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We use the worldline representation for correlation functions together with numerical path integral
methods to extract nonperturbative information about the propagator to all orders in the coupling in the
quenched limit (small-Nf expansion). Specifically, we consider a simple two-scalar field theory with cubic
interaction (S2QED) in four dimensions as a toy model for QED-like theories. Using a worldline
regularization technique, we are able to analyze the divergence structure of all-order diagrams and to
perform the renormalization of the model nonperturbatively. Our method gives us access to a wide range of
couplings and coordinate distances. We compute the pole mass of the S2QED electron and observe sizable
nonperturbative effects in the strong-coupling regime arising from the full photon dressing. We also find
indications for the existence of a critical coupling where the photon dressing compensates the bare mass
such that the electron mass vanishes. The short distance behavior remains unaffected by the photon
dressing in accordance with the power-counting structure of the model.
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I. INTRODUCTION

In addition to the universal tool of Feynman diagram
calculus for perturbative expansions, quantum field theory
has given rise to a wide range of methods to deal with
systems with many degrees of freedom. The present work is
based on the worldline method [1–9] which can be useful in
both perturbative as well as nonperturbative contexts
[10–27].
In addition to the systematic expansion in powers of a

small parameter, e.g., a coupling, the topology of diagrams
is an ordering principle of Feynman diagram calculus that
is also extensively used in modern computer-algebraic
realizations, e.g. [28]. As a consequence, single diagrams
or single topologies may not respect the symmetries of a
theory individually, but a sum over topologies may be
needed in order to preserve a symmetry to a given order in

the parametric expansion. By contrast, the worldline
formulation allows one to assess symmetry constraints
already on the basis of individual contributions. This is,
because subclasses of different topologies can be combined
into a single worldline expression, cf. [9,29].
Even beyond perturbative expansion, it has already been

shown in the early works on the worldline formalism [3]
that whole subclasses of infinitely many Feynman diagrams
can be combined into a single closed form expression in
specific theories. A prominent example is given by scalar
quantum electrodynamics (QED), where all diagrams
contributing to the one-particle irreducible (1PI) effective
action with one charged-particle loop but arbitrarily many
internal photon exchanges can be written as one worldline
integral [10]. Introducing Nf flavors of charged particles,
this subclass of Feynman diagrams provides the leading-
order result of a small-Nf expansion but remains fully
nonperturbative in the gauge coupling.
Obtaining nonperturbative results from such all-order

expressions is nevertheless challenging, since their evalu-
ation also requires a nonperturbative way to perform the
necessary renormalization, i.e., the fixing of physical
parameters. In fact, a whole research program has been
initiated to cross-check the result for the Schwinger pair
production rate evaluated from the all-order worldline
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expression by semiclassical instanton methods [10] with
explicit higher-loop calculations [29–33], the latter requir-
ing an explicit treatment of the mass renormalization. If
semiclassical methods turned out to be reliable also at
higher loop order, many studies on Schwinger pair pro-
duction using worldline instanton methods [20,34–40]
could be generalized beyond perturbative loop expansions.
Also nonperturbative variational approximation techniques
have been developed and successfully applied to studies of
bound-state properties and self-energies [11,16,21,41–44].
Recently, the worldline representation of field theory and its
relation to string theory has been used to propose a new
way of defining UV complete field theories [45].
In order to make progress with nonperturbative worldline

techniques, we use two ingredients as proposed in [18]:
first, we use a double scalar model to which we refer as
S2QED. From the worldline perspective, it is structurally
similar to QED, but ignores the spin of both electrons and
photons. It is superrenormalizable in D ¼ 4 spacetime
dimensions, such that one-loop renormalization suffices
to fix the physical parameters. Second, we use numerical
Monte Carlo worldline techniques [46–52] to nonpertur-
batively evaluate the worldline path integral. Whereas
previous work in this direction has concentrated on
quantum effective actions or energies [10,18,34,49] or
bound-state amplitudes [15,16,21], we investigate the
propagator of the “charged” scalar nonperturbatively in
this work. The worldline expression for this propagator
includes all Feynman diagrams of arbitrary (scalar) pho-
tonic self-energy corrections and thus allows to extract
information about the decay of nonperturbative correlations
with distance and the dependence on the coupling strength
in this model.
While the divergence structure of the scalar model is

considerably simpler as in renormalizable models, the
practical problem of isolating and subtracting the divergent
subdiagrams still persists also in this superrenormalizable
model. We show that this can be performed with the aid of
determining probability distribution functions (PDF) for
suitable building blocks of worldline observables. For this,
we generalize a technique introduced in [18] to the
computation of the propagator. Similar methods have also
been applied to numerical worldline computations of
Schwinger pair production [53] and recently to high-
accuracy results of quantum mechanical potential problems
[54,55]. In the present case, the use of a suitable analytic fit
function for the PDF also allows one to extrapolate the
nonperturbative results to parameter regimes where a direct
simulation is computationally expensive.
Specifically, we obtain a semianalytical expression for

the electron propagator, i.e. an analytical expression in
which all the numerical information gathered from the
worldline numerics is implemented through a set of
parameters. This expression greatly simplifies the sub-
sequent analysis, mainly focusing on the physical (pole)

mass. We observe that the physical mass gets dressed in a
way that suggests the existence of a critical coupling for
which the pole mass vanishes. Moreover, there is a clear
enhancement of this behaviour arising from the all-order
photon corrections in our nonperturbative expression com-
pared with the one-loop result.
In the small distance regime, our nonperturbative results

