
Goodness of the GPU Permutation Index:
Performance and Quality Results

Mariela Lopresti, Fabiana Piccoli, Nora Reyes

LIDIC. Universidad Nacional de San Luis,
Ejército de los Andes 950 - 5700 - San Luis - Argentina

{omlopres,mpiccoli,nreyes}@ unsl.edu.ar

Abstract. Similarity searching is a useful operation for many real ap-
plications that work on non-structured or multimedia databases. In these
scenarios, it is significant to search similar objects to another object given
as a query. There exist several indexes to avoid exhaustively review all
database objects to answer a query. In many cases, even with the help
of an index, it could not be enough to have reasonable response times,
and it is necessary to consider approximate similarity searches. In this
kind of similarity search, accuracy or determinism is traded for faster
searches. A good representative for approximate similarity searches is
the Permutation Index.
In this paper, we give an implementation of the Permutation Index on
GPU to speed approximate similarity search on massive databases. Our
implementation takes advantage of the GPU parallelism. Besides, we con-
sider speeding up the answer time of several queries at the same time.
We also evaluate our parallel index considering answer quality and time
performance on the different GPUs. The search performance is promis-
ing, independently of their architecture, because of careful planning and
the correct resources use.

1 Introduction

For a query in a multimedia database, it is meaningless to look for elements ex-
actly equal to a given one as a query. Instead, we need to measure the similarity
(or dissimilarity) between the query object and each database object. The simi-
larity search problem can be formally defined through the metric space model. It
is a paradigm that allows modeling all the similarity search problems. A metric
space (X, d) is composed of a universe of valid objects X and a distance function
defined among them, that determines the similarity (or dissimilarity) between
two given objects and satisfies properties that make it a metric. Given a dataset
of n objects, a query can be trivially answered by performing n distance eval-
uations, but a sequential scan does not scale for large problems. The reduction
of the number of distance evaluations is meaningful to achieve better results.
Therefore, in many cases, preprocessing the dataset is an important option to
solve queries with as few distance computations as possible. An index helps to
retrieve the objects from the database that are relevant to the query by making
much less than n distance evaluations during searches [1]. One of these indices
is the Permutation Index [2].

The Permutation Index is an approximate similarity search algorithms to
solve inexact similarity searching [3]. In this kind of similarity search, accuracy
or determinism is traded for faster searches [1, 4]. There are many applications
where their metric-space modelizations already involve an approximation to re-
ality. Hence, a second approximation at search time is usually acceptable.

For very large metric databases, it is not enough to preprocess the dataset to
build an index. It is also necessary higher speed, in consequence, techniques of

321
ISBN 978 -987-633-574-4

high-performance computing (HPC)[5, 6] are considered. The Graphics Process-
ing Units (GPU)[7] are a meaningful alternative to employ HPC in the dataset
preprocess to obtain an index and to answer posed queries. The GPU is at-
tractive in many application areas for its characteristics because of its parallel
execution capabilities. They promise more than an order of magnitude speedup
over conventional processors for some non-graphics computations.

In metric spaces, the indexing and query resolution are the most common
operations. They have several aspects that accept optimizations through the
application of HPC techniques. There are many parallel solutions for some metric
space operations implemented to GPU. Querying by k-Nearest Neighbors (k-NN)
has concentrated the greatest attention of researchers in this area, so there are
many solutions that consider GPU. In [8–11] different proposal are made, all of
them are improvements to brute force algorithm (sequential scan) to find the
k-NN of a query object. In [9], Kruslis et al. propose an GPU solution to the
Permutation Index. They focus in high dimensional DB and use Bitonic Sort.
Their performance results are good.

The goal of this work is to analyze the trade-off between the quality of simi-
larity queries answer and time performance, using a parallel permutation index
implemented on GPU. In this analysis, we consider: different databases, two well
known measures of answer quality in the information retrieval area: recall and
precision, and some performance parameters to evaluate parallel implementa-
tions.

The paper is organized as follows: the two next sections describe all the
previous concepts. Sections 4 and 5 sketch the characteristics of our proposal
and its empirical performance. Finally, the conclusions and future works are
exposed.

