
windows to produce a set of triggers for each template
and each detector. Triggers that pass an SNR threshold of 4
in one detector form the basis of candidate events according
to the procedures for each pipeline described below. PyCBC
removes the time period during category 2 veto flags from
the final results, while GstLAL uses only iDQ for single-
detector triggers and no data quality products for coincident
triggers.

GstLAL defines a candidate event as consisting of triggers
from one or more gravitational-wave detectors ranked by the
SNRs of the triggers, signal-consistency tests, time delays
between each detector, phase differences between detectors,
the (possibly zero) time-averaged volumetric sensitivity of
each detector, and the signal population model. These
parameters are used as variables in the likelihood-ratio
ranking statistic L [111,122,123,161], which is a monotonic
function of the inverse false alarm probability [162].
There are two differences between the ranking statistic

used here and in O2 [8]. First, we implement a template
likelihood pðTjsignal; SNRÞ [163], which is the probability
that a trigger is recovered by a template T, given the trigger
SNR and that the signal belongs to some population.
Previous versions of GstLAL approximate pðTjsignal;
SNRÞ by a constant in L [111,122,161], implying all
templates are equally likely to recover a signal. Now, the

TABLE II. GstLAL template bank parameters. Low spin denotes
the range −0.05 to 0.05, and high spin denotes the range −0.999
to 0.999.

MM m1 m2 M q χ1;z χ2;z fmin (Hz)

0.99 1, 3 1, 3 <6 0.33, 1 Low Low 15
0.97 3, 150 1, 3 <153 0.02, 1 High Low 15
0.99 3, 91 3, 50 <100 0.1, 1 High High 15
0.97 30, 392 3, 36 <400 0.02, 0.1 High High 15
0.99 50, 400 9, 400 >100 0.1, 1 High High 10
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template likelihood is informed by the template bank
(to account for the fact that templates are not uniformly
distributed in parameter space [164]) and a signal-
population model, which for this search considers θ⃗ ¼
fmdet

1 ; mdet
2 ; χ1;z; χ2;zg and is given by pðθ⃗jsignalÞdθ⃗ ∝

1=ð4mdet
1 mdet

2 Þdθ⃗. The distribution pðθ⃗jsignalÞ is deliber-
ately broad to minimize the number of missed signals.
Second, single-detector candidate events are ranked
using both an empirically determined penalty and infor-
mation from iDQ [94] as described previously. The
penalty from iDQ is added to the denominator of L.
Candidates from the GstLAL search have their likelihood
ratios and significance estimated using the entire approx-
imately 6-month dataset.

PyCBC identifies candidate events by requiring triggers in
both LIGO Hanford and LIGO Livingston with a time
delay smaller than the light travel time between observa-
tories. These candidate events are then ranked using a set
of signal-based vetoes, data quality information, and by
comparing the properties of the event against those
expected from astrophysical signals [127]. A FAR is
then computed for each of these candidate events by
estimating the background noise distribution using time-
shifted analyses similarly to cWB [29,126,165], triggers
from LIGO Livingston being time shifted relative to
LIGO Hanford by multiples of 0.1 s. Virgo data are not
searched with the PyCBC pipeline due to three-detector
searches not being completely integrated in the version of
code used.
A focused search for BBH coalescences [27] is also used

here, denoted later as PyCBC BBH. This search is motivated
by the fact that all signals observed in O1 and O2, with
the single exception of the binary neutron star merger
GW170817, are consistent with BBH coalescences with
mass ratio close to 1 and effective inspiral spins close to 0.
The full parameter space search used for GWTC-1 [8], in
contrast, is tuned to observe signals anywhere in the
possible space of signal parameters, which might include
signals that do not have very high matches with search
templates. The PyCBC BBH search uses a recently devel-
oped detection statistic [27,166] which includes a number
of tuning choices to reject triggers that do not match the
filter waveforms well and also includes a template weight-
ing implementing a prior that signals detectable in any
given range of SNR are uniformly distributed in chirp mass.
This search enables PyCBC to identify more BBHs in the O1
and O2 datasets than reported in the GWTC-1 paper [8,27].
This search includes some of the BBHs first reported in
Refs. [23,25] by independently developed searches
[24,167]. We use the focused BBH search in this work
to better extract BBH coalescences from the data: This
search considers only a reduced set of filter templates
defined prior to the analysis of O3 data, namely, systems
with mass ratio q > 1=3 and with both component masses
(in detector frame) larger than 5 M⊙.

C. Estimation of modeled search sensitivity

In order to estimate the sensitivity of the GstLAL and
PyCBC searches, we conduct a campaign of simulated
signals injected into the O3a gravitational-wave data and
analyzed by both matched-filter pipelines. The simulated
population, intended to cover (or overcover) the detected
population of stellar-mass BBHs [11,37], contains compo-
nent masses m1 and m2 between 2 M⊙ and 100 M⊙ and
extends out to a maximum redshift of 2.3. In order to reduce
statistical uncertainties, the mass, spin, and redshift dis-
tributions should be sufficiently similar to population
models for which we intend to estimate merger rates:
See Ref. [37] (Appendix A) for further discussion of
selection functions in population inference. For the simu-
lations, we choose pðm1Þ ∝ m−2.35

1 , pðm2jm1Þ ∝ m2
2 (for

m2 < m1), and χi;z values distributed uniformly between
−0.998 and 0.998. The cosmological distribution of
sources simulates a merger rate in the comoving frame
that evolves as RðzÞ ¼ Rð0Þð1þ zÞ2; thus, the source
redshift distribution follows pðzÞ ∝ ð1þ zÞdVc=dz, where
Vc is the comoving volume (see, e.g., Ref. [168] for further
discussion of cosmological effects). The simulation set is
generated in two stages: First, points are chosen according
to this distribution out to z ¼ 2.3; then, these 7.70 × 107

samples are reduced to a set of potentially detectable
signals by imposing that the expected LIGO Hanford-
LIGO Livingston network SNR, calculated using repre-
sentative noise power spectral density (PSD), be above a
threshold of 6. The approximately 157 000 signals remain-
ing after this cut are assigned merger times ranging
uniformly over the duration of O3 for analysis by the
searches. The SEOBNRv4_opt aligned-spin waveform
model [157] is used for the simulated signals.
The expected number of signals from such a population

detected by a given analysis may be written as

N̂ ¼ VRð0Þ; ð3Þ

where Rð0Þ is the rate of signals per unit volume and unit
observing time at present and V is the effective surveyed
hypervolume, a measure of analysis sensitivity for the
injected population [169]. Since each analysis recovers
over 104 injections, statistical counting uncertainties in the
hypervolumes V are at the subpercent level. Our estimates
of sensitivity are, though, affected by possible systematic
uncertainties in calibration of the strain data. Strain
calibration affects the detectability of simulated signals
via the magnitude of the response function, which is
affected by uncertainties of at most a few percent over
the frequency range where the SNR of binary merger
signals is accumulated; see Ref. [74] for details. The
hypervolume V surveyed by each analysis, at a detection
FAR threshold of 2.0 per year, is 0.456 Gpc3 yr for GstLAL,
0.296 Gpc3 yr for PyCBC, and 0.386 Gpc3 yr for PyCBC

BBH. For a combination of all matched-filter analyses
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presented in this catalog, with any injection found in one or
more analysis below the FAR threshold considered as
detected, we find a surveyed hypervolume 0.567 Gpc3 yr.

D. Estimation of signal probability

For each candidate event, the probability of origin from
an astrophysical source pastro and corresponding proba-
bility of terrestrial noise origin pterr ¼ 1 − pastro may be
estimated using the outputs of search pipelines. We obtain
these probabilities for the candidate events in this catalog
consistent with a BBH, via the Poisson mixture model
formalism [170] used in O1 [39,168,171]. Only BBH
candidate events are considered because, other than
GW190425 [172] whose component masses are consistent
with those of NSs, all significant detections can be
classified as BBHs [173]. A low-significance candidate
NSBH event, GW190426_152155, is reported in low
latency [174]; however, its astrophysical probability is
strongly dependent on prior assumptions of the rate of
such signals. We, therefore, do not estimate its pastro here.
We start by collecting the ranking statistics x⃗ ¼

fx1; x2;…; xNg of all candidate events more significant
than a predefined threshold: For the GstLAL pipeline events
are thresholded on FAR, while for PyCBC a ranking statistic
threshold is applied. The threshold for GstLAL is chosen to
ensure that the total number of background events consid-
ered exceeds the number of signals by a large (approx-
imately 100) factor, which enables an accurate estimate of
the total rate of background events above threshold. On the
other hand, PyCBC estimates the background rate from time-
shifted analyses, as outlined above in Sec. IV B; thus, the
requirement to include a large number of background
events is relaxed. The statistic threshold is then set low
enough to include (at least) all events with pastro ≳ 0.1.
Additionally, for both GstLAL and PyCBC searches, a

threshold of 4.35 M⊙ is applied on the chirp mass of the
templates, corresponding to a 5 M⊙ þ 5 M⊙ binary, ensur-
ing that the selected candidate events have template masses
consistent with those of putative BBHs. Using the distri-
bution of ranking statistics x under the foreground model,
fðxÞ ¼ pðxjsignalÞ, and the distribution under the back-
ground model, bðxÞ ¼ pðxjnoiseÞ, estimated by each
matched-filter pipeline, we assign a Bayes factor kðxÞ ¼
fðxÞ=bðxÞ to each event. Assuming that foreground and
background triggers are drawn from independent Poisson
processes, one can then calculate the posterior over the
Poisson expected counts for each process, Λ1 and Λ0.
For the PyCBC searches presented here, we proceed as for

O1 and O2 [8] and estimate foreground and background
event densities empirically for all putative BBH candidate
events with ranking statistic above a given threshold. The
PyCBC full parameter space and BBH focused searches
differ in how their ranking statistics are calculated: For the
full search [127], a threshold of 7.9 is applied to the ranking
statistic, while for the BBH search [27,166], a threshold

value of 9 is applied. We empirically measure the rate of
noise events satisfying these cuts via time-shifted analyses
and infer the posterior over the rate of signals; finally, we
marginalize over the signal rate to obtain probabilities of
astrophysical and terrestrial origin for each event [175].
Since the PyCBC BBH search is more sensitive to realistic
BBH signal populations, implying a more accurate estimate
of the relative densities of signal and noise events within its
targeted mass region, we consider the pastro values from the
BBH analysis to be more accurate for events recovered by
both searches.
For the GstLAL analysis, we estimate the astrophysical

and terrestrial probabilities pastroðxjx⃗Þ from the joint pos-
terior on the Poisson expected counts, pðΛ0;Λ1jx⃗Þ, where
the set of triggers x⃗ have a chirp massM > 4.35 M⊙ and a
FAR < 8766 yr−1. The prior used to construct the joint
counts posterior is taken to be the corresponding posterior
from O1 and O2 [176].

V. ESTIMATION OF SOURCE PARAMETERS

Once triggers of interest are identified, the physical
parameters of the candidate event gravitational-wave sig-
nals are inferred by computing their posterior probability
density functions. The uncertainty in the source parameters
is quantified by the posterior probability distribution
pðϑ⃗jd⃗Þ, which is calculated using Bayes’ theorem as

pðϑ⃗jd⃗Þ ∝ pðd⃗jϑ⃗Þπðϑ⃗Þ; ð4Þ

where pðd⃗jϑ⃗Þ is the likelihood of the data given the model
parameters ϑ⃗ and πðϑ⃗Þ is the prior probability distribution
for the parameters. The likelihood is calculated from a
coherent analysis of data from each of the detectors. As in
our previous analyses, e.g., Ref. [177], we assume that the
noise can be treated as Gaussian, stationary, and uncorre-
lated between detectors [63,178] in the stretch of data used
to calculate the likelihood and to measure the noise PSD.
This yields a Gaussian likelihood [143,179] for the data
from a single detector:

pðdijϑ⃗Þ ∝ exp

�
−
1

2
hdi − hiMðϑ⃗Þjdi − hiMðϑ⃗Þi

�
; ð5Þ

where di is the data of the ith instrument and hiMðϑ⃗Þ is the
waveform model calculated at ϑ⃗ projected on the ith
detector and adjusted to account for the uncertainty in
offline calibration described in Sec. III A. The noise-
weighted inner product hajbi [143,180] requires specifying
the frequency range in which the analysis is performed as
well as the noise PSD.
Upon detection of a binary merger, exploratory analyses

are first conducted to identify which models and settings
are most suitable for use in our production analyses. In
general, we use a low-frequency cutoff of flow ¼ 20 Hz,
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unless data quality requirements at the time of specific
candidate events are different, in which case a specific
range is noted in Sec. VII. The high-frequency cutoff is
always equal to the Nyquist frequency of the analysis,
which is chosen on a per-event basis to be greater than
the highest frequency of the l ¼ m ¼ 2 mode, since the
signals (especially the higher-mass BBH signals) do not
require the full bandwidth available at the native sampling
rate of 16 kHz. The PSD characterizing the noise at the time
of each event is measured by BW using the same data that
are used for likelihood computation [181,182]. We then
obtain the final joint likelihood over all detectors by
multiplying together the likelihood from each detector
in Eq. (5).
The gravitational-wave signal emitted by a circularized

compact binary composed of two black holes depends on
15 unknown parameters, defined in Sec. IV B. The initial
masses and spins of the inspiraling black holes determine
the peak gravitational-wave luminosity and mass and spin
of the postmerger remnant black hole, which we calculate
from fits to numerical relativity (NR) [5,183–187]. When
one or both objects are neutron stars, matter effects modify
the binary inspiral and are included via the dimensionless
quadrupole tidal deformability Λi, adding one extra param-
eter for each neutron star in the binary. Other matter effects,
such as octupolar and higher tidal deformabilities, non–
black hole spin-induced multipole moments, and f-mode
resonances, are parameterized by the Λi using quasiuni-
versal relations [188]. The dominant tidal contribution to
the waveform is given by the dimensionless tidal deform-
ability parameter [189,190]

Λ̃ ¼ 16

13

½ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2�
ðm1 þm2Þ5

: ð6Þ

Nonspinning black holes have Λi ¼ 0 [191,192], and the
waveform models we use adopt the convention that this
result is true for all black holes [193,194]. We do not
calculate final masses and spins when matter effects are
included in the analyses, as this calculation requires an
accurate prediction of the ejected mass following possible
tidal disruption, taking into account the equation of state
and uncertain details of the dynamics of the merger.

