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ABSTRACT2

The formal description and verification of networks of cooperative and interacting agents is3
made difficult by the interplay of several different behavioral patterns, models of communication,4
scalability issues. In this paper, we will explore the functionalities and the expressiveness of a5
general-purpose process algebraic framework for the specification and model checking based6
analysis of collective and cooperative systems. The proposed syntactic and semantic schemes7
are general enough to be adapted with small modifications to heterogeneous application domains,8
like, e.g., crowdsourcing systems, trustworthy networks, and distributed ledger technologies.9
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1 INTRODUCTION

Cooperation activities and collective behaviors are widespread phenomena in several environments, ranging11
from nature to human social relationships and artificial systems. Therefore, they have cross-cutting12
implications in different specific fields of knowledge, including, just to cite a few, biology (Crall et al.,13
2019; Glen et al., 2019; Romanov et al., 2022), sociology (Takano and Ichinose, 2018; Will et al., 2020),14
and robotics (Dai et al., 2016; Rausch et al., 2020; Mehmood et al., 2021). Although different levels of15
abstraction are involved, information sharing mechanisms form the base for the evolution of biological,16
social, and engineering systems exhibiting the behaviors specified above. In particular, the efficiency17
of these mechanisms determines not only the success of individuals but also the fitness of systems of18
communities of such individuals. This is even more critical whenever:19

1. the systems need to be adaptive with respect to dynamically changing environments;20

2. a multiplicity of different types of agents collaborate (or compete) to engage in community decision21
processes (or to achieve individual goals to survive and emerge);22

3. complex tasks are interleaved with frequent mutual interactions.23

In this respect, one of the main aspects to pay attention to is given by the communication and cooperation24
models, with a specific emphasis on the information exchange policies, the allocation of tasks and of25
resources, the synchronization of activities converging to group goals. Moreover, it is worth distinguishing26
the nature and use of the information that may be subject to exchange, which can derive from the external27
environment, be processed by every agent in isolation, and/or represent community-based shares.28
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All these considerations play a role when devising techniques to model, verify, and develop collective29
and cooperative systems - see, e.g., De Nicola et al. (2020) and the references therein for a comprehensive30
overview. In this paper, we concentrate on the issues related to the formal modeling and verification31
of such systems. To this aim, we propose a general-purpose process algebraic framework that can be32
instantiated to the various and heterogeneous application domains surveyed above. The basic ingredients33
of this framework focus on the specification of the autonomous behavior of the agents, the handling34
of data collected from the environment and shared with the neighbours, the mode of interaction within35
communities of agents, the topology of the interacting communities, the dynamically changing external36
environment and system configuration. The flexibility of the approach is the main contribution provided by37
the framework, which makes it adequate to model and verify both natural and socially collective systems38
(including social networks as well as crowdsourcing systems), and artificial networks (including P2P and39
GRID systems, multi-agent systems, and sensor networks).40

The kernel of the specification language is based on process algebra and relies only on a few, basic set of41
operators for the description of the behavioral pattern of agents in isolation. The syntax is left as simple as42
possible and abstracts away from the overwhelming details of standard parallel composition operators, thus43
making the process of composing even large networks of agents easy and scalable.44

The semantics of the language encodes the mode of communication among agents, through rule schemes45
that support flexibility and adaptiveness with respect to the specific application domain of interest. Moreover,46
the framework includes the capability of grouping agents into dynamic communities, and to model local47
information stored by agents as well as global information shared within a given community of agents. Such48
an agent/community-oriented modeling framework is equipped with a temporal logic for the specification49
of properties of agents, communities, and networks. Thus, the flexibility of the modeling paradigm is50
inherited also by the property specification framework, enabling the definition of various property patterns,51
ranging from safety to performance.52

The rest of the paper is organized as follows. In the next section, the basic syntax and semantics of53
the modeling framework are presented, by emphasizing the way in which customized semantics rules54
can be devised depending on the application domain. Section 3 defines the temporal logic for property55
specification. The applicability of this framework to various application domains is illustrated in Section 456
via some real-world references and examples. Finally, a discussion on related and future work is the topic57
of Section 5.58

2 MODELING AGENTS AND NETWORKS

A key aspect for simplifying as much as possible the description of complex networks of agents is the clear59
separation between the description of each agent in isolation and the definition of the network of agents.60
This is even more crucial for formal paradigms like process algebra, which are typically based on a set of61
algebraic operators that join together the two levels of descriptions surveyed above, i.e., the agent level and62
the network level.63

The separation of concerns between the definition of the system topology and of the behavioral pattern of64
the agents forming such a topology is a typical approach of architectural description languages – see, e.g.,65
Aldini et al. (2010) – and is indeed motivated by usability and scalability issues. Therefore, we base the66
modeling framework on such a separation.67
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Table 1. Semantics rules of the basic calculus

prefix a . P
a

−−→P

choice
P1

a
−−→P ′

1

P1 + P2
a

−−→P ′
1

P2
a

−−→P ′
2

P1 + P2
a

−−→P ′
2

recursion B
def
= P

P
a

−−→P ′

B
a

−−→P ′

2.1 Modeling behavioral patterns and agents68

As a first step, we start with the presentation of a basic calculus – see, e.g., Fokkink (2007) – for the69
description of the isolated behavior of sequential processes.70

Let Act be the set of actions, ranged over by a, b, . . ., including also the special internal action τ . The set71
L of process terms of the basic calculus for sequential processes is generated through the following syntax:72

P ::= 0 | a . P | P + P | B

where we have the constant 0 for the inactive process, the classical algebraic operators for prefix and73
nondeterministic choice, and a constant based mechanism for expressing recursive processes, such that a set74

of constants defining equations of the form B
def
= P is assumed. As standard, we consider only guarded and75

closed process terms. The semantics of process terms is expressed in terms of labeled transition systems.76

DEFINITION 1. A labeled transition system (LTS) is a tuple (Q, q0, L,R), where Q is a finite set of states77
(with q0 the initial one), L is a finite set of labels, and R ⊆ Q× L×Q is a finitely-branching transition78
relation.79

As a shorthand, (q, a, q′) ∈ R is denoted by q
a

−−→ q′. Then, the behavior of process term P is defined80
by the smallest LTS (L, P,Act , R), where the transitions in R are obtained through the application of the81
operational semantics rules of Table 1. The prefix rule is at the base of the sequential behavior of processes,82
stating that a.P executes a and then behaves as P . The two choice rules express the nondeterministic83
choice between P1 and P2. The winning process proceeds with its execution, thus disabling once and for84
all the other one. The recursion rule establishes that the process term named B and defined as P , behaves85
as P itself; naming enables the definition of recursive behaviors.86