2 Metric Space Model

A metric space (X, d) is composed of a universe of valid objects X and a dis-
tance function d : X × X → R+ defined among them. The distance function
determines the similarity (or dissimilarity) between two given objects and sat-
isfies several properties such as strict positiveness (except d(x, x) = 0, which
must always hold), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). The finite subset U ⊆ X with size n = |U |, is called
the database and represents the set of objects of the search space. The distance is
assumed to be expensive to compute, hence it is customary to define the search
complexity as the number of distance evaluations performed, disregarding other
components. There are two main queries of interest [1, 4]: Range Searching and
the k-NN. The goal of a range search (q, r) is to retrieve all the objects x ∈ U
within the radius r of the query q (i.e. (q, r) = {x ∈ U/d(q, x) ≤ r}). In k-NN
queries, the objective is to retrieve the set k-NN(q)⊆ U such that | k-NN(q) |= k
and ∀x ∈ k-NN(q), v ∈ U ∧ v /∈ k-NN(q), d(q, x) ≤ d(q, v). These two queries are
considered “exact” because both retrieve all the elements that satisfy the query
criterium.

When an index is defined, it helps to retrieve the objects from U that are
relevant to the query by making much less than n distance evaluations during
searches. The saved information in the index can vary, some indices store a subset
of distances between objects, others maintain just a range of distance values. In
general, there is a tradeoff between the quantity of information maintained in the
index and the query cost it achieves. As more information an index stores (more
memory it uses), lower query cost it obtains. However, there are some indices
that use memory better than others. Therefore in a database of n objects, the
most information an index could store is the n(n − 1)/2 distances among all

322
ISBN 978 -987-633-574-4

element pairs from the database. This is usually avoided because O(n2) space is
unacceptable for realistic applications [12].

Proximity searching in metric spaces usually are solved in two stages: prepro-
cessing and query time. During the preprocessing stage an index is built and it is
used during query time to avoid some distance computations. Basically the state
of the art in this area can be divided in two families [1]: pivot-based algorithms
and compact-partition-based algorithms.

There is an alternative to “exact” similarity searching called approximate
similarity searching [3], where accuracy or determinism is traded for faster
searches [1, 4], and encompasses approximate and probabilistic algorithms. The
goal of approximate similarity search is to reduce significantly search times by
allowing some errors in the query output. In approximate algorithms one usually
has a threshold ǫ as parameter, so that the retrieved elements are guaranteed to
have a distance to the query q at most (1 + ǫ) times of what was asked for [13].
This relaxation gives faster algorithms as the threshold ǫ increases [13, 14]. On
the other hand, probabilistic algorithms state that the answer is correct with
high probability [15, 16]. That is, if a k-NN query of an element q ∈ X is posed
to the index, it answers with the k elements viewed as the k closest elements
from U between only the elements that are actually compared with q. How-
ever, as we want to save as many distance calculations as we can, q will not
be compared against many potentially relevant elements. If the exact answer of
k-NN(q) = {x1, x2, . . . , xk}, it determines the radius rk = max1≤i≤k{d(xi, q)}
needed to enclose these k closest elements to q.

2.1 Quality Measures of Approximate Search

An approximate answer of k-NN(q) could obtain some elements z whose d(q, z) >
rk. Besides, an approximate range query of (q, r) can answer a subset of the exact
answer, because it is possible that the algorithm did not have reviewed all the
relevant elements. However, all the answered elements will be at distance less or
equal to r, so they belong to the exact answer to (q, r).

In most of information retrieval (IR) systems it is necessary to evaluate
retrieval effectiveness [17]. Many measures of retrieval effectiveness have been
proposed. The most commonly used are recall and precision, where recall is
the ratio of relevant documents retrieved for a given query over the number of
relevant documents for this query in the database; and precision is the ratio of
the number of relevant retrieved documents over the total number of documents
retrieved. Both recall and precision take on values between 0 and 1.