A. Waveform models

We characterize the detected binaries using multiple
waveform models, each of which uses a different set
of modeling techniques and includes different physical
effects. For every event with inferred component masses
above 3 M⊙ in preliminary analyses, we perform produc-
tion parameter estimation runs using a subset of BBH
waveforms. IMRPhenomPv2 [195–197] is a phenomenologi-
cal model for gravitational waves from precessing BBH
systems, calibrated to NR and using an effective single-spin
description to model effects from spin precession [198].

SEOBNRv4P [157,199] is based on the effective-one-body
(EOB) formalism [200,201] and calibrated to NR, with a
generic two-spin treatment of the precession dynamics.
These models rely on twisting-up procedures, where
aligned-spin, NR-calibrated waveform models defined in
the coprecessing frame are mapped (through a suitable
frame rotation) to approximate the multipoles of a precessing
system in the inertial frame [202–206]. These models do not
include contributions to the strain from spherical harmonic
modes beyond l ¼ 2, so we also analyze each event with at
least one of the following models that incorporate higher-
order multipole (HM) moments and precession effects:
IMRPhenomPv3HM [207,208], SEOBNRv4PHM [199,209], and
NRSur7dq4 [210]. IMRPhenomPv3HM (based on IMRPhenomHM

[211]) and SEOBNRv4PHM (based on SEOBNRv4HM [212])
both rely on the twisting-up approach described above.
NRSur7dq4 is a surrogate waveform model for BBH systems
that directly interpolates a large set of precessing NR
simulations. Unlike the other two HM models, NRSur7dq4

waveforms are restricted by the length of the NR simulations
in the training set, covering only approximately 20 orbits
before merger.
Any sources with evidence for at least one binary

component below 3 M⊙ are characterized using several
waveforms capable of modeling matter effects. For the
BNS system GW190425 [32], we use the following:
IMRPhenomD_NRTidal and IMRPhenomPv2_NRTidal [213,214],
which are based on the BBH models IMRPhenomD and
IMRPhenomPv2, respectively, and incorporate NR and tidal
EOB-tuned contributions from tidal interaction as well as
equation-of-state-dependent self-spin effects; TaylorF2
[139,147–156], which describes waveforms from the inspi-
ral of nonprecessing compact binaries, with matter effects
derived in the post-Newtonian formalism, including quadru-
pole-monopole coupling parameterized in terms of the
tidal deformabilities [188,215,216]; TEOBResumS [217], an
aligned-spin EOB model that incorporates post-Newtonian
and self-force contributions to the tidal potential; and, finally,
a frequency-domain surrogate model of aligned-spin
SEOBNRv4T waveforms [157,218–220], which are derived
in the EOB approach and include dynamical tides.
For potential NSBH sources with m1 > 3 M⊙ > m2, we

use both BBH waveforms and the NSBH-specific aligned-
spin waveformmodels SEOBNRv4_ROM_NRTidalv2_NSBH [221]
and IMRPhenomNSBH [222], which feature the dominant
quadrupole modes. SEOBNRv4_ROM_NRTidalv2_NSBH uses
SEOBNRv4_ROM as the BBH baseline, while IMRPhenomNSBH

employs phase evolution from IMRPhenomD [195,196] and
amplitude from IMRPhenomC [223]. Both models contain a
phenomenological description of the tidal effects tuned toNR
simulations [224] and include corrections to the amplitude
through inspiral, merger, and ringdown to account for a
possibility of tidal disruption.
To account for the systematic uncertainties in the wave-

form models, we combine equal numbers of posterior
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samples (described in Sec. V B) from all parameter
estimation runs for an event that use waveforms with
comparable physics. This event treats the constituent
waveform models in the combined results as having equal
weight rather than weighting them by marginal likelihood
as suggested in Ref. [225]. Table III shows the waveforms
employed in this work, the keys under which we group
results using these waveforms, and descriptions of the
physical effects incorporated in the models.

B. Sampling methods

Weuse severalmethods to draw samples from the posterior
distributionsonsource parametersusing themodels described
above. The LALInference [179] package is used for most
analyses presented in this paper. This package provides two
independent stochastic sampling algorithms: a MCMC algo-
rithm and a nested sampling [228] algorithm. We employ
LALInference ’s nested sampling algorithm for most of the
BBH analyses performed with the IMRPhenomD and
IMRPhenomPv2 waveforms and theMCMC algorithm for those
performed with SEOBNRv4P. However, the serial nature of
thesemethodsmakes themunsuitable for usewith someof the
more computationally costly waveform models, such as
waveforms with HMs and precession effects, especially for
long-duration signals. For these, we also use RIFT, which
performsa hybrid exploration of the parameter space split into
intrinsic and extrinsic parameters [229–231], and Parallel
Bilby, based on a distributed implementation of nested
sampling [232–235], which is also used in previously
published analyses of GW190412 [236], GW190425 [32],

and GW190814 [33]. The raw posterior samples from the
analyses described above are then collated to a common
format using the PESummary package [237].

C. Priors

Each event is analyzed independently using a prior dis-
tribution on the source parameters that is chosen to ensure
adequate sampling of the parameter space and simplicity in
using the posterior samples for further analyses. We choose a
prior that is uniform in spin magnitudes and redshifted
component masses and isotropic in spin orientations, sky
location, and binary orientation. The prior on luminosity
distance corresponds to a uniform merger rate in the comov-
ing frame of the source, using a flat ΛCDM cosmology with
Hubble constant H0 ¼ 67.9 km s−1Mpc−1 and matter den-
sity Ωm ¼ 0.3065 [238]; this physically motivated prior
differs from that used in previous published results, which
uses a prior ∝ DL

2. However, our data release includes
parameter estimation samples for both the flat-in-comov-
ing-volume and ∝ DL

2 priors. For details on the conversion,
see Appendix C. Intrinsic source masses are computed by
dividing the redshiftedmassesmeasured in the detector frame
by (1þ z), where z is calculated using the same cosmologi-
cal model.
For the LALInference and Parallel Bilby analyses, we

marginalize over uncertainty in the strain calibration.
The calibration errors in amplitude and phase are described
by frequency-dependent splines, whose coefficients are
allowed to vary alongside signal parameters in the infer-
ence. The prior distribution on the calibration error at each

TABLE III. Waveform models used in this paper. We indicate which multipoles are included for each model. For precessing models,
the multipoles correspond to those in the coprecessing frame. The combined key column specifies which results generated with
these waveforms are combined in our data release under a common key. The models below the horizontal line include matter effects.

Combined key Waveform name Precession Multipoles ðl; jmjÞ Refs.

ZeroSpinIMRa
IMRPhenomD × (2, 2) [195,196]

AlignedSpinIMR SEOBNRv4_ROM × (2, 2) [157]
AlignedSpinIMRHM IMRPhenomHM × (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [211]

SEOBNRv4HM_ROM × (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [212,226]
PrecessingSpinIMR SEOBNRv4P ✓ (2, 2), (2, 1) [199,209,227]

IMRPhenomPv2 ✓ (2, 2) [197,207]
PrecessingSpinIMRHM IMRPhenomPv3HM ✓ (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [208]

NRSur7dq4 ✓ l ≤ 4 [210]
SEOBNRv4PHM ✓ (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [199,209,227]

AlignedSpinTidalb IMRPhenomD_NRTidal × (2, 2) [213,214]
TEOBResumS × (2, 2) [217]

SEOBNRv4T_surrogate × (2, 2) [157,218–220]
PrecessingSpinIMRTidalb IMRPhenomPv2_NRTidal ✓ (2, 2) [213,214]
AlignedSpinInspiralTidalb TaylorF2 × (2, 2) [139,147–156]
AlignedSpinIMRTidal_NSBH SEOBNRv4_ROM_NRTidalv2_NSBH × (2, 2) [221]

IMRPhenomNSBH × (2, 2) [222]
aFor these datasets, we enforce jχ⃗ij ¼ 0.
bThe data release contains versions of these keys with HS and LS in the name, which correspond to the high-spin (jχ⃗ij ≤ 0.89) and

low-spin (jχ⃗ij ≤ 0.05) priors, respectively.
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spline node is set by the measured uncertainty at each
node [177].

VI. CANDIDATE EVENT LIST

Table IV presents the results from each of cWB, GstLAL,
and PyCBC passing a FAR threshold of 2.0 yr−1; the full
gravitational-wave name encodes the UTC date with the
time of the event given after the underscore. GW190521
[34,35], GW190425 [32], GW190412 [236], and
GW190814 [33] were published previously, and these
names are used here verbatim. The 2.0 yr−1 threshold is
chosen to be higher (more permissive) than the threshold
used for public alerts, 1.2 yr−1 [239], but sufficiently low to
provide an expected contamination fraction below 10%. An
extended candidate event list, which may contain margin-
ally significant triggers, will be provided later once final
data calibration and quality checks are available. Unlike
GWTC-1 [8], a separate pastro threshold is not applied;
however, pastro is greater than 50% for all candidate events
for which pastro is calculated in this work, satisfying the
same criteria as GWTC-1 [240]. Among the 39 reported
candidate events passing the FAR threshold of 2.0 yr−1,
15 are detected by cWB, 36 candidate events are detected
by GstLAL, and 27 candidate events are detected by PyCBC;
25 candidate events are recovered by at least two pipelines.
Given the FAR threshold and number of candidate events
detected, the expectation value for noise events is < 4 in
this list. Based on the FAR or the probability of being a
signal described in Sec. IV D, GW190426_152155,
GW190719_215514, and GW190909_114149 are the most
likely to be noise among the candidate event list.
cWB recovers fewer candidate events than either GstLAL

or PyCBC. This result is expected, because cWB has the
highest sensitivity for short-duration, high-mass signals,
and its sensitivity decreases for lower-mass systems with
longer duration. cWB also requires candidate events to be
found in coincidence between at least two detectors.
The difference in candidate event recovery between

GstLAL and PyCBC is primarily due to PyCBC analyzing
only times when both LIGO Hanford and LIGO Livingston
are operating and requiring signals to be observed in both.
PyCBC does not analyze Virgo data due to the fact that the
code version used for this catalog had not fully integrated
three-detector analysis including Virgo. GstLAL analyzes
LIGO and Virgo data and allows for the detection
of candidate events from one, two, or three gravitational-
wave detectors. These algorithmic choices account for
the GstLAL-only detection of GW190424_180648,
GW190425, GW190620_030421, GW190708_232457,
and GW190910_112807, which are detected above the
required SNR threshold only in the LIGO Livingston
detector, and for GW190630_185205, GW190701_
203306, and GW190814, where the inclusion of Virgo
is essential for determining event significance. The differ-
ence in candidate event recovery between PyCBC and GstLAL

is also consistent with the results of the simulation
presented in Sec. IV C. After accounting for differences
in analyzed data, the GstLAL and PyCBC methods detect a
comparable number of candidate events.
The remaining differences between the candidate event

lists from GstLAL (GW190426_152155, GW190527_
092055, GW190909_114149, and GW190929_012149)
and PyCBC (GW190413_052954, GW190514_065416,
and GW190719_215514) arise from the low SNR of each
event (SNR≲ 10). Small fluctuations in SNR caused by
different PSD estimation and data segmentation between
pipelines lead to differences in significance estimation.
This list of low SNR candidate events, which are identified
by only one pipeline, also contains the three candidate
events with the highest minimum FAR among the pipelines
(GW190426_152155, GW190719_215514, and
GW190909_114149) which have the highest likelihood
among the full candidate event list of being caused
by noise.
Since 2 April 2019 20:00 UTC, the LVC produced

automated, public preliminary GCN notices for gravita-
tional-wave candidate events appearing in two or more
interferometers with FARs less than 6 per year before a
multiple analysis trials factor was applied, resulting in an
effective threshold of 1.2 yr−1 [248]. On 11 June 2019, this
threshold was extended to include gravitational-wave
candidate events appearing in only one interferometer
and satisfying the same FAR threshold. During O3a, 33
candidate events are disseminated as plausible astrophysi-
cal signals; seven are not recovered above the threshold
considered in this work [249].
S190510g, S190718y, S190901ap, S190910d,

