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Abstract. This paper presents a lightweight and compact library de-
signed to perform convolutional neural network inference for microcon-
trollers with severe hardware limitations. A review of similar open source
libraries is included and an experiment is developed to compare their
performance on different microcontrollers. The proposed library shows
at least a 9 times improvement over the implementation of Google Ten-
sorflow Lite with respect to memory usage and inference time.
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1 Introduction

A few years ago it was unthinkable to implement machine learning or neural net-
work algorithms in microcontrollers, mainly for their hardware limitations. Due
to cloud computing problems [1, 2] associated with computational and storage
cost, network bandwidth, response latencies, power consumption, privacy and
security, Edge computing started to emerge and gradually the idea of running
major algorithms on microcontrollers became a reality.

On the other hand, projections made by Statista [3] estimate that the number
of IoT devices connected to the Internet by 2022 will be around 16.4 billion,
implying a large computing capability with low power consumption and great
potential for exploitation.

Because of this, it is extremely interesting to adapt solutions from the ma-
chine learning [4] and deep learning fields so that they can run on small devices
with given hardware limitations.

Today there are online platforms such as AlwaysAI, Edge Impulse, Cartesia-
mAI or Qeexo that perform the entire process of developing a machine learn-
ing solution on a microcontroller with minimal user intervention. Companies
such as Google, STM, Mbed, Adafruit and Sparkfun have free tools that allow
implementing models created with TensorFlow/Keras for a limited number of
microcontrollers (mainly ARM) that require 32-bit architectures with hardware
that supports floating-point instructions and even SIMD or DSP instructions.
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Generally, these tools are provided by microcontroller development companies or
companies that provide development kits interested in promoting their products
or in paying a fee to use them fully.

As a result, this limits the implementation of machine learning solutions on
a large number of microcontrollers despite their popularity, low cost or addi-
tional hardware features. There are few open source machine learning libraries
initiatives and very few provide support for neural networks and even fewer for
convolutional networks. In general, these alternatives, besides being incipient,
usually lack support and have important limitations for the wide variety of mi-
crocontrollers available in the market.

In this context we have created a small group aimed at researching and devel-
oping machine learning software for microcontrollers with significant hardware
limitations, trying to cover as many of them regardless of their architecture.
This paper presents an open source C/C++ library that allows to perform con-
volutional neural network inference on small microcontrollers without minimum
hardware requirements beyond data and program memory. It also presents a
tool that adapts and transforms neural network models generated with Tensor-
flow/Keras to a C, C++ or Arduino compatible version.

This article is organized as follows. Section 1 contains this introduction. Sec-
tion 2 describes the process of developing machine learning models on micro-
controllers.Section 3 describes open source libraries for machine learning and
presents an implementation of our own.Section 3 describes open source libraries
for machine learning and presents an implementation from us. In section 4, an
experiment is performed to determine the performance between libraries and
compare the obtained results. Finally, in section 5, conclusions and future work
are presented.

2 Machine Learning in Microcontrollers

2.1 Microcontroller Development Process

Due to memory and computational capacity limitations, building machine learn-
ing models on small microcontrollers (MCUs) is a generally an impossible pro-
cess. Typically, model building is done in the traditional way on a computer and
then a transformation process is applied to produce a version that can be run
on a microcontroller. A schematic of the steps involved in developing a machine
learning model for a microcontroller is shown in Figure 1. The process starts
with model selection and parameter settings. Then the model is generated using
training data to finally validate its effectiveness with test data. If the result is
not satisfactory, the process is restarted by reconfiguring the parameters.

Once the model is obtained, a quantization is usually performed [5, 6] in
order to reduce its size and improve performance on the microcontroller. Then
a tool is used to export the model, usually in C/C++ language, together with
the necessary functions to carry out the inference.

Finally, the application is compiled and if the executable fits the required
data and program memory size, it is deployed on the device.If the executable
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does not meet the memory requirements or behaves unstable, it is returned to
the model optimization point or to the development starting point to reconfigure
the model parameters.

Model
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Fig. 1: Development cycle of a machine learning model for microcontrollers.

3 Neural Networks for Microcontrollers

3.1 Existing Libraries and Frameworks

In the following, this section briefly describes the open source libraries and frame-
works available for the development of machine learning applications for micro-
controllers.

