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Abstract We present an a posteriori error estimator for
piecewise linear ®nite element approximations of structure
vibration problems. We prove that this estimator is
equivalent to the energy norm of the error. Also, we in-
troduce an adaptive mesh-re®nement procedure based on
the proposed estimator to analize ¯uid-structure interac-
tion problems. Finally, numerical results for some test
examples are presented which show the ef®ciency of the
error estimator and the mesh-re®nement techniques.

1
Introduction
Over the past several years there has been a great deal of
research work on a posteriori error estimates and adaptive
re®nement for ®nite element solutions of second order
elliptic problems.

Error estimates based on the evaluation of suitable local
residuals were ®rst introduced by BabusÏka and Rheinboldt
(1978a). Later, these ideas were used by VerfuÈrth (1989) in
order to derive error estimators for the discretization of
the Stokes equations. In 1987, Zienkiewicz and Zhu pro-
posed a posteriori error estimators for problems in linear
elasticity de®ned on some local averaging technique. Re-
cently, Rannacher and Suttmeier (1997) presented
weighted a posteriori error estimates for primal and mixed
®nite element solutions of problems in linear elasticity
derived via duality arguments.

Although all these error estimators have been de®ned
for time-independent problems, we mention that they
could be employed in the elastodynamics and structural
dynamics cases. In these situations, special attention has to
be paid in order to choose a stable time-step integration

algorithm. Stable algorithms with time-step-adaptation
have been developed by Ruge (1996) and by Smolinnski,
Sleith and Belytschko (1996), for instance.

There are not many references about a posteriori error
estimators for eigenvalue problems. In the one variable
case, a posteriori error analysis for eigenvalue problems
were ®rst developed by BabusÏka and Rheinboldt (1978b).
More recently, VerfuÈrth (1994a) introduced an error esti-
mator for eigenvalue problems in nÿvariables as an ap-
plication of his general theory for non linear problems but,
this estimator only yield a global lower bound on the error
which is not useful for practical adaptive re®nement.

In this paper, we present a posteriori error estimators
for classical ®nite element approximations of an eigen-
value problem, namely the linear vibrations of elastic
structures. We prove that this estimator is equivalent to
the energy norm of the error up to higher order terms. The
constants involved in this equivalence are independent of
the corresponding eigenvalue and of the mesh size.

The interest of this result increases from its applications
to ¯uid-structure interaction problems. Based on the
proposed estimator, we introduce an adaptive mesh-re-
®nemet procedure which is capable to detect local singu-
larities of the eigenvectors of such coupled systems in the
case of convex ¯uid domains.

Also we present some numerical experiments which
show the ef®ciency of the error estimator and the mesh-
re®nement techniques.

2
The structure vibration problem

2.1
Statement of the problem and its discretization
We consider the problem of determining the vibration
modes in a continuous elastic medium.

Let X be a connected, bounded, poligonal domain in R2

and let its boundary C be split into two parts CD and CN .
We denote by n the unit normal vector to C.

P1. The eigenmodes v 6� 0 and the eigenfrequencies
k � 0 are the solution of the following spectral problem:

ÿdiv�r�v�� � kqSv in X �2:1�
v � 0 on CD �2:2�
r�v�n � 0 on CN �2:3�
where qS is the mass density and r is the stress tensor
de®ned by
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rij�v� � ks

X2

k�1

�kk�v�dij � 2ls�ij�v�; i; j � 1; 2: �2:4�

In (2.4), ks and ls are the LameÂ coef®cients and �ij�v� are
the components of the linear strain tensor given by

�ij�v� � 1

2

ovi

oxj
� ovj

oxi

� �
: �2:5�

We shall use the standard notation for Sobolev spaces
Hm�X�, their norms k � km;X and seminorms j � jm;X.