EXAMPLE 1. As a first running example, we consider a social network in which various agents contribute87
to the spreading of (possibly fake) news. A detailed version of this system is modeled and analyzed in Aldini88
(2022), by using a formal framework that turns out to be an instance of that proposed in this work. Here,89
we start considering a simple, process term:90

F
def
= nbr .(re-evaluate.F + forget .0)
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which models the behavior of a fact checker in such a network. Action nbr denotes the gathering of shared91
news from the neighbourhood, action forget expresses that any shared news is forgotten once and for all,92
and action re-evaluate denotes that the process of news evaluation is repeated again.93

As another running example, we will consider a trustworthy network of communities, where agents94
exchange services and the interactions among agents are enabled/disabled by trust/distrust relations. A95
detailed version of this system is modeled and analyzed in Aldini (2018) through an alternative framework96
that, similarly as above, is generalized by the current proposal. Here, we start considering a simple, process97
term:98

T
def
= snd req .(rec acc.T + rec ref .T ) + leave com.0

describing the behavior of a trustor, which may ask for services from the unique provider operating in the99
community to which the trustor belongs. Action snd req denotes a service request sent to such a provider,100
which in fact represents the trustee subject of trust evaluation by the trustor; the request can be either101
accepted (action rec acc) or refused (action rec ref ). Alternatively, the trustor may decide to abandon the102
community (action leave com).103

In the following, an agent is any instance of a given process term P , which is referred to as the behavioral104
type (or pattern) of the agent. In other words, an agent represents an element exhibiting the behavior105
associated with a process term. Agents are associated with a unique identity, which in the following we106
denote with a natural number for the sake of simplicity. Moreover, each agent is equipped with a local107
data repository, used to store local parameters as well as data retrieved from sensors or received from the108
neighborhood. Such a repository is represented as a set of local atomic predicates. By assuming a standard109
first-order logic interpretation, predicates are of the form v = d, with v ∈ VNames a local variable and d a110
value of the corresponding domain.111

Formally, an agent is described by a triple of elements ⟨id , P, V ⟩, where:112

• id ∈ N is the identity of the agent;113

• process term P ∈ L is its behavioral type;114

• function V : VNames 7→ D is the mapping from local variables to values in their corresponding115
domain D.1116

Given the triple ⟨id , P, V ⟩, as a shorthand we sometimes use the classical dot notation id .P to denote the117
local behavior of agent id , id .a to denote an action a enabled by the local behavior P of agent id , and id .v118
to denote the value V (v) of the local variable v in the local data repository of agent id .119

EXAMPLE 2. A fact checker named id of behavioral type F is described by the triple ⟨id , F, V ⟩. The120
local variables are: type, which expresses the level of susceptibility of the agent to accept shared news;121
accept , which is a boolean modeling whether the news is accepted and in turn shared by the agent;122
threshold , which expresses the minimum number of neighbours that must share the same news in order to123
consider the news for acceptance.124

A trustor named id of behavioral type T is described by the triple ⟨id , T, V ⟩. The local variables are: α125
and β, reporting the number of accepted (respectively, refused) requests, and θ, which represents the trust126
threshold employed by the trustor for the trust-based evaluation of the trustee.127

1 This can be generalized to consider a separate domain for each variable. By the way, in this paper we assume that D is a finite, numerical domain.
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While it is easy to see that the agent local semantics is given by the semantics of its behavioral type, it is128
less obvious to determine the agent’s behavior in the context of the environment. Such a context affects129
also the updates applied by the agent to its local repository. Therefore, we need to define formally the130
interaction semantics for a network of communicating agents.131

2.2 Modeling networks of interacting agents132

A network is a set of agents, which are grouped to form (possibly dynamic) communities. Basically,133
direct interactions among agents are possible only within the same community. However, each agent, in134
general, may belong to several different communities at the same time. Similarly as in the case of single135
agents, each community is associated with a global data repository, storing data that can be shared by all136
the community participants. Such a repository is modeled as a set of global atomic predicates of the form137
w = d, with w ∈ WNames2 a global variable and d a value of the corresponding domain.138

Formally, a network is a triple of elements ⟨S,G,W⟩, where:139

• S is the finite set
⋃n

i=1⟨id i, Pi, Vi⟩ of n agents in the network, such that id j ̸= idk for every pair of140
indexes j, k;141

• function G : CNames → 2N maps every community (with CNames being the set of community142
names) to the set of agents identities forming it, thus representing the network topology;143

• function W : CNames → (WNames 7→ D) maps every community to the related mapping from144
global variables to values in their corresponding domain.145

The semantics of a network and, in particular, the way in which the constituting agents cooperate and146
evolve, depend on requirements of the specific scenario under consideration. Hence, (almost all) the147
rules we are going to introduce are actually schemes of rules including customizable elements. The first,148
fundamental modeling choice is related to the mode of execution, for which we distinguish two classical,149
alternative cases: asynchronous mode, where every agent may execute an autonomous action while all the150
others remain idle, and synchronous mode, where all the agents involved simultaneously execute one of151
their enabled actions.152

The general semantic rule scheme for the asynchronous mode is as follows:153

(async)
P

a
−−→P ′ ∧ cond

⟨{⟨id , P, V ⟩} ∪ S,G,W⟩
a

−−→⟨{⟨id , P ′, V ′⟩} ∪ S,G,W ′⟩

where the side condition cond stands for a boolean formula composed of logical predicates over any154
combination of identities, communities, local variables, and global variables taken from the current155
network triple ⟨{⟨id , P, V ⟩} ∪ S,G,W⟩, and stating whether the action a offered by the local behavior156
P of agent id is enabled in the network environment. Hence, the side condition is actually of the form157
cond(a, id , V,S,G,W , V ′,W ′). The additional terms V ′ and W ′ depend on V and W , respectively, and158
represent their updated versions by virtue of the execution of the action a. More details about these terms159
and the definition of the side condition will be provided through examples. Notice that, for the sake of160
readability, in the rule scheme above and in the following ones, the side condition cond is reported without161
making the list of arguments explicit.162

2 For the sake of simplicity we a ssume that WNames and VNames are disjoint.
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EXAMPLE 3. We present three typical formats for the atomic predicates that can be combined through163
logical connectives to define the side condition cond in the rule scheme async:164

1. id .v ▷◁ k, with ▷◁ any arithmetic comparison operator and k a scalar value belonging to the domain165
of the local variable v: such a condition is purely local as it does not depend on the context in which166
agent ⟨id , P, V ⟩ operates;167

2. ∃G ∈ CNames : id ∈ G(G) ∧ id .v ▷◁ (W(G))(w), which compares the local variable v of the agent168
to the global variable w of a community G to which the agent belongs (id ∈ G(G));169