for the correlation function are compatible with a vanishing
anomalous dimension. This indicates that the superrenor-
malizable structure of the model suggested by power-
counting also persists beyond perturbation theory.
The paper is organized as follows: In Sec. II we begin

introducing S2QED and deriving the analytical expression
used througout the article for the propagator of the
“charged” scalar. The proper-time discretization of this
propagator is presented in Sec. III as a method to regularize
the expressions and a closed formula for the one-loop
contribution to the propagator is obtained. In possession of
this analytic background, we show in Sec. IVour numerical
results. Firstly, a comparison with a one-loop expansion is
done in Sec. IVA. Secondly, we analyse the probability
distribution function for the potential involved in our model
in Sec. IV B. Thirdly, in Sec. IV C we study and discuss
the Worldline Monte Carlo results obtained for the propa-
gator of the charged scalar. We state our conclusions in
Sec. V, while we leave an extensive analysis of the new
v lines algorithm to Appendix A. Finally, the remaining
appendices deal in detail with the one-loop expressions
(Appendix B), the asymptotics of the discretized potential
(Appendix C), the self-energy in different regularizations
including a comparison to the standard Feynman diagram-
matic computation (Appendix D) and the large-distance
asymptotics of the one-loop propagator (Appendix E).

II. WORLDLINE FORMALISM FOR S2QED

Following [18], we consider S2QED, a quantum
field theory with two interacting real scalar fields in D-
dimensional Euclidean spacetime with cubic interaction, as
described by the Lagrangian

L ¼ 1

2
ð∂μϕÞ2 þ

1

2
m2ϕ2 þ 1

2
ð∂μAÞ2 −

i
2
hAϕ2: ð1Þ

The model is designed to resemble QED with A corre-
sponding to the massless photon, and ϕ representing the
charged particle (electron). Apart from a global Z2 sym-
metry for the ϕ field, there is actually no local symmetry
that would play a similar role as in QED; hence the model if
taken literally can be expected to behave rather differently
compared with QED. Nevertheless, the important point for
the present purpose is that the model gives rise to a
Feynman diagrammar with the same topological features
as QED—and also has a worldline representation very
similar to that of QED. This model is used in different
versions, mostly with a real coupling, for many purposes,
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e.g., lately also for studying the decoupling in curved
spaces [56] or unitarity and ghosts after the inclusion of
higher-derivative terms [57].
In the present work, we are interested in the pro-

pagator, i.e. the two-point correlator, of the ϕ field which
can be derived from first principles from the generating
functional

Z½η� ¼ eW½η� ¼
Z

DADϕe−
R

Lþ
R

ηϕ

¼
Z

DAdet−1=2ðK½A�Þe−1
2

R
ð∂μAÞ2þ1

2

R
ηK−1½A�η; ð2Þ

where ηðxÞ is an auxiliary source for the ϕ field, and
K½A� ¼ −∂2 þm2 − ihA denotes the Klein-Gordon oper-
ator in the background of an A field. In the second line of
Eq. (2), we have performed the Gaußian ϕ integration. The
ϕ propagator, being the connected part of the two-point
function, can straightforwardly be obtained from the
Schwinger functional W½η�,

GðxF; xIÞ ¼
δ2W½η�

δηðxFÞδηðxIÞ
����
η¼0

¼ 1

Z½0�
Z
DAdet−1=2ðK½A�Þ

× e−
1
2

R
ð∂μAÞ2K−1½A�ðxF; xIÞ: ð3Þ

So far, our derivation has been exact. From now on, we
confine ourselves to the leading order in a small-Nf
expansion. Formally introducing Nf flavors of the ϕ
field, the scalar determinant is of order det−1=2ðK½A�Þ ¼
e−

1
2
ln detðK½A�Þ ¼ e−

1
2
Tr lnðK½A�Þ ∼ e−OðNfÞ. Thus, the determi-

nant can be dropped to leading order which is reminiscent
to a quenched approximation.
The worldline representation can now be introduced by

rewriting the inverse Klein-Gordon operator as a proper-
time integral, and successively interpreting this operator as
the Hamiltonian of a quantum-mechanical proper-time
evolution. The latter is then written in terms of a
Feynman path integral,

K−1½A�ðxF; xIÞ ¼
Z

∞

0

dThxFje−K½A�T jxIi;

¼ 1

ð4πÞD=2

Z
∞

0

dT

TD=2 e
−m2Te−

ðxF−xIÞ2
4T heih

R
T

0
dτAðxðτÞÞixFxI ; ð4Þ

where we have introduced the worldline expectation value
with respect to the free path integral from xI to xF in proper-
time T for an observable O½x�,

hO½x�ixFxI ≔
R xðTÞ¼xF
xð0Þ¼xI

DxO½x�e−1
4

R
T

0
dτ _x2

R xðTÞ¼xF
xð0Þ¼xI

Dxe−
1
4

R
T

0
dτ _x2

: ð5Þ

Inserting Eq. (4) into Eq. (3), we can interchange the
worldline expectation value with the functional integral
over A fields. Introducing the current of a ϕ particle on the
worldline,

jðzÞ¼ ih
Z

T

0

dτδðDÞðz−xðτÞÞ⇒eih
R

T

0
dτAðxðτÞÞ ¼e

R
jA; ð6Þ

the functional integral over the A-field configurations is
Gaußian, resulting in

1

Z½0�
Z

DAe−
1
2

R
ð∂μAÞ2þ

R
jA ¼ e

1
2

R
jΔj: ð7Þ

Note that also the normalization Z½0� has to be computed
within the small-Nf approximation. In Eq. (7), Δ ¼
ð−∂2Þ−1 denotes the propagator of the photonic A field
which in coordinate space reads