Let H1
CD
�X� :� fv 2 �H1�X��2 : vjCD

� 0g :
Let a be the bilinear, symmetric, continuous form de-

®ned on H1
CD
�X� by

a�v;w� :�
Z

X
r�v� : ��w� �2:6�

where

r�v� : ��w� �
X

i;j�1;2

rij�v��ij�w� : �2:7�

By using Korn's inequality, it is proved that a is coercive
and so, the energy norm a��; ��12 is equivalent to the usual
Sobolev norm k � k1;X on H1

CD
�X�.

Let b be the bilinear, symmetric, continuous form de-
®ned on �L2�X��2 by

b�v;w� :�
Z

X
qSv � w �2:8�

The weak formulation of problem P1 is then:
P2. Find a real number k � 0, and a function v 2 H1

CD
�X�,

v 6� 0, such that

a�v;w� � kb�v;w�; 8w 2 H1
CD
�X� �2:9�

Let fThg be a regular family of triangulations of X such
that any two triangles in Th share at most a vertex or an
edge and we assume that, when the edge of a triangle
intersects C it is completely contained either in CD or in
CN .

Let Vh :� fv 2 H1
CD
�X� : vjT 2 �P1�T��2; 8T 2Thg,

where P1�T� denotes the set of polynomial functions de-
®ned on T of degree not greater than 1.

Then, the ®nite element discretization of problem P2 is:
P3. Find a real number kh � 0, and a function vh 2 Vh,

vh 6� 0, such that

a�vh;w� � khb�vh;w�; 8w 2 Vh �2:10�
It is well known that the eigenfrequencies and the eigen-
functions of problem P3 converge to those of problem P2.
By adapting the theory presented in Dautray and Lions
(1990), we have the following results:

Theorem 2.1 Let k1 � k2 � � � � � kn � � � � and
kh1 � kh2 � � � � � khn be the strictly positive eigenvalues of
problems P2 and P3, respectively, in both cases repeated
according to their multiplicities.

1) There exist b 2 �0; 1� and a constant C > 0; inde-
pendent of h, such that, for h suf®ciently small, the fol-
lowing error estimate holds

jkj ÿ khjj � Ch2bkj; j fixed �2:11�
2) Let kj be a simple eigenvalue. Let vj be a L2ÿ nor-

malized associated eigenvector and let vhj be a discrete
eigenvector corresponding to the eigenvalue khj normalized
in the same manner. Then, if h is suf®ciently small, there
exist constants C1 > 0 and C2 > 0, independent of h, such
that the following error estimates holds

kvj ÿ vhjk1;X � C1hbkj; j fixed �2:12�
kvj ÿ vhjk0;X � C2h2bkj; j fixed �2:13�
Error estimates similar to (2.12) can be proved for multiple
eigenvalues too. The parameter b in Theorem 2.1 depends
on the reentrant corners of C, on the angles between CD

and CN and the LameÂ coef®cients ks and ls.

2.2
A posteriori error estimator
In this section we introduce the error estimator and prove
that it is equivalent to the energy norm of the error up to
higher order terms.

Let eh :� v ÿ vh denote the error in the approximation.
Integrating by parts, we obtain from (2.9) and for any

w 2 H1
CD
�X�

a�eh;w� �
Z

X
qS�kv ÿ khvh� � w

�
X

T2Th

Z
T

khqSvh � w ÿ
Z

oT

r�vh�n � w

� �
�2:14�

where, for each triangle T, n is its unit outward normal
vector.

Let us call Ci the union of all the interior edges of the
triangulation Th. Given l � Ci, we denote by ��r�vh�n��l the
jump of r�vh� in an arbitrary, but ®xed, normal direction.

Let

Jl �
��r�vh�n��l if l � Ci

2r�vh�n if l � CN

0 if l � CD

8<: �2:15�

With this notation we may write

a�eh;w� �
Z

X
qS�kv ÿ khvh� � w

�
X

T2Th

Z
T

khqSvh � w ÿ 1

2

X
l�oT

Z
l

Jl � w

 !
;