3. id .v ▷◁ f(X), where f is a scalar function (e.g., min, sum, count) applied to a set X of local/global170
variables filtered in a certain way, and returning a value belonging to the domain of variable v.171

Analogous patterns can be envisioned by defining conditions over id rather than over id .v .172

Later on we will show some exemplifying conditions specifically adapted to the application domains of173
interest.174

As stated above, the rule scheme async expresses also potential side effects of the execution of the action175
a over the local variables of the agent id and/or over the global variables of the network. Formally, the176
terms V ′ and W ′ represent the updated versions of the terms V and W , respectively. On one hand, they177
may be equal to V and W , respectively, to express that no change occurs. On the other hand, they may be178
defined in terms of updates occurring in V and W . To this aim, in the following examples we will use the179
standard notation s′ = s[x 7→ d] to express a mapping s′ equal to s in every point but x, where s′(x) = d.180

Summarizing, the rule format states that if the agent of the network defined as ⟨id , P, V ⟩ enables locally181
a move, and such a move is permitted by the environmental conditions, then the agent is allowed to evolve182
and change accordingly the variables under its control.183

We point out that, as a special case, ad-hoc actions can be envisioned to model movements to or from184
communities, which is typical of dynamic scenarios – see, e.g., Aldini (2022) for a possible semantic185
characterization. Just notice that such a kind of actions would affect the structure G of the tuple describing186
the network configuration. As an example, the general semantic rule scheme describing the action of187
leaving a group is as follows:188

(leave)
P

leave com
−−→ P ′ ∧ cond

⟨{⟨id , P, V ⟩} ∪ S,G,W⟩
a

−−→⟨{⟨id , P ′, V ′⟩} ∪ S,G′,W ′⟩

where leave com is the name of such an action, the side condition cond specifies the enabling situation and189
the identification of the community G ∈ CNames that the agent id is leaving, V ′ and W ′ express possible190
updates to the local/global repositories V and W due to such a move, and G′ = G(G)\{id} represents191
the update of the involved community. We can reason analogously for a corresponding action join com192
modeling the entry into a community G, in which case we have G′ = G(G) ∪ {id}.193

From the cooperation model standpoint, the rule scheme async enables forms of knowledge-based194
communication. Indeed, if the local repository modification (and/or the side condition cond) depends on195
some content deriving from the environment, then a data-driven communication from the environment196
to such an agent is actually modeled. Analogously, writing to the global repository, to which any other197
agent may have access, represents a form of community-based multicast communication. Sometimes, these198
forms of (asynchronous) communication are not enough as two (or more) agents have to synchronize over199

This is a provisional file, not the final typeset article 6



A. Aldini

a certain event. To model such a kind of interaction, the following general semantic rule scheme is needed:200

(sync)
P

a
−−→P ′ Q

b
−−→Q′ ∃G ∈ CNames . id1, id2 ∈ G(G) ∧ cond

⟨{⟨id1, P, V1⟩, ⟨id2, Q, V2⟩} ∪ S,G,W⟩
a×b
−−→⟨{⟨id1, P

′, V ′
1⟩, ⟨id2, Q

′, V ′
2⟩} ∪ S,G,W ′⟩

where the action a× b expresses the simultaneous execution of the actions a and b, so that the two involved201
agents evolve synchronously. The form of the side conditions is as discussed above, with the additional202
constraint that the two agents involved in the (synchronous) communication must be members of the203
same community, which is formally expressed by the predicate ∃G ∈ CNames . id1, id2 ∈ G(G). As a204
special case, it is possible to define an ad-hoc semantic rule scheme modeling a multicast synchronous205
communication from an agent of a community to the other agents of the same community – see, e.g., Aldini206
(2018) for a possible characterization.207

We now discuss the case of a purely synchronous mode of execution, which requires a slightly different208
approach relying on a two-steps semantics. In the first step, the local actions of the agents that are enabled209
by the environment according to the given side conditions are determined. In the second step, one action210
per agent is sampled nondeterministically and the system performs a move by simultaneously executing all211
the sampled actions. By assuming that the network of agents S includes the agent ⟨id , P, V ⟩, the general212
semantic rule scheme implementing the first step is as follows:213

(global)
P

a
−−→P ′ ∧ cond

⟨id , P, V ⟩⟨S,G,W⟩
a

−−→⟨id , P ′, V ′⟩⟨(S\{⟨id ,P,V ⟩})∪{⟨id ,P ′,V ′⟩},G,W ′⟩

Notice that in the conclusion of the rule scheme, the triple of elements describing the agent is decorated214
with the subscripted context expressing the environment with respect to which the side condition must215
be evaluated. More precisely, the rule scheme global expresses whether the network ⟨S,G,W⟩ enables216
the execution of the action a offered in isolation by the agent represented by ⟨id , P, V ⟩. This is done217
through the verification of the side condition cond, parameterized by the elements of the triple ⟨S,G,W⟩218
representing the environment of ⟨id , P, V ⟩. The rule scheme expresses also what would be the effect of219
such an execution upon the agent and upon the network. Thus, the same considerations related to the220
asynchronous case apply as well, the unique difference being that the global semantics defines what actions221
can be potentially performed by the agents in the network. Since every agent is expected to enable at least222
one action to not block the synchronous evolution of the network, we assume also the following rule:223

(idle)
⟨id , P, V ⟩⟨S,G,W⟩−−→/

⟨id , P, V ⟩⟨S,G,W⟩
τ

−−→⟨id , P, V ⟩⟨S,G,W⟩

the effect of which is to allow the agent to stay idle without blocking the network.224

Then, in the second step, the network semantics must express the simultaneous execution of one action225
per agent. By assuming S =

⋃n
i=1⟨id i, Pi, Vi⟩, the semantic rule for the second step is as follows:226

(network)

∧n
i=1⟨id i, Pi, Vi⟩⟨S,G,W⟩

ai
−−→⟨id i, P

′
i , V

′
i ⟩⟨Si,G,Wi⟩

⟨
⋃n

i=1⟨id i, Pi, Vi⟩,G,W⟩
τ

−−→⟨
⋃n

i=1⟨id i, P
′
i , V

′
i ⟩,G,

∏
Wi⟩
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In practice, in the premise of the rule each agent (indexed by i) offers a transition labeled with ai that227
derives from the application of the rule scheme global or idle. Then, the conclusion establishes that all these228
moves are performed synchronously, as modeled by the τ action. 3 The proposed scheme is intentionally229
general. More sophisticated variants of the network semantic rule are however possible. For instance, only230
specific agents (e.g., of selected communities) could be engaged in the synchronization and perform a231
move. Alternatively, each ai in the premise may be replaced by a unique action a, expressing that the232
involved agents must synchronize on the specific action. Such a condition may be too strong, as some233
agents may be not available to execute the action a, thus blocking all the others. However, similarly as234
discussed above, it is sufficient to employ an ad-hoc version of the idle semantic rule that adds the action235
information as a negative premise on a and decorates the τ action with a subscripted a. Then, the network236
semantic rule may enable the synchronization of the involved agents that offer either a or τa. These variants237
emphasize the flexibility and the expressiveness of the approach, which make it adequate to deal with even238
very specific requirements of various application domains.239

