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Abstract In this paper, we propose a unitary formu-
lation for evolutionary oligopoly models with memory.
In particular, we consider behavioral rules that are sta-
tionary at the Nash equilibria so that we can study the
stability of the oligopolistic model with memory with
generic strategies for determining quantities. Although
the introduction ofmemory does not affect the local sta-
bility properties of equilibria, we show how the pres-
ence of memory impacts the global dynamics of the
system and how the question about the role of mem-
ory does not always provide a clear answer in terms of
model complexity.
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1 Introduction

Dynamic models in physics, engineering, natural sci-
ences and economics have the common feature of
involving memory of some past states (or a continu-
ous portions of past states) to determine their future
time evolution (see, e.g., [15,26,27]). The inclusion
of past history in the time evolution adds nontrivial
complexities, thus introducing a trade-off between the
advantage of dealing with more realistic models and
the drawback of dynamic models which are more dif-
ficult to be studied. In social sciences, the inclusion
of memory in modeling human decisions may some-
times be considered as a method to represent learning
processes or discounted averaging methods (see, e.g.,
[3,16,17,21]).

In order to study the effects of increasing memory
in systems driven by repeated decisions of economic
agents, we consider an evolutionary dynamic model in
discrete time recently proposed in [10] and modify it
by introducing a recursive method that adds the pres-
ence of memory (or discounted past averaging) in the
decision process. The model describes an economic
system composed by a population of agents facing a
binary choice between two different behavioral strate-
gies; the payoff obtained by each agent as a conse-
quence of the chosen option is affected by the num-
ber of agents currently making the same choice and is
expressed in the form of an evolutionary game based on
replicator dynamics in discrete time. This mechanism
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describes how agents change their choices over time
according to the currently observed payoff differences.

However, decisions in real systems are not only
based on currently observed payoff differences but also
on information about past performances, which can
indeed influence agents’ decisions. In other words, a
realistic fitness measure to drive evolutionary pressure,
i.e., the emerging behavioral strategies prevailing in the
long run, should also take into account payoff patterns
accumulated along the recent history. Thus, the knowl-
edge of past performances is employed as information
set in order to decide the choices of future strategies,
and consequently the long-run evolution of the time-
evolving system. Of course, this kind of evolutionary
pressure requires a higher degree of information and
of computational ability. However, this does not nec-
essarily mean a higher degree of “rationality”. Indeed,
rationality means agents’ ability to exploit all available
information to correctly forecast future states of the
systems, i.e., to anticipate future outcomes. If they are
not able to make so good anticipations of future profits,
they may adopt current profits as an estimate of their
future realizations, that is they use naive expectations.
This is the assumption of the evolutionary model pro-
posed in [10]. However, in many economic systems,
agents employ some average of past observations in
order to assess future states.

The benefit (and rationality) of using such informa-
tion tomake better choices for the future is not obvious.
Indeed, on the one hand, this attitude could be regarded
as an effort to use in an improved (or at least computa-
tionally more refined) way the information agents have
at disposal, which accounts for improved rationality.
On the other hand, however, this could be seen as an
even lower degree of rationality, a sort of anchoring to
the past, or prejudice that prevents agents to update the
information available, i.e., cancel the past to look at the
present in order to estimate future states.

Papers concerning binary decisions with external-
ities have a long tradition in the social and eco-
nomic literature, see, e.g., [6,18,29,30]. Recently,
many authors, such as [22,24,25], introduced evolutive
adaptive processes to mimic how agents switch from
one choice to another according to the observed (or
expected) payoff differences. In particular, in this paper
we consider a discrete-time evolutionary model based
on replicator dynamics in the form proposed by [8], see
also [19] and [31], and we add a contribution about the
intriguing topic of the role played by the presence of

memory, i.e., the role of time lags in the decision pro-
cess when agents’ decisions are not only based on the
current payoffs observed but on past payoff differences
as well. An answer about the effect of memory on the
dynamics of the system reveals to be not univocal, as
several ambiguous conclusions can be found in the lit-
erature. (A comparison of the titles of references [9,11]
is quite emblematic.) In the context of binary games,
the problem of memory has been analyzed in [17] and
[7], whereas more references exist in oligopoly mod-
elling, see, e.g., [12–14,27], see also [2] for a complete
reference on dynamic oligopoly games.

In this paper, we generalize the evolutionary model
proposed in [10] by the inclusion of a weighted sum of
all previously observed payoffs, with exponentially (or
geometrically) distributed weights that discount past
outcomes, see also [4] for a related contribution. This
generalization does not modify the equilibrium points
of the original model, and we prove that it does not
affect their local stability properties as well. However,
numerical simulations show that some global dynamic
properties are influenced by the presence of memory,
in particular when oscillatory dynamics (periodic or
chaotic) occur. Periodic patterns become chaotic under
the influence of increasing memory, and vice versa.
Moreover, sufficiently high levels of memory give rise
to stabilization of the system at the Nash equilibrium
production.