Δðx1; x2Þ ¼
ΓðD−2

2
Þ

4πD=2

1

jx1 − x2jD−2 : ð8Þ

We observe that the photon fluctuations can be summarized
in a current-current interaction of the ϕ field being
represented by a worldline trajectory with itself. Using
the explicit representation of the current (6), we get

1

2

Z
jΔj ¼ −

h2

8πD=2 Γ
�
D − 2

2

�Z
T

0

dτ1dτ2
1

jx1 − x2jD−2

≕ − gV½x�; g ≔
h2

8πD=2 Γ
�
D − 2

2

�
: ð9Þ

Here and in the following, we use the convention
xi ¼ xðτiÞ. The coupling g plays the role of a fine-structure
constant in this model, and V½x� can be viewed as a
potential for the interactions of a worldline with itself.
Inserting these findings into Eq. (3), we end up with the
worldline representation of the (unrenormalized) field
propagator to leading order in the small-Nf limit,

GðxF; xIÞ ¼
1

ð4πÞD=2

Z
∞

0

dT

TD=2 e
−m2Te−

ðxF−xIÞ2
4T he−gV½x�ixFxI ;

ð10Þ
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in agreement with the formula given in [18]. It is obvious
that this representation is nonperturbative in the coupling g
as it contains powers of g to all orders. In a Feynman-
diagram language, Eq. (10) summarizes all possible dia-
grams with one ϕ-particle line and an arbitrary number of
photonic A-field radiative corrections in one single ex-
pression. There is no restriction on the diagram topology
(e.g. 1PI or “rainbow” diagrams): the expression also
includes one-particle reducible as well as crossing-rainbow
diagrams. All conceptual steps performed in this section
can analogously be worked out also for scalar/spinor QED.
The challenge pursued in the following sections is to
evaluate the worldline path integral for which we concentrate

on S2QED. For a comparison with analytic results within
S2QED, we include a standard Feynman diagrammatic one-
loop analysis of the propagator in Appendix D.

III. WEAK-COUPLING EXPANSION AND
RENORMALIZATION

Let us start with the noninteracting limit g → 0. In that
case, there is no photonic contribution, and the propagator
of Eq. (10) reduces to the free Green’s function of the
massive Klein-Gordon operator. Upon performing the T
integral, we arrive at an expression in terms of a Macdonald
function,

G0ðΔxÞ ¼
1

ð2πÞD=2

�
m2

Δx2

�ðD−2Þ=4
KðD−2Þ=2ðmΔxÞ; Δx ¼ jxF − xIj: ð11Þ

Because of translational invariance, the propagator depends
only on the distance of the endpoints also in the presence of
photonic interactions.
At weak-coupling, Eq. (10) suggests a perturbative

expansion in powers of the coupling, resulting in higher-
order worldline correlators of the interaction potential,
ð−gÞnhVn½x�ixFxI . Because of the superrenormalizable
structure of the theory, we expect the divergence
relevant for mass renormalization to appear only to
leading order in the coupling g. Once this one-loop
order is renormalized, all remaining terms should be
finite. Thus, a careful analysis of the leading order

expectation value hV½x�ixFxI is a crucial building block for
the nonperturbative study. This expression can be
studied straightforwardly with continuum worldline
techniques [9], allowing one to make contact with
standard regularization schemes such as proper-time
or dimensional regularization.
In order to make direct contact with the full numerical

studies below, we proceed differently and study this
expectation value by regulating the path integral in terms
of a proper-time lattice. For this, we first perform a
rescaling of the worldlines, such that their distribution
becomes independent of the proper time [46]

yðtÞ ≔ 1ffiffiffiffi
T

p xðTtÞ; t ∈ ½0; 1� ⇒
Z

T

0

dτ _x2ðτÞ ¼
Z

1

0

dt_y2ðtÞ: ð12Þ

We call the worldlines parametrized by yðtÞ unit lines. Accordingly, the initial and final points of the unit lines are related to
the physical initial and final point by rescaling, yI ¼ yð0Þ ¼ xI=

ffiffiffiffi
T

p
, yF ¼ yð1Þ ¼ xF=

ffiffiffiffi
T

p
. Moreover, the worldline

interaction potential can be rescaled,

V½x� ¼
Z

T

0

dτ1dτ2
jx1 − x2jD−2 ¼ T3−D=2

Z
1

0

dt1dt2
jy1 − y2jD−2 ; hV½x�ixFxI ≡ hV½y�iyFyI : ð13Þ

Subsequently, we discretize the unit lines, by slicing the rescaled proper-time t into N time intervals,

yðtÞ → yðtiÞ ¼ yi ∈ RD; ti ¼
i
N
; i;¼ 0; 1;…; N: ð14Þ

Note that the spacetime remains continuous in this approach; for a numerical worldline approach on a discretized spacetime
lattice, see [58]. We discretize the worldline kinetic term in Eq. (12) by a standard nearest-neighbor difference quotient (see
Appendix A). The integrals in the worldline interaction potential, in the discretized form, then correspond to Riemann sums
over the N proper-time slices