In any case, independently from the chosen mode of execution, the semantics of a system ⟨S,G,W⟩240
will be given by the smallest LTS with initial state ⟨S,G,W⟩ and transitions deriving from the application241
of the SOS rules at hand. We observe that the proposed rule schemes express a general format that may242
potentially guide the definition of a library of several, alternative rules. Such rules can be customized to243
deal with a comprehensive set of behavioral models and application domains. Obviously, a tradeoff exists244
between such an expressive power and the efficiency issues that may arise when checking complex side245
conditions in order to build the underlying LTS.246

EXAMPLE 4. Assume a social network ⟨S,G,W⟩ of agents adopting the synchronous mode of execution247
and including the agent ⟨id , F, V ⟩ of the previous example. One specific instance of the global rule scheme,248
which is related to the execution of action a = nbr , may establish that cautious agents (identified by type249
2) accept the news whenever the number of neighbours accepting the news is greater than the agent’s250
threshold. This rule can be formalized easily, first of all by setting the following side conditions:251

(id .type = 2) ∧ (id .threshold < |{id ′ | id ′ ̸= id ∧ id ′.accept = true ∧ ∃G. id ′, id ∈ G(G)}|)

Notice that the neighbours of the agent id are those agents, different from id , belonging to communities252
of which id is a member. Then, as a side effect, we would also need to update V with the mapping253
accept = true, i.e., V ′ = V [accept 7→ true].254

As another use case, assume that ⟨S,G,W⟩ is a trustworthy network including the trustor ⟨id , T, V ⟩ of255
the previous example. In such a scenario, let us assume the asynchronous mode of execution. In particular,256
assume by hypothesis that the action snd req of the trustor must synchronize with a corresponding action257
rcv req of the trustee in the same community of the trustor. Therefore, we need one specific instance of the258
sync rule scheme with a = snd req and b = rcv req . Then, if the interaction must be enabled only if the259
trustor trusts the trustee, we would need a side condition as follows:260

id1.θ ≤ f(id1.α, id1.β)

3 We point out that
∏

Wi is a shorthand expressing the combination of updates Wi applied to the global data repository W by virtue of the moves performed
locally by the n agents. It is worth noticing that concurrent accesses to the same global variable may occur whenever no mutual exclusion mechanisms are used
explicitly by the agents. It is known that this leads to nondeterministic behaviors. This is reflected correctly by the network semantic rule, which, in such a case,
would enable multiple outgoing transitions, depending on the nondeterminism influencing the way in which W can be updated. However, if the system at hand
implements mutual exclusion mechanisms, these would be modeled at the level of the agents’ behavior and of the semantics of the global rule scheme, so that
no nondeterminism about the update of W would emerge by applying the rule network .
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where f is the specific trust function, like, e.g., the probability expectation of the Beta distribution,261
α

α+β (Jøsang and Ismail, 2002). Another instance of such a rule scheme is related to the synchronization262
involving action rec acc, the consequence of which would be the update α = α+ 1 in the local repository263
of the trustor. We can argue analogously in the case of action rec ref and the related update involving β.264
Finally, one instance of the rule scheme async would be associated to the execution of action leave com.265
If the agent is expected to leave the community whenever the trustee is not trusted anymore, then a side266
condition of such a rule would be the predicate id .θ > f(id .α, id .β). Moreover, two side effects would be267
given by the corresponding update of the community G(G) to which the agent belongs and, possibly, the268
updates α = β = 0.269

3 MODEL CHECKING TEMPORAL PROPERTIES

The verification of the properties of networks of agents is conducted through model checking (Clarke et al.,270
1999). Therefore, we need to define a sufficiently expressive and intuitive logic to reason about the various271
levels of information that our framework can express. To this aim, in this section we present a temporal272
logic for the specification of properties of networks, which is an instance of action/state-based logics à la273
CTL (De Nicola and Vaandrager, 1990; ter Beek et al., 2008). The logic is rather standard and its main274
novelties are concerned with the treatment of the atomic formulas, in a way that recalls and favors the275
agent/community perspective of the modeling language.276

The set of formulas N of the network logic we propose is generated through the following syntax:277

Φ ::= true | id .a | z ▷◁ r | Φ ∧ Φ | ¬Φ | Aπ | Eπ

π ::= Φ UΦ | Φ U ≤kΦ

where:278

• r ∈ R, k ∈ N, and ▷◁ is any arithmetic comparison operator;279

• id .a is the action-based atomic formula, and is satisfied by any state enabling the execution of action280
a ∈ Act by agent id ;281

• z ▷◁ r is the state-based atomic formula, and is satisfied by any state in which the evaluation of variable282
z satisfies the condition ▷◁ r;283

• Aπ and Eπ express the classical universally and existentially quantified path formulas;284

• the two flavours of the until operator represent the unique type of path formulas; basically a path285
satisfies Φ1 UΦ2 if it begins with a finite sequence of states satisfying Φ1 followed by a state satisfying286
Φ2 (the k-bounded version adds a requirement on the length of such a finite sequence).287

As mentioned above, the main peculiarities of the logic are given by the atomic formulas, while the288
composite formulas are standard. The atomic formulas are action-based (id .a), denoting the execution of289
an action a by the agent id , and state-based (z ▷◁ r), denoting that the state variable z satisfies a certain290
condition parameterized by r.291

As far as the semantics of the action-based formula id .a is concerned, we have to distinguish between the292
two modes of execution. In the asynchronous setting, id .a holds in ⟨S,G,W⟩, denoted by ⟨S,G,W⟩ |=N293
id .a, if either agent ⟨id , P, V ⟩ ∈ S can execute action a in ⟨S,G,W⟩ by virtue of a semantic rule of scheme294
async, or agent ⟨id , P, V ⟩ ∈ S contributes, by offering action a, to the execution of a synchronized action295
a× b in ⟨S,G,W⟩ by virtue of a semantic rule of scheme sync. In the synchronous setting, id .a holds in296
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⟨S,G,W⟩ if agent ⟨id , P, V ⟩ ∈ S contributes, by executing action a locally, to the execution of the global,297
synchronous action τ enabled in ⟨S,G,W⟩ by virtue of the semantic rule network .298