8w 2 H1
CD
�X� �2:16�

Now, for each T 2Th, we de®ne the local error estimator
gT by

g2
T � �khqS�2kvhk2

0;TjTj �
1

2

X
l�oT

kJlk2
0;ljlj; �2:17�

where jTj and jlj are the area of T and the length of l,
respectively.
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Let,

g2 �
X

T2Th

g2
T �2:18�

Theorem 2.2 There exist positive constants, C1 and C2;
only depending on the regularity of the mesh such that

kehk1;X � C1�g� qSkkv ÿ khvhk0;X� �2:19�

gT � C2

�
kehk1; ~T

�qS

X
T�2 ~T

kk v ÿ kh vhk0;T� jT�j
1
2

�
�2:20�

where ~T � SfT� 2Th : T and T� have a common edgeg.
Proof :

(In what follows, C will denote a constant independent
of h and k; but not necessarily the same at each occurrence).

Let wI be the continuous piecewise linear approxima-
tion of w 2 H1

CD
�X� such that (see Clement (1975)),

wI � 0 on CD �2:21�
kw ÿ wIk0;T � Cjwj1; ~T jTj1=2 8T 2Th �2:22�
kw ÿ wIk0;l � Cjwj1; ~T jlj1=2 8l � oT �2:23�
We have then, wI 2 Vh and so, from (2.10), we can obtainX
T2Th

1

2

X
l�oT

Z
l

Jl � wI ÿ
Z

T

khqSvh � wI

 !
� 0 �2:24�

Combining (2.24) and (2.16), we may write

a�eh;w� �
Z

X
qS�kv ÿ khvh� � w

�
X

T2Th

Z
T

khqSvh � �w ÿ wI�
�
ÿ 1

2

X
l�oT

Z
l

Jl � �w ÿ wI�
!
�2:25�

Now, using (2.22) and (2.23) we get

a�eh;w� � �qSkkv ÿ khvhk0;X � Cg�kwk1;X �2:26�
Therefore, (2.19) follows from (2.26) and the coerciveness
of a.

In order to prove inequality (2.20), we follow the tech-
niques developed in VerfuÈrth (1994b).

Let T 2Th and choose zT 2 H1
CD
�X� such that

supp zT � ~T and

khqSkvhk2
0;T jTj � ÿ

Z
T

vh � zT �2:27�
1

2
kJlk2

0;ljlj �
Z

l

Jl � zT 8l � oT �2:28�

0 �
Z

T�
vh � zT T� 6� T; 8T� � ~T �2:29�

jzT j1;T� � CgT 8T� � ~T �2:30�
The function zT can be taken as a continuous piecewise
quadratic polynomial augmented with local bubbles

of degree four. We refer to VerfuÈrth (1994b) for the
details.

Then,

g2
T �ÿ qSkh

Z
T

vh � zT �
X
l�oT

Z
l

Jl � zT

�ÿ qS

Z
T

khvh � zT �
X
T�� ~T

X
l�oT�

Z
l

r�vh�n � zT

 !

�ÿ qS

Z
T

khvh � zT �
X
T�� ~T

Z
T�

r vh� : �� zT� � �2:31�

Now, since zT 2 H1
CD
�X�, from (2.9) we haveZ

~T

r�v� : ��zT� ÿ
Z

~T

kqSv � zT � 0 �2:32�

Combining (2.29), (2.31) and (2.32), we can obtain

g2
T �

X
T�� ~T

qS

Z
T�
�kv ÿ khvh� � zT

�
ÿ
Z

T�
r�v ÿ vh� : ��zT�

�
�2:33�

and using Schwartz inequality and standard estimates we get

g2
T � C

X
T�� ~T

�
qskkv ÿ khvhk0;T� jT�j

1
2 � jehj1;T�

�
jzT j1;T� :

�2:34�
Finally, (2.30) together with (2.34) yields

g2
T � C2

�
qS

X
T�� ~T

kkv ÿ khvhk0;T� jT�j
1
2 � jehj1; ~T

�
gT

�2:35�
and the proof is concluded. (

Remark. By using the a priori estimates (2.11) and (2.13) is
not dif®cult to show that the second term of the right hand
side of (2.19) is a higher order term. More precisely, we
have

kkv ÿ khvhk0;X � O�h2b�
Also, the second term on the right hand side of Eq. (2.20)
is a higher order term. In fact, we have

kkv ÿ khvhk0;T� � jkÿ khjkvk0;T� � khkv ÿ vhk0;T�

and observing that

kv ÿ vhk0;T� � kv ÿ vhk1; ~T

it follows that
P

T�� ~T kv ÿ vhk0;T� jT�j
1
2 is of higher order

than kv ÿ vhk1; ~T . Finally, we can use the a priori estimate
(2.11) for the term in jkÿ khj.