V½y� ¼ 2T3−D=2

N2

XN−2

l¼0

XN−1

n¼lþ1

1

jyl − ynjD−2 : ð15Þ
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Here, we have removed the coincident points for l ¼ n,
where the self-interaction potential in the discretized
version is ill-defined. The associated short-distance singu-
larity will nevertheless be approached in the proper-time
continuum limit for increasing N, as the discretized version
of the probability distribution (12) corresponds to a random
walk for which jyi − yi−1j ∼ 1=

ffiffiffiffi
N

p
. Hence we expect a

divergence to appear in the limit N → ∞. We have checked
that a regularization of the coincident point limit by shifting
the denominator jyl − ynjD−2 → jyl − ynjD−2 þ δ but in-
cluding the n ¼ l terms in the sum yields the same
divergences in the limit δ → 0.
The procedure of keeping N finite hence regularizes the

worldline expressions. As shown in the following, it allows
for meaningful numerical computations of relevant quan-
tities as well as for a controlled study of theN → ∞ limit. It
is however important to note that there is a decisive differ-
ence to a conventional momentum-space or short-distance
cutoff: as δy ∼ 1=

ffiffiffiffi
N

p
, we have Δx ∼

ffiffiffiffi
T

p
=

ffiffiffiffi
N

p
. For a given

fixed N, fluctuations associated with different proper-
times T are thus regularized at different length scales. As
a consequence, our final results will differ from those
obtained by a standard regularization scheme not only by
a simple scheme change, i.e., a shift of finite constants.
Instead, our worldline regularization will be linked to a
standard regularization by a finite spacetime- ormomentum-
dependent transformation. The connection is worked out in
AppendixD on the one-loop level, using a comparison to the

standard perturbative Feynman diagram approach. For
reasons of clarity, we use the worldline regularization in
the main text for our nonperturbative analysis.
Coming back to the expectation value of the worldline

interaction potential, it has to be computed for an ensemble
of open worldlines interconnecting yI and yF with a
Gaußian velocity distribution. For our numerical studies
below, we use a new algorithm (which we call v lines) to
generate such discretized random paths. This construction
is detailed in Appendix A and is tested considering a simple
model in Appendix A 1.
For the one-loop contribution to the propagator in the

discretized formulation, we now need to compute

hV½y�iyFyI ¼ N
Z

yF

yI

Dye−
N
4

P
i¼N
i¼1

ðyi−yi−1Þ2V½y�; ð16Þ

with the discretized representation (15) of the interaction
potential, and the abbreviations,

N −1≔
Z

yF

yI

Dye−
N
4

P
i¼N
i¼1

ðyi−yi−1Þ2 ; Dy≔
YN−1

j¼1

dDyj: ð17Þ

The worldline integrations can be performed analytically
by using the Fourier representation of the interaction
kernel, cf. Eq. (8),

hV½y�iyFyI ¼
8T3−D=2

N2ΓðD−2
2
Þ
XN−1

0¼l<n

N
Z

yF

yI

Dye−
N
4

P
i
ðyi−yi−1Þ2

Z
dDp

ð4πÞD=2

eipðyl−ynÞ

p2
: ð18Þ

We observe that all yi integrals still remain Gaußian and hence can be performed by a suitable completion of the square. The
corresponding computation can be performed along the same lines as for the construction of the v lines algorithm, except for
a different completion of the squares at positions l and n. With the details highlighted in Appendix B, we arrive at

hV½y�iyFyI ¼ 2
T3−D=2

ðΔyÞD−2

XN−1

n¼1

ND−4ðN − nÞ
nD−2

�
1 −

ΓðD−2
2

; nΔy2
4ðN−nÞÞ

ΓðD−2
2
Þ

�
; ð19Þ

where Δy ¼ jyF − yIj, and Γða; zÞ denotes the incomplete
gamma function. Let us from now on specialize to the case
of 4-dimensional spacetime, D ¼ 4, yielding

EhV½y�iyFyI ¼ 2
T
Δy2

XN−1

n¼1

ðN − nÞ
n2

h
1 − e−

nΔy2
4ðN−nÞ

i
ð20Þ

¼ 2
T2

Δx2
XN−1

n¼1

ðN − nÞ
n2

h
1 − e−

nΔx2
4TðN−nÞ

i
; ð21Þ

where we reinstated the dimensionful physical distance in
the last line. It is instructive to study the short-distance
limit,

hV½y�iyFyI ¼
1

2
T
XN−1

n¼1

1

n
þOðΔy2Þ

¼ 1

2
THN−1 þOðΔy2Þ

¼ 1

2
TðlnN þ γÞ þOðΔy2; 1=NÞ: ð22Þ

We observe that the short-distance limit is essentially given
by the harmonic number HN−1 which diverges logarithmi-
cally for large N with the constant part given by the Euler-
Mascheroni constant γ. The analytical result (22) for the
large-N expectation value of the worldine interaction
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potential for closed worldlines, i.e., Δy ¼ 0, is in fact in
good agreement with the numerical estimates of [18].1

The logarithmic divergence discovered in Eq. (22) is a
UV divergence and indicates the necessity of performing a
renormalization of physical parameters. In the present
model, simple power-counting tells us that such a diver-
gence is expected to correspond to a counterterm δm2,
denoting the additive renormalization of the mass (a
possible wave function renormalization Zϕ remains finite).
In order to illustrate how the divergence relates to mass
renormalization, we go back to Eq. (10) and concentrate on
two factors of the proper-time integrand in the short
distance limit:

e−m
2The−gV½x�ixFxI ¼e−m

2T
X∞
k¼0

ð−gÞk
k!

hV½x�kixFxI

¼e−m
2T
X∞
k¼0

ð−gÞk
k!

