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Abstract.  

This work is concerned with virtual reality web applications that implement 

volumetric visualizations based on Ray Marching, combined with traditional 

triangle-based rendering.  The use case selected was an interactive tool to 

navigate through a 3D model of sedimentary basins and natural reservoirs of oil 

and gas. The surfaces are described by signed distance functions computed in 

the GPU within a pixel shader. A procedural 3D texture defines the distribution 

of sedimentary strata inside the volume and provides visual clues of the internal 

structures. In VR mode, the user can navigate the scene by moving his body. He 

can subtract portions of the 3D volume in real time through a set of Boolean 

operators (plane, cylinder or sphere) using VR hand controllers. A virtual 

control panel, dynamically generated from a JSON file, allows parameters to be 

adjusted within VR. The application can also be used in desktop mode. 

Keywords: Ray Marching, Virtual Reality, Sedimentary Basin Visualization, 

Oil and Gas Industry, WebXR 

1   Introduction 

There are many uses for Virtual Reality (VR) systems in the gas and oil industry with 

the purpose of improving the efficiency and reducing the risks of exploration and 

operation [1]. Even though these techniques were widely applied by the industry for 

training, their uses were extended to other areas like exploring, production, and 

operation and maintenance of surface installations. 

As Jampeisov [1] pointed out, a person receives up to 80% of the information of 

the world through sight and the use of 3D visualization helps to enhance the 

efficiency of analyzing large amounts of information. These ideas led to an increasing 

interest in using different computer-based technologies to train engineers [2].  

The inclusion of computer and information technologies (TICs) in teaching 

methodologies is considered an alternative to improve the comprehension and use of 

scientific and technology models [3], [4], [5].  

The present paper shows the implementation of a volumetric rendering solution 

based on ray marching that is compatible with WebGL 1.0 and WebXR and can run 

on a web browser. This project was financed by a PIDAE 2018 (1-116) grant. 
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1.1   The Problem to Solve 

The structure of a seismic image of an oil basin is shown in Figure 1. This kind of 

schematic representation is commonly used and it consists in a sequence of 

bidimensional cuts. Each cut has a label that indicates the type of geological 

component (e.g.: the basin and its geometry, the filling represented by strata affected 

by geological faults). 

 

 

Fig. 1. Initial sketch of a simulated geological section for the RV model. 

So far, the user had to analyze a two-dimensional scheme like the one shown in 

figure 1, in order to perceive the three-dimensional shape of each layer like porous 

and possibly permeable media. The VR application allows the user not only to see the 

bidimensional images, but also to get a tridimensional insight of the basin and to 

explore inside in a dynamic and intuitive way. This way the lithology, the textures 

and the sedimentary structures, and also the physical properties related to the context 

could be analyzed. 

1.2   VR Devices 

VR devices are more accessible to the general public nowadays. A high-resolution 

screen and an optical system provide an independent image to each eye for 

stereoscopic views. These systems also have a set of sensors to determine the attitude 

and the position of the user's head into the three-dimensional space. Many of them 

have wireless joysticks (hand controllers) whose orientation and position are also 

sensed. 

In this project, an Oculus Quest device connected to a PC computer (which does 

the graphics processing) was used. The GPU used was a Nvidia RTX 2070. 
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1.3   WebGL, WebVR and WebXR Standards 

The WebGL (Web Graphics Library) is a standard specification for an API 

implemented in Javascript for 3D graphics rendering by any web browser. It runs on 

any platform that supports OpenGL 2.0 and OpenGL 2.0 ES.  

The WebVR standard was created by Mozilla in 2014, and it offers access to VR 

devices like HTC Vive, Oculus Rift, Oculus Quest or Google Cardboard from a web 

browser. The last version, launched in 2017, depends on special web browsers to run, 

like Firefox Nightly. The standard was never completely implemented and was finally 

substituted by the WebXR [6]. 

The WebXR standard brings together support for Virtual Reality and Augmented 

Reality applications on the same API (XR = AR + VR); as the devices for both 

applications have some common needs, like sensing the position and orientation, and 

also rendering the images from the corresponding point of view. 