As far as the semantics of the state-based formula z ▷◁ r is concerned, we point out that, in our framework,299
any state of the LTS modeling a network is labeled with different types of information: the identities of the300
agents forming the system communities, their local repositories, and the global repositories. Hence, in order301
to allow for the definition of any kind of state-based requirement, we admit z to represent combinations of302
different types of values filtered in a certain way. To this aim, we distinguish the following three cases.303

The first case refers to the state-based formulas over global variables. In this case, let z := f{w |ϕg},304
such that f is a scalar function, w ∈ WNames , and ϕg is a logic formula filtering communities. The305
intuition is that the values of the global variable w taken from those communities that satisfy ϕg are306
combined through f to obtain the result z. The logic formula ϕg obeys the following syntax:307

ϕg ::= true | c ▷◁ k | w ▷◁ r | ¬ϕg | ϕg ∧ ϕg

where k ∈ N, w ∈ WNames , and r ∈ R. A formula ϕg is a boolean predicate used to select communities308
based on conditions over their identity (c ▷◁ k, where c stands for community)4, conditions over the value309
of their global variables (w ▷◁ r), and logical combinations of such atomic conditions. Semantically, the310
evaluation of z := f{w |ϕg} in a network state ⟨S,G,W⟩ is given by:311

f{|(W(G))(w) |G ∈ CNames ∧ (W , G) |=g ϕg|} (1)

where f works on values of a multiset and the satisfiability relation |=g for the atomic formulas generated312
by ϕg is defined as follows (the case of the composite formulas is standard):313

(W , G) |= true holds always
(W , G) |= c ▷◁ k iff G ▷◁ k
(W , G) |= w ▷◁ r iff (W(G))(w) ▷◁ r

If the evaluation of z := f{w |ϕg} satisfies the condition ▷◁ r, then we have that z ▷◁ r holds in ⟨S,G,W⟩,314
denoted by ⟨S,G,W⟩ |=N z ▷◁ r. Summarizing, f combines the values of the global variable w extracted315
from those communities that satisfy the community predicate ϕg; then the resulting value is compared to r.316

The second case refers to the state-based formulas over local variables. In this case, let z := f{v |ϕl},317
such that f is a scalar function, v ∈ VNames , and ϕl is a logic formula filtering agents. The intuition is318
that the values of the local variable v taken from those agents that satisfy ϕl are combined through f to319
obtain the result z. The logic formula ϕl obeys the following syntax:320

ϕl ::= true | ide ▷◁ k | ide ∈ G | v ▷◁ r | v ▷◁ z | ¬ϕl | ϕl ∧ ϕl

where k ∈ N, G ∈ CNames , v ∈ VNames , r ∈ R, and z := f{w |ϕg} is any combination of global321
variables as previously defined. A formula ϕl is a boolean predicate used to select agents based on their322
identity (ide ▷◁ k)5, community membership (ide ∈ G), evaluation of their local variables compared to323

4 For the sake of simplicity, here we are assuming that CNames ⊆ N and the condition c ▷◁ k applies to the natural i representing the community identity, i.e.,
i ▷◁ k. If using another domain for community names (e.g., strings) then the elements of the term ▷◁ k would change accordingly.
5 We recall that, similarly as argued for the case of communities identities, we have that agents identities are expressed as naturals. While an obvious condition
identifying a specific agent is of the form ide = n, with n ∈ N, we could also envision the use of inequality operators if, e.g., the identities are ordered
according to some criteria.
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Table 2. Satisfiability relation of the network logic

q |=N Φ ∧ Φ′ iff q |=N Φ and q |=N Φ′

q |=N ¬Φ iff q ̸|=N Φ

q |=N Aπ iff ∀σ ∈ Path(q) : σ |=N π

q |=N Eπ iff ∃σ ∈ Path(q) : σ |=N π

σ |=N Φ UΦ′ iff ∃ i ≥ 0 :
σ(i) |=N Φ′ ∧ (for all 0 ≤ j < i : σ(j) |=N Φ)

σ |=N Φ U ≤kΦ′ iff ∃ 0 ≤ i ≤ k :
σ(i) |=N Φ′ ∧ (for all 0 ≤ j < i : σ(j) |=N Φ)

constant values (v ▷◁ r) or combinations of global variables (v ▷◁ z), and logical combinations of such324
atomic conditions. Semantically, the evaluation of z := f{v |ϕl} in a network state ⟨S,G,W⟩ is given by:325

f{|V (v) | ⟨id , P, V ⟩ ∈ S ∧ ⟨id , P, V ⟩⟨S,G,W⟩ |=l ϕl|} (2)

The satisfiability relation |=l for the atomic formulas generated by ϕl is defined as follows (the case of the326
composite formulas is standard):327

⟨id , P, V ⟩⟨S,G,W⟩ |= true holds always

⟨id , P, V ⟩⟨S,G,W⟩ |= ide ▷◁ k iff id ▷◁ k

⟨id , P, V ⟩⟨S,G,W⟩ |= ide ∈ G iff id ∈ G(G)

⟨id , P, V ⟩⟨S,G,W⟩ |= v ▷◁ r iff V (v) ▷◁ r

⟨id , P, V ⟩⟨S,G,W⟩ |= v ▷◁ z iff V (v) ▷◁ (1)

Notice that, for the semantics of v ▷◁ z, with z := f{w |ϕg}, the evaluation of v in ⟨S,G,W⟩ is compared328
to the evaluation of z in the same state, which is computed as stated by Eq. (1). Then, as in the first case,329
if the evaluation of z := f{v |ϕl} in ⟨S,G,W⟩ satisfies the condition ▷◁ r, we have that z ▷◁ r holds in330
⟨S,G,W⟩. Summarizing, f combines the values of the local variable v extracted from those agents that331
satisfy the local predicate ϕl; then the resulting value is compared to r.332

The third case is similar to the previous one and refers to the state-based formulas over identities. In this333
case, let z := f{ide |ϕl}. The intuition is that the values of the identities of those agents that satisfy ϕl are334
combined through f to obtain the result z. Similarly as in the case of Eq. (2), the evaluation of f{ide |ϕl}335
in a network state ⟨S,G,W⟩ is given as follows:336

f{id | ⟨id , P, V ⟩ ∈ S ∧ ⟨id , P, V ⟩⟨S,G,W⟩ |=l ϕl} (3)

Notice that f applies to identities, which, by their uniqueness, do not form multisets.337

Now the semantics for the atomic formulas of N is clarified. Hence, we are ready to define the satisfiability338
relation, denoted by |=N , for the non-atomic operators of the network logic. For this purpose, given a LTS339
(Q, q0, L,R) we need to define the notion of a path. A path σ is a (possibly infinite) sequence of transitions340
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of the form:341

σ := q0
a0

−−→ q1 . . . qj−1

aj−1

−−→ qj . . .