In general IR systems, only in small test collections, the denominator of both
ratios is generally unknown and must be estimated by sampling or some other
method. However, in our case we can obtain the exact answer for each query
q, as the set of relevant elements for this query in U . By this way it is possible
to evaluate both measures for an approximate similarity search index. For each
query element q, the exact k-NN(q) = Rel(q) is determined with some exact
metric access method. The approximate-k-NN(q) = Retr(q) is answered with an
approximate similarity search index, let be the set Retr(q) = {y1, y2, . . . , yk}.
It can be noticed that the approximate search will also return k elements,
so |Retr(q)| = |Rel(q)| = k. Thus, we can determine the number of k ele-
ments obtained which are relevant to q by verifying if d(q, yi) ≤ rk; that is
|Rel(q) ∩Retr(q)|. In this case both measures are coincident:

recall = |Rel(q)∩Retr(q)|

|Rel(q)|
= |Rel(q)∩Retr(q)|

k

and

323
ISBN 978 -987-633-574-4

precision = |Rel(q)∩Retr(q)|

|Retr(q)|
= |Rel(q)∩Retr(q)|

k
,

and will allow us to evaluate the effectiveness of our proposal. In range queries
the precision measure is always equal to 1. Thus, we decide to use recall in order
to analyze the retrieval effectiveness of our proposal, both in k-NN and range
queries.

2.2 GPGPU

Mapping general-purpose computation onto GPU implies to use the graphics
hardware to solve any applications, not necessarily of graphic nature. This is
called GPGPU (General-Purpose GPU), GPU computational power is used to
solve general-purpose problems [18, 19, 7]. The parallel programming over GPUs
has many differences from parallel programming in typical parallel computer,
the most relevant are: the number of processing units, the CPU-GPU memory
structure, and the number of parallel threads.

Every GPGPU program has many basic steps, first the input data transfers
to the graphics card. Once the data are in place on the card, many threads
can be started (with little overhead). Each thread works over its data and, at
the end of the computation, the results should be copied back to the host main
memory. Not all kind of problem can be solved in the GPU architecture, the most
suitable problems are those that can be implemented with stream processing and
using limited memory, i.e. applications with abundant parallelism. Each GPU-
algorithm must be carefully analyzed and its data structures must be designed
considering hierarchy of GPU memory, its architectures and limitations. A good
GPU-algorithm has the next characteristics:

– As the data transfers between CPU and GPU could take significant amount
of time, therefore, these have to be overlapped or reduced.

– The algorithm must adopt to the MIMD and SIMD paradings, and accept
the SIMT execution model.

– A lot of workload needs to be spawned in order to utilize efficiently all
available GPU cores.

The Compute Unified Device Architecture (CUDA) enables to use GPU as a
highly parallel computer for non-graphics applications [20, 21]. CUDA provides
an essential high-level development environment with standard C/C++ lan-
guage. It defines the GPU architecture as a programmable graphic unit which
acts as a coprocessor for CPU. The CUDA programming model has two main
characteristics: the parallel work through concurrent threads and the memory
hierarchy. The user supplies a single source program encompassing both host
(CPU) and kernel (GPU) code. Each CUDA program consists of multiple phases
that are executed on either CPU or GPU. All phases that exhibit little or no
parallelism are implemented in CPU. Contrary, if the phases present much par-
allelism, they are coded as kernel functions in GPU. A kernel function defines
the code to be executed by each thread launched in a parallel phase over GPU.

3 Sequential Permutation Index

Let P be a subset of the database U , P = {p1, p2, . . . , pm} ⊆ U , that is called
the permutants set. Every element x of the database sorts all the permutants
according to the distances to them, thus forming a permutation of P: Πx =
hpi1 , pi2 , . . . pimi. More formally, for an element x ∈ U , its permutation Πx of P
satisfies d(x,Πx(i)) ≤ d(x,Πx(i+ 1)), where the elements at the same distance

324
ISBN 978 -987-633-574-4

are taken in arbitrary, but consistent, order. We use Π−1

x (pij) for the rank of an
element pij in the permutation Πx. If two elements are similar, they will have a
similar permutation [2].