Tensorflow Lite Micro [7, 8] for microcontrollers requires 32-bit platforms and
is coded in C++ 11. It primarily supports architectures of the ARM Cortex-M
series and has been ported to other architectures such as Esp32. The framework
is available as an Arduino library. It can also generate projects for development
environments, such as Mbed. It is open source and can be included in any C++
11 project.

µTensor [9] is a lightweight machine learning inference framework built in Ten-
sorflow Lite that is optimized for ARM architecture-based microcontrollers. It
takes a model generated in Tensorflow and produces .cpp and .hpp files con-
taining C++ 11 code to perform the inference. It does not currently support
softmax functionality.

ARM CMSIS-NN [10] has a library for fully connected and convolutional
neural networks named CMSIS-NN (Cortex Microcontroller Software Interface
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Standard Neural Network) that maximizes the performance of Cortex-M proces-
sors with support for SIMD and DSP instructions. It includes support for 8-bit
and 16-bit data types for neural networks with quantized weights.

EdgeML [11] is a library of machine learning algorithms for severely resource-
constrained microcontrollers. It allows training, evaluation and deployment on
various target devices and platforms. EdgeML is written in Python using Ten-
sorflow/Keras and supports PyTorch and optimized C++ implementations for
certain algorithms. Convolutional neural networks are not supported at the mo-
ment.

Eloquent TinyML [12] is an Arduino library that aims to simplify the deploy-
ment of Tensorflow Lite models for compatible Arduino board microcontrollers
using the Arduino IDE. Starting from a model exported with Tensorflow Lite,
this library exposes an interface to load a model and run inferences.

3.2 EmbedIA-NN, an Ultralight Library

In general, the libraries and frameworks mentioned in the 3.1 section, although
they have their advantages, also have some important disadvantages, especially
for microcontrollers with severe limitations. The most relevant is that they are
mostly developed and optimized for specific architectures such as ARM Cortex-
M, for 32-bit microcontrollers and/or microcontrollers with support for floating-
point, DSP or SIMD instructions. This excludes devices of other architectures
or devices that do not have hardware for specialized mathematical computation.
Another limitation that these libraries usually have is that they are developed
for C++ 11 and supported on heavy software architectures, based on objects
with inheritance and polymorphism that increase the size of the programs and
slow down the inference time of the algorithms. This approach may be viable for
microcontrollers with good memory size and hardware resources that accelerate
mathematical computation, but it is unsuitable for microcontrollers with low
computational capacity and limited hardware resources.

In this article we present the development of a compact and lightweight open
source library, designed for microcontrollers that are really limited both in mem-
ory and hardware. It is implemented in C, C++ and Arduino code so that it
can be compiled on any platform that supports these programming languages. It
provides functionalities to perform inference and debugging of the models from
the microcontroller. It supports different neural network layers and activation
functions including convolutional, max pooling, flatten, fully connected, ReLU
and softmax. At the moment no optimizations were implemented to take advan-
tage of advanced hardware instructions for specific microcontrollers, but there
are plans to incorporate them in the future. However, optimizations are imple-
mented for fixed-point arithmetic in 32 bits, 16 bits and 8 bits. This speeds up
inferences, reduces program size and RAM usage on microcontrollers without
floating point support.
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In addition to the library, there is a tool that converts a model created in
Tensorflow/Keras to C code. It also allows to generate a C, C++ or Arduino
project that includes functions to perform the inference on the converted model
including fixed-point optimization options.

4 Library Benchmarking Experiment

4.1 Description of the experiment

In order to determine the performance of the library, it was decided to per-
form an experiment by building a convolutional neural network model [13] on
Tensorflow/Keras to recognize images of ten handwritten digits.

With the model built, a single project was developed and replicated for each
library in the section 3.1 and in the four Embedia-NN implementations (8-bit,
16-bit and 32-bit floating point and fixed point). The source code for the project
includes the model, the neural network functionalities to perform inference and a
minimum of serial communication functionality so that each microcontroller can
receive a sample and send the classification result, along with the effectiveness
and time required. As part of the experiment, each project was compiled and
deployed on the five selected microcontrollers. Each image of the test dataset
was then submitted and each classification response was computed to determine
the performance of the microcontroller-library combination. The features con-
sidered for benchmarking the different libraries were, program memory size, data
memory size, inference time, and test dataset success rate.

4.2 Microcontrollers of the Experiment

The choice of the microcontrollers used in the experiment was based on aspects
such as local availability, low cost, low to medium-low computational capacity
and availability of open source software. Regarding connectivity it was decided
to incorporate both IoT and non- IoT devices, since from the point of view of
machine learning and neural networks there are many popular and interesting
devices with and without this feature.