S190910h, S190923y, and S190930t [241–247] are the
seven candidate events disseminated via GCNs which are
not recovered here. S190718y, S190901ap, S190910h, and
S190930t are initially identified as single-detector candi-
date events (with an SNR above threshold in only one
detector) with FARs of 1.14, 0.22, 1.14, and 0.47 yr−1,
respectively. Relaxing the demand for coincident observa-
tion across interferometers allows LVC analyses to report
on additional astrophysically interesting candidate events
[172,250] but also removes a powerful check on the search
background and leads to larger uncertainties in the FAR.
All public alerts are subsequently followed up in low
latency to assess whether the analysis pipelines and
detectors are operating as expected. The low-latency
follow-up of S190718y, S190901ap, S190910h, and
S190930t does not uncover any reason to retract these
candidate events based on data quality. However, after
offline reanalysis with additional background statistics,
these four single-detector candidate events are no longer
significant enough to merit inclusion in Table IV.
The remaining three public alert candidate events not

recovered here—S190510g, S190910d, and S190923y—
are found in coincidence in low latency, albeit at modest
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TABLE IV. Gravitational-wave candidate event list. We find 39 candidate events passing the FAR threshold of 2.0 yr−1 in at least one of
the four searches. Except for previously published events, the gravitational-wave name encodes the UTC date with the time of the event
given after the underscore. Bold-faced names indicate the events that were not previously reported. The second column denotes the
observing instruments. For each of the four pipelines, cWB, GstLAL, PyCBC, and PyCBC BBH, we provide the FAR and network SNR. Of the
39 candidate events, the five that are found above the required SNR threshold in only one of the gravitational-wave detectors are denoted by
a dagger (†). For candidate events found above threshold in only one detector (single-detector candidate events), the FAR estimate involves
extrapolation. All single-detector candidate events in this list by definition are rarer than the background data collected in this analysis.
Therefore, a conservative bound on the FAR for triggers denoted by † is approximately 2 yr−1. GW190521, GW190602_175927,
GW190701_203306, and GW190706_222641 are identified by the cWB high-mass search as described in Sec. IVA. GstLAL FARs are
capped at 1 × 10−5 yr−1 to be consistent with the limiting FARs from other pipelines. � � � indicate that a pipeline does not find the event
below the specified 2.0 yr−1 threshold. Blank entries indicate that the data are not searched by a pipeline. The probability that an event is
astrophysical in origin as described in Sec. IVD is indicated in the column pastro.

Name Instrument cWB GstLAL PyCBC PyCBC BBH

FAR (yr−1) SNRa FAR (yr−1) SNR pastro FAR (yr−1) SNRa pastro FAR (yr−1) SNRa pastro

GW190408_181802 HLV <9.5 × 10−4 14.8 < 1.0 × 10−5 14.7 1.00 <2.5 × 10−5 13.5 1.00 <7.9 × 10−5 13.6 1.00
GW190412 HLV <9.5 × 10−4 19.7 <1.0 × 10−5 18.9 1.00 3.1 × 10−5 17.9 1.00 <7.9 × 10−5 17.8 1.00
GW190413 052954 HLV � � � � � � � � � � � � � � � � � � � � � � � � 7.2 × 10−2 8.6 0.98
GW190413 134308 HLV � � � � � � 3.8 × 10−1 10.0 0.95 � � � � � � � � � 4.4 × 10−2 9.0 0.98
GW190421_213856 HL 3.0 × 10−1 9.3 7.7 × 10−4 10.6 1.00 1.9 × 109 10.2 0.89 6.6 × 10−3 10.2 1.00
GW190424 180648 L 7.8 × 10−1† 10.0 0.91
GW190425 LV 7.5 × 10−4† 13.0 � � �
GW190426_152155 HLV � � � � � � 1.4 × 100 10.1 � � � � � � � � � � � � � � � � � � � � �
GW190503_185404 HLV 1.8 × 10−3 11.5 <1.0 × 10−5 12.1 1.00 3.7 × 10−2 12.2 1.00 <7.9 × 10−5 12.2 1.00
GW190512_180714 HLV 8.8 × 10−1 10.7 <1.0 × 10−5 12.3 1.00 3.8 × 10−5 12.2 1.00 <5.7 × 10−5 12.2 1.00
GW190513_205428 HLV � � � � � � <1.0 × 10−5 12.3 1.00 3.7 × 10−4 11.8 1.00 <5.7 × 10−5 11.9 1.00
GW190514 065416 HL � � � � � � � � � � � � � � � � � � � � � � � � 5.3 × 10−1 8.3 0.96
GW190517_055101 HLV 6.5 × 10−3 10.7 9.6 × 10−4 10.6 1.00 1.8 × 10−2 10.4 1.00 <5.7 × 10−5 10.2 1.00
GW190519_153544 HLV 3.1 × 10−4 14.0 <1.0 × 10−5 12.0 1.00 <1.8 × 10−5 13.0 1.00 <5.7 × 10−5 13.0 1.00
GW190521 HLV 2.0 × 10−4 14.4 1.2 × 10−3 15.0 1.00 1.1 × 100 12.6 0.93 � � � � � � � � �
GW190521_074359 HL <1.0 × 10−4 24.7 <1.0 × 10−5 24.4 1.00 <1.8 × 10−5 24.0 1.00 <5.7 × 10−5 24.0 1.00
GW190527_092055 HL � � � � � � 6.2 × 10−2 8.9 0.99 � � � � � � � � � � � � � � � � � �
GW190602_175927 HLV 1.5 × 10−2 11.1 1.1 × 10−5 12.1 1.00 � � � � � � � � � � � � � � � � � �
GW190620_030421 LV 2.9 × 10−3† 13.1 1.00
GW190630_185205 LV <1.0 × 10−5† 15.6 1.00
GW190701_203306 HLV 5.5 × 10−1 10.2 1.1 × 10−2 11.6 1.00 � � � � � � � � � � � � � � � � � �
GW190706_222641 HLV <1.0 × 10−3 12.7 <1.0 × 10−5 12.3 1.00 6.7 × 10−5 11.7 1.00 <4.6 × 10−5 12.3 1.00
GW190707_093326 HL � � � � � � <1.0 × 10−5 13.0 1.00 <1.0 × 10−5 12.8 1.00 <4.6 × 10−5 12.8 1.00
GW190708_232457 LV 2.8 × 10−5† 13.1 1.00
GW190719_215514 HL � � � � � � � � � � � � � � � � � � � � � � � � 1.6 × 100 8.0 0.82
GW190720_000836 HLV � � � � � � <1.0 × 10−5 11.7 1.00 <2.0 × 10−5 10.6 1.00 <3.7 × 10−5 10.5 1.00
GW190727_060333 HLV 8.8 × 10−2 11.4 <1.0 × 10−5 12.3 1.00 3.5 × 10−3 11.5 1.00 <3.7 × 10−5 11.8 1.00
GW190728_064510 HLV � � � � � � <1.0 × 10−5 13.6 1.00 <1.6 × 10−5 13.4 1.00 <3.7 × 10−5 13.4 1.00
GW190731_140936 HL � � � � � � 2.1 × 10−1 8.5 0.97 � � � � � � � � � 2.8 × 10−1 8.2 0.96
GW190803_022701 HLV � � � � � � 3.2 × 10−2 9.0 0.99 � � � � � � � � � 2.7 × 10−2 8.6 0.99
GW190814 LV <1.0 × 10−5 22.2 1.00
GW190828_063405 HLV <9.6 × 10−4 16.6 <1.0 × 10−5 16.0 1.00 <1.5 × 10−5 15.3 1.00 <3.3 × 10−5 15.3 1.00
GW190828_065509 HLV � � � � � � <1.0 × 10−5 11.1 1.00 5.8 × 10−5 10.8 1.00 <3.3 × 10−5 10.8 1.00
GW190909_114149 HL � � � � � � 1.1 × 100 8.5 0.89 � � � � � � � � � � � � � � � � � �
GW190910_112807 LV 1.9 × 10−5† 13.4 1.00
GW190915_235702 HLV <1.0 × 10−3 12.3 <1.0 × 10−5 13.1 1.00 8.6 × 10−4 13.0 1.00 <3.3 × 10−5 12.7 1.00
GW190924_021846 HLV � � � � � � <1.0 × 10−5 13.2 1.00 <6.3 × 10−5 12.5 1.00 <3.3 × 10−5 12.4 1.00
GW190929_012149 HLV � � � � � � 2.0 × 10−2 9.9 1.00 � � � � � � � � � � � � � � � � � �
GW190930_133541 HL � � � � � � 5.8 × 10−1 10.0 0.92 3.4 × 10−2 9.7 1.00 3.3 × 10−2 9.8 0.99

a
PyCBC and cWB SNRs do not include Virgo. S190510g, S190718y, S190901ap, S190910d, S190910h, S190923y, and S190930t

[241–247] are candidate events disseminated via GCNs which are not recovered here. The SNR for GW190814 (22.2) differs from the
previously published value [33] because the non-observing-mode LIGO Hanford data are not analyzed in this work. The FAR of
GW190425 differs from Ref. [32] due to different background data and pipeline configuration. The SNR of GW190521 differs from
Ref. [34] due to the inclusion of subthreshold Virgo SNR.
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significance. S190510g is found in low latency by GstLAL

and assigned a FAR of 0.28 yr−1. There are initially data
quality concerns with S190510g [251], and offline follow-
up using an additional 24 h of background collection
reveals the candidate event to be less significant than
originally estimated [252]. Comparison to the full O3a
background corroborates that the candidate event no longer
passes the FAR threshold of 2.0 yr−1. S190910d is iden-
tified in low latency by the SPIIR compact binary search
pipeline [115] with a FAR of 0.12 yr−1. The compact
binary search pipeline MBTAOnline also records a low-
significance candidate event at this time. However, the
candidate event is not observed in low latency or offline
by GstLAL, PyCBC, or cWB as significant. Presently,
MBTAOnline and SPIIR are configured to run in low
latency only. S190923y is reported in low latency by PyCBC

and assigned a FAR of 1.51 yr−1. GstLAL and MBTAOnline
also record low-significance candidate events at this time.
No pipeline retains this candidate event in the offline
analysis below the threshold of 2.0 yr−1, and it is therefore
excluded from Table IV. These and other subthreshold
events will be explored further in a future publication.
The remaining 26 public alerts are recovered in our

offline analysis and included in the candidate event list
presented in Table IV. The table also includes 13 gravita-
tional-wave detections not previously reported. Four of
these detections—GW190424_180648, GW190620_
030421, GW190708_232457, and GW190910_112807—
have detection-level SNR (≥4) in only one of the two
LIGO detectors, making them single-detector observations
from the perspective of candidate event significance.
The incorporation of iDQ data quality into event ranking,
combined with tuning of the signal consistency tests to
further reject the O3a glitch background, improves
the sensitivity of the offline GstLAL analysis to single-
detector candidate events compared to the low-latency
configuration, which accounts for these new discoveries.
Nine new detections are observed in two or more inter-
ferometers and appear for the first time in Table IV:
GW190413_052954, GW190413_134308, GW190514_
065416, GW190527_092055, GW190719_215514,
GW190731_140936, GW190803_022701, GW190909_
114149, and GW190929_012149. Several of these detec-
tions are observed in low latency but do not meet the
criteria for public release. They all exhibit moderate net-
work SNRs (≲10). The offline analyses here differ from
their low-latency counterparts through having improved
template banks, improved use of data quality information,
improved data calibration, data cleaning, and improved
tuning to reject the nonstationary noise background
observed in O3a. These differences account for the new
moderate SNR candidate events.
During O3a, the LVC issues eight retractions for

public alerts that are promptly determined to be unlikely
to have originated from astrophysical systems. The LIGO

Livingston detector is more problematic for low-latency
analyses than in previous observing runs with the rate of
noise glitches being significantly higher than in O2 (see
Sec. III B). Low-latency detection, especially for candidate
events originating in only one interferometer, is especially
challenging during O3a.
S190405ar is the first retraction [253]. This notice is

distributed in error and is never considered to be of
astrophysical origin, because the event’s FAR is significantly
above threshold at 6800 yr−1. The remaining retractions are
caused by severely nonstationary noise. A glitch in LIGO
Hanford data leads to the identification and subsequent
retraction of S190518bb [254]. S190524q, S190808ae,
S190816i, S190822c, S190829u, and S190928c all exhibit
extreme nonstationary noise in the LIGO Livingston detector
[255–260]. S190822c is assigned a significant FAR at
identification but is observed only in a single interferometer.
As previously mentioned, single-detector triggers are subject
to higher uncertainties in FAR. Out of these triggers, an
automatic gating method deployed later in the observing run
used by searches in order to mitigate nonstationary noise in
the detectors would have vetoed S190822c. However, at the
time, this automatic gating was not being employed. FARs
calculated by the pipelines are correct if the data collected
so far are representative of the future data. Online pipelines
assign FARs using previously collected data, while offline
analyses have access to asynchronous background. If a new
nonstationary noise source emerges in the data during an
observing run, it is possible for it to be misidentified as a
candidate event. Although this misidentification can also
affect candidates observed in multiple interferometers,
single-detector candidates are especially susceptible to novel
noise sources seen for the first time in low latency. In some
cases where the impact of glitches is unknown, follow-up
analyses are performed to remove instrumental artifacts and
reassess the candidate event significance. After follow-up,
none of these eight retracted candidate events remain
significant. Subsequent offline analyses do not identify them
as significant, either.

