Expanding the scope of a testing framework for
Industry 4.0

Martin L. Larrea!*?? and Dana K. Urribarril-?3

! Department of Computer Science and Engineering, Universidad Nacional del Sur
(UNS), Bahia Blanca, Argentina
2 Computer Graphics and Visualization R&D Laboratory, Universidad Nacional del
Sur (UNS) - CIC Prov. Buenos Aires, Bahia Blanca, Argentina
3 Institute for Computer Science and Engineering, Universidad Nacional del Sur
(UNS) - CONICET, Bahfa Blanca, Argentina
{mll, dku}@cs.uns.edu.ar

Abstract. Software has become a transversal and foundational element
of the new industrial revolution, with a growing presence in every stage of
production processes. Software inclusion has grown not only quantitative
but also qualitative; this increase turns critical the impact of software
on society, the environment, and individuals. This new era requires new
methodologies, techniques, and tools to verify and validate the founda-
tions of Industry 4.0. This paper aims to expand the capacity of a current
testing framework to be more flexible and require less specialized person-
nel. We introduced a web application that complements it through the
generation of test cases. The framework and web application are open
sources and freely available which means that these software elements
are a foundation that will allow future development teams to continue
expanding their functionality and application areas within Industry 4.0.

Keywords: Industry 4.0, Verification and Validation, Testing, Message
Sequence Specification, Aspect-Oriented Programming, Software

1 Introduction

Software quality has become one of the most important factors in determining
the success of products or companies in the era of Industry 4.0. As stated by
Oztemel et. al [@] “...the superior quality of the manufacturing industry strictly
depends on its high-quality applied production technology...” and “...there are
now companies having the largest part of businesses in their sector with only
running a software...”. Lee et. al [7] also highlighted the key role of software
in this new industry: “The Fourth Industrial Revolution is ubiquitous and will
increasingly transform and reshape operations/production, supply-chain, man-
agement, and governance as well as products and services. Whatever could be
codified of the organizational life will be put into codes and software and em-
bedded into cybernetics systems that will replace human work activities”. Yang
[8], as well, described that “Industry 4.0 has two key factors: integration and

389

2 Martin L. Larrea, and Dana K. Urribarri

interoperability. Integrated with applications and software systems, Industry 4.0
will achieve seamless operations across organizational boundaries and will realize
networked organizations”. To a great extent, the success of Industry 4.0 rests
on the quality of the software, which has the responsibility to ensure that it is
error-free.

In 2020 we present the latest version of our testing framework called TAPIR
[5], which was designed to detect failures in the sequence of method calls. It was
suitable for Industries 4.0, but it was only available as a tool for Java developers.
In this paper, we expand the scope of the framework by adding a new component:
a web application that helps the software developer or other professionals to
generate test cases to test their software element regardless of the programming
language. The web application was implemented using TypeScript and React.
Keeping the TAPIR philosophy, all the development presented in this work is
free and open source.

The rest of the paper is structured as follows. Section 2 provides background
information about the TAPIR framework. Then, we present the contributions
of this article in Section 3. We later show how it was possible to find an error
using the web application. Finally, we conclude with a brief discussion on the
limitations and advantages of our approach and the future work.

2 TAPIR

TAPIR [5] is a testing framework for object-oriented source code based on Mes-
sage Sequence Specification (MSS) [B] and implemented using Aspect-Oriented
Programming (AOP) [E]. AOP allows the framework to create test cases that
execute automatically with each execution of the program under test without
modifying its source code. The use of MSS allows the developer to describe
a regular expression for each class, which represents its correct behavior. The
framework executes the program, and it checks whether the methods are invoked
according to the regular expression in the class specification. The first thing the
developer must do to use the framework is to create the regular expressions as-
sociated with the classes under test. These regular expressions must specify the
correct behavior or invocation order of the classes’ methods. To simplify the reg-
ular expression writing, symbols (i.e. characters) are used instead of the actual
names of the methods. However, to be able to interpret it, the developer must
specify a mapping between the actual methods’ names and their corresponding
symbol. The regular expressions and the maps between methods and symbols
are set in the TestingSetup.java class.