For testing purposes, 5 microcontrollers of varying characteristics were used.
These MCUs are ATmega2560, Arm Cortex-M3, Tensilica L106, Xtensa LX6
and RP2040 and the technical characteristics can be seen in the table 1.

4.3 Experiment Dataset

MNIST (Modified National Institute of Standards and Technology database) is
a dataset frequently used to evaluate image classification algorithms in areas
of machine learning, neural networks and image processing. The chosen dataset
is a reduced version of the UCI [14] repository, provided by in the Scikit-learn
library [15]. This comprises a selection of 1797 grayscale images from the original
dataset with handwritten digits centered in an 8x8 pixel area.

For model training and testing, the dataset was divided into 80An example
of the dataset can be seen in Figure 2a.
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Development Board MCU Clock
Memory Flot.

Pt.
Connectivity

Bits Data Prog.

Arduino Mega ATmega2560 16MHz 8 8KiB 256KiB No No
Stm32f103c8t6 Arm Cortex-M3 72MHz 32 20KiB 64KiB No No

NodeMCU ESP8266 Tensilica L106 80MHz 32 80KiB 512KiB Si Wi-Fi
ESP32-WROOM Xtensa LX6 160MHz 32 320KiB 512KiB Si Wi-Fi+BT
Raspberry Pi Pico RP2040 133MHz 32 264KiB 2MiB No No

Table 1: Relevant technical characteristics of the microcontrollers used in the
experiment

4.4 Experiment Model

A convolutional neural network (CNN or ConvNet) model [13, 16] was used to
carry out the experiment tests. This type of networks are multi-layer artifi-
cial neural networks specialized in handling two-dimensional input data. Typi-
cally, their architecture is composed of combinations of convolutional, nonlinear,
pooling and fully connected layers. The convolutional layer takes an image and
decomposes it into different feature maps. The sequencing of various layers gen-
erates different levels of abstraction as the information progresses through the
network. In the first layers low level features such as edges are obtained while
in the last layers more complex and abstract structures such as parts of objects
are detected. Finally the features extracted by the convolutional layers are pro-
cessed by one or more layers of fully connected neurons that end up classifying
the input image.

To determine the architecture of the network model we experimented with
different combinations of layers in order to guarantee a good percentage of ef-
fectiveness and a low number of hyper-parameters. This last feature is of funda-
mental importance to maintain a small byte size to ensure that the model fits
on all test microcontrollers. Figure 2b shows the architecture scheme of the con-
volutional neural network model generated with Tensorflow/Keras for testing.

(a) Digits of the MNIST dataset[15]
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(b) Convolutional neural network scheme

Fig. 2: Dataset and scheme of the convolutional neural network model used in
the experiment.
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4.5 Comparisons and Results

The libraries Google Tensorflow Lite, Eloquent TinyML, µTensor (microTensor),
and EmbedIA in their four versions were taken to perform the tests.

It should be mentioned that two of the libraries mentioned in the 3.1 section
were not considered. One of them was CMSIS-NN which in its official site in-
dicates that it is possible for the library to work with processors of series prior
to those supported. However, we were not able to compile the projects because
it apparently requires SIMD or DSP instructions, support that the chosen mi-
crocontrollers do not have. Another one was Microsoft EdgeML which was also
excluded from the tests because at the moment it does not support the convo-
lutional layers included in the test model. Regarding the µTensor it should be
mentioned that since it does not support softmax layers, the latter was replaced
by a fully connected layer for the tests.

Table 1 shows the values of data memory, program memory, inference time
and accuracy of the test performed for each version of the library in each micro-
controller.

MCU Library Variant
Program

Mem. (Kib)
Data

Mem. (Kib)
Inference
Time (µs)

Accuracy
(%)

ATMega 2560
Arduino Mega

Embedia NN

Floating Pt. 14.04 5.75 75498 98.89
Fixed Pt. 32 bits 15.49 5.75 87408 98.89
Fixed Pt. 16 bits 11.38 3.09 37757 98.89

Fixed Pt. 8bits 9.47 1.77 15221 89.72

STM32f103c8t6
Bluepill

µTensor Floating Pt. 31.26 4.95 5945 98.89

Embedia NN

Floating Pt. 23.01 0.67 9834 98.89
Fixed Pt. 32 bits 19.02 0.67 2746 98.89
Fixed Pt. 16 bits 15.54 0.54 2449 98.89