VII. SOURCE PROPERTIES

We analyze the 39 candidate events shown in Table IV
with the parameter estimation techniques described in
Sec. V. For a subset of candidate events, event validation
procedures outlined in Sec. III C identify transient noise
that may impact the results of parameter inference. In order
to minimize the effect of this transient noise, candidate-
specific procedures are explored for all impacted candidate
events. In most cases, transient noise is mitigated through
the glitch-subtraction methods outlined in Sec. III D. After
application of these methods, the identified transient noise
is considered mitigated if the data surrounding the event
are consistent with Gaussian noise, as measured by the
variance of the measured power spectral density during the
time period containing the identified transient [97]. If data

GWTC-2: COMPACT BINARY COALESCENCES OBSERVED BY … PHYS. REV. X 11, 021053 (2021)

021053-17



are not Gaussian after glitch subtraction, we evaluate
the SNR lost by restricting the frequency range of data
considered in parameter inference to fully excise the
identified transient noise. In cases where the single-detector
SNR loss is below 10%, this reduced frequency range is
used in analyses. Otherwise, the nominal frequency range is
used. The full list of candidate events using candidate-
specific mitigation, along with the mitigation configuration,
is found in Table V.
Based on the investigations described in Appendix A, we

find that most gravitational-wave candidate events in this
catalog exhibit small changes in source parameter estimates
when spherical harmonic modes above l ¼ 2 are included.
However, these differences in aggregate could still affect
population-level studies, so we present as fiducial results
the combined posterior samples of HM runs for all BBHs
candidate events except GW190707_093326, GW190720_
000836, GW190728_064510, GW190915_235702,
GW190924_021846, and GW190930_133541. For these
six exceptions, we present combined IMRPhenomPv2–
SEOBNRv4P samples, because the effect of higher modes
is either negligible or subdominant to the systematics
between IMRPhenomPv2 and SEOBNRv4P results, as detailed
in Appendix A. GW190412 [236], GW190521 [34,35],
and GW190814 [33] are analyzed extensively in separate
publications with the HM waveform families SEOBNRv4PHM,
IMRPhenomPv3HM, or NRSur7dq4, so we present HM runs
for these candidate events as fiducial results here and defer
readers to those publications for details on those candidate
events [261].
GW190425, GW190426_152155, and GW190814

show indications of including at least one neutron star,
and so are also analyzed using tidal waveforms in addition
to IMRPhenomPv2 and SEOBNRv4P, and are discussed in

Sec. VII B. Further details on waveform systematics and
the waveforms employed in this work can be found in
Appendix A, and the full suite of posterior samples is
publicly available [262].
In the following subsections, we summarize the results

of our parameter estimation analyses and highlight candi-
date events of particular interest. To identify candidate
events with the most extreme parameter values, we repeat-
edly select one posterior sample at random from each event
and record which candidate events have the lowest and
highest values of each parameter. From these repeated
trials, we determine each event’s probability of having the
lowest or highest value for a given parameter. Table VI
shows 90% credible intervals on the source parameters
of all 39 candidate events using the priors described in
Sec. V C and waveforms specified above.
To provide an overview of the posterior distributions of

the source parameters for all GWTC-2 candidate events, we
show 90% credible regions for all candidate events in the
M-q and M-χeff planes in Figs. 6 and 7, respectively, and
the corresponding one-dimensional marginal posterior
distributions on m1, q, and χeff in Fig. 8.

A. Masses of sources with m2 > 3 M⊙

Our candidate event list includes compact binary merg-
ers that have higher total masses than those in GWTC-1 [8]
as well as mergers with component masses in the purported
lower mass gap of approximately 2.5–5 M⊙ [263–266].
Here, we describe the masses for candidate events with
m2 > 3 M⊙, which we can confidently expect to be BBHs.
The remaining candidate events are described separately in
Sec. VII B.
A majority of the masses of black holes reported herein

are larger than those reported via electromagnetic obser-
vations [267–269]. By repeatedly selecting one posterior
sample at random from each event and recording the
most massive among the ensemble, we find that the most
massive binary system is probably the one associated with
GW190521 [34,35]. This system has a 98% probability of
being the most massive, with a total mass of 163.9þ39.2−23.5 M⊙
and remnant mass 15.6þ36.8−22.4 M⊙, where we average over
SEOBNRv4PHM, NRSur7dq4, and IMRPhenomPv3HM waveform
families. This averaging is done for consistency with
other sources contained in this catalog, in contrast to the
individual results reported in Ref. [35], where the NRSur7dq4

results are highlighted. The more massive component in the
source of GW190521 has a 66% probability of being the
most massive BH detected in gravitational waves to date
(m1 ¼ 95.3þ28.7

−18.9 M⊙). GW190519_153544, GW190602_
175927, and GW190706_222641 also have notably high
total masses with over 50% posterior support for total
mass M > 100 M⊙.
The least massive O3a system with m2 > 3 M⊙ is prob-

ably (96%) the one associated with GW190924_021846

TABLE V. List of candidate-specific data usage and mitigation
methods for parameter estimates. Only candidate events for
which mitigation of instrumental artifacts is performed are listed.
The glitch-subtraction methods used for these candidate events
are detailed in Sec. III D. The minimum frequency is the lower
limit of data used in analyses of gravitational-wave source
properties for the listed interferometer.

Name Mitigation

GW190413_134308 L1 glitch subtraction, glitch-only model
GW190424_180648 L1 glitch subtraction, glitch-only model
GW190425 L1 glitch subtraction, glitch-only model
GW190503_185404 L1 glitch subtraction, glitch-only model
GW190513_205428 L1 glitch subtraction, glitch-only model
GW190514_065416 L1 glitch subtraction, glitch-only model
GW190701_203306 L1 glitch subtraction, glitchþ signal

model
GW190727_060333 L1 fmin∶50 Hz
GW190814 L1 fmin∶30 Hz; H1 nonobserving data

used
GW190924_021846 L1 glitch subtraction, glitch-only model
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TABLE VI. Median and 90% symmetric credible intervals on selected source parameters. The columns show source total mass M,
chirp mass M and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL, redshift z, final mass Mf,
final spin χf, and sky localization ΔΩ. The sky localization is the area of the 90% credible region. For GW190425, we show the results
using the high-spin prior (jχ⃗ij ≤ 0.89). We also report the network matched-filter SNR for all events. These SNRs are from
LALInference IMRPhenomPv2 runs, since RIFT does not produce the SNRs automatically, except for GW190425 and
GW190426_152155, which use the SNRs from fiducial runs, and GW190412, GW190521, and GW190814, which use IMRPhe-
nomPv3HM SNRs. For GW190521, we report results averaged over three waveform families, in contrast to the results highlighting one
waveform family in Ref. [34].