The framework consists of two main components: an aspect, and a java class.
The aspect is named TestingCore.aj and it contains the implementation of the
framework’s core. Listing [I.I]shows the implementation of the TestingSetup.java
class that describes to TAPIR the correct behavior of example classes CA and
CB. In this case, the correct usage of class CA states that, after the creation of
the object, there should be a call to f followed by a call to g. After that, there can
be as many calls as desired to either g or h. The final call of the sequence must

390

Expanding the scope of a testing framework for Industry 4.0 3

be to h. To correct use class CB, there should be first a call to alpha followed by
a call to gamma, or a call to gamma followed by a call to beta. Afterward, any
method between alpha, beta, or gamma can be called.

Listing 1.1: TAPIR configuration for classes CA and CB

//Class CA: Definition of the methods and their corresponding symbols

mapObjectsToCallSequence = new HashMap<Integer, String>();

mapMethodsToSymbols = new HashMap<String, String>();

mapMethodsToSymbols.put(” main.CA.<init>", "c");

mapMethodsToSymbols.put(” main.CA.f", "f");

mapMethodsToSymbols.put(” main.CA.g", "g");

mapMethodsToSymbols.put(” main.CA.h", "h");

//Definition of the regular expression

regularExpression = Pattern.compile(” cfg(g|h)*h");

//Initializing the regular expressions controller

matcher = regularExpression.matcher("");

//A Testinglnformation instance stores all information related to how the class is tested

Testinglnformation ti = new TestingInformation(CA.class.toString(),
mapObjectsToCallSequence, mapMethodsToSymbols, regularExpression, matcher,
true);

TestingCore.mapClassToTestingInformation.put(CA.class.toString(), ti);

//Class CB: Definition of the methods and their corresponding symbols

mapObjectsToCallSequence = new HashMap<Integer, String>();

mapMethodsToSymbols = new HashMap<String, String>();

mapMethodsToSymbols.put(” main.CB.alpha”, "a");

mapMethodsToSymbols.put(” main.CB.gamma”, "g");

mapMethodsToSymbols.put(” main.CB.beta”, "b");

//Definition of the regular expression

regularExpression = Pattern.compile(” (ag|gb)(alg|b)*");

//Initializing the regular expressions controller

matcher = regularExpression.matcher("");

//A Testinglnformation instance stores all information related to how the class is tested

ti = new TestingInformation(CB.class.toString(), mapObjectsToCallSequence,
mapMethodsToSymbols, regularExpression, matcher, false);

TestingCore.mapClassToTestingInformation.put(CB.class.toString(), ti);

In Listing we can see the framework output when the code portion of
Listing corresponding to the CA class is executed. In this case, the last call
to f does not follow the MSS specified for the CA class. As mentioned above,
when an error is detected, TAPIR informs by console the class and object that
produced the error. The method that violated the MSS, the MSS and the actual
sequence of calls are also shown in the console. Finally, the system aborts the
execution, as indicated by the last parameter of method TestingInformation in
the configuration.

Listing 1.2: Two snippets of code showing examples of wrong usage of class CA
and class CB.

CA cal = new CA(); cal.f();

391

4 Martin L. Larrea, and Dana K. Urribarri
cal.g(); cbl.alpha();
cal.h(); cbl.alpha();
cal.f(); cbl.gamma();
CB cbl = new CB(); cbl.gamma();

Listing 1.3: Error example for the CA class. The execution is aborted when the
error is found.

—_ ERROR FOUND ———

Class: class main.CA

Object Code: 977993101

Method Executed: main.CA.f

Regular Expression: cfg(g|h)xh

Execution Sequence: cfghf

————— SYSTEM ABORTING... —————

Listing 1.4: Error example for the CB class. The execution is allowed to continue
when the error is found.

—_ ERROR FOUND ——— —_ ERROR FOUND ———
Class: class main.CB Class: class main.CB

Object Code: 859417998 Object Code: 859417998

Method Executed: main.CB.alpha Method Executed: main.CB.gamma
Regular Expression: (ag|gb)(a|g|b)* Regular Expression: (ag|gb)(a|g|b)=*
Execution Sequence: aa Execution Sequence: aag

—— CONTINUING EXECUTION... ——— —— CONTINUING EXECUTION... ———

Listing [[.4] shows the framework output when the code portion of Listing[T.2]
corresponding to the class CB is executed. In this case, the second call to alpha
does not follow the MSS specification for class CB. As configured in Listing[1.2],
the last parameter in the call to method TestingInformation is false, indicating
that the execution must continue despite the existing errors. Therefore, Listing
shows multiple errors.