Basically, the permutation based algorithm is an example of probabilistic
algorithm, it is used to predict proximity between elements, by using their per-
mutations. The algorithm is very simple: In the offline preprocessing stage it
is computed the permutation for each element in the database. All these per-
mutations are stored and they form the index. When a query q arrives, its
permutation Πq is computed. Then, the elements in the database are sorted in
increasing order of a similarity measurement between permutations, and next
they are compared against the query q following this order, until some stop-
ping criterion is achieved. The similarity between two permutations can be
measured, for example, by Kendall Tau, Spearman Rho, or Spearman Footrule
metrics [22]. All of them are metrics, because they satisfy the aforementioned
properties. We use the Spearman Footrule metric because it is not expensive
to compute and according to the authors in [2], and it has a good performance
to predict proximity between elements. The Spearman Footrule distance is the
Manhattan distance L1, that belongs to the Minkowsky’s distances family, be-
tween two permutations. Formally, Spearman Footrule metric F is defined as:
F (Πx, Πq) =

Pm

i=1
|Π−1

x (pi)−Π−1

q (pi)|.

At query time we first compute the real distances d(q, pi) for every pi ∈ P,
then we obtain the permutation Πq, and next we sort the elements x ∈ U into
increasing order according to F (Πx, Πq) (the sorting can be done incrementally,
because only some of the first elements are actually needed). Then U is traversed
in this sorted order, evaluating the distance d(q, x) for each x ∈ U . For range
queries, with radius r, each x that satisfies d(q, x) ≤ r is reported, and for k-NN
queries the set of the k smallest distances so far, and the corresponding elements,
are maintained. The database traversal is stopped at some point f , and the rest
of the database elements are just ignored. This makes the algorithm probabilistic,
as even if F (Πq, Πx) < F (Πq, Πv) it does not guarantee that d(q, x) < d(q, v),
and the stopping criterion may halt the search prematurely. On the other hand, if
the order induced by F (Πq, Πx) is close to the order induced by the real distances
d(q, u), the algorithm performs very well. The efficiency and the quality of the
answer obviously depend on f . In [2], the authors discuss a way to obtain good
values for f for sequential processing.

4 GPU-Permutation Index

The GPU-CUDA system has two different steps: indexing and query resolution,
they correspond whit two processes that have to be executed in sequence, first
indexed process and next, query process. The Indexed process has two stages
and the query process, four steps. The Figure 1 shows whole system.

Building a permutation index in GPU involves at least two steps. The first
step (Distance(O,P)) calculates the distance among every object in database and
the permutants. The second one (Permutation Index(O)) sets up the signatures
of all objects in database, i.e. all object permutations. The process input is
the database and the permutants. At the process end, the index is ready to be
queried. The idea is to divide the work into threads blocks; each thread calculates
the object permutation according to a global set of permutants.

In Distances(O,P), the number of blocks will be defined according of the
size of the database and the number of threads per block which depends of the
quantity of resources required by each block. At the end, each threads block saves
in the device memory its calculated distances. This stage requires a structure of

325
ISBN 978 -987-633-574-4

Fig. 1. Indexing and Querying in GPU-CUDA Permutation Index.

size m×n (m: permutants number, and n: database size), and an auxiliar struc-
ture in the shared memory of block (it stores the permutants, if the permutants
size is greater than auxiliar structure size, the process is repeated). The sec-
ond step (Permutation Index(O)) takes all calculated distances in the previous
step and determines the permutations of each database object: its signature. To
stablish the object permutation, each thread considers one database object and
sorts the permutants according to their distance. The output of second step is
the Permutation Index, which is saved in the device memory. Its size is n×m.

The pemutation index allows to answer to all kinds of queries in approximated
manner. Queries can be “by range” or “k-NN”. This process implies four steps.
In the first, the permutation of query object is computed. This task is carried
out by so many threads as permutants exist. The next step is to contrast all
permutations in the index with query permutation. Comparison is done through
the Footrule distance, one thread by each database object. In the third step,
it sorts the calculated Footrule distances. Finally, depending of query kind, the
selected objects have to be evaluated. In this evaluation, the Euclidean distance
between query object and each candidate element is calculated again. Only a
database percentage is considered for this step, for example the 10% (it can be
a parameter). If the query is by range, the elements in the answer will be those
that their distances are less than reference range. If it is k-NN query, once each
thread computes the Euclidean distance, all distances are sorted and the results
are the first k elements of sorted list.

As sorting methodology, we implement the Quick-sort in the GPU, GPU-
Qsort. The designed algorithm takes into account the highly parallel nature of
GPUs. Its main characteristics are: iterative algorithm and heavy use of shared
memory of each block, more details in[23].