As of August 2021, WebXR is still a working draft and it's not available for all 

web browsers. 

1.4   The Platform Chosen and the Solution Overview 

A web application based on Javascript, HTML, CSS, WebGL and WebXR was 

implemented. Some open-source libraries such as React.js and Bootstrap were used to 

build the graphical user interface (2D menu). 

Additionally, Three.js library was used for the management of 3D meshes, object 

hierarchies, cameras, light sources, materials, shaders and rendering. 

 

 

Fig. 2. Boolean operators being manipulated: sphere operator (left), flat operator (right). 

The software lets the user navigate around a 3D volume that represents the basin. 

Using the hand controllers (as seen in figure 2), it is possible to position certain 3D 

objects called “Boolean operators” (sphere, plane or cylinder) that can interactively 
cut the volume, thus subtracting portions and allowing the user to visualize the 

interior of the basin. 
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2   The Rendering Engine 

2.1   Representation of Surfaces 

The problem of constructing a graphical representation of the basin can be divided 

into two parts, as shown in Figure 3: a) compute the coordinates of all the points that 

make up the surfaces resulting from subtracting the Boolean operators from the cube 

that represents the portion of terrain; b) compute the color of each pixel of the 

surfaces projected on the screen. To solve the first part, some way of modeling such 

surfaces dynamically must be considered, since the user can manipulate in real time 

the position, orientation and scale of Boolean operators.  

 

 

Fig. 3. Surface resulting from subtracting the spherical and cylindrical Boolean operators (left). 

Surface colored by a 3D procedural texture that exposes the internal structure of the oil 

reservoir. (right). 

In computer graphics there are at least two ways of representing surfaces: the 

parametric form [7] and the implicit form [8].  The WebGL API allows the rendering 

of 3D scenes through a graphics pipeline that receives geometric information as input 

(vertices, triangles, normals, etc.) and generates an image on the output device.  

In order to be able to visualize the surfaces, using the traditional graphical pipeline, 

it is necessary to obtain a mesh of triangles of the modeled surfaces. 

The Marching Cubes technique [9] is an algorithm whose objective is to obtain a 

polygonal mesh of an iso-surface in a three-dimensional discrete scalar field (voxels). 

This technique is usually used for visualizing medical images taken by MRI scanners, 

where a density function is represented by values between 0 and 1.  

In this case the density function could simply be computed from the Boolean 

operators and their position and orientation relative to the volume, assigning a density 

of 0 for an empty voxel and 1 for an occupied voxel.  

Then, using Marching Cubes, it would be possible to get the triangle mesh that 

represents the surface shown in Figure 3. 

 One of the disadvantages of this approach is the processing time required to get 

the triangles, because this process should run every time any of the Boolean operators 

are modified. Although there are ways to implement it directly using a GPU, as 
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described in GPU GEMS 3[10], it requires the use of geometry shaders, and this 

functionality is not available in the WebGL 1.0 platform. 

2.2 Rendering of Implicit Surfaces Using Ray Marching 

In this project, the ray marching technique was used for representing the surfaces of 

the basin. It is not based on triangles, but on evaluating each pixel in an image, based 

on implicit representations of 3D surfaces [7] described by Signed Distance Functions 

(SDF). These functions are analytic expressions representing distance fields, which 

measure how close a point x is to a set S, and its sign changes as it is on one side or 

the other of the set [11]. 

The 3D surfaces to be represented can be defined using multiple distance functions 

of primitive geometric shapes [12] (spheres, planes, cubes, cylinders, etc.), combined 

with operations like union, intersection, subtraction, etc.  

This poses a challenge when it is needed to represent some specific arbitrary 

surface. In the particular case of this application, the primitives involved are few and 

simple (cubes, spheres, etc.). 

This technique offers great advantages in terms of performance, since all the logic 

and data necessary to solve the scene can be embedded completely within a pixel 

shader program written in GLSL language; minimizing memory reads.  