ðhV½x�ixFxI Þkþconnected

¼e−m
2Te−ghV½x�i

xF
xI þconnected: ð23Þ

Here “connected” denotes the connected parts of operator
products of the self-interaction potential; e.g., to second
order in V, the connected part would essentially be given by
hV½x�V½x�ixFxI − ðhV½x�ixFxI Þ2. These connected parts contrib-
ute to 1PI diagrams with overlapping photon radiative
corrections, which are power-counting finite. Therefore, the
mass shift is fully contained in the disconnected part
written explicitly in Eq. (23). This suggests to define the
following finite mass parameter

m2
WR ≔ m2 − δm2; δm2 ¼ −

g
2
ðlnN þ γÞ; ð24Þ

where we understand the bare mass m to be implicitly N
dependent, such that mWR is kept at a finite fixed value in
the limit N → ∞. In the following, mWR will serve as a
fixed input parameter representing a finite mass parameter
of the theory in the worldline regularization. Moreover, we
usemWR in the remainder of this work to set the scale for all
other dimensionful quantities. Another way of expressing
the renormalization of the mass parameter is given by the
renormalization group function σ of the mass. Keeping the
low-energy mass parameter mWR fixed, the dependence of
the bare mass parameter on the regularization scale can be
quantified by

σWR ¼ ∂m2

∂ ln ffiffiffiffi
N

p ¼ −g; for mWR ¼ const: ð25Þ

Note that we take the derivative with respect to
ffiffiffiffi
N

p
, since

N puts a UV cutoff to the proper-time parameter, which is
related to the square of an inverse momentum cutoff

∼1=Λ2. Equation (25) agrees exactly with the corres-
ponding result from a Feynman diagram computation,
cf. Eq. (D6) in Appendix D.
To sum up, we conclude that the mass-renormalized

version of the propagator (10) in worldline representation
and for D ¼ 4 reads,

GðxF; xIÞ ¼
1

ð4πÞ2
Z

∞

0

dT
T2

e−m
2
WRTe−

ðxF−xIÞ2
4T he−δm2T−gV½x�ixFxI ;

ð26Þ
yielding a finite result also in the limit N → ∞, because
of Eq. (22).

IV. WORLDLINE MONTE CARLO
FOR THE PROPAGATOR

Let us now turn to an evaluation of the worldline path
integrals by a Monte Carlo procedure. For this, we generate
an ensemble of open worldlines extending over the dimen-
sionless distance Δy ¼ yF − yI using the v lines algorithm.
This ensemble is characterized by the total number nL of
lines and the number N of discretization points per line.
The worldline expectation value of an operator O½y� is then
estimated as2

hO½y�iyFyI ≃
1

nL

XnL
l¼1

O½yl�: ð27Þ

The full continuum result would be obtained in the limit
nL → ∞ and N → ∞.

A. One-loop comparison

As a benchmark test, we compare the results of a
Monte Carlo simulation for the expectation value of the
interaction potential with the analytical results, cf. Eq. (20);
this corresponds to a check at the one-loop level. For this
purpose, we generate ensembles of nL ¼ 100000 lines for
an increasing number N of points per line extending over a
distance Δy ¼ jyF − yIj. In the following, we set the
proper-time T ¼ 1 without loss of generality; for dimen-
sional reasons, it is clear that V½y� scales linearly with T,
cf. Eq. (13).
In Fig. 1, we show the behavior of the expectation

value of the potential hViyFyI as a function of the number of
points per line N (in a log2 scale); the left (right) panel
corresponds to Δy ¼ 1 (Δy ¼ 14). The error bars for the
numerical data correspond to the root-mean-square (RMS)
of the expectation value in the given ensemble. The
worldline Monte Carlo (WMC) data is compared to
the analytical expression of Eq. (20) (red solid line). The
agreement between the numerical data and the analytical

1Note that there is a typo in Eq. (41) of [18], where the
logarithm ln should read log2.

2Here and in the following, we use the convention that the
symbol ≃ relates the quantities computed analytically to the
corresponding ones obtained using WMC.
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result is very satisfactory for all N and Δy. The RMS error
appears to overestimate the true error. For larger Δy, the
error becomes slightly smaller, as the large distance
between the end points forces the lines to be closer to
the classical paths with less fluctuations.
We also show a least squares fit to the data (green dashed

line) using a fit function linear in log2 N,

ffit ¼ aV log2N þ bV; ð28Þ
confirming the presence of the logarithmic divergence with
the regularization parameter, also found analytically in
Eq. (22). For larger Δy (right panel of Fig. 1), we observe
slight differences between the data/exact results and the
linear fit in log2 N, indicating the onset of the higher order
terms in Eq. (22).
To illustrate this point more quantitatively, we show the

results for the fit parameters aV and bV as a function of
increasing Δy in Fig. 2. Whereas for small values of Δy the
fit parameter for aV settles near the exact value ln 2

2
≃ 0.3466

for the large-N limit (left panel), we observe deviations on
the few-percent level kicking in for Δy≳ 5. This implies
that a larger range of N points per loops is required to
isolate the lnN divergence on the, say, 1% level for larger
distances Δy.

This is also visible for the terms of order N0: the right
panel in Fig. 2 shows the result for the parameter bV
starting off near the analytical result γ=2 ≃ 0.2886 for small
Δy and becoming negative for larger Δy. Our simulation
data is satisfactorily close to the exact Δy-dependence as
predicted by Eq. (20). Again, the deviations kicking in for
larger Δy≳ 6 are indicative for the fact that N has not been
chosen sufficiently big in the simulations in order to isolate
the logarithmic divergence in N from the Δy-dependent
finite terms.
It is useful to turn this observation around: for a given

finite Δy, we may ask how many points per line N are
needed to reliably determine the logarithmic divergence as
is required for a proper renormalization. Demanding for a
certain precision for this procedure, we can obtain an
estimate for a minimal number of N to have simulational
access to the one-loop structure of the system. Below, we
call this procedure the “one-loop test.”