The role of the memory in these models is still
an open question, and also our results do not give
an unambiguous answer. The most useful lesson that
can be learned concerns the fact that a local anal-
ysis is not enough to fully understand the possible
dynamic scenarios of the systems with memory. Even
if the recursive method to represent memory we have
proposed, following, e.g., [17], leads to a tractable
low-dimensional discrete dynamical system, our study
shows once more that when considering nonlinear sys-
tems both local and global analyses are necessary to
have better understanding of the system. Indeed, our
numerical simulations provide further insight into non-
linear phenomena and the related effects of the presence
of memory.

The structure of the paper is the following. In Sect. 2
we provide a general framework for formalizing evolu-
tionary oligopoly games with memory and local stabil-
ity analysis at symmetric equilibria in production for
generic behavioral rules. Section 3 shows an example
of such a model with two specific behavioral rules pro-
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posed in the literature, namely gradient dynamics and
local monopolistic approximation. Here, an example
of the results of local stability analysis of Sect. 2 is
obtained for this particular specification. In addition,
Sect. 3 presents some possible dynamic scenarios to
underline the role of memory in the system. Section 4
proposes some conclusive remarks.

2 Evolutionary oligopolies with memory

Let us assume that N oligopolists operate in amarket by
selling homogeneous goods. The economic structure of
the game is not known by the players. In particular, as it
often occurs in real cases, the oligopolists do not know
the functional form of the inverse demand function,
which specifies the selling price at time t , p(t), as a
function of total production Q(t) delivered to the mar-
ket at time t , i.e., p(t) = p(Q(t)).At anydiscrete time t
(decision-driven time) each oligopolist can set her pro-
duction plan according to one behavioral rule, which
prescribes her quantity to produce as a function of the
production of other players according to a distribution
of behavioral rules expected to prevail at time t + 1,
when production will be sold in the market. Let us con-
sider the simplest nontrivial case, given by twodifferent
behavioral rules that can be conceived by the players,
and let us denote by xi (t + 1), i = 1, 2, the production
plan of afirm formarket delivery at time t+1prescribed
by the behavioral rule i according to the information
available at time t . Moreover, let ri (t) ∈ [0, 1] be the
share of firms employing behavioral rule i at time t .
In our simple setting, with just two behavioral strate-
gies, the relation r1(t) + r2(t) = 1 holds for each time
t ; hence, we can rename the shares as r1(t) = r(t)
and r2(t) = 1 − r(t). A common assumption in these
kinds of deterministic discrete-time evolutionary mod-
els is that through a behavioral rule one can determine
inductively the production plan for time t +1 given the
state of the system at time t (productions and fraction
of employers of the behavioral rules), that is

xi (t + 1) = Hi
(
xi (t), x j (t), r(t)

)
, i = 1, 2; i �= j

(1)

Each behavioral rule is associated with an information
cost, relating the use of this rule to howmuch expensive
it is in terms of information and computing effort. In

the following, we denote by Ki ≥ 0 the information
cost associated with the behavioral rule Hi , which we
consider constant over time.

From the side of production costs, we assume that all
firms employ the same production technology and bear
the same production cost C(x), whose functional form
is correctly assessed by the players. Consequently, the
behavioral rule i entails an actual profit at time period
t given by

πi (t) = [p (Q(t)) − C (xi (t))] xi (t) − Ki (2)

from which an expected profit for the next time period
can be estimated as

πe
i (t + 1)

= [
p

(
Qe

i (t + 1)
) − C (xi (t + 1))

]
xi (t + 1) − Ki

= [
p

(
Qe

i (t + 1)
) − C

(
Hi

(
xi (t), x j (t), ri (t)

))]

× Hi
(
xi (t), x j (t), ri (t)

) − Ki (3)

In (3), the total expected quantity for time t + 1 by
agents employing behavioral rule i can be given by:

Qe
i (t + 1) = N

[
ri (t)xi (t + 1) + r j (t)x

e
j (t + 1)

]
,

(4)

xej (t + 1) being the quantity expected to be produced
by firms adopting the behavioral rule j and xi (t + 1)
is given by (1), i, j = 1, 2, i �= j . Another possible
choice for the total quantity expected in the market for
time t + 1 is through the so-called naive expectations,
that in this context assume the following form:

Qe(t+1) = Q(t) = N
[
ri (t)xi (t) + r j (t)x j (t)

]
(5)

Notice that, under naive expectations, the total
expected quantity is the same for all agents indepen-
dently on the employed behavioral rule so that in (5)
we can omit the subscript i for Qe(t + 1).