This program is supplied to the GPU and executed very efficiently by multiple 

processing cores working in parallel; solving an entire view in less than 10 

milliseconds, with the appropriate hardware. 

2.3 The Ray Marching Algorithm 

The essence of the algorithm can be summarized as follows: for each pixel on the 

screen, a ray is defined by an origin (position of the camera or the observer’s eye) and 
a direction vector towards the pixel in the near plane of the camera. Then, through an 

iterative process, the algorithm advances in that direction, evaluating at each step if 

the ray impacted any surface. 

There are different variants of this algorithm; some of them, like the one proposed 

in [11], advance at a constant pace and therefore require a very high sampling rate on 

the path of the ray, which impacts on performance.  

On the other hand, Hart [13] introduces a more robust method known as Sphere 

Tracing, where the advanced distance at each step is not constant, but depends on the 

evaluation of an SDF. If the resulting value d (distance to the surface) is positive, the 

position over the ray should be increased by d. If d is negative, the resulting position 

is within the implicit surface defined by the SDF.  

The following code shows the essence of the algorithm, where distanceToScene is 

the actual SDF. 
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Ray marching function in GLSL 

float raymarching(vec3 rayOrigin, vec3 rayDir) { 
  float t=0.0; 
  for(int i=0; i<MAX_STEPS ; i++) { 
     float delta = distanceToScene(rayOrigin+rayDir*t); 
     if (delta<epsilon)  return t;         
     t+= delta; 
  } 
  return INFINITY; // max steps where reached 
} 

When the condition d < epsilon is met, the ray is considered to have hit the surface. 

Then the color of the pixel is evaluated at the point of impact using Phong’s model 
[14]. The normal vector at the pixel can be obtained by calculating the gradient vector 

of the distance field, using 4 sampled points close to the impact point. 

2.4   Procedural 3D Texture 

The Phong model calculates the ambient (ka) and diffuse (kd) coefficients, based on 

the ambient light and a directional light representing the sun. Then, the diffuse color 

of the surface is the most relevant piece of information for the user, as it will help him 

recognize the different basin strata. The getTerrainColor function returns an RGB 

color based on two input parameters: position (vec3) and normal (vec3). A colorMix 

uniform variable controls whether the output should be a flat color or a pixel sampled 

from texture maps, as shown in figure 4. 

 

 

Fig. 4. Flat color output, with colormix=0 (left) texture color output with colormix=1 (right) 

In this application there were 11 predefined types of basin strata, with their 

corresponding color and seamless texture map. For each component, a weight variable 

defines how much it contributes to the final pixel color. 

In this model of an oil reservoir, most of the strata are horizontal layers with 

certain thickness. To compute the weight value, two smoothstep (ascending and 

descending slopes) functions are multiplied to generate a positive weight within a 

certain depth range. In order to get a more realistic appearance and to distort the 

straight-line borders between layers, a gradient noise [15] is applied on the position 

parameter, which represents the coordinates inside the basin.  
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2.5   Texture Mapping 

In order to apply texture mapping to the raymarched surfaces, texture coordinates 

(u,v) need to be defined for every pixel. Considering that the surfaces are generated in 

real-time based on the result of the Boolean operators intersecting the volume, the 

texture coordinates also need to be generated dynamically. The triplanar mapping 

technique was chosen. This algorithm described by Geiss in [10], assigns (u,v) based 

on the one of the 3 cartesian planes XY, XZ or YZ whose normal is closer to the 

normal of the pixel, as shown in Figure 5. The getTriplanar GLSL function returns 

the texture map pixel based on the position & normal values at the pixel. 

 

 

Fig. 5. The triplanar mapping algorithm applied to a dynamically generated surface. 

2.6   Interactivity and User Experience 

Once the VR mode is initiated, the user is immersed in a virtual scene consisting of an 

infinite extension floor and a colored cube of 1 meter on the side that floats at the 

height of the operator's line of sight. The user can walk around or can remain static 

and move to a different location in the virtual space, using the right controller 

thumbstick. By pointing his hand in the desired direction, the stick controls the speed 

of the motion. 
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Fig. 6. Virtual control panel (left) drilling rigs “hyperlinks” (right). 