B. Probability distribution for the interaction potential

With this validation of our numerical methods, also
showing the necessity to go to large N for some quantities,
we now need a method to deal with expectation values of
functions of the interaction potential hfðV½x�ÞixFxI , cf.

FIG. 2. Fit parameters aV (left) and bV (right) of the fit Eq. (28) to the expectation value of the interaction potential (light blue points),
as functions of the distance Δy. The orange solid lines show the exact analytical prefactor ðln 2Þ=2 of the log divergence (left) and the
remainder function of Eq. (20) after subtraction of the log-divergence (right).

FIG. 1. Mean value hVi of the potential as a function of log2 N, the base two logarithm of the number N of point per loops, for lines
whose endpoints distance are Δy ¼ 1 (left) and Δy ¼ 14 (right). The exact analytic expression (solid red line) and the fitting with a
straight line (dashed green line) are also shown.
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Eq. (26). An obvious difficulty is the isolation of the
logarithmic divergencies for increasing N. A naive sub-
traction of the analytically known divergence in Eq. (26)
would be problematic, as any numerical error in determin-
ing this divergence gets amplified with lnN after analytical
subtraction.
In the following, we use the method of numerically

determining the probability distribution of the relevant
observable as introduced in [18] for the coincidence limit
and generalize it to finite distances Δx. We define the
distance-dependent probability distribution function (PDF)
Pðv;ΔyÞ for the potential

Pðv;ΔyÞ ¼
R yð1Þ¼yF
yð0Þ¼yI

Dye−
R

1

0

_y2

4 δð1T V½y� − vÞ
R yð1Þ¼yF
yð0Þ¼yI

Dye−
R

1

0

_y2

4

; ð29Þ

where we have scaled out the trivial linear proper-time
dependence of V½y�, cf. Eq. (13), such that Pðv;ΔyÞ is not
explicitly T-dependent. In addition to Δy, the PDF using a
discretized definition also depends on N. Once the PDF is
known, the desired expectation value can be computed
from

hfðV½y�ÞiyFyI ¼
Z

∞

0

dvPðv;ΔyÞfðTvÞ: ð30Þ

In the following, we determine the PDF from numerical
data, i.e., from binned histograms of the observable V½y�,
and analyze it with a suitable fit function. For the latter, we
choose

Pðv;ΔyÞ ≔ β1þα

Γðαþ 1Þ ðv − v0Þαe−βðv−v0Þθðv − v0Þ; ð31Þ

where the fit parameters α, β and v0 are all Δy dependent.3

The fit function is already normalized,
R
∞
0 dvPðv;ΔyÞ ¼ 1.

Also, it has been designed in such a way that the
N-dependent log divergence can be carried by the param-
eter v0, see below.
In Fig. 3 (left panel), we depict the numerically obtained

PDF Pðv;ΔyÞ using 100 bins for the case of a closed loop
(coincidence limit with Δy ¼ 0) and N ¼ 25 points per
loop. The fit Pðv; 0Þ according to the ansatz (31) is also
shown. As is visible from the plot, the proposed fit function
P is compatible with the main features of the numerical data
P: its decay for large and small potential, the existence of a
maximum, and the position of the latter.4

On the right panel of Fig. 3, a set of these PDFs and their
corresponding fits are shown for increasing values of
N ¼ 2k, k ¼ 3; 6;…; 16, and for finiteΔy ¼ 1. We observe
that the peak position shifts linearly with k, i.e., increases
logarithmically with N. More importantly, the shape of the
PDF approaches an asymptotic form for increasing N.
Indeed, this can be quantified by studying the behavior of
the fit parameters α and β for increasing N, which is shown
in Fig. 4 for Δy ¼ 1. After a linear increase with lnN for
small N, they show a convergent behavior for larger N,
indicated by a clear flattening of the curve for increasing N.
We extract our estimates for the asymptotic values of α and
β in the large N limit from a fit to a constant in that flat
region.5 Unfortunately, the onset of that flat region depends
on Δy and occurs at larger N for increasing Δy. This fact
ultimately puts a limit on the accessible range of propa-
gation distances Δx.
In order to identify the flat region where the parameters α

and β have settled, we may inspect the N dependence by
hand as in Fig. 4. Alternatively, we can use the one-loop test
described at the end of Sec. IVA, requiring N to be
sufficiently large to identify the logarithmic one-loop

FIG. 3. Probability distributions P and the corresponding fits P for Δy ¼ 0, N ¼ 5 (left) and Δy ¼ 1, N ¼ 3; 4;…; 16 (right), with N
increasing from left to right in the right plot.

3A more elaborate choice for the coincidence limit has been
made in [18]; beyond the coincidence limit, we find that the
present simpler choice appears more suitable.

4At close inspection, the numerical data is slightly larger than
the fit function for large values of v. The alternative fit function
given in [18] would cure this feature. However, we observe in the
following that this issue is less relevant for finite Δy.