3
The fluid-structure vibration problem

3.1
Statement of the problem and its discretization
We consider now the problem of determining the vibration
modes of an ideal ¯uid contained in a linear elastic structure.
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Let XF and XS be the domains occupied by the ¯uid
and the solid, respectively, as shown in Fig. 1. We denote
by CI the interface between the solid and the ¯uid, and
by m its unit normal vector pointing outwards XF . We
assume that the exterior boundary of the solid is splitted
into two parts, CD and CN and that the structure is ®xed
along CD and free of stress along CN . Finally, let us denote
by g the unit outward normal vector along CN .

P4. In the case of a compressible ¯uid, the eigenfunc-
tions �u; v; p� 6� �0; 0; 0� and the eigenfrequencies k � 0
are the solution of the following spectral problem:

rpÿ kqFu � 0 in XF �3:36�
p� qFc2div�u� � 0 in XF �3:37�
div�r�v�� � kqSv � 0 in XS �3:38�
r�v�m� pm � 0 on CI �3:39�
u � mÿ v � m � 0 on CI �3:40�
r�v�g � 0 on CN �3:41�
v � 0 on CD �3:42�
where u is the displacement vector in the ¯uid, p is the
¯uid pressure, qF is the mass density of the ¯uid and c is
the acoustic speed in the ¯uid (see, for instance, Boujot
(1987)).

Equations (3.36)±(3.42) de®ne the so-called interior
elastoacoustic problem. Several ®nite element methods
based on displacement formulation have been introduced
to approximate this problem (see Hamdi, Ousset and
Verchery (1978), Chen and Taylor (1990), BermuÂdez,
DuraÂn, Muschietti, Rodriguez and Solomin (1995), Berm-
uÂdez, DuraÂn and Rodriguez (1998)). However, no a pos-
teriori error estimators have been de®ned yet.
Consequently, it is not possible, in general, to derive
adaptive mesh-re®nement strategies.

It is known that the overall accuracy of the ®nite ele-
ment approximations is deteriorated by local singularities
arising from the reentrant corners of the domain XS. If
the used meshes were not correctly re®ned there, much
more computational effort would be necessary in order to
obtain a numerical solution with a prescribed tolerance.

In the next section, we will propose a simple approach
to construct adequately re®ned meshes for coupled prob-
lems by restricting ourselves to the case of convex ¯uid
domains.

Now, we turn our attention to the variational formula-
tion of the coupled problem and its discretization. Here,
we follow the techniques presented in BermuÂdez, DuraÂn
and Rodriguez (1998) closely.

Let

H�div;XF� :� fu 2 L2�XF� : div u 2 L2�XF�g
and

V :� H�div;XF� � H1
CD
�XS�

Multiplying Eq. (3.36) by y 2 H�div;XF� and then inte-
grating by parts and using (3.37), we obtain

qFc2

Z
XF

div u div y �
Z

CI

py � m

� kqF

Z
XF

u � y; 8y 2 H�div;XF� �3:43�

Multiplying Eq. (3.38) by z 2 H1
CD
�XS� and then using

Green's formula and the conditions (3.39), (3.41) and
(3.42), we obtainZ

XS

r�v� : ��z� ÿ
Z

CI

pz � m

� kqS

Z
XS

v � z; 8z 2 H1
CD
�XS� �3:44�

On the other hand, because of the interface condition
(3.40), for any function l de®ned on CI we haveZ

CI

l�u � mÿ v � m� � 0 �3:45�

Hence, as a consequence of (3.43), (3.44) and (3.45) we
obtain the following symmetric variational eigenvalue
problem:

