THE NEUTRON STARS STRUCTURE IN METRIC THEORIES OF
GRAVITATION
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RESUMEN: Fartiendo de un principio variacional de la ener-
gia interna total de una estrella de neutrones ademé&s de al-
gunas restricciones sobre la forma de la métrica, se hallan
las ecuaciones de equilibrio de las estrellas de neutrones.
Estas ecuaciones se resuelven para hallar la masa ma&xima que
una estrella de neutrones puede soportar sin gque se produzca
el colape=c total. Finalmente se conectan estos resul tados

tedricos con los datos observacionales.

ABSTRACT: From the variational principle for the total
internal energy of a neutron star and some restrictions on
the form of the metric coefficients, we have found equations
of equilibrium which are valid for every metric theory of
gravitation. We also present some simple- solutions of the

equations to find the neutron stars maximum mass.
1. INTRODUCTION

There 1is a great theoretical as well as

experimental interest, in the determination of the maximum
*n
mas ’

gravitational collapse would occur leading to a possible

mass that neutron stars may have, M before a total

formation of a black hole.
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The main doubts to determine Myo, are:

a) The equation of state: M¥XD  is very much affected by the

max
equation of state chosen for densities greater than the
nuclear one, i.e. 3.1014gr/cm3.

b) The rotation: most of the analysis show that the rotation

. * . .
does not increase M N in more than 2041).

max
c) The theory of gravitation: although the different
gravitational theories may have the post—Newtonian limit
near to the one of General Relativity, their predictions
for the regimen of intense field of neutron stars
structure may greatly differ from those of General
Relativity.

Some theories do not even predict the existence of
black holes?).

In this paper we shall consider a fix equation of
state and stars where the rotation is not important in order
M;gx as a function of
gravitational theories. Then, the observed value af M;gx

toc examine the variation of

could eventually be used as a proof to test gravitational
theories.

This problem was exploredS)

by means of the
post-Newtonian parametrization formalism, but for the study

*n . L .
of Mpax it is necessary to reach central densities which

break down the assumptions of P-P-N, i.e. 1013 gr/cms. Thus,
we believe that our formalism could be useful to face this

kind of problems.
2. EQUILIBRIUM EQUATIONS

We shall suppose that the star is static and
sphericallly symmetric, described by a perfect fluid
stress—-energy tensor. We shall take stellar configurations
with wuniform entropy per nucleon S, and chemical

composition.
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The star interior metric can be described4)=

ds? = —Exp (2 ®r))dt2+Exp (2 ¥(r) ) dri+r2 (de+8in26 d $2)

The mass M, that the matter of the star would have
if it is dispersed to infinity is =imply My = kmON/4ﬂ, where
K o= 4168/c®, m_ = 1.66x10 2% is the rest mass of a nucleon
and N is the total number of nucleons in the star.

The nucleon number is given by:
N = f /:5 Jﬁ drdbd ¢ = j'Exp(©+W)Jﬁr2drded¢,

where Jﬁ is the conserved nucleorn number current and g is
the determinant of the metric.
The nucleon number density measured in a locally

inertial reference frame at rest in the ctar is:

M : -
n = ~Uu Jy o= Expd Q)Jﬁ (where Uu= (—Exp( &) ,0,0,0 the

four-velocity of a fluid in a static star).

Then: N = 41 [RExp (v(r)onr)rZdr (1)
0

The internal energy of the star is given by:

E = (M- Km_N/4T)c® (M is the total mass of the star).

The equilibrium of a configuration will be stable
with respect to total energy density oscillations if and
only if M, or equivalently E, is & minimum with respect to
all such variations.

Using the Lagrange multiplier method: M will be
stationary with respect to all variations that leave N fixed
if and only if there exists a constant ) for which M-)AKN is
stationary with respect te all the above mentioned

variations.
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At this point, we must choose some qualitative
behavior for Yy . ke do so, based 1in the following
requirements:

&l ¥ must coincide with General Relativity up to

post—Newtonian order.

b) ¥ must incorpaorate General Relativity up to

all order as a particular case.
r 2
Let be m{r) = K IO &r)rTdr, (2)

where € (r) is the total energy density of the fluid, thus
m(R) = M (R is the star radius).

As Y (r) is a function of mlr)/r, up to all
order, in General Relativity, we shall suppose that it is

also the case in our formalism. This will satisfy b) and

also a) with the proper V¥ . Thus ¥ = ¥ (mir)/r).
3 , . (R 2
From (1) and (2): SM-AKSN = K [ r< § etr)dr -
0
R ~ . '
A [T e? Exp¥) entrrdr— A K [RdreZn o
- : 0

0 Exp (Y29 ¥ om(r) Sm(r) ()

From (1) &m(r> = K fg r<§c dr. Besides, these

variations are not supposed to change the entropy per
nucleon 55).

So, 6s=0= §e/M+pel(l/N)=enir)=n g/ (p+e), where p
1s the pressure of the fluid.