5In a slight abuse of notation, we use α, β and v0 for both the N
depending parameters as well as their asymptotic expressions.
Whether we are referring to one or the other should be clear from
the context.
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divergence with a precision of, say, more than 90%. In
practice, we find that both methods yield results for a
minimum number of N which agree with one another.
As mentioned above, the log-divergence in N is carried

by the parameter v0. This is also obvious from the para-
metrization of the expectation value of the interaction
potential upon using the PDF fit (31),

1

T
hV½y�iyFyI ≃ hviP ≔

Z
∞

0

dvPðvÞv ¼ v0 þ
1þ α

β
: ð32Þ

We have already worked out the lnN divergence of the left-
hand side explicitly, whereas we have shown numerically
that α and β converge to finite values for large N. Hence,
the parameter v0 must behave as v0 ∼ ðlnNÞ=2. As men-
tioned previously, this is in agreement with the shift of
the peak of the PDF as visible in Fig. 3 (right panel) and
can quantitatively be confirmed by an analysis of the fit
parameter results for v0—see Fig. 5, left plot, where this
behavior is depicted for Δy ¼ 1 together with a large N fit
of the form

fv0−fit ¼ av0 log2N þ bv0 : ð33Þ

In the same way as for the parameters α and β, the choice of
the large-N fit region can be done by either visual
inspection or using the one-loop test. Both methods provide
equivalent results.
These numerical results for v0 are, however, not required

for the following analysis. In fact, having computed α and β
numerically, and knowing hV½y�iyFyI analytically from
Eq. (20), v0 can be determined from Eq. (32),

v0 ¼
1

T
hV½y�iyFyI −

1þ α

β
: ð34Þ

This is the estimator we will use for v0 in the following
sections. The advantage of this way of extracting v0 is that
the fully available analytical information for the expect-
ation value of the interaction potential can be used. This
facilitates at the same time an exact subtraction of the
log-divergencies in the course of the renormalization
procedure, see below.
Computing v0 numerically from the PDF fit instead

serves as a worthwhile self-consistency check: if the
obtained fits are valid, the WMC estimation in formula (32)
should hold true upon replacing the parameters α, β and v0

FIG. 4. The α (left) and β (right) parameters for Δy ¼ 1 as a function of N. The blue dots correspond to the data coming from the fit of
our Ansatz Pðv;ΔyÞ to P for different values of N, while the green solid line is the constant fit in the large N region.

FIG. 5. Left: N dependence of the fit parameter v0 for Δy ¼ 1; the blue dots show the results from fitting Pðv;ΔyÞ to P for different
values of N, and the green solid line represents the linear log2 N fit in the large N region. Right: self-consistency check using the
regularized analytical result [Eq. (C4), solid orange line] and the regularized numerical one [Eq. (35) using the large-N fit values of α, β
and bv0 , blue dots] for T ¼ 1.
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by their large-N asymptotic expressions, while using the
analytical expression (20) for hViyFyI .
To this end, in Appendix C we determine the large-N

asymptotic expansion of (20) up to oðN0Þ. With this
information, we can cancel the leading log2N contributions
on both sides of the estimation (32). The result is a
“renormalized” self-interaction potential VR. Our analytic
large-N result is given in Eq. (C4), so that the correspond-
ing numerical estimate is given by

1

T
hVR½y�iyFyI ≃ bv0 þ

1þ α

β
−
γ

2
: ð35Þ

It should be clear that the attribute “renormalized” is
justified, as the subtraction corresponds precisely to the
mass renormalization, cf. Eq. (24). Note that also the finite
parts are subtracted, such that hVR½y�iyFyI → 0 for Δy → 0.
Results for hVR½y�iyFyI are shown in the right panel of
Fig. 5. This demonstrates that the fit results are indeed self-
consistent up to distances of orderΔy ∼ 5. This serves as an
indication for the region of confidence of our numerical
computations. We observe that the uncertainties in the
numerical data, arising from a propagation of uncertainties
in the fit parameters, reflects the same limitation, inasmuch
as they strongly increase for distances near Δy ∼ 5.

In summary, the essential ingredient for obtaining non-
perturbative information about the propagator is the deter-
mination of the PDF parameters α and β as a function of the
(rescaled) distance Δy. In addition to using simulational
data for α and β directly, we find it useful to introduce
simple fit functions for their distance dependence.
For completeness, we consider the distance dependence

of all the parameters. On the one hand, we find that both
parameters α and β are accurately fitted by a polynomial of
third degree in the a priori determined region of confidence
Δy≲ 5, while av0 remains constant as predicted. The
results of these fits are

α ¼ 7.51168 þ 0.67579x2 − 0.021643x3;

β ¼ 6.12762 þ 0.80933x2 − 0.0271248x3;

av0 ¼ 0.3467492; ð36Þ

as displayed in Fig. 6 for the α and β parameters (left and
right panel respectively), and in the left panel of Fig. 7 for
the slope av0 of v0. The blue dots with error bars correspond
to the large-N asymptotic fits performed, whereas the green
solid line depicts the fit functions of (36). We observe that
the coefficients of the cubic terms are significantly smaller
than the quadratic ones, suggesting a large radius of
convergence of the polynomial expansion. Also, the fits

FIG. 6. PDF fit parameters α (left) and β (right) as a function of the distance Δy. The blue dots corresponds to the large N fits of the α
and β parameters, while the green solid line is a third order polynomial fit.

FIG. 7. PDF fit parameters av0 (left) and and bv0 (right) representing the fit parameter v0 via Eq. (33) as a function of the distance Δy.
The blue dots corresponds to the large N fits of the v0 parameter. In the left panel, the green solid line is a constant fit, whereas in the
rigth panel it shows the estimate for bv0 using Eq. (37) as described in the text.
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(36) describe the data for α and β well beyond the
confidence region.
On the other hand, the bv0 parameter, characterizing the

finite part of v0, exhibits a nontrivial behavior encoded in
Eqs. (C4) and (35). Equation (C5) in Appendix C suggests
that a small distance fit of bv0 should require at least two
parameters. Instead, in order to avoid the proliferation of
parameters, we test the quality of our data by the following
comparison: we start from eq. (35), solve it for bv0,

bv0 ¼
γ

2
−
1þ α

β
þ 1

T
hVR½y�iyFyI ; ð37Þ

and insert the fits (36) of α and β on the right-hand side as
well as the analytically determined form of the renormal-
ized self-interaction potential, cf. Eq. (C4). This gives us a
fully determined and analytically controlled estimator of
bv0 without further parameters. We compare this result
with the numerical data obtained by using the fit (33) in
Fig. 7 (right).6 We observe a good agreement in the region
of confidence Δy≲ 5. In fact, bv0 is the only quantity
parametrizing our data, where the noise beyond the region
of confidence shows up.