P5. Find a real number k � 0 and functions
�u; v; p� 2 V � L2�CI�; �u; v; p� 6� �0; 0; 0�; such thatZ

XS

r�v� : ��z� � qFc2

Z
XF

div u div y �
Z

CI

p�y � mÿ z � m�

� k
Z

XS

qSv � z�
Z

XF

qFu � y

� �
; 8�y; z� 2 V �3:46�Z

CI

l�u � mÿ v � m� � 0; 8l 2 L2�CI� �3:47�

It can be proved that problems P4 and P5 are equivalent
(see BermuÂdez, DuraÂn and RodrõÂguez (1998)).

Let us introduce the following bilinear, symmetric and
continuous forms

a��u; v�; �y; z�� :�
Z

XS

r�v� :��z� � qFc2

Z
XF

div u div y;

�u; v�; �y; z� 2 V �3:48�Fig. 1. Fluid and solid domains
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b��u; v�; �y; z�� :�
Z

XS

qSv � z�
Z

XF

qFu � y;

�u; v�; �y; z� 2 W �3:49�
where

W :� �L2�XF��2 � �L2�XS��2
The bilinear form a is not coercive on

X :� �u; v� 2 V :

Z
CI

l�u � mÿ v � m� � 0;

�
8l 2 L2�CI�

�
In fact, for any f 2 H1

0�XF�; �curl f; 0� 2 X and
a��curl f; 0�; �curl f; 0�� � 0. However, a� � a� b is coer-
cive and it can be used instead of a: So, we consider the
following modi®ed eigenvalue problem:

P6. Find a real number k � 0 and functions
�u; v; p� 2 V � L2�CI�; �u; v; p� 6� �0; 0; 0�, such that

a���u; v�; �y; z�� �
Z

CI

p�y � mÿ z � m�

� �k� 1�b��u; v�; �y; z��; 8�y; z� 2 V �3:50�Z
CI

l�u � mÿ v � v� � 0; 8l 2 L2�CI� �3:51�

Clearly, problem P6 has the same eigenvalues and eigen-
functions than problem P5: Moreover, following the
techniques in BermuÂdez, DuraÂn and RodrõÂguez (1998), it
can be proved that the forms a� on V � V andR

CI
l�y � mÿ z � m� on V � L2�CI� satisfy the classical

Brezzi's conditions (see Brezzi and Fortin (1991)). Then,
problem P6 is well posed.

Let fThg be a family of regular triangulations of
XF [ XS such that every triangle is completely contained
either in XF or in XS. To discretize the displacements
in the ¯uid we used the lowest order Raviart-Thomas ®nite
element space (see Raviart and Thomas (1977)),

Rh�XF� :�fu 2 H�div;XF� : ujT 2 RT0�T�;
8T 2Th; T � XFg

where

RT0 :�fu 2 P1�T�2 : u�x; y� � �a� bx; c� by�
: a; b; c 2 Rg

For each component of the displacement in the solid we
use the standard ®nite element space

Lh�XS� :�fv 2 H1�XS� : vjT 2 P1�T�;
8T 2Th; T � XSg

The discrete analogue of V is then

Vh :� f�u; v� 2 Rh�XF� � �Lh�XS��2 : vjCD
� 0g

Finally, for the pressure in the interface we use the space
of piecewise constant functions

Qh :� p 2 L2�CI� : pjT 2 P0�l�; 8l 2 CI

� 	

Then, the ®nite element approximation of problem P6 is:
P7. Find a real number kh � 0 and functions

�uh; vh; ph� 2 Vh � Qh; �uh; vh; ph� 6� �0; 0; 0�, such that

a���uh; vh�; �y; z�� �
Z

CI

ph�y � mÿ z � m�

� �kh � 1�b��uh; vh�; �y; z��; 8�y; z� 2 Vh �3:52�Z
CI

l�uh � mÿ vh � v� � 0; 8l 2 Qh �3:53�

Once more, following the techniques in BermuÂdez, DuraÂn
and RodrõÂguez (1998), it can be proved that the forms a�
and

R
CI

l�y � mÿ z � m� on the discrete spaces Vh � Vh and
Vh � Qh; respectively, satisfy both Brezzi's conditions
uniformly in h.