where qj−1

aj−1

−−→ qj ∈ R for each j > 0. Every state qj in the path is denoted by σ(j). Moreover, we342
denote with Path(q) the set of paths starting in state q ∈ Q. The notion of path is needed to formalize343
the quantified path operators. In particular, the semantics of formula Φ UΦ′ states that a path satisfies the344
formula if it reaches a state that satisfies Φ′, while satisfying Φ in each intermediate state; note that the345
path could be empty if its initial state satisfies Φ′. As far as the k-bounded version of U is concerned, an346
additional condition must be applied, which expresses that the length of the prefix of the path terminating347
in the state satisfying Φ′ must be ≤ k. The formal semantics of the composite operators of our network348
logic is presented in Table 2.349

EXAMPLE 5. Let us consider the social network ⟨S,G,W⟩ of the previous example. The following350
state-based atomic formula Φ:351

count{ide | (ide ∈ 1) ∧ (accept = true) ∧ (type = 2)} > 3

is true if and only if the number of agents of type 2 belonging to the community 1 of the social network and352
that are accepting (and sharing) the news, is greater than 3. Then, through the formula E true UΦ we can353
evaluate whether a state is reachable that satisfies Φ.354

On the other hand, let us consider the case of the trustworthy network example. Given n the identity of355
the trustor of interest, the following composite formula Φ:356

n.leave com ∧ (min{α | (ide = n)} ≥ k)

checks whether the agent n is available to leave the community (since the action n.leave com is enabled)357
even if the value of its local variable α is ≥ k. Again, through the formula E true UΦ we check whether358
such a state is reachable.359

4 USE CASES AND QUANTITATIVE EXTENSIONS

The objective of the proposed framework is to generalize various approaches to the same problem, which360
differ from each other for the requirements of the application domain. Hence, it would be useful to have361
a general-purpose approach, with high-level rules and policies, that can be refined and adapted to each362
specific case.363

For example, an instance of the presented general-purpose modeling approach was proposed in previous364
work (Aldini, 2016, 2018), in the specific domain of trustworthy networks, in which trust and reputation365
models are used to govern the interactions among trustors and trustees. Notice that the examples reported in366
the previous section illustrate a simplification of a trustor agent and associated behavioral rules. As in such367
examples, the mode of execution is asynchronous and the most interesting rules are those related to the368
semantic rule scheme sync, as it is used to describe trust-based interactions between agents. More precisely,369
the side conditions of the semantic rules of such a scheme describe both the trust-based communication370
policies (e.g., a certain interaction from trustor A to trustee B is enabled if and only if the trust of A371
towards B is higher/lower than the trust threshold applied by A) and the policies behind the computation372
of trust values (e.g., the trust from A to B is computed by combining several variables, including the373
dispositional trust of A, the previous experience with B, and the reputation of B). The local repositories374

This is a provisional file, not the final typeset article 12



A. Aldini

include any local trust-based information needed to govern the policies above (e.g., the dispositional trust375
of A towards unknown trustees, the trust threshold applied by A, and the scores used to adjust trust after376
each satisfactory/unsatisfactory interaction). The community-based global repositories are used to collect377
the opinions shared by the agents within each community to form the reputation scores feeding the trust378
model.379

Then, through model checking, properties expressed in our network logic are used to analyze, e.g., how380
the trust towards a trustee as perceived by a community is determined depending on the services delivered381
by such an agent. Variants of such properties allow also to investigate the impact of attacks performed,382
e.g., by injecting false recommendations. The analysis of real-world case studies, like the Trust-Incentive383
Service Management by Zhang et al. (2007), the Reputation-based Framework for Sensor Networks384
by Ganeriwal et al. (2008), and the Robust Reputation System by Buchegger and Boudec (2004), was385
conducted automatically through the model checker NuSMV (Cimatti et al., 2002), thanks to a mapping386
from our specification language to the model of finite state machines used by the software tool.387

The proposed modeling approach is general enough to allow for standard extensions to, e.g., probabilistic388
and stochastic models. For instance, in Aldini (2022), it is extended with probabilities in order to model389
and analyze the spread of fake news in social networks. The network is divided into communities of agents,390
which in turn may exhibit different attitudes to share unchecked news or to conduct some fact checking.391
The examples reported in the previous section illustrate the non-probabilistic behavior of a type of agent392
susceptible to stimuli from the environment. The local repositories include the variables characterizing the393
agent’s attitute to believe, check, and share news.394

The reference model underlying the approach of Aldini (2022) is that of fully probabilistic LTSs (PTSs,395
for short) obeying the generative model of probabilities (Van Glabbeek et al., 1995). Analogously, our396
basic calculus is enriched with probabilistic information, similarly as done, e.g., in Baeten et al. (1992). For397
instance, in a.P action a is executed with probability 1, while the choice operator P +Q is replaced by the398
probabilistic choice operator P +p Q, with p ∈]0, 1[, stating that an action of P (respectively, Q) is chosen399
with probability p (respectively, 1− p). The mode of execution is synchronous: the global and network400
semantic rule schemes are extended accordingly to deal properly with such quantitative information in401
respect of the underlying model of probabilities.6402

The verification of PTSs relies on model checking of probabilistic temporal logic formulas (Kwiatkowska403
et al., 2011; Chen et al., 2013), which are described in a version of our logic that replaces the quantified404
path operators with the PCTL probabilistic (reachability) operator P▷◁p(π) (Hansson and Jonsson, 1994;405
Bianco and de Alfaro, 1995). The automated analysis was possible through a mapping to the PRISM model406
checker (Kwiatkowska et al., 2011). The goal of the analysis was to estimate the propagation of fake news407
over the whole network, depending on the topology of the system and the presence of reliable fact checkers.408

In the following, we complete such an overview of potential applications, by considering an example409
based on another instance of our framework.410

4.1 Use case: Blockchain efficiency411

In order to show the flexibility of our approach, here we discuss a case study requiring to deal with412
stochastically timed events. In such a way, our basic process calculus becomes a stochastic process calculus,413
in which actions are enriched with rates of exponentially distributed random variables that represent414

6 Models combining nondeterminism and probabilities, like in Markov Decision Processes, can be adopted as well in our approach, by adapting accordingly the
semantics.
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the action duration. Thus, such models give rise to stochastic processes in the form of (action-labeled)415
Continuous Time Markov chains (Clark et al., 2007). Technically, the operators of our basic calculus are416
still the same, with the trick of adopting the additional syntax and semantics of the stochastic process417
algebra PEPA (Hillston, 1996; Tribastone et al., 2009). In particular, actions are pairs of the form (a, λ),418
where a ∈ Act and λ ∈ R+ is a positive rate representing the parameter of an exponential probability419
distribution governing the duration of the timed action. In this setting, the choice operator captures a notion420
of competition solved via the race policy: the action to execute is the one that samples the least duration.421
We refer to the citations above for all the details about the semantics of stochastic processes. In our use422
case, we assume the fully asynchronous mode of execution, so that in the following we have to specify the423
instances of the rule async tailored to the given use case.424