Fixed Pt. 8 bits 14.32 0.48 2384 89.72

Tensilica L106
NodeMCU

Eloquent TinyML Floating Pt. 130.17 25.16 11531 98.89
Tensorflow Lite Floating Pt. 115.61 23.46 11549 98.89

Embedia NN

Floating Pt. 17.12 19.63 8213 98.89
Fixed Pt. 32 bits 15.94 5.88 5012 98.89
Fixed Pt. 16 bits 13.18 3.39 1489 98.89

Fixed Pt. 8 bits 12.02 2.11 1705 89.72

Xtensa LX6
Esp 32 Devkit

Eloquent TinyML Floating Pt. 201.49 12.96 1885 98.89
Tensorflow Lite Floating Pt. 191.34 8.90 794 98.89

Embedia NN

Floating Pt. 19.03 0.94 284 98.89

Fixed Pt. 32 bits 18.31 0.94 341 98.89
Fixed Pt. 16 bits 15.81 0.81 367 98.89

Fixed Pt. 8 bits 14.54 0.75 361 89.72

RP 2040
Raspberry Pico

Eloquent TinyML Floating Pt. 90.98 23.28 12833 98.89
Tensorflow Lite Floating Pt. 129.53 21.99 10862 98.89

µTensor Floating Pt. 29.14 12.47 16400 98.89

Embedia NN

Floating Pt. 9.54 6.07 9468 98.89
Fixed Pt. 32 bits 6.32 2.38 3241 98.89
Fixed Pt. 16 bits 6.05 2.25 1258 98.89

Fixed Pt. 16 bits 5.98 2.19 1291 89.72

Table 2: Comparison of memory footprint and inference time required by the
libraries in each microcontroller.
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A significant advantage of the different EmbedIA-NN implementations over
the other libraries can be seen in the table 2 and the charts in figure 3. While
the 8-bit and 16-bit fixed-point implementations stand out, the latter is better
because it maintains the same level of accuracy as the other libraries, while the
former falls around 10%. Another remarkable aspect is that these two imple-
mentations exceed, on average, at least 9 times the memory and inference time
requirements of the Google Tensorflow Lite and Eloquent TinyML libraries.

Another interesting aspect to note is the difference in performance for fixed-
point arithmetic implementations on those processors such as Stm32f103c8t6
and RP2040 that do not have support for floating-point arithmetic.
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Fig. 3: Comparison of memory usage and time consumption between libraries for
different microcontrollers. The unit is expressed as a percentage with respect to
the library that had the highest value in the evaluated characteristic.

As the reader may have noticed, the microcontroller ATMega2560 was not
included in the graphs in the figure 3 because it only fit in memory the exe-
cutables corresponding to the EmbedIA-NN implementations. As an example
of the library’s potential, a prototype was created for this microcontroller that
recognizes handwritten digits on a 240x320 pixel graphics display with a built-in
touch screen. This example integrates the experiment model, the inference func-
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tions, the graphics routines code and the touch screen handling code into only
24Kib of program memory and 6Kib of RAM.

Fig. 4: ATMega2560 example integrating model, inference functions, graphics
and touchscreen functions in 24Kib of program memory and 6Kib of RAM.

5 Conclusions and Future Work

This paper presented an ultralight and compact library for neural networks,
designed to run on small microcontrollers with severe hardware limitations,
combined with a Tensorflow/Keras model conversion tool and automatic code
generation for C/C++ language. It was compared with other alternatives and
it was shown that the 16-bit fixed-point implementation achieves at least a 9
times improvement over the memory footprint and inference time of other li-
braries, while maintaining the same accuracy. The advantage of EmbedIA lies
in its combination with the model conversion tool that generates C language
projects incorporating only the strictly necessary source code, while other C++
libraries implement class-based software architectures with inheritance and poly-
morphism that consume a considerable amount of data memory and program
memory, and also slow down program execution. EmbedIA is an open source li-
brary that is part of a recently emerged project and will be released soon. For the
future, it is planned to incorporate in a gradual way: machine learning and neu-
ral network algorithms for small microcontrollers; support for taking advantage
of microcontroller hardware features with SIMD or DSP instructions; examples
with practical, interesting and meaningful models for popular platforms such as
Arduino.

In the short term we plan to incorporate development boards with ARM
processors to compare with libraries that only support these microcontrollers.
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