The quantity πe
i (t + 1) is assumed to provide an

estimate of the possible fitness associated with the
use of behavioral rule i ; similarly, the difference
πe
i (t + 1) − πe

j (t + 1), i �= j yields a measure of the
comparative advantage of employing behavioral rule i
over behavioral rule j . However, firms using a specific
behavioral rule can be interested not only in the current
assessment of how well behavioral rule i is currently
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performing over behavioral rule j but also on how well
historically behavioral rule i has performed over the
other behavioral rule. In other words, the fitness associ-
ated with a behavioral rule may be measured according
to the accumulated profit instead of just current profit.
Following this argument, one can assume that in the
evolutionary model the fitness measureUi (t) of behav-
ioral rule i at each time step also involves a portion of
the profit accumulated in the past, that is

Ui (t) = (1 − ω)πi (t) + ωUi (t − 1) (6)

where ω ∈ [0, 1] represents a memory parameter that
takes into account a convex combination of current
expected profit and accumulated ones. This specifica-
tion is denoted as “normalized memory” in [21]. From
the recursive formula (6), by backward induction rea-
soning, it is easy to get the expression of the accumu-
lated profit

Ui (t) = (1 − ω)

t−1∑

k=0

ωkπi (t − k) + ωtUi (0), i = 1, 2

(7)

as a measure of fitness expressed in the form of a
discounted weighted sum with exponentially fading
weights. Again, the parameter ω ∈ [0, 1] gives a mea-
sure of the memory, as Ui (t) = πi (t) for ω = 0,
whereas a uniform arithmetic mean of all the payoffs
observed in the past is obtained in the other limiting
case ω = 1.

At this point, it is useful to remember what informa-
tion is relevant for agents in order to make decisions on
future productions. To calculate Qe(t+1), the expected
total supply on the market, it is necessary to include in
the information set the quantities played and the distri-
butions of the strategies at time t , that is xi (t) and ri (t),
i = 1, 2. Furthermore, the use of memory implies that
agents also remember the performance in terms of prof-
its obtained over time through the available behavioral
rules from the beginning of the game up to time t , that
is πi (t − k), i = 1, 2. and k = 0, . . . , t − 1.

Now considerUi (t), the fitness of employing behav-
ioral rule i , and assume that firms can assess this mea-
sure of fitness and switch to the more profitable behav-
ioral rule from period to period. This dynamic process
changes over time the distribution of behavioral rules.
One common assumption for modeling this endoge-

nous process of choice is obtained through the expo-
nential replicator model, see [8,19,20], which takes
the form

r (t + 1) = r (t) eβU1(t)

r (t) eβU1(t) + [1 − r (t)] eβU2(t)

= r (t)

r (t) + [1 − r (t)] eβ[U2(t)−U1(t)]
(8)

where r (t) = r1(t) is the time-t fraction of firms
employing behavioral rule 1. In (8), parameter β ≥
0 is referred to as the intensity of choice and mea-
sures how sensitive the players are at selecting fitness-
increasing behavioral rules. Theminimum value β = 0
corresponds to the case with fixed fractions, being
r (t + 1) = r (t) = r . On the other extreme case
(β = ∞), all firms immediately switch to the behav-
ioral rule showing better performance, i.e., r (t) → 1
if U1 (t) > U2 (t) and r (t) → 0 if U1 (t) < U2 (t).

The exponential replicatormodel (8) has several use-
ful properties. In fact, the (strictly monotone) transfor-
mation Ui (t) → eUi (t) guarantees that the fractions
obtained through the dynamics in (8) are always con-
tained in the interval [0, 1] even with negative fitness
Ui (t) < 0.

If the recursive scheme (6) is plugged into the evo-
lutionary model (8) and the auxiliary dynamic variable
m(t) = U1 (t) − U2 (t) is introduced, together with
the dynamics of productions specified by the behav-
ioral rules (1), then the evolution of these variables is
governed by the following four-dimensional map T in
the phase space (x1, x2, r,m) ∈ A ⊆ R

2+ × [0, 1]×R,
where R+ = [0,+∞):

T :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 (t + 1) = H1 (x1(t), x2(t), r(t))
x2 (t + 1) = H2 (x1(t), x2(t), r(t))
r (t + 1) = R(r(t),m(t)) = r(t)

r(t)+(1−r(t))e−βm(t)

m(t + 1) = M(x1(t + 1), x2(t + 1), r(t),m(t))
= (1 − ω) (π1 (t + 1) − π2 (t + 1)) + ωm(t)

(9)

Here,we assume that the set of strategies available to
the oligopolists is a non-empty compact and convex set
ofR2 and eachfirm’s profit is concave in own strategies;
then by the results in [28] a Nash equilibrium exists.
Following [10], we consider behavioral rules that are
stationary at any symmetric Nash equilibrium of the
underlying game. Stationary behavioral rules prescribe
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to play the Nash equilibrium quantity whenever the
quantities played are at Nash equilibrium regardless of
the distribution of behavioral rules, that is

x∗ = Hi
(
x∗, x∗, r

) ; i = 1, 2 ∀r ∈ [0, 1] .