Then replacing i1t in (3):
. R o
§M=AKEN = K[ r<dr (1-an(rExp(¥(r)) /p(ri)+e(r)) -
0

R .5
Ak:fﬁr#‘n(?)Exp(Y(?))3Y/am(F))ée1r>,
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where we have interchanged the r and ¥ integrals in the last

term. §M--24EN will wvanish for all 6e(r) if and only 1i+f:
1/x= n{r)Exp(¥(r))/(p(r)+e(r)) + K I‘: dF2n (F)Exp(¥(F))a¥/am(F)

A must be independent of r, then differentiating
with respect to r, (° = d/dr):
~ ~—
O=(n5(pﬂ5)—n(p'+€')/(p+€)‘)+n/(p+ﬁ)d‘Wdr—KrénBY/Bm(r) (4)

The condition of uniform entropy per nucleon
gives:
dz/dr=0=d( &n) / dr+pd(1/n¥dr and, therefore, n =n¢€ "/(p+ €)
replacing 1t in (4):

O=—p "/ (e+p) S +1/ (p+e)d¥/dr—kr=a¥ /3m(r)

then,

dp/dr=-(€+p) (d¥ /dr—kr = (p+€)3¥ /Im(r) . (5)
From (Z) dm/drxhrze and fromV¥Y =Y {(m(r)/r) we can

put eg. (3) as: dp/dr= - (€+p)(m(r)/r+Hr2p)8W/Sm(r).

But VY (r) i=e the interior metric and we want to
relate the eguation to the exterior one.

Let be grr(r)=é(r)=Exp(Z(r)) the exterior metric
coefficient, which could beg known via the study of test
particles orbits or as a vacuum solution of a particular
theory of gravitation.

Matching the interior and exterior metric at r=R
and demanding it to be valid for every R we find (choosing
an ansatz): W(m(r)/r)=Z(M/r))| M <o m(r)

Then ouw final solution will be:
dp/dr = — (e+p) {m(r) /r+kr<p) 3 A/IM

Mesm(r)

l')
= 1/2(e+p) {m(r) /r+Kr PR 10 (A) /M | M mir) (6)
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where M <om(r) means that after differentiating partially
with respect to the total mass M, we must replace it by
m(r) given by (2).

For the ©Schwarzschild metric A(r)=(1—2M/r)_l,
replacing it in equation (&) we find the general
relativistic equation of equilibrium for neutron stars:

dp/dr = — (e+p) (m(r) /r<+krp) /7 (1=2mr) /).

3. COMPUTATIONS

We shall present now some examples of application:

a) Constant energy density: == gog=constant
Integrating (2): mir)y = KebrE/S. Replacing it 1in
(&) 2dp/dr = - (€D+p)Kr(56/3+p)(1/édﬁ/dr)l M<—m(r)
. Alsa as d(mr)/r) = 2K e rdr/3
2dp/ (K E€-S+p) (E_/3+p)) = ~3/(2KED)dA/A M, m(r)

Equation which can be easily integrated:
pr=e A Y ry—a 2 (ryy 1 a2y 387 2 (R

Let ‘s see that P=p(0)=

172 -1/2

=€ 5 (A (R)-1) 7 (1-3A (R
then p_. + when A(MR) >9. Then A(R) = 9 would give the
maximum value of M/R (if A'<0 at every Rdr«< @),

B) Other interesting case is when the velocity of the sound

Vg 1s constant, i.e. p = 0 with o = constant.
Let's propose the solution p=p_/r° with Po
caonstant. Putting this in (2): m(+r) = Kpgr/ @ . Replacint it

in (6) x/A(x.dA(x) /dx = 4/ (g (1+1/a)), with x=M/R=KpD/G from
where we find Po -

The limit Pc 7 ®gives the maximum massb).
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c) We shall now choose a maore realistic equation of state
and parametrize A(r).

In the Schwarzschild metric A(r)=(1—2M/r)_1. Then
we study the following set of possible A(r):
Alr) = (1-2M/r+pM2/r=) 1

Replacing it in (6) we have:
dp/dr=—(€ +p) (m(r) /r Z4+Krp—pm<(r) /r “—Kppm (r)) /

7 (1=2m<r) /r+pm2 (r) 7r2)

Comparing with the results of P—P—NS) we can

associate the term " m</r- to the post—-nMNewtonian order i+
p=S+3y - &8 + ¢, , then under the 1light of the
experimental results’’ luf 107,

It is a very interecsting result, because there 1is
not experimental data on u .

.Furthermore, we take. ¥ = O and add an +r ~ term ta

obtain AW)Y = (1-2M/r+Q M /r~) and replacing it in (&):

dp/dr=—{( e+rp) (m{r) /r +Kep) (1-3/2Q0m(r) /1)2)/

/1 =2mr) /42 m= (r) /r)

We have integrated this equation and (Z) using the

Baym et al. equation of statea), for pressures lower than

5 1033 d 2 e ) : )
- yn/cm™, and the one of Bethe % Johnson for higher

pressures. The results are plotted 1in Figue 1, where the

*0

masx &5 & function of

full line represents the maximum mass M
the parameter Q . It is also plotted the best determined
neutron star mass, the binary pulsar FSR 1913+1b7)ﬂp =  1.42

t 0.06 M,.
The existence of a neutron star with this mass

implies that 2 must be such that M0 > M

mas then f+rom

p?
figure 1 Q > —6b.

This example show us how to use the observational
data in restricting the values of a theoretical parameters

as”?
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4. CONCLUSIONS

Under some restrictions, we have found equations
of equilibrium which only depend on the object exterior
metric. This <chows that one could find empirically the
exterior metric and then, immediately know the interior
structure of a neutron star. Besides, example c) displays
the possibility to test gravitation in the stron field
regime, where is not much information available.

Finally, this paper pretends to attract the
attention on this kind of problems and go along a way which

has not been very much travelled.

This work was supported by the Corseio Macional de
Investigaciones Cientificas vy Técnicas de la Replblica
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