Event M ðM⊙Þ M ðM⊙Þ m1 ðM⊙Þm2 ðM⊙Þ χeff DL ðGpcÞ z Mf ðM⊙Þ χf ΔΩ ðdeg2Þ SNR

GW190408_181802 43.0þ4.2−3.0 18.3þ1.9−1.2 24.6þ5.1−3.4 18.4þ3.3−3.6 −0.03þ0.14−0.19 1.55þ0.40−0.60 0.29þ0.06−0.10 41.1þ3.9−2.8 0.67þ0.06−0.07 150 15.3þ0.2−0.3
GW190412 38.4þ3.8−3.7 13.3þ0.4−0.3 30.1þ4.7−5.1 8.3þ1.6−0.9 0.25þ0.08−0.11 0.74þ0.14−0.17 0.15þ0.03−0.03 37.3þ3.9−3.8 0.67þ0.05−0.06 21 18.9þ0.2−0.3
GW190413_052954 58.6þ13.3−9.7 24.6þ5.5−4.1 34.7þ12.6−8.1 23.7þ7.3−6.7 −0.01þ0.29−0.34 3.55þ2.27−1.66 0.59þ0.29−0.24 56.0þ12.5−9.2 0.68þ0.12−0.13 1500 8.9þ0.4−0.7
GW190413_134308 78.8þ17.4−11.9 33.0þ8.2−5.4 47.5þ13.5−10.7 3.18þ11.7−10.8 −0.03þ0.25−0.29 4.45þ2.48−2.12 0.71þ0.31−0.30 75.5þ16.4−11.4 0.68þ0.10−0.12 730 10.0þ0.4−0.5
GW190421_213856 72.9þ13.4−9.2 31.2þ5.9−4.2 41.3þ10.4−6.9 31.9þ8.0−8.8 −0.06þ0.22−0.27 2.88þ1.37−1.38 0.49þ0.19−0.21 69.7þ12.5−8.7 0.67þ0.10−0.11 1200 10.7þ0.2−0.4
GW190424_180648 72.6þ13.3−10.7 31.0þ5.8−4.6 40.5þ11.1−7.3 31.8þ7.6−7.7 0.13þ0.22−0.22 2.20þ1.58−1.16 0.39þ0.23−0.19 68.9þ12.4−10.1 0.74þ0.09−0.09 2800 10.4þ0.2−0.4
GW190425 3.4þ0.3−0.1 1.44þ0.02−0.02 2.0þ0.6−0.3 1.4þ0.02−0.02 0.06þ0.11−0.05 0.16þ0.07−0.07 0.03þ0.01−0.02 � � � � � � 1000 12.4þ0.3−0.4
GW190426_152155 7.2þ3.5−1.5 2.41þ0.08−0.08 5.7þ3.9−2.3 1.5þ0.8−0.5 −0.03þ0.32−0.30 0.37þ0.32−0.30 0.08þ0.04−0.03 � � � � � � 1300 8.7þ0.5−0.6
GW190503_185404 71.7þ9.4−8.3 30.2þ4.2−4.2 43.3þ9.2−8.1 28.4þ7.7−8.0 −0.03þ0.20−0.26 1.45þ0.69−0.63 0.27þ0.11−0.11 68.6þ8.8−7.7 0.66þ0.09−0.12 94 12.4þ0.2−0.3
GW190512_180714 35.9þ3.8−3.5 14.6þ1.3−1.0 23.3þ5.3−5.8 12.6þ3.6−2.5 0.03þ0.12−0.13 1.43þ0.55−0.55 0.27þ0.09−0.10 34.5þ3.8−3.5 0.65þ0.07−0.07 220 12.2þ0.2−0.4
GW190513_205428 53.9þ8.6−5.9 21.6þ3.8−1.9 35.7þ9.5−9.2 18.0þ7.7−4.1 0.11þ0.28−0.17 2.06þ0.88−0.80 0.37þ0.13−0.13 51.6þ8.2−5.8 0.68þ0.14−0.12 520 12.9þ0.3−0.4
GW190514_065416 67.2þ18.7−10.8 28.5þ7.9−4.8 39.0þ14.7−8.2 28.4þ9.3−8.8 −0.19þ0.29−0.32 4.13þ2.65−2.17 0.67þ0.33−0.31 64.5þ17.9−10.4 0.63þ0.11−0.15 3000 8.2þ0.3−0.6
GW190517_055101 63.5þ9.6−9.6 26.6þ4.0−4.0 37.4þ11.7−7.6 25.3þ7.0−7.3 0.52þ0.19−0.19 1.86þ1.62−0.84 0.34þ0.24−0.14 59.3þ9.1−8.9 0.87þ0.05−0.07 470 10.7þ0.4−0.6
GW190519_153544 106.6þ13.5−14.8 44.5þ6.4−7.1 66.0þ10.7−12.0 40.5þ11.0−11.1 0.31þ0.20−0.22 2.53þ1.83−0.92 0.44þ0.25−0.14 101.0þ12.4−13.8 0.79þ0.07−0.13 860 15.6þ0.2−0.3
GW190521 163.9þ39.2−23.5 69.2þ17.0−10.6 95.328.7−18.9 69.0þ22.7−23.1 0.03þ0.32−0.39 3.92þ2.19−1.95 0.64þ0.28−0.28 156.3þ36.8−22.4 0.71þ0.12−0.16 1000 14.2þ0.3−0.3
GW190521_074359 74.7þ7.0−4.8 32.1þ3.2−2.5 42.2þ5.9−4.8 32.8þ5.4−6.4 0.09þ0.10−0.13 1.24þ0.40−0.57 0.24þ0.07−0.10 71.0þ6.5−4.4 0.72þ0.05−0.07 550 25.8þ0.1−0.2
GW190527_092055 59.121.3−9.8 24.3þ9.1−4.2 36.5þ16.4−9.0 22.6þ10.5−8.1 0.11þ0.28−0.28 2.49þ2.48−1.24 0.44þ0.34−0.20 56.4þ20.2−9.3 0.71þ0.12−0.16 3700 8.1þ0.3−0.9
GW190602_175927 116.3þ19.0−15.6 49.1þ9.1−8.5 69.1þ15.7−13.0 47.8þ14.3−17.4 0.07þ14.3−0.24 2.69þ1.79−1.12 0.47þ0.25−0.17 11.0þ17.7−14.9 0.70þ0.10−0.14 690 12.8þ0.2−0.3
GW190620_030421 92.118.5−13.1 38.3þ8.3−6.5 57.1þ16.0−12.7 35.5þ12.2−12.3 0.33þ0.22−0.25 2.81þ1.68−1.31 0.49þ0.23−0.20 87.2þ16.8−12.1 0.79þ0.08−0.15 7200 12.1þ0.3−0.4
GW190630_185205 59.1þ4.6−4.8 24.9þ2.1−2.1 35.1þ6.9−5.6 23.7þ5.2−5.1 0.10þ0.12−0.13 0.89þ0.56−0.37 0.18þ0.10−0.07 56.4þ4.4−4.6 0.70þ0.05−0.07 1200 15.6þ0.2−0.3
GW190701_203306 94.3þ12.1−9.5 40.3þ5.4−4.9 53.9þ11.8−8.0 40.8þ8.7−12.0 −0.07þ0.23−0.29 2.06þ0.76−0.73 0.37þ0.11−0.12 90.2þ11.3−8.9 0.66þ0.09−0.13 46 11.3þ0.2−0.3
GW190706_222641 104.1þ20.2−13.9 42.7þ10.0−7.0 67.0þ14.6−16.2 38.2þ14.6−13.3 0.28þ0.26−0.29 4.42þ2.59−1.93 0.71þ0.32−0.27 99.0þ18.3−13.5 0.78þ0.09−0.18 650 12.6þ0.2−0.4
GW190707_093326 20.1þ1.9−1.3 8.5þ0.6−0.5 11.6þ3.3−1.7 8.4þ1.4−1.7 −0.05þ0.10−0.08 0.77þ0.38−0.37 0.16þ0.07−0.07 19.2þ1.9−1.3 0.66þ0.03−0.04 1300 13.3þ0.2−0.4
GW190708_232457 30.9þ2.5−1.8 13.2þ0.9−0.6 17.6þ4.7−2.3 13.2þ2.0−2.7 0.02þ0.10−0.08 0.88þ0.33−0.39 0.18þ0.06−0.07 29.5þ2.5−1.8 0.69þ0.04−0.04 14000 13.1þ0.2−0.3
GW190719_215514 57.8þ18.3−10.7 23.5þ6.5−4.0 36.5þ18.0−10.3 20.8þ9.0−7.2 0.32þ0.29−0.31 3.94þ2.59−2.00 0.64þ0.33−0.29 54.9þ17.3−10.2 0.78þ0.11−0.17 2900 8.3þ0.3−0.8
GW190720_000836 21.5þ4.3−2.3 8.9þ0.5−0.8 13.4þ6.7−3.0 7.8þ2.3−2.2 0.18þ0.14−0.12 0.79þ0.69−0.32 0.16þ0.12−0.06 20.4þ4.5−2.2 0.72þ0.06−0.05 460 11.0þ0.3−0.7
GW190727_060333 67.1þ11.7−8.0 28.6þ5.3−3.7 38.0þ9.5−6.2 29.4þ7.1−8.4 0.11þ0.26−0.25 3.30þ1.54−1.50 0.55þ0.21−0.22 63.8þ10.9−7.5 0.73þ0.10−0.10 830 11.9þ0.3−0.5
GW190728_064510 20.6þ4.5−1.3 8.6þ0.5−0.3 12.3þ7.2−2.2 8.1þ1.7−2.6 0.12þ0.20−0.07 0.87þ0.26−1.37 0.18þ0.05−0.07 19.6þ4.7−1.3 0.71þ0.04−0.04 400 13.0þ0.2−0.4
GW190731_140936 70.1þ15.8−11.3 29.5þ7.1−5.2 41.5þ12.2−9.0 28.8þ9.7−9.5 0.06þ0.24−0.24 3.30þ2.39−1.72 0.55þ0.31−0.26 67.0þ14.6−10.8 0.70þ0.10−0.13 3400 8.7þ0.2−0.5
GW190803_022701 64.5þ12.6−9.0 27.3þ5.7−4.1 37.3þ10.6−7.0 27.3þ7.8−8.2 −0.03þ0.24−0.27 3.27þ1.95−1.58 0.55þ0.26−0.24 61.7þ11.8−8.5 0.68þ0.10−0.11 1500 8.6þ0.3−0.5
GW190814 25.8þ1.0−0.9 6.09þ0.06−0.06 23.2þ1.1−1.0 2.59þ0.08−0.09 0.00þ0.08−0.06 0.24þ0.04−0.05 0.05þ0.009−0.010 25.6þ1.1−0.9 0.28þ0.02−0.02 19 24.9þ0.1−0.2
GW190828_063405 58.0þ7.7−4.8 25.0þ3.4−2.1 32.1þ5.8−4.0 26.2þ4.6−4.8 0.19þ0.15−0.16 2.13þ0.66−0.93 0.38þ0.10−0.15 54.9þ7.2−4.3 0.75þ0.06−0.07 520 16.2þ0.2−0.3
GW190828_065509 34.4þ5.4−4.4 13.3þ1.2−1.0 24.1þ7.0−7.2 10.2þ3.6−2.1 0.08þ0.16−0.16 1.60þ0.62−0.60 0.30þ0.10−1.10 33.1þ5.5−4.5 0.65þ0.08−0.08 660 10.0þ0.3−0.5
GW190909_114149 75.0þ55.9−17.6 30.9þ17.2−7.5 45.8þ52.7−13.3 28.3þ13.4−12.7 −0.06þ0.37−0.36 3.77þ3.27−2.22 0.62þ0.41−0.33 72.054.9−16.8 0.66þ0.15−0.20 4700 8.1þ0.4−0.6
GW190910_112807 79.6þ9.3−9.1 34.3þ4.1−4.1 43.9þ7.6−6.1 35.6þ7.6−7.2 0.02þ0.18−0.18 1.46þ10.3−0.58 0.28þ0.16−0.10 75.8þ8.5−8.6 0.70þ0.08−0.07 11000 14.1þ0.2−0.3
GW190915_235702 59.9þ7.5−6.4 25.3þ3.2−2.7 35.3þ9.5−6.4 24.4þ5.6−6.1 0.02þ0.20−0.25 1.62þ0.71−0.61 0.30þ0.11−0.10 57.2þ7.1−6.0 0.70þ0.09−0.11 400 13.6þ0.2−0.3
GW190924_021846 13.9þ5.1−1.0 5.8þ0.2−0.2 8.9þ7.0−2.0 5.0þ1.4−1.9 0.03þ0.30−0.09 0.57þ0.22−0.22 0.12þ0.04−0.04 13.3þ5.2−1.0 0.67þ0.05−0.05 360 11.5þ0.3−0.4
GW190929_012149 104.3þ34.9−25.2 35.8þ14.9−8.2 80.8þ33.0−33.2 24.1þ19.3−10.6 0.01þ0.34−0.33 2.13þ3.25−1.05 0.38þ0.49−0.17 101.5þ33.6−25.3 0.66þ0.20−0.31 2200 101þ0.6−0.8
GW190930_133541 20.3þ8.9−1.5 8.5þ0.5−0.5 12.3þ12.4−2.3 7.8þ1.7−3.3 0.14þ0.31−0.15 0.76þ0.36−0.32 0.15þ0.06−0.06 19.4þ9.2−1.5 0.72þ0.07−0.06 1700 9.5þ0.3−0.5
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(M ¼ 13.9þ5.1−1.0 M⊙) and likely also has the least massive
object over 3 M⊙ (85% probability and m2 ¼ 5.0þ1.4−1.9 M⊙).
For most sources detected in O3a, the mass ratio

posteriors have support at unity and, therefore, are con-
sistent with equal mass mergers. An exception is the source
of GW190412, which is the first event detected that has a
confidently unequal mass ratio (q ¼ 0.28þ0.12−0.06) and exhibits
strong signs of HM contributions to the waveform [236].
Although its mass ratio is confidently bounded away from
unity, GW190412 has only a 34% chance of having the
smallest mass ratio among O3a sources with m2 > 3 M⊙.

As seen in Figs. 6 and 8, the mass ratios are not well
constrained for many systems, so one or more could have a
smaller mass ratio than GW190412.

B. Sources with m2 < 3 M⊙

1. GW190425

The least massive O3a system is associated with
GW190425 and is likely a binary neutron star system
given the inferred masses (m1 ¼ 2.0þ0.6−0.3 M⊙ and m2 ¼
1.4þ0.3−0.3 M⊙), but constraints on the tidal parameters do

FIG. 6. Credible region contours for all candidate events in the plane of total mass M and mass ratio q. Each contour represents the
90% credible region for a different event. We highlight the previously published candidate events: GW190412, GW190425,
GW190521, and GW190814, the potential NSBH GW190426_152155, and, finally, GW190924_021846, which is most probably the
least massive system with both masses > 3 M⊙. The dashed lines delineate regions where the primary or secondary can have a mass
below 3 M⊙. For the region above the m2 ¼ 3 M⊙ line, both objects in the binary have masses above 3 M⊙.

FIG. 7. Credible region contours for all candidate events in the plane of chirp mass M and effective inspiral spin χeff . Each contour
represents the 90% credible region for a different event. We highlight the previously published candidate events (cf. Fig. 6), as well as
GW190517_055101 and GW190514_065416, which have the highest probabilities of having the largest and smallest χeff , respectively.
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FIG. 8. Marginal posterior distributions on primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff , and the
luminosity distance dL for all candidate events in O3a. The vertical extent of each colored region is proportional to one-dimensional
marginal posterior distribution at a given parameter value for the corresponding event.
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not rule out a NSBH or BBH origin. These estimates are
obtained with the PhenomPv2NRT model with a high-spin
prior that restricts dimensionless spin magnitudes of the
compact objects to be less than 0.89 and previously reported
in Ref. [32].
Although the inferred component masses of

GW190425’s source are consistent with masses of known
neutron stars [270–273], the total mass 3.4þ0.3−0.1 M⊙ is
greater than that of observed Galactic BNSs [274,275].
This difference raises the question of whether GW190425’s
source was formed in a different environment from the
double neutron star systems observed to date [32,276–279].
Extending the discussion of waveform systematics

reported with the discovery of GW190425 [32], we perform
four supplementary analyses using the nonprecessing EOB
models SEOBNRv4T_surrogate and TEOBResumS for low-spin and
high-spin priors. The results are summarized in Table VII.
All the analyses produce quantitatively similar results to the
corresponding nonprecessing analysis reported in the dis-
covery paper, and the two EOB models produce consistent
results between them.
For the low-spin prior, the results agree with the non-

precessing IMRPhenomDNRTidal analysis reported in the
discovery paper, with SEOBNRv4T_surrogate and TEOBResumS

recovering chirp mass as M ¼ 1.44þ0.02−0.02 M⊙ and effective
inspiral spin of χeff ¼ 0.01þ0.01−0.01 . When allowing larger
compact object spins, the results with IMRPhenom-
DNRTidal and EOB models exhibit some differences but,
overall, give consistent posteriors.
Our inferences about tidal parameters are likewise

consistent with the previous nonprecessing analyses.
We follow the procedure of Ref. [32] and reweight the
posteriors to a flat in Λ̃ prior. For the low-spin prior, the two
EOB models give very similar bounds, with Λ̃ constrained

below 630. For the high-spin prior, the TEOBResumS wave-
form model constrains the dimensionless tidal deformabil-
ity parameter better (Λ̃ ≤ 870) as compared to the other
waveform models, as seen in the top in Fig. 9.
The two EOB models also constrain the mass ratio better

than other waveforms (0.54–1.0) as can be seen in the
bottom in Fig. 9. The previously reported analyses that
allow for significant precessing spins have much greater
flexibility and, thus, for the high-spin prior, produce a more
asymmetric mass ratio posterior distribution than the two
nonprecessing updates reported here.
Finally, both the EOB models find the luminosity

distance of DL ¼ 0.16þ0.07−0.07 Gpc independent of the spin
prior used.

2. GW190814

Among the O3a events, GW190814’s source [33] has the
least massive secondary component after the sources of
GW190425 and GW190426_152155. GW190814’s less

TABLE VII. Source properties of GW190425 with different
waveform families. For the primary mass we give the 0%–90%
interval, while for the secondary mass and mass ratio we give the
10%–100% confidence intervals. The quoted 90% upper limits
for Λ̃ are obtained by reweighing its posterior distribution as
detailed in Appendix F of Ref. [32]. The top half of the table
describes values from low-spin prior (LS), while bottom half for
high-spin prior (HS). For LS, all the results are consistent with
each other, while for HS there are slight differences among
different waveforms.