For a more in-depth analysis of the framework and more usage examples, we
recommend that the reader see [f].

3 Proposal

As we previously mentioned, TAPIR is developed in Java and can only be used in
Java applications. Although programming knowledge is necessary, the framework
can be used by developers who do not have specific knowledge of the testing area.
These two restrictions present two opportunities for improvement, and these are
the contribution proposal for this work.

The proposal in this work is to expand the development carried out in [5] to
include a new piece of software, a web application that completes the technique
previously presented. While the framework functionality is oriented to evaluate

392

Expanding the scope of a testing framework for Industry 4.0 5

the correct usage of a set of running classes, the web application allows the
generation of test cases to test more methodically the behavior of a class against
possible combinations of calls of its methods. This is useful for testing software
components that are not yet part of a complete application. In this way, the
web application generates documentation oriented to the unit testing of such
components. This documentation is of great help to the developer and, since the
web application is very easy to use, any member of the work team can generate
the test cases.

The definition, design, and implementation of the application and its inter-
actions with the user were conceived under a User-Centered Design strategy [2]
and considering the work by Signoretti et. al [I0]. Under this strategy, the user
of a system has active participation in its design and development. In our case,
we worked with users who did not have a computer profile but were familiar with
the software industry and Industry 4.0 in general. With them, the design of the
graphical interface of the system, the use of labels throughout the application,
and the interactions were validated. Interdisciplinary teams [I1] are an increas-
ingly common way of working in the context of Industries 4.0, so the tools that
ensure the quality of software products should be usable by all team members.
In this way, it would be possible to test a greater part of the software or test
the same as before but in less time. On the other hand, making the testing tool
independent from the language and even from the software and hardware plat-
forms would allow the same tool to be applied in different projects, reducing or
eliminating training times in new methodologies or programs.

3.1 Implementation

To avoid the MSS parsing logic being tied to the web application, the project was
divided into two parts which are the MSS-Parser and the MSS-App modules. The
MSS-Parser module validates that text strings are correct MSS and generates
the test cases according to the provided coverage parameters. This module was
not implemented from scratch but was a fork of the genex.js project repository,
authored by Alix Axel. MSS-Parser was implemented entirely in TypeScript, to
make it easier to use by providing a statically typed API. Like genex.js, MSS-
parser uses the ret (Regular Expression Tokenizer) library to parse the regular
expression associated with the MSS and return a tree of tokens. Then, this
tree is traversed to generate the strings that represent test cases. The MSS-App
was developed using React as the front-end framework, also in TypeScript, to be
consistent with the MSS-Parser module and take advantage of static typing. The
Material-UI web-component library was used because it offers a wide variety of
components developed following the Material Design standards [IJ.

3.2 The front-end design

The front-end is divided into two parts. On the one hand, it offers an editor (Fig-
ure that allows entering the MSS, the coverage parameters, and an optional
mapping between symbols and interaction names. Once the values are entered

393

6 Martin L. Larrea, and Dana K. Urribarri

and validated (Figure , the application generates the test cases and enables
the second part of the application. There the user can visualize the generated
report (Figure and, for each test case the user can indicate if each step could
be executed, and also if the test was successful or not. Each test case can contain
a text note.

Generotron: Test Cases Generator

Test Suite Editor
Generotron: Test Cases Generator

Test Suite Editor J sEpout

AR

e Coverage Criteria ©

Coverage Criteria @

Symbol Map

Symbol Map

(a) Homescreen of Generotron, a web ap- (b) Error found in the MSS input field. Ev-
plication for the generation of test cases ery time the user types something in this
based on MSS. field, it is checked

Fig. 1: Generotron: Test Case Generator

The application offers an extremely simple editor. Figure [La] shows a screen-
shot in its initial state. As seen in the figure, it is composed of three mandatory
input fields in which the user enters the regular expression and the two values
used as parameters for the coverage criteria. These last two are initialized by
default with the values 0 and 1 since they are the minimum values allowed by
definition. In turn, the input fields do not allow entering smaller values. Once a
valid MSS expression has been entered, new fields are dynamically generated in
which the user can enter the full name of the interaction, as shown in Figure [

Symbol mapping is optional at the individual level; the user can add a more
descriptive name for a symbol while omitting those where it is considered unnec-
essary. When viewing the report, the names added to the mapping are used to
display more descriptive versions of the MSS expression and the list of methods
to execute in each test case. It is important to note that although the mapping is
optional, whenever abbreviated symbols are used, the ideal would be to provide
one to improve the readability of the generated report.