From (9) we get that an equilibrium distribution of
behavioral rules is compatible only with the following
three cases: (1) r = 0; (2) r = 1; (3) m = 0. It is
important to stress that r = 0 and r = 1 are invari-
ant sets for the dynamics where only one pure strat-
egy is employed (strategy 2 or strategy 1, respectively).
On these sets all the firms follow the same behavioral
rule and may include Nash equilibria which are also
dynamic equilibria of themodel withoutmemory, char-
acterized by x∗

1 = x∗
2 = x∗ and r = 0 or r = 1.

Thus, being π∗
1 = [

p (Nx∗) − C (x∗)
]
x∗ − K1 and

π∗
2 = [

p (Nx∗) − C (x∗)
]
x∗ − K2, from the fourth

equation in (9), we have that at equilibrium the follow-
ing condition holds: m∗ = π∗

1 − π∗
2 = −K1 + K2.

Such equilibria of map (9) are given by

E0 = (
x∗, x∗, 0, K2 − K1

)

and

E1 = (
x∗, x∗, 1, K2 − K1

)

Moreover, interior equilibria can exist with both behav-
ioral strategies adopted by given fractions of the popu-
lation of firms, given by

Er = (
x∗, x∗, r∗, 0

)
.

Now we turn to the Jacobian Matrix of map (9) to
characterize the local stability of equilibria. Notice the
fourth equation in (9) is the only one that depends on
all state variables:

m(t + 1) = M(H1 (x1(t), x2(t), r(t)) ,

H2 (x1(t), x2(t), r(t)) ,m(t))

The Jacobian matrix J associated with (9) at an
equilibrium E has always entries J31(E) = J32(E) =
J14(E) = J24(E) = 0.1

From the analysis of themodel withoutmemory (see
[10]), if quantities are at a Nash equilibrium (x∗, x∗)
and r = 0 it is also J21(E0) = J13(E0) = J23(E0) =
0.

Moreover, it is J34(E0) = ∂R
∂m(t) = e−βmr(1−r)β(1−δ)

(e−βm (1−r)+r)
2

= 0 (if r = 0 or r = 1) and J43(E0) = ∂M
∂r(t) =

1 Jpq (E) is the entry of the Jacobian in row p and column q
when evaluated at the equilibrium E .

∂M
∂x(t+1)

∂x(t+1)
∂r(t) + ∂M

∂y(t+1)
∂y(t+1)
∂r(t) = 0 because ∂x(t+1)

∂r(t) =
∂y(t+1)
∂r(t) = 0.
Summingup, at equilibrium E0 the Jacobian assumes

the following structure:

J (E0) =

⎛

⎜⎜
⎝

0 0
0 0 0
0 0 0

0

⎞

⎟⎟
⎠

from which we obtain that the eigenvalues are the
entries on the main diagonal, since an eigenvalue μ

solves the following characteristic equation

det(J (E0)) = det

⎛

⎜
⎜
⎝

J11 − μ J12 0 0
0 J22 − μ 0 0
0 0 J33 − μ 0
J41 J42 0 ω − μ

⎞

⎟
⎟
⎠

= (J11 − μ) (J22 − μ) (J33 − μ) (ω − μ)

= 0

Moreover, the same holds at E1 where r = 1, as in
that case in is J12(E1) = 0 and J21(E1) �= 0. Thus,
at E0 and E1, the eigenvalues are the same as in the
three-dimensional model where no memory is present,
with the additional eigenvalue ω, which is always in
the range [0, 1].

As stressed in [5], from an economic point of view
this fact has anobvious interpretation: in a deterministic
evolutionary setting, missing behaviors/strategies can
not appear as they cannot be imitated by anyone. How-
ever, when only one behavioral strategy is present, the
exogenous introduction of a mutation in agents’ behav-
ior may either spread over the population or be reab-
sorbed. This phenomenon can be confirmed through
the study of transverse stability of the attractors on the
invariant manifolds r = 0 and r = 1.

In general, an attractor on one of these invariant sets
of phase space may be transversely stable, so that it
attracts trajectories starting outside the restriction, i.e.,
from r (0) ∈ (0, 1); otherwise, if the attractor of the
restriction on the invariant set is transversely unstable,
then any mutation, even quite small, will spread inside
the phase space.

Finally, at equilibrium Er the Jacobian matrix
assumes a particular structure, from which we obtain
that eigenvalues solve the following characteristic
equation

123



1102 G. I. Bischi et al.

det (J (Er )) = det

⎛

⎜
⎜
⎝

J ′
11 − μ J ′

12 0 0
J ′
21 J ′

22 − μ 0 0
0 0 J ′

33 − μ J ′
34

J ′
41 J ′

42 0 ω − μ

⎞

⎟
⎟
⎠

= [(J ′
11 − μ)(J ′

22 − μ) − J ′
21 J

′
12]

(J ′
33 − μ)(ω − μ) = 0.