By software and hardware characteristics, GPU allows us to think in to solve
many approximated queries in parallel. The Figure 2 shows how the system
is modified to solve many queries at the same time. In this Figure, you can
observe that the Permutation Index is built once and then is used to answer all
queries. In order to answer in parallel many approximate queries, GPU receives
the queries set and it has to solve all of them. Each query, in parallel, applies
the process explained in Figure 1. Therefore, the number of needed resources for
this is equal to the amount of resources to compute one query multiplied by the

326
ISBN 978 -987-633-574-4

number of queries solved in parallel. This multiple-parallel computation involves
a care management the blocks and their threads: blocks of different queries are
accessed in parallel. Hence, it is important a good administration of threads.
Each thread has to know which query it is solving and which database element
is its responsibility. This is possible by establishing a relationship among Thread
Id, Block Id, Query Id, and Database Element.

Fig. 2. Solving many queries in GPU-CUDA Permutation Index.

The number of queries to solve in parallel is determined according to the
GPU resources, mainly its memory. If Q is the number of parallel queries, m the
needed memory quantity per query and i the needed memory by the Permutation
Index, Q∗m+ i is the total required memory to solve Q queries in parallel. After
Q parallel queries are solved, the results can be sent to CPU or they can be joined
with other Q results and transfer them all together once via PCI-Express.

5 Experimental Results

Our experiments consider two metric databases selected from SISAP METRIC
SPACE LIBRARY (www.sisap.org). The characteristics of each database are the
following:

– English words(DBs): a set of English words. It uses the Levenshtein distance
or edit distance.

– Colors histogram(DBh): a set of 112-vectors. It considers Euclidean distance.

In both cases, different DB size are considered, they are expressed in name: DBs
or DBh + <DBsize> in kB.

The hardware scenario was:

– CPU is an Intel(R) Xeon(R) CPU E5, 2603 v2 @1.80GHz x 8 and 15,6GB
of memory.

– Two GPU are considered with the next characteristics (GPU Model, Mem-
ory, CUDA Cores, Clock Rate and Capability):
• Tesla K20c, 4800 MB, 2496, 0.71 GHz, 3.5.

327
ISBN 978 -987-633-574-4

• GTX470, 1216 MB, 448, 1.22 GHz, 2.0.

The experiments consider for k-NN searches the values of k: 3 and 5; and for
range the radii, for DBS: 1, 2, and 3, and DBh: 0,05, 0,08 and 0,13. For the
parameter f of the Permutation Index, that indicates the fraction of DB revised
during searches, we consider 10, 20, 30 and 50% of the DB size. The number of
permutants used for the index are 5, 16, 32, 64, and 128. In each case the results
shown are the average over 1000 different queries.

In Figure 3, the Index Creation times for all the devices and for each BD
are shown. We managed to increase the performance with respect to the CPU.
Although only the times to build the index were taken into account in the time
comparisons, the transfer time of the complete DB to the GPU was measured.
In our case, both devices have the same PCI Express technology. For example
the transfer time for BDs97 is 1.23 milliseconds. We can observe for the case of
BDs, regarding the total creation time of the index, the load from the DB to
the GPU implies 60% of the total process time in the Tesla K20c and 66% in
the GTX 470.

(a) DBs (b) DBh

Fig. 3. Time of Index Creation for two DB.

Figures 4 and 5 show the obtained time in k-NN and range queries respec-
tively, for different parameters: permutants number, range, k, and DB percent-
age. In these results, 80 queries are solved in parallel. As it can be noticed
Range queries show improvements respect to k-NN queries, but in both cases
the achieved times are much less than CPU times. In all cases, it is clear the
influence of DB size, but evenly we accomplish good performance. In all cases,
the permutants number does not influence the time.

In Figure 6, we can see how the queries number to be solved in parallel
influences the performance. Shorter times are achieved when queries number is
greater. For BDh, the time to solve 1 (one) query vs 30 (thirty) queries decreases
in the best of cases in the order of 1.8x (Tp1 / Tp30). In the case of the BDs, the
gains obtained in solving multiple queries in parallel are greater: an improvement
of 2.5x.

For the case of k-NN, the times are similar. This behavior is similar in both
DB, i.e. the GPU resources have more work to do and, consequently, less idle
time.