In case an error is detected in the entered values, a message is displayed
with a description (Figure . The MSS-Parser module provides these error
messages. Once the required values are entered, the Generate Report button is
enabled. The web report was designed and implemented prioritizing simplicity
over fanciness so that the same web format presented in the browser could be
exported to a PDF using directly the universally provided printing functionality.
At the top, it has a heading like the one in Figure 3, which shows the values

394

395

Expanding the scope of a testing framework for Industry 4.0 7

previously entered in the editor and used to generate the test cases in the report.
The blue PDF icon is a button that allows exporting the document as a PDF file.
Then the corresponding test cases are listed and grouped according to whether
they are valid or invalid sequences of interactions. Each test case is contained
by a box like the one shown in Figure The title includes the sequence of
interactions from the MSS expression that compose the test case. As mentioned
above, when a mapping was provided, the list of methods includes names instead
of symbols as shown in Figure 6. The report includes a checkbox on each method
of the test cases to indicate a successful execution. After conducting the test case,
the user can register a successful or failed result in the upper right corner and
write comments if necessary. A valid test case is successful if all the methods
were successful. However, an invalid test case is successful if it fails at some
point.

Test cases for valid sequences

Valld test case 0.C
Report 2
sGt A
Cowsrageciiona: Basa+ 1 lwalels | Valid test case 05.C
Test cases for valid sequences
Valid test case awv
Walid test case O.Z.C

Valid test case a.wvw

' Valid test case 0.5.5.C
T

Test cases for invalid sequences

invalid test case & Valid test case 052G

tnvalid test case v

(a) A webform that shows the generated 3 e

test cases. For each one of them, the user

can indicate if each step could be executed,

and also if the test was successful or not. (b) The webform with the test cases can
Each test case can contain a text note. be easily exported to PDF.

Fig. 2: Report generation in Generotron

8 Martin L. Larrea, and Dana K. Urribarri

Test Suite Editor

GINERATE SEPOAT

Coverage Criteria @

Symbol Map

Fig.3: For each symbol that is used in the MSS, it is possible to establish a
mapping with the method it represents. This makes it easier to read the test
cases.

4 Test Case. Rock.AR, a software solution for point
counting

Point counting is the standard method to establish the modal proportion of
minerals in coarse-grained igneous, metamorphic and sedimentary rock samples.
This method requires taking observations at regular positions on the sample,
namely grid intersections. Rock.AR [6] is an open-source visualization tool de-
veloped in Java that implements a semiautomatic point-counting method.

The implementation of Rock.AR includes a class called CurrentTime that
provides the current time and is also used to measure the elapsed time between
two moments. This class is part of a utility package that the application uses.
There are only three methods available. GetCurrentTime returns the current
time, conforming to format yyyy-MM-dd HH:mm:ss. StartTimeFrame is used to
mark the beginning of a time frame, and EndTimeFrame marks the end of such
time frame and returns the elapsed time between start and end.

The correct use of this class is described as follows: GetCurrentTime can be
called at any time, and a time interval can be measured by first calling Start-
TimeFrame and then EndTimeFrame. Between a call to StartTimeFrame and
EndTimeFrame, calls to getCurrentTime can occur. Using these symbols for each
method; g for GetCurrentTime, s for StartTimeFrame, and e for End TimeFrame,
the following MSS describes the correct operation of the class:

((s" o g" e e)[g)" (1)

Using the Web Application to generate test cases for the CurrentTime class
(see Figure E[), it was possible to detect a bug. The application generated com-
binations of calls to the methods of the class that caused the class to behave