3 A specific example

We now extend the model proposed by [10], where an
evolutionary oligopoly game is studied, by adding the
presence of memory in behavioral decisions, accord-
ing to (6). Goods are homogeneous and are sold in
a market characterized by isoelastic (unitary) inverse
demand: selling price at time t is then p (t) = 1

Q(t) . In
[10] it is studied the specific example with two differ-
ent behavioral rules for selecting productions, namely
Gradient rule (G-rule) (that determines a time-t pro-
duction denoted by x(t)) and the Local Monopolistic
Approximation rule (LMA-rule) (leading to a time-t
production denoted by y(t)), see [2] for details in the
non-evolutionary setting. In [10] , the dynamic selec-
tion of those rules based on the exponential replicator
is studied. Here, we extend that framework by adding
a memory term, as described in the previous section.
As a result, we obtain the following four-dimensional
map T : A −→ A

T :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x (t + 1) = max
{
0, x (t) + λx (t)

(
Q−1(t)

(x(t)+Q−1(t))2
− c

)}

y (t + 1) = max
{
0, (1 − α)y (t) + α

2

[
y (t) + N

N−1Q−1 (t)
(
1 − c N

N−1Q−1 (t)
)]}

r (t + 1) = r(t)
r(t)+(1−r(t))e−βm(t)

m(t + 1) = (1 − ω) (πG (t + 1) − πLMA (t + 1)) + ωm(t)

(10)

where A = R
2+ × [0, 1] × (−∞,+∞). The quantity

Q−1 (t) appearing in (10) is obtained through naive
expectations (5) and is given by

Q−1 (t) = (N − 1) [r (t) x (t) + (1 − r(t))y(t)]

Here, Q−1 (t) represents the total expected quantity
produced by all competitors of a generic firm at time-t
(aggregate production by N − 1 players).

The first equation in (10) is the behavioral rule of
gradient learning: a generic firm employing this rule
increases/decreases its production by factor λ > 0
(speed of adjustment of the G-rule) if it perceives a
profit increment by that decision, see [2] for details.

Similarly, the second equation in (10) represents the
LMA-rule: a generic firm employing this rule selects
its quantity with speed of adjustment 0 < α ≤ 1 by
solving a profit maximization problem with a linear
approximation of the demand function and ignoring
the effects of the competitors’ outputs on own prof-
its, see again [2] for details. The third equation in (10)
models the share r(t) of firms employing the gradi-
ent rule (with the 1− r(t) firms selecting LMA-rule at
time t) according to exponential replicator dynamics.
The fourth equation in (10) introduces memory in the
evolutionary selection of behavioral rules, according
to (6) and m(t) = UG −ULMA. Finally, in (10) πi (t),
i ∈ {G,LMA}, are, respectively:

πG (t) = p (t) x (t) − (cx (t) + KG)

=
(

N − 1

NQ−1 (t)
− c

)
x (t) − KG

πLMA (t) = p (t) y (t) − (cy (t) + KL)

=
(

N − 1

NQ−1 (t)
− c

)
y (t) − KL (11)

Here,we study themodel to analyze the role ofmem-
ory, measured by the parameter ω ∈ [0, 1]. The model
with no memory considered in [10], corresponding to
(10) with ω = 0, exhibits periodic and chaotic behav-
iors both in the time patterns of outputs (x(t), y(t))

and in the evolution of the behaviors’ share inside the
agents’ population. We now try to see the effects on
the presence of memory ω ∈ (0, 1], starting from its
influence on the stability of the Nash equilibrium and
then on other kinds of attracting sets.

Equilibria with symmetric productions by the two
rules are of the form (x∗, x∗, r∗,m∗). These equilibria
are solutions of the following algebraic system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗
[

(N−1)x∗
(Nx∗)2 − c

]
= 0

x∗ = Nx∗(1 − cNx∗) or α = 0

r∗
(

1
r∗+(1−r∗)e−βm∗ − 1

)
= 0

π
∗
G − π

∗
L = m∗
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so we obtain
⎧
⎪⎨

⎪⎩

x∗ = y∗ = N−1
cN2

r∗ = 0, r∗ = 1 or ∀r∗ if m = 0 (case πG = πL)

m∗ = KL − KG or ∀m∗ if ω = 1.

where x∗ = y∗ = N−1
cN2 is the Nash equilibrium quan-

tity, as both the G-rule and the LMA-rule admits the
Nash equilibrium as a fixed point of the dynamics.
Summing up, for any parameters configuration, we
obtain the following equilibria, all characterized by
Nash quantity play:

E0 =
(
N − 1

cN 2 ,
N − 1

cN 2 , 0, KL − KG

)
(12)

with no firm choosing the gradient rule (r∗ = 0),

E1 =
(
N − 1

cN 2 ,
N − 1

cN 2 , 1, KL − KG

)
(13)

with no firm choosing the LMA-rule (r∗ = 1); when
KL = KG (equal information costs) a continuum of
equilibria Er exist with r ∈ [0, 1], given by

Er =
(
N − 1

cN 2 ,
N − 1

cN 2 , r, 0

)
(14)

with coexistence of both behavioral rule. We provide
next a local stability analysis for those fixed points.