The trade-off between the answer quality and time performance of our par-
allel index with respect to the sequential index. For each k-NN or range query
we have previously obtained the exact answer, that is Rel(), and we obtain the
approximate answer Retr(). Figures 7 and 8 illustrate the average quality answer
obtained for both kinds of queries, considering the Permutation Index respec-
tively with 5,64 and 128 permutants, and different DB percentages. As it can

328
ISBN 978 -987-633-574-4

(a) 3−NN DBs (b) 5−NN DBs

(c) 3−NN DBh (d) 5−NN DBh

Fig. 4. k-NN Query Time for two DB.

(a) 2 Range DBs (b) 0,08 Range DBh

Fig. 5. Range Query Time for two DB.

be noticed, the Permutation Index retrieves a good percentage of exact answer
only reviewing a little fraction of the DB. For example, the 10% retrieves 40%
and it needs to review the 30% to retrieve almost 80% of exact answer.

For lack of space, despite of we have tested another database sizes, we show
only for the biggest database. In the other sizes have yielded similar results.

6 Conclusions

When we work with databases into large-scale systems such as Web Search
Engines, it is not enough to speed up the answer time of only one query, but it
is necessary to answer several queries at the same time. In this work, we present

329
ISBN 978 -987-633-574-4

(a) DBs (b) DBh

Fig. 6. Multi-Queries Time for two DB.

(a) 3-NN of DBs (b) 5-NN of DBs

(c) 3-NN of DBv (d) 5-NN of DBv

Fig. 7. Recall of approximate-k-NN queries for two DB.

a reliable solution to solve many queries in parallel, verifying the correctness of
obtained results. This solution takes advantage of GPU and its high throughput:
parallel processing for thousands of threads.

We check GPU-Permutation Index performance to the different GPUs. All
accomplished performance results are very good, independently of the GPU ar-
chitecture, because of careful planning and correct use of GPU resources. The
index showed a good performance, allowing us to increase the fraction f of the
database that will be examined to obtain better and accurate approximate re-
sults. An extensive validation process is carried out to guarantee the quality of
the solution provided by the GPU.

In the future, we plan to make an exhaustive experimental evaluation, consid-
ering other types of databases and other solutions that apply GPUs to solve sim-
ilarity searches in metric spaces; extend our proposal to other metric databases
such as documents, DNA sequences, images, music, among others, and use other

330
ISBN 978 -987-633-574-4

(a) Range 1 of DBs (b) Range 3 of DBs

(c) Range 0,05 of DBv (d) Range 0,13 of DBv

Fig. 8. Recall of approximate-range queries for two DB.

distance functions. Another point to consider is to work with larger DBs, mainly
when they are larger than the GPU memory. In this case, it is necessary to study
strategies to partition the databases and/or use several GPUs. Besides, we plan
to consider the Permutation’s Signatures [24] to reduce the size of Permutation
Index without removing any permutant.

References

1. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın, “Searching in metric
spaces,” ACM Comput. Surv., vol. 33, no. 3, pp. 273–321, 2001.

2. E. Chávez, K. Figueroa, and G. Navarro, “Proximity searching in high dimensional
spaces with a proximity preserving order,” in Proc. 4th Mexican International
Conference on Artificial Intelligence (MICAI), ser. LNAI 3789, 2005, pp. 405–414.

3. P. Ciaccia and M. Patella, “Approximate and probabilistic methods,”
SIGSPATIAL Special, vol. 2, no. 2, pp. 16–19, Jul. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1862413.1862418

4. P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric
Space Approach, ser. Advances in Database Systems, vol.32. Springer, 2006.

5. P. Pacheco and M. Malensek, An Introduction to Par-
allel Programming. Elsevier Science, 2019. [Online]. Available:
https://books.google.com.ar/books?id=uAfXnQAACAAJ

6. R. Robey and Y. Zamora, Parallel and High Perfor-
mance Computing. Manning Publications, 2021. [Online]. Available:
https://books.google.com.ar/books?id=jNstEAAAQBAJ

7. D. Kirk and W. Hwu, Programming Massively Parallel Processors:
A Hands-on Approach. Elsevier Science, 2016. [Online]. Available:
https://books.google.com.ar/books?id=wcS DAAAQBAJ

8. R. Barrientos, F. Millaguir, J. L. Sánchez, and E. Arias, “Gpu-based exhaustive
algorithms processing knn queries,” The Journal of Supercomputing, vol. 73, pp.
4611–4634, 2017.