396

Expanding the scope of a testing framework for Industry 4.0 9

Generotron: Test Cases Generator "o #
Test Suite Editor s

m 5219 Test cases for valid sequences
HLECH

Vailid test case

Coverage Criteria ©

Test cases for invalid sequences

]

Invalid tost case

Symbol Map

Invalid test case s

Iinvalid test coie e

Invalid test cose e

Invalld test case 9.0

Fig. 4: Test cases generated for the GetCurrentTime class

incorrectly when tested. Although these sequences should not occur during nor-
mal execution, the class should be robust enough to withstand misuse, which is
not. Note that a valid test case is successful if the sequence executes correctly;
however, an invalid test case is successful if the sequence fails to execute.

5 Conclusions & Future Work

Industry 4.0 requires new methodologies to ensure the quality of its software, a
key element in its production chain. A framework for testing Object-Oriented
Software was developed for testing Java applications but was only available for
this programming language and could only be used by someone with program-
ming knowledge. We expanded this framework by introducing a web application
that complements it. Although the framework can be used in any Java imple-
mentation without modifying the source code, it requires Java and programming
knowledge. The web application is suitable for any implementation based on
Object-Oriented Programming, regardless of the programming language and it
can be used by anyone in the work team. All these tools were designed and im-
plemented to detect, without modifying the source code, failures in the sequence
of calls that objects make. As shown in the case studies, these tools help with
the detection of errors that would otherwise be difficult to find. The framework
is available for downloading at http://cs.uns.edu.ar/~mll/lapaz/| and the
web application can be used at https://cs.uns.edu.ar/~dku/mss. The source
code is available and licensed under a Creative Commons Attribution-ShareAlike
4.0 International License.

397

http://cs.uns.edu.ar/~mll/lapaz/
https://cs.uns.edu.ar/~dku/mss

10

Martin L. Larrea, and Dana K. Urribarri

Acknowledgment

This work was partially supported by the following research projects: PGI 24/N050

and PGI 24/ZN35 from the Secretaria General de Ciencia y Tecnologia, Univer-
sidad Nacional del Sur, Argentina.

References

10.

11.

. Tan G Clifton. Android user interface design: Implementing material design for

developers. Addison-Wesley Professional, 2015.
Roger Coleman, John Clarkson, and Julia Cassim. Design for inclusivity: A prac-
tical guide to accessible, innovative and user-centred design. CRC Press, 2016.

. Shekhar Kirani and W. T. Tsai. Specification and verification of object-oriented

programs. Technical report, Computer Science Department, University of Min-
nesota, 1994.

Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA, 2003.

Martin Larrea and Dana Urribarri. Increasing confidence in industry 4.0 through
new software verification and validation techniques. In International Conference
on Production Research ICPR Americas, page In press. International Conference
of Production Research, 2020.

. Martin L Larrea, Silvia M Castro, and Ernesto A Bjerg. A software solution for

point counting. petrographic thin section analysis as a case study. Arabian Journal
of Geosciences, 7(8):2981-2989, 2014. do0i:10.1007/s12517-013-1032-0.

MinHwa Lee, JinHyo Joseph Yun, Andreas Pyka, DongKyu Won, Fumio Kodama,
Giovanni Schiuma, HangSik Park, Jeonghwan Jeon, KyungBae Park, KwangHo
Jung, et al. How to respond to the fourth industrial revolution, or the second
information technology revolution? dynamic new combinations between technol-
ogy, market, and society through open innovation. Journal of Open Innovation:
Technology, Market, and Complexity, 4(3):21, 2018.

Yang Lu. Industry 4.0: A survey on technologies, applications and open research
issues. Journal of industrial information integration, 6:1-10, 2017.

Ercan Oztemel and Samet Gursev. Literature review of industry 4.0 and related
technologies. Journal of Intelligent Manufacturing, 31(1):127-182, 2020.

Ingrid Signoretti, Larissa Salerno, Sabrina Marczak, and Ricardo Bastos. Combin-
ing user-centered design and lean startup with agile software development: a case
study of two agile teams. In International Conference on Agile Software Develop-
ment, pages 39-55. Springer, 2020.

Alp Ustundag and Emre Cevikcan. Industry 4.0: managing the digital transforma-
tion. Springer, 2017.

398

	Expanding the scope