3.1 Local stability analysis

Let ω < 1, so that in equilibrium it is m∗ = KL − KG .
At the equilibrium E0 = ( N−1

cN2 , N−1
cN2 , 0, KL −KG) the

Jacobian matrix assumes the form

J (E0) =

⎛

⎜⎜
⎝

1 − 2 cλ
N

cλ
N (2 − N ) 0 0

0 1 − α
2 (N − 1) 0 0

0 0 eβ(KL−KG ) 0
γ0 η0 0 ω

⎞

⎟⎟
⎠

(15)

where γ0 = ∂m′
∂x |r=0 and η0 = ∂m

′
∂y |r=0. From (15),

as shown before, the eigenvalues are the entries in the
main diagonal:

μ01 = 1 − 2
cλ

N
, μ02 = 1 − α

2
(N − 1),

μ03 = eβ(KL−KG ), μ04 = ω (16)

Thus, E0 is stable if the following conditions hold:

1. λ < N
c ;

2. ∀α if 2 ≤ N ≤ 5; otherwise α < 4
N−1 ;

3. KL < KG .

Clearly, quantity dynamics can be destabilized only
through a flip bifurcation for sufficiently high speeds of
adjustment of the G- or LMA-rules. Condition KL <

KG has an immediate economic meaning: for selecting
Nash behavior firms always choose the rule with lower
information cost, which is the LMA-rule in this case,
whereas it will be the G-rule in the case of equilibrium
E1, as shown below.

Nowwe turn to equilibrium E1 = ( N−1
cN2 , N−1

cN2 , 1, KL

− KG) where all players play strategy G. It is

J (E1) =

⎛

⎜⎜
⎝

1 − cλ 0 0 0
α
2 (2 − N ) 1 − α

2 0 0
0 0 e−β(KL−KG ) 0
γ1 η1 0 ω

⎞

⎟⎟
⎠ (17)

where γ1 = ∂m
′

∂x |r=1 and η1 = ∂m
′

∂y |r=1. The eigenval-
ues of (17) are then

μ11 = 1 − cλ,μ12 = 1 − α

2
,

μ13 = e−β(KL−KG ), μ14 = ω. (18)

So, E1 is stable if the following conditions hold:

1. λ < 2
c ;

2. KL > KG .

Hence, as anticipated, in this case the G-rule is cho-
sen by all the firms due to its lower information cost.

Let us now consider Er = ( N−1
cN2 , N−1

cN2 , r, 0) with
r ∈ (0, 1), i.e., both behavioral strategies are present.
In this case, it is

J (Er ) =

⎛

⎜⎜
⎝

1 + cλ
N (r (2 − N ) − 2) cλ

N (1 − r) (2 − N ) 0 0
α
2 r(2 − N ) 1 + α

2 [(1 − r)(2 − N ) − 1] 0 0
0 0 1 βr(1 − r)
γr ηr 0 ω

⎞

⎟⎟
⎠
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So, in any case, we have an eigenvalue equal to 1 and
another one is equal toω ∈ [0, 1]. The other two eigen-
values are those associated with the quantity dynamics,
i.e., to the submatrix

Z =
(
1 + cλ

N (r (2 − N ) − 2) cλ
N (1 − r) (2 − N )

α
2 r(2 − N ) 1 + α

2 [(1 − r)(2 − N ) − 1]

)

for which the usual conditions for local asymptotic sta-
bility can be applied (see [10]).

When only one eigenvalue is equal to 1 (with the
others being less than 1 in modulus), we can study the
system restricted to the center manifold, that is, the one
generated by the relative eigenvector of eigenvalue 1.
In our case, this eigenvector is simply v1 = (0, 0, r, 0),
and, therefore, the system is reduced to r(t+1) = r(t),
so that equilibrium Er is stable.

What is interesting for our study is the fact thatmem-
ory has no role in the local stability properties of the
equilibrium points. However, as we shall argue in the
next section, local stability analysis is not enough, as
the global dynamic properties of the attractors are influ-
enced by the presence of memory and both their quan-
titative and qualitative structure depend on the memory
parameter ω, even if not in an elementary way, in the
sense that the role of memory is not easy to be antici-
pated and interpreted.