The objective of the case study is to model a network of peers (P2P network) exchanging information425
about the blocks of a blockchain, which are generated by special agents called miners - see, e.g., Gamage426
et al. (2020) for a comprehensive overview of this distributed ledger technology. The blockchain model427
under consideration is permissionless and based on the proof-of-work mechanism (as in the case, e.g., of428
Bitcoin). Basically, any peer can mine a new block by solving a cryptographic puzzle called proof-of-work.429
To this aim, it is essential for the miner to learn information about the most recent block added to the430
blockchain and the data with which a new block is compiled, which depend on the specific application431
domain (e.g., virtual currency transactions in the case of Bitcoin). Here, we abstract away from the432
application domain and we concentrate on the blockchain management.433

Peers acting as miners have the following behavioral pattern:434

Miner
def
= (obs block , prop rate).Miner + (mine,mining rate).Miner ′

Miner ′
def
= (obs block , resume rate).Miner + (add block , prop rate).Miner

A mining node can notice that a new block was mined and propagated through the miner’s community435
(action obs block) and, at the same time, tries to solve the proof-of-work that would allow him to mine the436
next block (action mine) to be added to the blockchain and propagated to the network (action add block).437
The other ordinary peers advertise and relay to their reference communities any new block added to the438
blockchain. Hence, they simply act as forwarder nodes:439

Peer
def
= (obs block , prop rate).Peer + (prop block , prop rate).Peer

A peer can notice that a new block was mined (action obs block) and can propagate newly received blocks440
(action prop block).441

As far as the local repositories are concerned, every node shall maintain a local copy of the blockchain;442
for the sake of simplicity we limit each node to store the last block of the blockchain, which is abstractedly443
represented by a local counter block id initially set to 0 for every node of the network. As far as the444
community-based global repositories are concerned, we use a global variable last block id storing the445
most recent block propagated in the community. With such additional information in view – used to define446
the local mapping V of each node and the global mappings W for the communities – we now define the447
several instances of the semantic rule scheme async. For each instance, we specify the action of interest,448
the enabling conditions, and the side effects:449

1. case a = obs block :450

• ∃G ∈ CNames : id ∈ G(G) ∧ id .block id < (W(G))(last block id)451
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• V ′ = V [block id 7→ (W(G))(last block id)]452

• W ′ = W453

2. case a = prop block :454

• ∃G ∈ CNames : id ∈ G(G) ∧ id .block id > (W(G))(last block id)455

• V ′ = V456

• W ′(G) = W(G)[last block id 7→ V (block id)]457

3. case a = add block :458

• ∃G ∈ CNames : id ∈ G(G) ∧ (id .block id + 1) > (W(G))(last block id)459

• V ′ = V [block id 7→ V (block id) + 1]460

• W ′(G) = W(G)[last block id 7→ V (block id) + 1]461

The first case, which refers to the observation of a new block by a node in one of its communities, requires462
the node to update its local copy of the blockchain. The second case, which refers to the propagation of463
a new block by a node to one of its communities, requires the node to update the global repository of464
that community. The third case, which refers to the upload of a new block to the blockchain, requires the465
miner to update its local copy and to propagate the block. Notice that, by the presence of several potential466
communities (see the existential quantifier over G ∈ CNames), such cases may enable several different467
outgoing transitions, one per involved community. Any other action, like action mine in our example, does468
not require side conditions and/or effects, i.e., the async rule scheme is applied with cond := true and no469
variation of the local/global repositories.470

Essentially, the specification requires just to define the behavioral pattern of the node types (Miner and471
Peer) and the pre/post-conditions associated with the execution of the relevant actions. Analogously, we472
now show through a simple example how it is easy to model properties of interest.473

Block propagation delays may potentially impair the correctness of the blockchain sharing process,474
because a miner could mine and propagate a block before learning of a newly mined block that has been475
added to the blockchain. Such a misalignment problem is known as blockchain fork. To solve the issue, the476
network abandons the blocks that are not in the longest chain. Hence, performance and correctness are477
tightly connected, as the speed at which peers learn of new blocks is related to the likelihood of forks in the478
blockchain. Recently, in Chandrasekaran et al. (2022) an empirical study of the information propagation479
delays between nodes in blockchain P2P networks was proposed that emphasizes how the likelihood of480
forks drastically diminished since 2013. In particular, block propagation delays are estimated in the top481
four blockchain-based applications, including Bitcoin.482

Here, we propose a formal and automated verification of the analysis mentioned above, based on the483
use of the PRISM model checker7. For analysis purposes, we decided to instantiate the rates of the timed484
actions according to the Bitcoin related estimates of Chandrasekaran et al. (2022): the expected time to485
mine is about 10 minutes, while the mean (respectively, median) end-to-end propagation delay is about 4486
seconds (respectively, about 0.4 seconds). Moreover, we modeled various configurations, represented by487
the topology shown in Fig. 1, in which the P2P network radius - represented by the number of involved488
communities, depicted as clouds - is equal to 6. When a block is advertised in a community, all the members489
of the community react by experiencing the same delay, so that the overall end-to-end delay of the network490

7 The PRISM source file resulting from our specification is available at: https://github.com/aldinia/prism-bc-specs.
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Figure 1. Example of P2P network with 6 communities; some representative peers are depicted, including
2 miners.

depends on the network radius. Two miners are present in the network, while the other peers are either491
members of a single community or belonging to the intersection of many of them.492

For the purpose of model checking, we consider a probabilistic reachability property of the form P▷◁p(π),493
where π is an until formula expressing the reachability of a state in which a peer mines a new block and494
uses it to extend an obsolete version of the blockchain, thus causing a fork. Formally, if we concentrate on495
the miner with id = 1, such a condition is a mixture of action and state based formulas defined as follows:496

(1.add block) ∧ (count{ide | ide = 1 ∧ block id < max{last block id | true}} = 1).