Waveform m1=M⊙ m2=M⊙ q Λ̃

IMRPhenomD_NRTidal 1.6–1.9 1.5–1.7 0.77–1.0 ≤580
IMRPhenomPv2_NRTidal 1.6–1.9 1.5–1.7 0.77–1.0 ≤580
SEOBNRv4T_surrogate 1.6–1.9 1.5–1.7 0.77–1.0 ≤630
TEOBResumS 1.6–1.9 1.5–1.7 0.77–1.0 ≤600

IMRPhenomD_NRTidal 1.6–2.5 1.1–1.7 0.46–1.0 ≤1090
IMRPhenomPv2_NRTidal 1.6–2.5 1.1–1.7 0.45–1.0 ≤1080
SEOBNRv4T_surrogate 1.6–2.3 1.6–2.3 0.54–1.0 ≤1040
TEOBResumS 1.6–2.3 1.2–1.7 0.54–1.0 ≤870
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FIG. 9. Marginalized distributions for the combined dimen-
sionless tidal deformability parameter Λ̃ (top) and for mass ratio
(bottom) for BNS event GW190425. The solid lines correspond
to the high-spin prior, while the dashed to the low-spin prior. In
the top panel, the vertical lines mark the corresponding 90%
upper bound on Λ̃. SEOBNRv4T_surrogate constrains the mass
ratio better toward equal masses for high larger spins. The plot
and quoted 90% upper limits for Λ̃ are obtained by reweighing
posterior distribution as described in Appendix F of Ref. [32].
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massive component has mass m2 ¼ 2.59þ0.08−0.09 M⊙, making
its interpretation as a black hole or a neutron star unclear
[33]. GW190814 also has the most extreme mass ratio of all
the candidate events, q ¼ 0.112þ0.008−0.009 [33].

3. GW190426_152155

GW190426_152155 is the candidate event with the
highest FAR: 1.4 yr−1. Assuming it is a real signal of
astrophysical origin, we estimate its component masses to
be m1 ¼ 5.7þ3.9−2.3 M⊙ and m2 ¼ 1.5þ0.8−0.5 M⊙, raising the
possibility that it could have originated from either a
BBH or an NSBH source. The mass of the secondary
component is consistent with masses of (previously)
reported neutron stars [10,271,272,274], but the data
are uninformative about potential tidal effects, showing
essentially no difference between the prior and posterior
on Λ2 obtained from NSBH waveforms SEOBNRv4_ROM_

NRTidalv2_NSBH or IMRPhenomNSBH which we use for our
fiducial results. A more definitive assessment of this event
likely requires further observations to establish the rate of
astrophysical signals with comparable properties.

C. Spins

Most of the compact objects detected in O3a have spin
magnitudes consistent with zero, within uncertainties, but
in some cases the spins can be constrained away from zero.
Two systems have a > 50% chance of having at least one
black hole with dimensionless spin magnitude χi¼f1;2g >
0.8: GW190517_055101 has χi¼f1;2g > 0.8 with 77%
credibility, and GW190521 with 58% credibility. In addi-
tion to spin magnitudes, we also consider the effective
inspiral spins. As described in Sec. IV B, the effective
inspiral spin χeff is the mass-weighted combination of
aligned spins and is approximately conserved under pre-
cession. Effective inspiral spin posterior distributions
for all candidate events are shown in Figs. 7 and 8. We
find 11 systems that show signs of nonzero χeff . At 90%
credibility, GW190412, GW190425, GW190517_055101,
GW190519_153544, GW190620_030421, GW190706_
222641, GW190719_215514, GW190720_000836,
GW190728_064510, GW190828_063405, and
GW190930_133541 have sources with χeff > 0. No indi-
vidual systems are found to have χeff < 0 with ≥ 95%
probability, but the event with the lowest χeff in O3a is
probably GW190514_065416 with χeff ¼ −0.19þ0.29−0.32 . The
surplus of events with χeff > 0 compared to none with
χeff < 0 suggests that the spin orientations of black holes in
binaries are not isotropically distributed with respect to
their orbital angular momenta. This possibility is explored
further in Ref. [37].
The BBHwhich most likely has the largest measured χeff

is GW190517_055101 (χeff ¼ 0.52þ0.19−0.19). It has a 60%
posterior probability of having the highest χeff , followed by
GW190719_215514 (χeff ¼ 0.32þ0.29−0.31) with 12%.

In some cases, the joint χeff and mass-ratio measurement
for an event enables a tighter measurement of the spin
magnitude of the primary mass than for candidate events
with mass ratios closer to unity. For example, we find
primary spin magnitudes of χ1 ¼ 0.40þ0.40−0.35 for the source of
GW190720_000836 and χ1 ¼ 0.32þ0.37−0.28 for the source of
GW190728_064510. Posterior distributions on spin mag-
nitudes and tilt angles are shown in Fig. 10 for these two
candidate events and other select systems that exhibit
nonzero spins.
The magnitude of spin precession in the waveform can

be partially captured by the effective precession spin
parameter χp, which includes the projection of component
spin vectors onto the orbital plane [197,198]. To identify
events for which the data constrain χp, we compare the χp
priors—conditioned on the posteriors of χeff—to the χp
posteriors, as done in Ref. [8]. Conditioning the χp prior on
the χeff posterior accounts for the correlated prior between
χeff and χp in the default spin prior choices presented in
Sec. V. Figure 11 shows the one-dimensional posterior and
(χeff -conditioned) prior distributions on χp for events with
Jensen-Shannon (JS) divergence [280] D

χp
JS > 0.05 bit,

where D
χp
JS is calculated between the χp posterior and

conditioned prior. For most of the candidate events, the
posterior on χp is similar to the prior, indicating that the
data are largely uninformative about precession, but there
are a few notable exceptions. The χp inference on
GW190814 is most striking with D

χp
JS ¼ 0.72 bit: The spin

magnitude of the primary mass of the system is constrained
to be near zero, resulting in a correspondingly small χp
value. After GW190814, D

χp
JS is largest for GW190412

[236,281] and GW190521 [34,35], with D
χp
JS ¼ 0.18 bit

and D
χp
JS ¼ 0.15 bit, respectively. Unlike GW190814, the

χp posterior distributions for these events are constrained
away from zero, showing preference for precession in
these systems. The tilt angle of GW190412’s more massive
component’s spin with respect to the Newtonian orbital
angular momentum is particularly well constrained to
θLS1 ¼ 0.80þ0.54−0.35 , as seen in Fig. 10. To further investigate
possible precession in these signals, we compute the
precession SNR ρp [282,283], which characterizes the
observability of precession in gravitational-wave data.
GW190412 has the largest precession SNR in O3a with
a median ρp ¼ 3.0. Despite parameter estimation prefer-
ring high χp for GW190521, we calculate ρp ¼ 0.7
showing that the measurable precession in the signal is
small due to the short signal duration. Using empirical
relations between ρp and Bayes’ factors for precession
[284,285], we see that the corresponding Bayes’ factors
for precession also only mildly favor precession. A
population-level analysis of the GWTC-2 spins is pre-
sented in Ref. [37] and finds evidence for the presence of
spin precession in the population.
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D. Three-dimensional localization

The most distant event, after accounting for measure-
ment uncertainties in distance, is most probably
GW190413_134308, with an estimated luminosity distance
and redshift of DL ¼ 4.45þ2.48−2.12 Gpc and z ¼ 0.71þ0.31−0.30 ,
respectively, approximately twice the luminosity distance
of the most distant source from GWTC-1, GW170729 [8],
and comparable to the distance for gravitational-wave
candidate GW170817A [22] (not to be confused with
the BNS signal GW170817). However, GW190909_
114149, GW190514_065416, GW190521, GW190706_
222641, and GW190719_215514 have similarly large
distances to GW190413_134308. With candidate events
at these cosmological distances, we can more readily
measure the Hubble constant and the evolution of the
BBH merger rate over cosmic time. Such analyses are
performed in Ref. [37]. The closest source detected in
O3a is GW190425, with an inferred luminosity distance
of DL ¼ 0.16þ0.07−0.07 Gpc, about 4 times the distance for
GW170817.
Overall, GW190814 is the best localized event detected

in O3a. The contour encompassing 90% of this event’s

two-dimensional sky position posterior is ΔΩ ¼ 19 deg2,
and 90%of this event’s 3D sky position posterior is contained
in ΔV90¼3.2×10−5Gpc3. Although GW190814 was ini-
tially detected in only LIGO Livingston and Virgo, it was
reanalyzed with LIGO Hanford data, enabling the strong
constraint on 3D source position. GW190412 and
GW190701_203306 are also relatively well localized with
ΔΩ ¼ 21 deg2, ΔV90 ¼ 0.035 Gpc3 and ΔΩ ¼ 46 deg2,
ΔV90 ¼ 0.035 Gpc3, respectively, and are both detected in
all three detectors. GW190424_180648 is detected and
analyzed only in Livingston data and, therefore, has the
largest localization area and volume with ΔΩ ¼ 28000 deg2

and ΔV90 ¼ 28 Gpc3. Credible intervals on each source’s
distance and sky area are shown in Table VI. Probability
density skymaps for all events are available as part of the data
release [262].

VIII. WAVEFORM RECONSTRUCTIONS

Template-based [179,286] and minimally modeled meth-
ods [107,112,287] are complementary techniques for pro-
ducing waveform reconstructions. Waveform templates

FIG. 10. Estimates of the dimensionless spin parameters χ⃗i ¼ cS⃗i=ðGm2
i Þ for merger components of selected sources. Each pixel’s

radial distance from the circle’s center on the left (right) side of each disk corresponds to the spin magnitude jχ⃗j of the more (less)
massive component, and the pixel’s angle from the vertical axis indicates the tilt angle θLS between each spin and the Newtonian orbital
angular momentum. Pixels have equal prior probability, and shading denotes the posterior probability of each pixel, after marginalizing
over azimuthal angles.
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provide a mapping between the shape of the waveforms and
the parameters of the source, such as the masses and spins
of a binary system, but are limited to those sources for
which we have models. Minimally modeled reconstruc-
tions make it possible to discover unexpected phenomena,
but they do not provide a direct mapping to the physical
properties of the source. Currently available waveform
templates for binary mergers are based on various approx-
imations and numerical solutions to Einstein’s equations
that cover a subset of the full parameter space. These
waveform templates may, thus, fail to capture some features
of the signal. A more exotic possibility is that gravity
behaves differently than predicted by general relativity. One
way to test these scenarios is to compare the template-based
and minimally modeled waveform reconstructions.
A standard measure of the agreement between two

waveforms h1 and h2 is the match, or overlap

Ohh1; h2i ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð7Þ

where hajbi denotes the noise-weighted inner product
[143,180]. The match is constrained to be ≤1.
For each event, the matches are computed between the

maximum likelihood template-based waveforms and two
minimally modeled waveform reconstruction methods,
cWB [112] and BW [107], using data that contain the

FIG. 11. Posterior and prior distributions on the effective
precession spin parameter χp for select events. The χp prior
shown on the right half of each leaf is conditioned on the posterior
of χeff , since the default prior in sampling contains correlations
between χp and χeff .

FIG. 12. p-value plot for the candidate events reconstructed
by the minimally modeled pipelines in O3a. The upper panel is
from the BW analysis, and the lower panel is from the cWB
analysis. The cWB analysis includes the candidate events that are
both detected and reconstructed (listed in Table IV) and those that
are detected but reconstructed offline. (GW190513_205428,
GW190707_093326, GW190728_064510, GW190814, and
GW190828_065509). The BW analysis uses the same selection
of BBH candidate events as are used for testing general relativity
[36]. The p values are sorted in increasing order and plotted vs
the order number (which is also the cumulative number of
candidate events). Each p value is obtained from the observed
on-source match value and the corresponding off-source distri-
bution of the match values from off-source injections. The green
band indicates the theoretical 90% symmetric distribution about
the null hypothesis (dark green line). Only deviations below the
green 90% confidence band indicate disagreement, and we see
that there are none. A few of the cWB p values are above the
band, indicating either a statistical fluctuation or an overfitting,
which we attribute to a small asymmetry between the way the
on-source and off-source matches are computed.
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event (on-source data). To ascertain whether these match
values are in line with expectations, waveforms from the
template-based analysis are added to data near, but not
including, each event (off-source data). The minimally
modeled waveform reconstructions are repeated multiple
times on these off-source data to estimate the distribution of
match values we would expect for each event. For each
event, these distributions are used to compute a p value,
given by the fraction of off-source match values that are
below the on-source match. For some of the lower SNR
candidate events, the minimally modeled methods are
unable to reconstruct the signals, and these candidate
events are excluded from the analysis. Details of the
analysis procedure, and additional results, can be found
in Appendix B.
Figure 12 shows the p values for the analyzed candidate

events sorted in increasing order [287,288]. Events with
p values above the diagonal have on-source matches that
are higher than expected, while those below the line have
matches that are lower than expected. The cWB analysis
shows some events outside the theoretical 90% band for
the single-order statistic, which can be due to statistical
fluctuations. Because of correlations between p values in
the ordered plot, for 20p values the probability of finding
exactly four p values outside the 90% band as in Fig. 12 is
5.2%, although it may also point to a systematic effect in
the analysis. Since the p values are higher than expected,
there is no evidence of a discrepancy with the template-
based analysis. Our tests also indicate that, if there is indeed
a systematic effect, it may originate from an overestimate of
the off-source matches no larger than 2%. Further details
are given in Appendix B. Overall, the p-value distributions
support the null hypothesis that the minimally modeled
waveform reconstructions are consistent with the general-
relativity-derived waveform templates.