3.2 Numerical simulations

In this section, we present several numerical exam-
ples to show the possible dynamic scenarios arising in
the evolutionary oligopoly with memory. The numeri-
cal examples described below are representative of the
possible cases and share the same Nash equilibrium in
quantities, which depend only on the number of firms
and the marginal cost of production. Thus, the various
examples are obtained by changing either the speed of
adjustment of the two behavioral rules, their informa-
tion costs or the amount of memory in the system.

Let us start by considering a case in which equilib-
rium E1 in (13) for the map (10) is locally asymptoti-
cally stable. Take, for instance, the following parame-
ters’ constellation:

N = 15; c = 0.1; λ = 1;α = 0.2;β = 1; KG < KL ;
ω ∈ [0, 1]

According to the previous stability analysis, being
KG < KL and all eigenvalues in modulus less than

1, the cheapest behavioral rule (G-rule) will be even-
tually employed by all firms. Moreover, at E1 firms
will eventually learn to produce the Nash equilib-
rium quantity, which, under this setting, is given by
x∗ = y∗ = N−1

cN2 = 0.62.
Now let us explore the effect of increasing the speed

of adjustment of the LMA-rule to, say, α = 0.4.
Clearly, as long as KG < KL we will observe still
convergence to equilibrium E1 (stability of E1 is inde-
pendent on α). However, if the increment of the speed
of adjustment α is combined with an increment of the
cost of information for the G-rule up to the point in
which KG = KL , then interesting dynamic phenom-
ena are observed. This is a consequence of the fact
that for KG > KL , equilibrium E0, in which all firms
use the LMA-rule, is unstable, due to the high speed
of adjustment of the LMA-rule α, and equilibrium E1

is unstable as well, due to the high information cost
of the G-rule. This situation is depicted in the bifur-
cation diagram of Fig. 1, where N = 15; c = 0.1;
λ = 1;α = 0.4;β = 1, ω = 0 (no memory) and the
bifurcation parameter K = KL − KG ∈ (−0.1, 0.01).

As the cost difference K increases chaos disappears
leading to periodic time patterns and as the value of
K is further increased then a symmetric Nash equilib-
rium becomes the unique attractor. At the same time,
the fraction r(t) of G-firms changes from a negligible
share, when K = 0 and the system is chaotic, to an
increasing share when the dynamics is periodic and it
becomes dominant when K > 0, i.e., KG < KL , the
Nash equilibrium becomes the unique attractor.

Nowwe explore the effects of increasing memory in
the selection process of behavioral rules. First of all, we
observe that the presence of memory for K < 0 does
not eliminate fluctuations of productions of G-firms
(red points) and LMA-firms (black points). In general,
we observe larger oscillations of productions for LMA-
firms; moreover, these oscillations belong to a neigh-
borhood of the Nash equilibrium quantity x∗ = y∗.
Productions by G-firms are characterized by oscilla-
tions of smaller amplitude than those of LMA-firms,
but these oscillations are always well above the Nash
equilibrium productions and the quantities produced
by those who use the LMA-rule. This effect persists
even when a high amount of memory in the system is
added, see Figs. 1a, 2a, and 3a, where the values of the
memory parameter are, respectively, ω = 0, ω = 0.95,
and ω = 0.99. Another clear effect of more memory in
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Fig. 1 Bifurcation diagram for K = KL − KG ∈ (−0.1, 0.01),
N = 15; c = 0.1; λ = 1; α = 0.2; β = 1 and ω = 0 for a quan-
tities x by a representative G-player (red points) and quantities y

by a representative LMA-player (black points); b share of agents
r employing the G-rule; c fitness m of the G-rule with respect to
that of LMA-rule

the system is to dampen fitness oscillations, as clearly
shown by comparing Figs. 1c, 2c and 3c.

As remarked before, froman analytical point of view
the presence of memory has no effect on the stability
of equilibria since the fourth eigenvalue of the Jaco-
bian is precisely ω. However, the presence of memory
changes the structure of the attractor and in some cases
makes this attractor more complex in the presence of
the memory (compare the stable 2-cycle in Figs. 1 and
2 with the chaotic attractor of Fig. 3 for example for
K = −0.01). A very particular dynamic effect can be
seen in Fig. 3, where the presence of memory causes a
sudden transition to chaos in a range of cost difference
K where in the model with a lower amount of memory
the periodic patterns smoothly evolves to a situation of
convergence to the stable Nash equilibrium.

Let us now explore more in detail the effect of a
change in the amount of memory in the system. For this
reason, consider the previous parameter setting with
K = KL − KG = −0.1 and α = 0.3, whereas the
memory parameter ω is taken as bifurcation parameter.