In BermuÂdez, DuraÂn and RodrõÂguez (1998) and Rod-
rõÂguez and Solomin (1996) it was proved that the eigen-
functions and eigenfrequencies of problem P7 converge to
those of problem P6 and that non-zero frequency spurious
modes do not arise in this discretization. More precisely,
we have:

Theorem 3.1 Let k1 � k2 � � � � � kn � � � � and
kh1 � kh2 � � � � � khn be the strictly positive eigenvalues of
problems P6 and P7, respectively, in both cases repeated
according to their multiplicities.

1) There exist a 2 �0; 1� and a constant C > 0; inde-
pendent of h, such that, for h suf®ciently small, the fol-
lowing error estimate holds

jkj ÿ khjj � Ch2a; j fixed �3:54�
2) Let kj be a simple eigenvalue. Let �uj; vj� be a nor-

malized associated eigenvector and let �uhj; vhj� be a dis-
crete eigenvector corresponding to the eigenvalue khj

normalized in the same manner. Then, if h is suf®ciently
small, there exist constants C1 > 0 and C2 > 0, indepen-
dent of h, such that the following error estimates holds

kuj ÿ uhjkH�div;XF� � kvj ÿ vhjk1;XS
� C1ha;

j fixed �3:55�
kpÿ phk0;CI

� C2ha; j fixed �3:56�
Similar results to those in property 2 can be proved for
multiple eigenvalues too. The value of the constant a in
(3.54), (3.55) and (3.56) depends on the regularity of the
eigenmodes in both the ¯uid and the solid domains.

3.2
An adaptive mesh-refinement procedure
If XF is convex, it is natural to suppose that the eigen-
functions corresponding to the ¯uid part of the system will
remain almost regular. So, we may assume that the main
part of the error in the approximation of the eigenvectors
is related with the error in the approximation of the
structure displacements.

Going back to Eq. (3.44), we can interpret it as the
variational formulation of the problem of harmonic re-
sponse of the structure to pressure actions of the ¯uid (see
Morand and Ohayon (1995)). In this sense, we de®ne the
local error estimator gT by
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g2
T � �khqS�2kvhk2

0;TjTj �
1

2

X
l�oT

kJlk2
0;ljlj; 8T � XS

�3:57�
where

Jl �
��r�vh� n ��l if l � Ci

2r�vh� n if l � CN

2�r�vh� n� ph n� if l � CI

0 if l � CD

8>><>>: �3:58�

Also, we de®ne the following adaptive mesh-re®nement
procedure.

Let Tk be any mesh of XF [ XS; for instance, Tk may
be the starting mesh. After having computed the local
error estimators for each triangle T � XS, we are able to
decide which elements of XS have to be re®ned. By doing
so, we can construct a new mesh for the solid domain. This
step of the process may lead to introduce new nodes on the
interface between the solid and the ¯uid. So, in order to
construct a new mesh for the ¯uid domain, we simply
require that it be compatible with the one already obtained
for the solid. In this way, we can obtain the next mesh
Tk�1 of XS [ XF .

The results of the next section show that it is possible to
improve the quality of the ®nite element approximations
in an ef®cient manner by using this strategy.

4
Numerical results
In this section we present numerical results for two test
problems. These problems were already considered by
BermuÂdez and Rodriguez (1994). In order to make com-
parisons easier between uniform and adaptive mesh-re-
®nement techniques, we include here the numerical results
reported by these authors.

The ®rst problem correspond to a steel cavity with
vacuum inside. The geometrical data can be seen in Fig. 2.