IX. CONCLUSION

We have presented the results from a search for compact
binary coalescence signals in the first part of the third
observing run of Advanced LIGO and Advanced Virgo.
During the period of observations, spanning 1 April to 1
October 2019, the three detectors had sensitivity that
significantly exceeded previous observing runs, with median
BNS inspiral ranges of 108 (Hanford), 135 (Livingston), and
45 Mpc (Virgo). This improved sensitivity allowed us to
greatly expand the number of known compact binary
mergers, adding 39 new gravitational-wave events to the
11 we have previously reported in GWTC-1 [8].
We performed parameter estimation on these 39 new

GWTC-2 signals using a range of waveform models,
allowing us to incorporate the effect of HMs in the
inference of source parameters for BBH systems and to
compare to the systematic differences between waveform
families. We find that the sources of these signals include
BBHs that are more massive, farther away, and more

asymmetric in mass ratio than any sources in GWTC-1,
as well as three binaries with at least one component of
mass < 3 M⊙. These latter systems may include the first
detected NSBH mergers; however, there is insufficient
SNR to perform an informative measurement of the tidal
deformability that would definitively indicate whether they
had an NSBH or BBH origin. We expanded our analysis of
the potential BNS signal to encompass further waveforms
which include tidal effects, finding agreement with pre-
viously reported results [32].
Our analyses recovered 11 sources with positive effec-

tive inspiral spin but zero with negative (at 90% credi-
bility). Although no individual binary in O3a has χeff < 0
with high credibility, a hierarchical population analysis
[37] of LVC-reported events to date indicates a nontrivial
fraction of binaries have negative effective inspiral spin.
This result would be consistent with the independent
observation of gravitational-wave candidate GW170121,
which was found to have significant probability of having
χeff < 0 [23,27]. We also examined the evidence for
misalignment of orbital and component angular momenta,
which would be an indication of a dynamical formation
channel and produce precession of the orbital plane. We
find only mild evidence in favor of precession in the most
significant case of GW190412 [236,281]. We also per-
formed consistency checks between the waveform models
and the observed data, finding no statistically significant
differences.
A pair of companion papers make use of the events in

GWTC-2 to study source populations and fundamental
physics. The inferred population distribution of compact
object mergers is described in Ref. [37], which reports an
updated BBH merger rate density of 23.9þ14.9

−8.6 Gpc−3 yr−1

and rate density for BNS of 320þ490
−240 Gpc−3 yr−1. This paper

also investigates mass and spin distributions and finds
evidence for a population of BBH systems with spins
misaligned from the orbital plane. Eight tests of general
relativity are reported in Ref. [36], showing no evidence for
violations of Einstein’s theory of gravity, leading to some of
the best constraints on alternative theories to date.
The online gravitational-wave transient catalog repre-

sents a cumulative set of events found in LIGO-Virgo data,
including detections presented in GWTC-1 and now also
events from the first six months of the O3 observing run.
O3 continued from November 2019 until March 2020.
Analysis of the second portion (O3b) is currently in
progress, and events found during this period will be added
in the next update.
The Advanced LIGO and Advanced Virgo detectors are

currently undergoing commissioning to further improve
their sensitivity and will be joined in their fourth observing
run by the KAGRA detector [289]. This upgrade should
lead to improvements in the detection rate and source
localization, improving the prospects for multimessenger
observation of future sources [290,291].
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Data products associated with this catalog are available
through the Gravitational Wave Open Science Center
(GWOSC) [262]. Data associated with all events described
in this paper are available through the GWOSC event
portal, including calibrated strain time series, parameter
estimation posterior samples, tables of 90% credible
intervals for physical parameters, and search pipeline
results. These data products may be accessed through a
Web browser or open-source client package [292]. We
provide a public data release associated with the results
contained in this paper [293], which includes the data
behind the figures, the simulation data used in estimating
search sensitivity, and the posterior samples used in
estimating the source properties. Full results from the
injection campaign are available via a data release [294].
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APPENDIX A: WAVEFORM SYSTEMATICS

The choice of waveform influences our inferences of
source properties [8,301,302]. As such, we employ multi-
ple waveform families in the inference of each event’s
source parameters. The full list of models represented in
our publicly available results for each event is shown in
Table VIII.
There are many tools designed to quantify difference

between probability distributions, one of which is the
Kullback-Leibler (KL) divergence [303]. It is defined by

DKLðpjqÞ ¼
Z

pðϑÞ log2
�
pðϑÞ
qðϑÞ

�
dϑ; ðA1Þ

where pðϑÞ and qðϑÞ are two probability distributions.
However, the KL divergence is not symmetric,DKLðpjqÞ ≠
DKLðqjpÞ, and furthermore DKL can diverge if the prob-
ability distributions are disjoint, which makes it impractical
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to use when comparing posterior distributions of parameter
estimation runs.
Both of these issues are addressed by the JS divergence

[280], which is a smoothed and symmetrized version of
DKL. It is defined as

DJSðp; qÞ≡ 1

2
½DKLðpjsÞ þDKLðqjsÞ�; ðA2Þ

where s ¼ ðpþ qÞ=2 is the average distribution. By con-
struction, the JS divergence is symmetric, and it satisfies
0 ≤ DJS ≤ 1 bit, which follows from

DKLðpjsÞ ¼
Z

pðϑÞ log2
�

2pðϑÞ
pðϑÞ þ qðϑÞ

�
dϑ

≤
Z

pðϑÞ log2
�
2pðϑÞ
pðϑÞ

�
dϑ ¼ 1 bit: ðA3Þ

TABLE VIII. Summary of the waveform models used for the analyses, available in the data release. Fiducial results used for the main
presentation in Sec. VII are shown in bold. Where multiple bold waveforms are listed, equal numbers of posterior samples from runs
with those waveforms are combined. For GW190425, HS and LS suffixes correspond to high-spin (jχ⃗ij ≤ 0.89) and low-spin
(jχ⃗ij ≤ 0.05) priors, respectively.

Event Available runs

GW190408_181802 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190412 IMRPhenomD, IMRPhenomHM, IMRPhenomPv2, IMRPhenomPv3HM, SEOBNRv4HM_ROM,
SEOBNRv4P, SEOBNRv4PHM, SEOBNRv4_ROM

GW190413_052954 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190413_134308 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190421_213856 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190424_180648 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190425 IMRPhenomD_NRTidal-HS, IMRPhenomD_NRTidal-LS, IMRPhenomPv2_NRTidal-HS,
IMRPhenomPv2_NRTidal-LS, SEOBNRv4T_surrogate_HS, SEOBNRv4T_surrogate_LS,

TEOBResumS-HS, TEOBResumS-LS, TaylorF2-HS, TaylorF2-LS
GW190426_152155 IMRPhenomNSBH, IMRPhenomPv2, SEOBNRv4PHM, SEOBNRv4_ROM_NRTidalv2_NSBH, TaylorF2
GW190503_185404 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190512_180714 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190513_205428 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190514_065416 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190517_055101 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190519_153544 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190521 IMRPhenomPv3HM, NRSur7dq4, SEOBNRv4PHM

GW190521_074359 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190527_092055 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190602_175927 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190620_030421 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190630_185205 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190701_203306 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190706_222641 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190707_093326 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190708_232457 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190719_215514 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190720_000836 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190727_060333 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190728_064510 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190731_140936 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190803_022701 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P
GW190814 IMRPhenomD, IMRPhenomHM, IMRPhenomNSBH, IMRPhenomPv3HM, SEOBNRv4HM_ROM,

SEOBNRv4PHM, SEOBNRv4_ROM, SEOBNRv4_ROM_NRTidalv2_NSBH
GW190828_063405 IMRPhenomD, IMRPhenomPv2, NRSur7dq4, SEOBNRv4P, SEOBNRv4PHM

GW190828_065509 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190909_114149 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190910_112807 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM

GW190915_235702 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190924_021846 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190929_012149 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
GW190930_133541 IMRPhenomD, IMRPhenomPv2, SEOBNRv4P, SEOBNRv4PHM
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The convenient properties of the JS divergence make it a
useful measure of the difference between posterior proba-
bility distributions, and we adopt it to quantify the system-
atics in our results resulting from different analysis choices.
We use the JS divergence to investigate two sources

of systematics that can impact the results of inference: the
differences in the models with equivalent physics due to
modeling choices and differences due to the inclusion
of different physical effects. To assess the importance of
the former, we compare the results using our two fiducial
precessingwaveformmodels (IMRPhenomPv2 and SEOBNRv4P).
For the latter, we consider inclusion of HMs beyond the

dominant quadrupole by comparing SEOBNRv4P to models
that include HMs: SEOBNRv4PHM and NRSur7dq4. We compute
the JS divergence between one-dimensional marginal distri-
butions on two key parameters: mass ratio and effective
inspiral spin. We use a threshold of 0.007 bit to deem the
differences significant, which for a Gaussian corresponds to a
20% shift in the mean, measured in units of one standard
deviation. This threshold is larger than 0.002 bit, which is the
variation that is shown to arise due to stochastic sampling
[234]. In the following subsection, we describe how we use
our computed JS divergences and JS threshold to choose the
default parameter estimation results shown in this work.

FIG. 13. Jensen-Shannon divergence DJS of one-dimensional marginal distributions using different waveform models. The vertical
axes show DJS between one-dimensional posteriors using SEOBNRv4P and either SEOBNRv4PHM or NRSur7dq4. The horizontal axes show
DJS between one-dimensional posteriors using SEOBNRv4P and IMRPhenomPv2. The gray regions show the selection criteria from
Eq. (A4a): Any events in these regions are presented using higher-order multipole moment results in Sec. VII.
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1. Choice of waveform models for each event

We use the above considerations to select which wave-
form model(s) are used as the fiducial results presented
in Sec. VII. [304] In particular, we present results from
models with HMs if the following conditions are satisfied
for any of the three key parameters and any of the HM
models:

DJSðSEOBNRv4P;HMÞ
> DJSðSEOBNRv4P; IMRPhenomPv2Þ; ðA4aÞ

DJSðSEOBNRv4P;HMÞ > 0.007 bit: ðA4bÞ

When the conditions do not hold, we combine equal
number of samples from the results of IMRPhenomPv2 and
SEOBNRv4P and use the joint samples. The only exceptions
are GW190425 and GW190426_152155, for which we use
the tidal waveforms described in Sec. V, and GW190412,
GW190521, and GW190814, for which we know HMs are
significant [33,34,236]. Figure 13 shows the JS divergences
for every event (except GW190425, GW190426_152155,
GW190521, and GW190814) to compare the effects of
model systematics versus the effects of HMs. The gray
regions correspond to the criteria in Eq. (A4a): Any events
with DJS values in those regions are presented using HM
results in Sec. VII.

2. Waveform comparison—Model systematics

The in-depth studies of GW190412, GW190521, and
GW190814 quantitatively demonstrate how much the
choice of gravitational waveform impacts our interpretation
of real gravitational-wave events. We identify several

additional instances where analyses with our two fiducial
precessing waveform models (IMRPhenomPv2 and
SEOBNRv4P) have notable differences, as measured by the
JS divergence.
To illustrate the impact of systematics, we show in

Fig. 14 the posterior distributions for the events with
extremal JS divergence in the key parameters q and
χeff : GW190924_021846 and GW190521_074359. For
GW190924_021846, SEOBNRv4P prefers more moderate
mass ratios around 1=2 and shows only minor differences
in the other parameters. Meanwhile, GW190521_074359
shows the largest differences in the effective inspiral spin,
with SEOBNRv4P more clearly preferring nonzero values.
While the cases above demonstrate the moderate shifts

that result from model systematics, for all the events
presented in this paper, there is always substantial overlap
between the posteriors for all the key quantities we
consider. Therefore, systematic uncertainty remains sub-
dominant to statistical uncertainty.

3. Waveform comparison—Effect of higher-order
multipole moments modes

Previous investigations of GW190412, GW190521,
and GW190814 show that gravitational-wave radiation
beyond the quadrupole can significantly impact our infer-
ences on individual events [33,34,236]. Incorporating
nonquadrupole modes enables tighter inferences on the
source’s distance, component masses, and spins [211,301,
305–317]. HMs impact inferences about even short-
duration and low-amplitude sources because of the weaker
constraints our observations provide. For example, includ-
ing nonquadrupole modes can tighten constraints on the
source mass ratio for low-amplitude sources [305,306],

FIG. 14. Marginal posterior distributions on the mass ratio q, effective inspiral spin χeff , and source-frame chirp mass M for
GW190924_021846 and GW190521_074359, with the IMRPhenomPv2 and SEOBNRv4P waveform families.
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because high-mass ratio sources more efficiently produce
nonquadrupole modes.
We systematically apply one or two models with HM to

all sources in our catalog. We find that a majority of the
sources investigated have modest shifts in mass ratio or χeff
due to the impact of HMs.
To illustrate the impact of nonquadrupole modes,

Fig. 15 shows posterior inferences on GW190519_
153544, GW190602_175927, GW190706_222641, and
GW190929_012149 using one or two independent models
which include nonquadrupole modes (SEOBNRv4PHM and
NRSur7dq4). Using more complete waveform models, the
source of GW190519_153544 is inferred to be edge on, at a
smaller distance, a more asymmetric mass ratio and, thus, a
higher source-frame mass m1. Because of this source’s
favorable orientation, nonquadrupole modes have a signifi-
cant impact, with a Bayes factor for HMs of approximately
15. Similarly, nonquadrupole modes allow us to more
strongly exclude both extreme and comparable mass ratios
for the source responsible for GW190929_012149 and to
disfavor comparable masses for GW190706_222641.
Conversely, using the same two waveform models, the
high-mass source responsible for GW190602_175927 is
more confidently inferred to have mass ratio q closer to
unity, and, therefore, m2 is skewed to larger values.
Nonquadrupole modes also have a noticeable impact on
parameters of GW190630_185205 and GW190828_
065509, in particular, the mass ratio and luminosity distance.