Figure 4 depicts quantities played by G-firms and
LMA-firms after the flip bifurcation at μ02 = −1 as
ω is increased (for graphical purposes we represent
only cases with a sufficiently high level of memory
ω). G-firms always choose a more aggressive behav-
ior by selecting production quantities in periodic cycle
that is always higher than the cycle of productions by
LMA-firms, that is x (t) > y (t). Interestingly, quanti-
ties by LMA-firms, although cyclical, are always in a
given neighborhood of the Nash equilibrium quantity.
The behavior of G-firms lowers overall selling prices
and thus overall profits; however, G-firms get higher
profits from selling the goods as it always holds that
(p (t) − c) x (t) > (p (t) − c) y (t). The higher profits
by G-firms are counterbalanced by the higher infor-
mation costs for the G-rule. As a result, the share of
G-firms converges to zero for a level of memory ω suf-
ficiently low. Thus, almost all firms tend to use, asymp-
totically, the cheaper LMA-rule to which dynamics fail
to converge being μ02 = −1.1. Finally, when ω is
slightly less than one, dynamics converge to Nash equi-
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Fig. 2 As Fig. 1 with ω = 0.95

Fig. 3 As Fig. 1 with ω = 0.99
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Fig. 4 Bifurcation diagram for ω ∈ (0.998, 1), N = 15; c =
0.1; λ = 1; α = 0.3; β = 1; K = KL − KG = −0.1 a quanti-
ties x by a representative G-player (red points) and quantities y

(black points) by a representative LMA-player (black points); b
share of agents r employing the G-rule; c fitness m of the G-rule
with respect to that of LMA-rule

librium quantity. The stabilization of the equilibrium is
obtained for a sufficiently high level of memory ω in
the system and involves, in this example, more firms
using the gradient rule.

A similar scenario occurs if the speed of adjustment
α is further increased, see, for instance, Fig. 5 where
all parameters are the same as in Fig. 4 but the speed
of adjustment of the LMA-rule has been increased to
α = 0.4. We again observe the stabilizing effect of
memory, as again Nash equilibrium play is resumed
for a level of memory ω in the system sufficiently high.

Another interesting dynamic property of the model
is related to the nonnegativity constraints of produc-
tions in the two behavioral rules, implemented through
themax operator in the first two equations of (10).Here,
particular phenomena are related to the Border Colli-
sion Bifurcations when one behavioral rule (the LMA
one which prescribes lower productions) hits the zero
boundary so that transitions between periodic cycles
and chaotic attractors can be detected without the clas-
sical flip bifurcations cascades. For instance, Figure 6

exhibits production patterns of the two behavioral rules
without memory (Fig. 6a, with ω = 0) and with mem-
ory (Fig. 6b, with ω = 0.9) with all other parameters
set to c = 0.1; λ = 1.5; N = 15;β = 1;α = 0.5
and the parameter of bifurcation K ∈ (−0.075, 0.01).
Here, it is interesting to observe the existence of small
windows with chaotic dynamics in Fig. 6b, which are
detected only when enough memory is present.

As a final comment, we can say that the role of the
memory is not univocal, as high values of the memory
parameter ω lead to stability but intermediate values
of ω may introduce complex dynamic patterns such as
chaotic attractors instead of periodic ones.

4 Conclusions

We have proposed a modification of the evolutionary
model studied in [10] by introducing a memory term
that allows us to consider a fitness measure based on
accumulated profits instead of current profit only. The
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Fig. 5 As Fig. 4 with α = 0.4

Fig. 6 Bifurcation diagram for K = KL − KG ∈
(−0.075, 0.01), N = 15; c = 0.1; λ = 1.5; α = 0.5; β = 1
showing the quantities x by a representativeG-player (red points)

and quantities y (black points) by a representative LMA-player
(black points) with a ω = 0 and b ω = 0.9

introduction of similar forms of memory has already
been considered by several authors in economic mod-
eling as a more realistic assumption, see, e.g., [23].
As shown in [1], an increasing memory, i.e., a larger
weight given to the past realizations, may have a sta-
bilizing effect. This idea is partially confirmed in the
model studied in this paper, in the sense that starting

from a situation of chaotic dynamics without memory,
we can retrieve stability for values of memory parame-
ter high enough, i.e., by considering as fitness measure
a uniform average of profits gained in the past. How-
ever, for intermediate values of the memory parame-
ter, i.e., when discounted averages of past profits with
exponentially fading weights are considered, dynamic
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scenarios can be obtained which are even more com-
plex than those observed without memory.

So, even if we have analytically proved that the
memory parameter plays no role on the local stabil-
ity properties of the Nash equilibrium, the numerical
explorations of the global dynamic properties show that
the presence of memory in fitness measure can have
important consequences on the global time patterns
observed and, in general, on the long-run dynamics.
This clearly shows the importance of a global analysis
of nonlinear dynamical systems, which can often be
performed only through heuristic methods obtained by
a combination of analytical, geometrical and numer-
ical tools. In fact, a study limited to the analysis of
local stability and bifurcations, being based on the lin-
ear approximation of the model around the equilibrium
points, sometimes may be quite incomplete and even
misleading.
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