The values of the physical parameters are the following:

qS � 7:7 103 kg/m3

Young's modulus = 1:44 1011 Pa
Poisson's coef®cient = 0.35

Table 1 presents the computed lowest eigenfrequencies
for several embedded meshes. The parameter N denotes
the number of nodes. Because no analytical expression for
the eigenvalues is known, the computed ones have been
extrapolated to obtain what will be denoted by kexact. This
extrapolation technique has also been used to get an es-
timation of the order of convergence in powers of
h � O

ÿ
1���
N
p
�
.

Since XS is not convex, strong singularities arise in the
vicinity of the reentrant corners. In this case, the order of
convergence of the eigenvectors is less than 2 which is the
order predicted by the theory for regular eigenfunctions.

We present below the results obtained with meshes
generated by the following adaptive method. The process
starts with a uniform triangulation T0. By using gT as an
error indicator at the element T, Tk�1 is obtained from
Tk re®ning all T 2Tk with

gT � c maxT02Tk
gT0

In our experiments we have taken c � 0:7 and we have
started the process from a very coarse mesh.

Table 2 to Table 5 show the results obtained in eight
steps of the re®nement procedure for eigenmodes
S1; S2; S3 and S4; respectively. Now, the order of conver-
gence is computed in powers of 1���

N
p and it is almost exactly

2 for all these eigenfrequencies. In another words, the
optimal order of convergence with respect to the number
of nodes was obtained for these eigenmodes. It is inter-
esting to observe the signi®cant reduction of the necessary
computational effort to obtain a solution with a prescribed
accuracy.

Numerical experiments for eigenmodes S5; S6; S7 and S8

were also performed. In all these cases optimal order of

Fig. 2. Steel cavity

Table 1. Steel cavity with vacuum inside: eigenfrequencies
computed by using uniform re®nement

mode N � 1440 N � 5440 N � 21120 order kexact

S1 699.879 678.275 670.369 1.48 665.918
S2 2351.270 2305.042 2290.833 1.72 2284.617
S3 3957.305 3857.876 3822.467 1.51 3803.266
S4 4031.904 3942.979 3905.800 1.28 3879.595
S5 4548.893 4523.909 4514.040 1.35 4507.626
S6 5578.104 5505.724 5482.094 1.63 5470.751
S7 7774.507 7626.125 7583.145 1.81 7565.857
S8 7783.139 7693.529 7660.384 1.45 7641.107

Table 2. Eigenmode S1 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 120 908.135 242.217
1 154 790.877 124.959
2 214 733.956 68.038
3 232 727.204 61.286
4 318 711.914 45.996
5 494 695.364 29.446
6 805 683.289 17.371
7 1075 678.770 12.852
8 1508 674.755 8.837

order = 2.079
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convergence was obtained. These results allow us to con-
clude that our error estimator ef®ciently detects the re-
gions where the mesh must be re®ned.

Figure 3 shows, for eigenmode S1, the initial triangula-
tion together with three re®ned triangulations.

In the second test problem the interior XF of the steel
cavity was completely ®lled with water. The physical pa-
rameters of the ¯uid are the following:

qF � 1000 kg/m3

c � 1430 m/s

Table 6 presents the computed eigenfrequencies for this
¯uid-structure interaction problem obtained with the
®nite element method described above and using two

Table 3. Eigenmode S2 computed by using adaptive re®nement

k N kh jk exact ÿ khj
0 120 2833.214 548.597
1 199 2497.795 213.178
2 221 2465.705 181.088
3 245 2441.844 157.227
4 302 2419.078 134.461
5 502 2369.878 85.261
6 738 2337.921 53.304
7 1058 2321.863 37.246
8 1274 2316.273 31.656

order = 2.019

Table 4. Eigenmode S3 computed by using adaptive re®nement

k N kh jk exact ÿ khj
0 120 4632.095 828.829
1 160 4433.584 630.318
2 228 4221.537 418.271
3 242 4147.363 344.097
4 304 4086.109 282.843
5 437 4013.075 209.809
6 728 3922.954 119.688
7 895 3896.265 92.999
8 1251 3872.500 69.234
order = 2.051