The first conjunct holds when the first miner is enabled to update the blockchain. The second conjunct497
holds when such an update is obsolete as a more recent block is circulating in the network. We can reason498
analogously for the other miner, and then join the result of the two properties.499

In Figure 2, we show the results of such an analysis by considering the four combinations deriving from500
two different configuration choices. The first dimension is given by the topology specification: in scenarios501
(a) and (b) we have exactly the representative nodes depicted in Figure 1, while in scenarios (c) and (d)502
only the miners and the peers in the intersecting areas between the communities are modeled. Then, in503
the first two scenarios we measure the fork likelihood in a period of time equal to 100 minutes, while in504
the other two scenarios we refer to a 1 day interval. The second dimension is given by the propagation505
delay between each pair of peers, which is chosen to correspond to the mean end-to-end delay measured506
in Chandrasekaran et al. (2022) for scenarios (a) and (c), and to the median end-to-end delay measured507
in Chandrasekaran et al. (2022) for scenarios (b) and (d). Moreover, each figure presents the results obtained508
in three different cases: in case (1) both miners experience the same mining delay (10 minutes), in case (2)509
the second miner is slower (15 minutes), while in the third case the second miner is faster (5 minutes).510

In general, case (1) emphasizes that the fork probability is negligible, especially in cases (b) and (d).511
These results confirm the performance shown in Chandrasekaran et al. (2022). In detail, cases (2) and (3)512
reveal that the monitoring of the proof-of-work expected time is critical to maintain the fork likelihood at513
the desired level. Summarizing, already this simple case study illustrates that our framework is flexible and514
easy-to-use both from the modeling and the verification standpoints, also in the quantitative setting.515
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Figure 2. Relation between blockchain length and fork likelihood.

5 RELATED WORK AND CONCLUSIONS

The aim of the proposed approach is to provide a modeling and analysis framework that can be instantiated516
to specific application domains. The common feature of such domains is that they are characterized by517
collections of autonomous, dynamic, and interactive agents exhibiting a wide spectrum of cooperation518
patterns, as well as both reactive and proactive behaviors. The reported examples emphasize that the519
considered systems may express social relations of human agents in virtual environments, human–computer520
interactions, and also machine to machine communication. These include online services for smart and521
sustainable environments, and computer supported cooperative networks.522

The verification of coordination and control strategies for cooperative multi-agent systems is of paramount523
importance even in the setting of inter-robot communications. To this aim, several formal approaches524
to the design of coordination for robotics emerged in the literature. For instance, the design method525
proposed in Dai et al. (2016) employs concurrent finite automata and is based on a top-down approach526
recalling the separation of concerns adopted in our framework at a higher abstraction level. In Gu et al.527
(2020), the specific problem of synthesising and verifying collision-free paths for autonomous multi-agent528
systems is dealt with formally through stochastic timed automata and statistical model checking. The529
verification is conducted automatically through the software tool UPPAAL. In Abd Alrahman and Piterman530
(2021), reconfigurable multi-agent systems are modeled via finite automata and model checked using a531
variant of the Linear Temporal Logic (LTL). The authors emphasize that formal paradigms for modeling532
dynamic multi-agent systems cannot rely (only) on point-to-point communication. Instead, group-based533
communication is more appropriate, which is exactly one of the principles behind our framework. By534
following the same basic ideas, formal modeling paradigms and probabilistic model checking techniques535
are adopted for the analysis of autonomous agents by Sekizawa et al. (2015) and by Al-Nuaimi et al.536
(2018). Both approaches employ the software tool PRISM for the automated analysis, similarly as done537
in the quantitative extensions of our framework. In general, all the formal approaches mentioned above538
rely directly on paradigms that are also at the base of our framework, on top of which we defined a539
high-level process algebraic specification language. The need for high-level languages in this setting is540
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emphasized, e.g., by De Nicola et al. (2018); Abd Alrahman and Piterman (2021). For instance, we mention541
the languages ISPL (Lomuscio et al., 2009) and SCEL (De Nicola et al., 2015). The semantics of the542
former is based on concurrent labeled transition systems, which specifically adopt a form of synchronous543
communication. Interestingly, model checking is based on an epistemic logic encompassing a knowledge544
operator. On the other hand, the latter naturally supports knowledge-based communication for dynamic545
systems, in a way that recalls the method used in our framework to support uni/multi-cast communication546
via local/global repositories. The full semantics of SCEL is not trivial to export to a runtime environment;547
tool support is given, e.g., by the model checker SPIN and the MAUDE framework.548

In the literature, it is worth mentioning that formal, process-algebraic approaches (Loreti and Hillston,549
2016), semi-formal, architectural description approaches (Ozkaya and Kloukinas, 2013), and combinations550
of both (Basu et al., 2011; Hennicker et al., 2014; Bures et al., 2016) have been proposed to model and551
analyze dynamic reconfigurable architectures (Nicola et al., 2020) and (self-)adaptive systems (Gabor552
et al., 2020). In particular, the language CARMA (Loreti and Hillston, 2016) is specifically defined to553
model collective adaptive systems and shares several features with our framework, such as the separation554
of concerns advocated in Section 2, support for local/global views, and a formal semantics in operational555
style. The process calculus of CARMA is stochastic and has a Markovian semantics, on which numerical556
analysis based on simulation can be conducted. Moreover, CARMA is equipped with an architectural-557
style specification language on top of the calculus. By virtue of its modeling capabilities, CARMA is558
an ideal candidate for representing an instance of the modeling framework proposed in this paper. The559
BIP framework of Basu et al. (2011) proposes synchronous priority-based communication and a rigorous560
semantics based on finite-state automata and Petri nets. Compositional verification methods are based on561
static analysis of local/global invariants. For instance, deadlock-freedom is checked for a robot controller.562
Interestingly, BIP can be part of a software design flow culminating in deployable code generation. The563
HELENA approach of Hennicker et al. (2014) formalises the modeling of ensembles (i.e., groups of564
dynamic collaborating entities) through a class of automata. A mapping towards Promela allows for model565
checking verification through the SPIN model checker (Klarl, 2015). The modeling of ensembles is also the566
goal of the DEECo approach of Bures et al. (2016), the operational semantics of which is defined in terms567
of labeled transition systems. Tool support is provided to enable the verification of reachability properties.568

In many of the cases discussed above, classical temporal logics, like LTL and PCTL, support, via model569
checking, the formal verification of dynamic, multi-agent systems. Sometimes, ad-hoc extensions are used570
to model specific properties of cyber-physical systems, such as spatial-based conditions (Ciancia et al.,571
2018; Platzer et al., 2019). The property specification language proposed in our work encompasses the572
features of CTL-like logics, with a specific emphasis on the separation of concerns and local/global views573
that characterize the modeling style of our framework.574

The key factor of the proposed approach that represents the novelty of this paper is given by the575
flexibility of a high-level framework combining an action-based formalism with data-driven communication576
mechanisms based on which different, customized semantics can be provided and supported by several577
automated tools. So, with respect to the state-of-the-art, by itself the proposed approach does not add new578
theoretical insights and results. Together with the ease of use in modeling both behavioral patterns and579
property specifications, the flexibility mentioned above makes our framework adequate to model collective580
adaptive systems and to support those programming frameworks (Beal et al., 2015; Berndtsson and Mellin,581
2018; Casadei et al., 2018) used to develop them.582
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