The left-hand controller allows the user to show and hide a virtual control panel 

consisting of multiple tabs. Using the right controller, the user can point to and 

interact with different controls such as buttons and sliders as shown in Figure 6. 

In addition, the hand controllers have side buttons associated with the grab and 

drop gesture, which allow the user to grab, rotate, move and drop the 3 types of 

Boolean operators, to interactively crop the 3D volume. 

The 3D scene also features pre-designed 3D models that represent the drilling rigs 

and the oil well path. The user can point and select different targets along the well 

acting as "hyperlinks" that display related information on the panel (Figure 6 right). 

Finally, the user can take snapshots from his current point of view, which are 

automatically downloaded in JPG format, allowing a later analysis, outside of the 

virtual reality environment. 

2.7 Virtual Control Panel 

The application parameters can be controlled simultaneously from a 2D menu (on the 

browser window) or the virtual control panel in VR. The MenuManager component 

works as a centralized database for current application parameters. The 2D menu and 

the virtual control panel interact with it though getters & setters and onValueChanged 

events trigger when a parameter is modified. 

The control panel is built dynamically from a JSON configuration file that defines 

the content of each tab, consisting of a list of controls (button, title, slider, switch or 

select). Each control mimics the behavior of their corresponding HTML counterparts 

but in 3D. 

Three.js provides a class called Raycaster that can test the intersection of a ray 

(point + direction vectors) in the 3D scene, with a list of mesh objects. In some cases, 

invisible bounding box meshes are used, instead of the real mesh, to test the surface-

ray collision (for example in the case of the sphere representing a slider’s cursor).  
 Every time the Raycaster detects a hit, it provides information on the object that 

was hit and the coordinates in world and local object space. The hand controller’s 
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location and orientation are provided by Three.js, through VRController class, which 

also provides event handlers for all the buttons and thumbsticks events. 

2.8 Final Image Composition 

The rendering function has two modes: desktop and VR. In VR mode, the viewport 

size is set to the dimensions of the VR device, provided by the WebXR API. In this 

mode, the viewport is divided in two halves (left & right eye view) and the rendering 

has to be executed twice on each frame using the corresponding view and projection 

matrices for each eye. 

In order to generate a view from a camera, the rendering function requires two 

render passes. In the first pass, the ray marching algorithm is executed by a pixel 

shader that is assigned to a quad geometry matching the size of the viewport. The 

resulting image includes the basin volume, the floor and the background. This shader 

requires not only to output color information, but also depth for each pixel. This is 

important for compositing the next pass. In WebGL 1.0 it is not possible to output 

depth information from a fragment shader by default, so EXT_frag_depth needs to be 

enabled and available in the browser. 

In the second pass all the objects that are represented by triangle meshes (Boolean 

operators, hand controllers, virtual control panel, oil rigs, etc.) are rendered. All of 

them are opaque with the exception of the Boolean operators that are translucent. As 

all transparent meshes are drawn at the end of the second pass, they blend properly 

with the previous content of the framebuffer. 

3   Conclusions 

The application developed allows the user to intuitively manipulate and explore a 3D 

volume, without the need to learn complex user interactions commonly used in 3D 

CAD software (using keyboard & mouse) thus reducing the learning curve for casual 

users. 

The Boolean operators ease the study of the borders between strata and how they 

propagate inside a sedimentary basin. Moreover, the depth perception provided by the 

stereoscopic view, helps the user to properly interpret the shapes and scales. 

The combination of ray marching and scanline rendering techniques, and the 

implementation of a procedural 3D texture, allowed the efficient implementation of a 

real-time application with low latency and a good performance, without the 

uncomfortable effects usually associated with virtual reality experiences. 

The WebXR API, while still needs improvements, seems to be a promising 

alternative to build and deploy multi-platform VR experiences to wide audiences, at 

lower costs and reduced delivery times. 
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