Table 5. Eigenmode S4 computed by using adaptive re®nement

k N kh jk exact ÿ khj
0 120 4614.781 735.186
1 142 4418.653 539.058
2 222 4180.860 301.265
3 274 4122.740 243.145
4 326 4085.822 206.227
5 531 4007.080 127.485
6 727 3970.639 91.044
7 1010 3944.757 65.162
8 1448 3925.674 46.079
order = 2.077

Fig. 3a±d. Initial triangulation and some
re®ned triangulations for Eigenmode S1�
a Initial triangulation, b Third re®nement
step, c Fifth re®nement step, d Seventh
re®nement step
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succesive uniform re®nements of the initial mesh. Here, N
denotes the number of unknowns. Once more, the order of
convergence in powers of h and the values of kexact were
obtained by extrapolation.

We observe that the computed order of convergence is
less than 2 for all these eigenmodes. In particular, this
order is signi®catively low for eigenmodes S3; S4 and F11:

Table 6. Water in a steel cavity: eigenfrequencies computed by
using uniform re®nement

mode N � 448 N � 1600 N � 6016 order kexact

S1 877.390 734.427 676.262 1.49 641.837
S2 2641.617 2333.958 2203.241 1.37 2116.398
S3 4005.084 3714.027 3524.046 0.71 3201.475
S4 4314.221 4092.835 3965.678 0.86 3804.124
S5 4478.750 4291.165 4234.950 1.78 4211.620
F01 4921.544 4791.399 4733.413 1.19 4687.927
F10 5522.427 5271.404 5191.406 1.69 5155.246
S6 6275.157 5734.823 5519.013 1.42 5385.805
F11 6421.012 6344.273 6299.794 0.80 6239.332

Table 7. Eigenmode S1 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 877.390 235.553
1 576 764.373 122.536
2 712 710.555 68.718
3 748 703.910 62.073
4 1002 689.016 47.179
5 1540 671.907 30.070
6 2311 660.398 18.561

Table 8. Eigenmode S2 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 2641.618 525.220
1 689 2340.560 224.162
2 727 2325.297 208.899
3 911 2277.752 161.354
4 1227 2246.633 130.235
5 1577 2217.761 101.363
6 2439 2183.345 66.947

Table 9. Eigenmode S3 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 4005.082 803.607
1 580 3898.919 697.444
2 738 3738.824 537.349
3 846 3640.368 438.893
4 1034 3599.878 398.403
5 1558 3532.658 331.187
6 2243 3487.968 286.493

Table 10. Eigenmode F01 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 4921.540 233.613
1 514 4847.272 159.345
2 746 4777.400 89.473
3 904 4752.368 64.441
4 1091 4739.578 51.651
5 1543 4724.194 36.267
6 2299 4710.665 22.738

Table 11. Eigenmode F10 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 5522.426 367.180
1 618 5329.189 173.943
2 766 5245.276 90.030
3 1002 5226.149 70.903
4 1346 5204.265 49.019
5 1897 5185.295 30.049
6 2567 5174.885 19.639

Table 12. Eigenmode F11 computed by using adaptive re®nement

k N kh jkexact ÿ khj
0 448 6421.010 181.678
1 530 6391.597 152.265
2 596 6380.270 140.938
3 732 6353.549 114.217
4 1046 6326.601 87.269
5 1090 6322.934 83.602
6 1438 6309.352 70.020

Fig. 4a,b. Some re®ned triangulations for Eigenmode S1. a First
re®nement step for the solid and ¯uid domains, b Fifth re®ne-
ment step for the solid and ¯uid domains
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We present above the results obtained with meshes
generated by the adaptive re®nement procedure de®ned in
the previous section and using the same simple re®nement
strategy as in the ®rst problem.

Table 7 to Table 12 show the results obtained in six
steps of the re®nement procedure for the structural
eigenmodes S1; S2 and S3 and for the ¯uid eigenmodes
F01; F10 and F11, respectively.

Again, we remark the reduction of the necessary com-
putational effort to achieve a given accuracy.

Finally, Figs. 4 and 5 show some re®ned meshes for
eigenmodes S1 and F01; respectively.
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