331
ISBN 978 -987-633-574-4

9. M. Krulǐs, H. Osipyan, and S. Marchand-Maillet, “Employing gpu architectures
for permutation-based indexing,” Multimedia Tools and Applications, vol. 76, 05
2017.

10. S. Li and N. Amenta, “Brute-force k-nearest neighbors search on the gpu,” in Sim-
ilarity Search and Applications, G. Amato, R. Connor, F. Falchi, and C. Gennaro,
Eds. Cham: Springer International Publishing, 2015, pp. 259–270.

11. P. Velentzas., M. Vassilakopoulos., and A. Corral., “In-memory k nearest neighbor
gpu-based query processing,” in Proceedings of the 6th International Conference on
Geographical Information Systems Theory, Applications and Management - GIS-
TAM,, INSTICC. SciTePress, 2020, pp. 310–317.

12. K. Figueroa, E. Chávez, G. Navarro, and R. Paredes, “Speeding up spatial ap-
proximation search in metric spaces,” ACM Journal of Experimental Algorithmics,
vol. 14, p. article 3.6, 2009.

13. B. Bustos and G. Navarro, “Probabilistic proximity searching algorithms based
on compact partitions,” Discrete Algorithms, vol. 2, no. 1, pp. 115–134, Mar.
2004. [Online]. Available: http://dx.doi.org/10.1016/S1570-8667(03)00067-4

14. K. Tokoro, K. Yamaguchi, and S. Masuda, “Improvements of tlaesa nearest
neighbour search algorithm and extension to approximation search,” in Proceedings
of the 29th Australasian Computer Science Conference - Volume 48, ser. ACSC ’06.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2006, pp.
77–83. [Online]. Available: http://dl.acm.org/citation.cfm?id=1151699.1151709

15. A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High dimensional reverse nearest
neighbor queries,” in The twelfth international conference on Information and
knowledge management, ser. CIKM ’03. New York, NY, USA: ACM, 2003, pp.
91–98. [Online]. Available: http://doi.acm.org/10.1145/956863.956882

16. F. Moreno-Seco, L. Micó, and J. Oncina, “A modification of the
laesa algorithm for approximated k-nn classification,” Pattern Recogni-
tion Letters, vol. 24, no. 1–3, pp. 47 – 53, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865502001873

17. R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Retrieval - the
concepts and technology behind search, Second edition. Pearson Education Ltd.,
Harlow, England, 2011.

18. J. Cheng and M. Grossman, Professional Cuda C Programming. Cre-
ateSpace Independent Publishing Platform, 2017. [Online]. Available:
https://books.google.com.ar/books?id=BcjItAEACAAJ

19. J. Han and B. Sharma, Learn CUDA Programming: A begin-
ner’s guide to GPU programming and parallel computing with
CUDA 10.x and C/C++. Packt Publishing, 2019. [Online]. Available:
https://books.google.com.ar/books?id=dhWzDwAAQBAJ

20. D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, A Hands
on Approach. Elsevier, Morgan Kaufmann, 2010.

21. NVIDIA, “Nvidia cuda compute unified device architecture, programming guide,”
in NVIDIA, 2020.

22. R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in Proceedings of
the fourteenth annual ACM-SIAM symposium on Discrete algorithms, ser. SODA
’03. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2003,
pp. 28–36. [Online]. Available: http://dl.acm.org/citation.cfm?id=644108.644113

23. M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Permutation Index and GPU
to Solve efficiently Many Queries,” in VI Latin American Symposium on High
Performance Computing, HPCLatAm 2013, 2013, pp. 101–112.

24. K. Figueroa and N. Reyes, “Permutation’s signatures for proximity searching in
metric spaces,” in Similarity Search and Applications, G. Amato, C. Gennaro,
V. Oria, and M. Radovanović, Eds. Cham: Springer International Publishing,
2019, pp. 151–159.

332
ISBN 978 -987-633-574-4

	Goodness of the GPU