APPENDIX B: WAVEFORM
CONSISTENCY TESTS

There are several different quantitative measures that can
be used to measure waveform consistency. These include

the residual SNR, which is found by subtracting the best-fit
waveform template hT from the data d and then applying
minimally modeled methods to search for any coherent
excess in the noise residual r ¼ d − hT . Additional mea-
sures of waveform consistency include the distance
between waveforms, Δ2hh1; h2i ¼ hh1 − h2jh1 − h2i, and
the match, or overlap, Ohh1; h2i.
The residuals test is applied as a test of general relativity

[9,10], at least within the precision with which the wave-
form models approximate general relativity. Distance and
match provide more sensitive measures of the waveform
consistency than the residuals test, since the extrinsic
parameters of the source, such as the arrival time, sky
location, and polarization, are constrained by the full
signal, while for the residuals test the extrinsic parameters
have to be constrained from the (usually small) difference
between the signal and the template. To compare the signal
reconstructions for the current catalog of sources, we adopt
the waveform match as our measure of waveform consis-
tency, since it does not depend on the overall amplitude of
the signals, making it a convenient choice when comparing
events with a range of amplitudes.
To make a quantitative assessment of the waveform

match values, we need to know how the match depends on
quantities such as the SNR and time-frequency volume
of the signals. Instrument noise leads to nonzero mis-
matches, MM ¼ 1 −O, even when using perfect templates.
For example, the maximum likelihood solution for a
perfect template has a mismatch with a mean and variance
given by [318]

E½MM� ≃ D − 1

2SNR2
; Var½MM� ≃ D − 1

2SNR4
; ðB1Þ

FIG. 15. Marginal posterior distributions on mass ratio q, effective inspiral spin χeff , and source-frame chirp mass M, for
GW190519_153544, GW190602_175927, GW190706_222641, and GW190929_012149 with the SEOBNRv4P, SEOBNRv4PHM, and
NRSur7dq4 waveform families.
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where D is the number of parameters that define the signal
model and where the reduction from D to D − 1 is because
the match is independent from the overall amplitude of the
signal. For the minimally modeled waveform reconstruc-
tions, the distributions of match values are more difficult to
predict. Using simulations, it is found that the mismatch
decreases with SNR, but more slowly than for templates,
since the effective dimension of the model increases with
SNR [108]. The mismatch also scales with the time-
frequency volume. For binary systems of a given SNR,

the mismatch is generally smaller for high-mass systems
[108,319,320]. Given these complexities, we choose to
empirically estimate the match distribution from simula-
tions for each event. As a proxy for the signal, we use fair
draws from the on-source template-based analysis and
inject these into data surrounding the event; the right
ascensions for the simulated signals are adjusted such
that the simulated source is at the same sky location in
the frame of the detectors. For the majority of events, the
waveform model used for the injections is IMRPhenomPv2.

FIG. 16. The upper panels show waveform reconstructions for GW190519_153544 in the LIGO Livingston detector. The waveform
posterior from the template-based analysis (shown in orange) is compared to the BWanalysis in the upper left and to the cWB analysis in
the upper right. The panels also show the 90% credible bands for the Bayesian LALInference and BW algorithms and the
90% confidence band for cWB derived from off-source injections, i.e., by injecting samples from the template-based analysis into data
surrounding the event and repeating the analysis multiple times (these bands are computed on an individual time sample basis). The
lower two panels show the distribution of overlap values when running BW and cWB on waveforms drawn from the template-based
analysis that are injected into data surrounding the event. The fraction of runs with matches below that of the on-source analysis give the
p value for the event.
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The exceptions are GW190412, GW190521, and
GW190814, where IMRPhenomPv3HM is used.
The cWB and BW algorithms are used to produce point

estimates for the waveform reconstructions for each of the
simulated events. For cWB the point estimate is a con-
strained maximum likelihood reconstruction, while for BW
the point estimate is the median of the waveform posterior
distribution. Figure 16 illustrates the results obtained for
GW190519_153544. The upper panels compare the tem-
plate-based LALInference waveform reconstruction in the
LIGO Livingston detector to the minimally modeled BW
and cWB reconstructions. The solid lines are point esti-
mates for the waveforms: for LALInference the maximum
likelihood; for BW the median of posterior draws; and
for cWB the constrained maximum likelihood. The panels
also show the 90% credible bands for the Bayesian
LALInference and BWalgorithms and the 90% confidence
band for cWB derived by injecting samples from the
template-based analysis into data surrounding the event
and repeating the analysis multiple times (these bands are
computed on an individual time sample basis). The lower
panels in Fig. 16 show the distribution of overlaps found
when running BWand cWB on simulated data with similar
properties to the event. Waveforms drawn from the on-
source LALInference analysis are injected into data sur-
rounding the event. The overlap between the injected
waveform and the point estimates from the BW and
cWB analyses of these injections are then used to produce
the histograms seen in Fig. 16. The distribution of the
match values defines a null distribution for each detected
event, which takes into account the variability of the
LALInference posterior distribution, the fluctuations of
the detector noise, and the waveform reconstruction errors.
The fraction of off-source analyses with overlaps below the
on-source match values, which are shown as vertical lines
in the lower panels in Fig. 16, defines the p value for
this event.
The same analysis procedure is repeated for a subset of

additional events. cWB uses only events that are above
the cWB search thresholds (resulting in a morphology-
dependent SNR threshold which is about 7–10 for the
events reported in this catalog), while for BW the analysis
is restricted to events where the on-source BW analysis
yields SNR > 7. Figure 17 shows the on-source match
values vs the off-source median match values with 90%
intervals. The upper panel shows the results of the BW
analysis, while the lower panel shows the results of the
cWB analysis. In both cases, the p values point to a good
agreement between the minimally modeled and template-
based reconstructions.
The discrepancies between the two plots may be ascribed

to different choices made in the two reconstruction algo-
rithms. cWB is both a detection and a reconstruction
pipeline. For this reason, reconstructions are performed
with the same production settings used in searches.

The production settings are optimized for noise rejection
and to enforce strong network coherency constraints. To
construct the match distributions, cWB uses about 2000–
3000 waveform injections per event; however, those
injections that are below the cWB thresholds are not
reconstructed: In the majority of cases reported here
(13), the reconstruction efficiency is greater than 80%,
while in a few other cases (7), the efficiency ranges from

FIG. 17. Off-source vs on-source match values for the candi-
date events in O3a. The upper panel displays the results of the
BW analysis, and the lower panel shows the results of the cWB
analysis. The on-source match on the horizontal axis is the value
obtained comparing the maximum likelihood waveform from
parameter estimation with point estimates from the minimally
modeled waveform reconstructions. The off-source match on the
vertical axis is the median value of the match distribution
obtained from off-source injection of sample waveforms from
the template-based posterior distribution. In both panels, the
errors bars denote the 90% equal-tailed confidence interval.
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15% to 50%. For each event, this efficiency depends on the
variability of the noise background. In cases of lower
efficiency, we also check that the waveforms that are
successfully reconstructed by cWB have parameter distri-
butions that are statistically indistinguishable from those of
the injected waveforms.
BW employs Bayesian inference to characterize detec-

tions made by the CBC and cWB search pipelines. As such,
no cuts are made on the waveform reconstructions, which
means that, for quiet signals, some of the samples are drawn
from the prior distribution, resulting in a wide spread in the
match distributions.
The distribution of match values for each event are

used to compute p values. The overall consistency of the
template-based and minimally modeled waveform recon-
structions can then be summarized by plotting the
p values, ranked in ascending order, against the theoreti-
cal distribution. In such plots, any significant deviations
below the plot diagonal point to events that should
undergo further analysis. The p values for the events
reconstructed by cWB and BWare shown in Fig. 12 in the
main text. Applying the Fisher test [321] to the ensemble
of p values yields combined p values of 0.57 for the BW
analysis and 0.99 for the cWB analysis, indicating that
there is no reason to reject the null hypothesis that the
template-based and minimally modeled analysis are in
agreement. The Fisher test is one sided in that it penalizes
only p values that are lower than expected. The cWB
analysis includes instances where the p values are higher
than predicted, indicating that the on-source matches are
higher than expected based on the off-source distributions.
The cause of this bias is likely due to an asymmetry
between the on-source and off-source analyses. The on-
source analysis computes the match between the maxi-
mum likelihood template-based waveform and its
reconstruction, while the off-source analysis computes
the match between the injected template and its
reconstruction. Ideally, the analysis would be symmetric,
with the maximum likelihood template used both on-
source and off-source, but the computational cost of
running the full template-based analysis on the thousands
of off-source injections is prohibitively expensive.

APPENDIX C: COSMOLOGICAL DISTANCE
RESAMPLING

For the luminosity distance, a prior that goes as D2
L is

enforced in the sampling, following the same procedure as
described in previous publications. As this assumption
becomes increasingly unrealistic as events are detected at
greater distances, the posterior distributions shown in this
paper are derived from a physically motivated prior that
incorporates cosmological effects. We perform rejection
sampling on the initial posterior samples to instead use a
prior corresponding to a uniform merger rate per comoving
volume in the rest frame of the source. Using a standard flat

ΛCDM cosmology, samples are accepted according to
the weight

wðzÞ ∝ 1

ð1þ zÞ
dVc

dVE

∝ ð1þ zÞ−2
�
DLEðzÞ
DH

þ ð1þ zÞ2
�

−1
: ðC1Þ

The initial 1=ð1þ zÞ factor accounts for time dilation of
the observed merger rate, dVc is the comoving volume
element, and dVE ¼ DL

2dΩ is the Euclidean volume
element. DH ¼ c=H0 is the Hubble distance and EðzÞ ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
for ΛCDM, and we use Hubble

constant H0 ¼ 67.9 km s−1Mpc−1 and matter density
Ωm ¼ 0.3065 ¼ 1 − ΩΛ [238].
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Ohme, G. Pratten, and M. Pürrer, Simple Model of
Complete Precessing Black-Hole-Binary Gravitational
Waveforms, Phys. Rev. Lett. 113, 151101 (2014).

[198] P. Schmidt, F. Ohme, and M. Hannam, Towards Models of
Gravitational Waveforms from Generic Binaries II: Mod-
elling Precession Effects with a Single Effective Precession
Parameter, Phys. Rev. D 91, 024043 (2015).

[199] S. Ossokine et al., Multipolar Effective-One-Body Wave-
forms for Precessing Binary Black Holes: Construction
and Validation, Phys. Rev. D 102, 044055 (2020).

[200] A. Buonanno and T. Damour, Effective One-Body Ap-
proach to General Relativistic Two-Body Dynamics, Phys.
Rev. D 59, 084006 (1999).

[201] A. Buonanno and T. Damour, Transition from Inspiral to
Plunge in Binary Black Hole Coalescences, Phys. Rev. D
62, 064015 (2000).

[202] P. Schmidt, M. Hannam, S. Husa, and P. Ajith, Tracking
the Precession of Compact Binaries from Their Gravita-
tional-Wave Signal, Phys. Rev. D 84, 024046 (2011).

[203] M. Boyle, R. Owen, and H. P. Pfeiffer, A Geometric
Approach to the Precession of Compact Binaries, Phys.
Rev. D 84, 124011 (2011).

[204] R. O’Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and
D. Shoemaker, Efficient Asymptotic Frame Selection for
Binary Black Hole Spacetimes Using Asymptotic Radia-
tion, Phys. Rev. D 84, 124002 (2011).

[205] E. Ochsner and R. O’Shaughnessy, Asymptotic Frame
Selection for Binary Black Hole Spacetimes II: Post-
Newtonian Limit, Phys. Rev. D 86, 104037 (2012).

[206] P. Schmidt, M. Hannam, and S. Husa, Towards Models
of Gravitational Waveforms from Generic Binaries: A
Simple Approximate Mapping between Precessing and
Non-precessing Inspiral Signals, Phys. Rev. D 86, 104063
(2012).

[207] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phenomenological Model for the Gravitational-Wave
Signal from Precessing Binary Black Holes with Two-
Spin Effects, Phys. Rev. D 100, 024059 (2019).

[208] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam,
Including Higher Order Multipoles in Gravitational-Wave
Models for Precessing Binary Black Holes, Phys. Rev. D
101, 024056 (2020).

[209] S. Babak, A. Taracchini, and A. Buonanno, Validating the
Effective-One-Body Model of Spinning, Precessing Binary
Black Holes against Numerical Relativity, Phys. Rev. D 95,
024010 (2017).

[210] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer,
Surrogate Models for Precessing Binary Black Hole
Simulations with Unequal Masses, Phys. Rev. Research
1, 033015 (2019).

[211] L. London, S. Khan, E. Fauchon-Jones, C. García, M.
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203Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy
204Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India

205Centro de Astrofísica e Gravitação (CENTRA), Departamento de Física, Instituto Superior Técnico,
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