C. Results for the propagator

Let us now apply the PDF-based formalism to the
worldline representation of the propagator GðΔxÞ for the
charged scalar written in terms of the worldline expectation
value of the exponential of the potential V, cf. Eq. (10) in
Sec. II:

GðΔxÞ ¼ 1

ð4πÞd=2
Z

∞

0

dT

Td=2 e
−m2

WRTe−
Δx2
4T he−δm2T−gV½y�i

xFffiffi
T

p
xIffiffi
T

p :

ð38Þ

Using the ansatz for the PDF given by (31), it is straight-
forward to obtain an estimate of the expectation value in
terms of the fit parameters,

he−gV½y�iΔy ≃ he−gTv½y�iP;Δy ¼ FðαðΔyÞ;βðΔyÞÞðgTÞe−gTv0ðΔyÞ;
ð39Þ

where we have explicitly highlighted the dependence of the
parameters on the distance Δy and defined the auxiliary
function

Fðα;βÞðgTÞ ≔
�

β

β þ gT

�
1þα

: ð40Þ

Inserting Eq. (39) into Eq. (38) leads us to

GðΔxÞ≃ 1

ð4πÞd=2
Z

∞

0

dT

Td=2e
−m2

WRTe−
Δx2
4T Fðα;βÞðgTÞe−gTbv0þ

g
2
Tγ

ð41Þ

≕GPðΔxÞ: ð42Þ

As a quick check, consider the one-loop expansion of this
formula: performing a naive expansion of (41) in powers of
g leads to

GPðΔxÞ ¼
1

ð4πÞd=2
Z

∞

0

dT

Td=2 e
−mWRTe−

Δx2
4T

�
1 −

�
bv0 þ

1þ α

β
−
γ

2

�
gT þ � � �

�
; ð43Þ

which together with Eq. (35) tells us that this is indeed the
renormalized result corresponding to a linear expansion in
the potential V.
For a further analysis, it is useful to measure all

dimensionful quantities in units of the mass scale mWR,
and introduce the dimensionless quantities

ḠPð·Þ ¼
1

m2
WR

GPð·Þ; ð44Þ

ḡ ¼ g
m2

WR
; ð45Þ

Δx̄ ¼ mWRΔx: ð46Þ

We also perform a corresponding rescaling of the proper-
time T with a subsequent substitution by T → Δx̄T,
yielding

ḠPðΔx̄Þ ¼
1

ð4πÞ2Δx̄2
Z

∞

0

dTGΔx̄;ḡðTÞ; ð47Þ

where the rescaled proper-time integrand is

GΔx̄;ḡðTÞ≔
1

T2
e−ð1þḡbv0 ð 1ffiffi

T
p Þ−ḡ

2
γÞΔx̄2Te− 1

4TFðαð 1ffiffi
T

p Þ;βð 1ffiffi
T

p ÞÞðΔx̄2ḡTÞ:
ð48Þ

Formulas (47) and (48) assume that the values of the α, β
and bv0 parameters are known for every positive argument.
However, we have already determined in Sec. IV that our
region of confidence is limited to arguments Δy satisfying
Δy≲ 5. In the present rescaled form, this translates to

6The contribution from the uncertainties given in Eq. (36) for
the α and β parameters are smaller than the width of the plot line
in Fig. 7 (right).
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proper-time values T ≳ 0.04. As the proper time is an
integration variable on the positive real domain, our result
for the propagator can only be considered a valid estimate if
the integrand GΔx̄;ḡð·Þ is localized in proper-time regions
satisfying this constraint on T > Test ¼ 0.04.
Whether this constraint is satisfied depends on the

coupling parameter ḡ and the distance Δx̄ under consid-
eration. The dominant features of the integrand arise from
the interplay between two expontential terms: the first one
with an exponent proportional to T stems from the mass
term and controls the large-T behavior, also relates to the
long-range properties of the propagator. The second expo-
nential, with an exponent proportional to the inverse of T,
controls the small-T (short-range) behavior. As a result, the
proper-time integrand has a single peak, being exponen-
tially damped to both sides of the peak. We thus consider
our estimate for the propagator reliable, as long as the
dominant part of the peak of the integrand is located at
proper-time values satisfying T > Test.
As an example, consider the left panel of Fig. 8. Here, we

plot the proper-time integrand (48) as a function of the
proper time T for ḡ ¼ 0.5 and different values of the
distance Δx̄, using the numerical data; for a better com-
parability, we have normalized the peak of the integrand to
one. Notice also that the numerical uncertainties coming
from a propagation of errors in the parameter uncertainties,
cf. (36) are in these cases smaller than the width of the
plotted lines. As expected, the integrand is peaked aroung a
value Tmax that tends to zero as the distance Δx̄ increases.
In this particular case, the conclusion is that our formula
(47) represents a satisfactory estimate up to distances of
order one. As a way to quantify the systematic error of our
method when computing the propagator, we assign an
uncertainty given by the value of an integral analogous to
(47) with the upper boundary replaced by the value 0.04.
We believe that this procedure yields rather conservative
error bars.
Additionally, we show in Fig. 8 (right) a density plot of

the peak position Tmax of GΔx̄;ḡ as a function of the
dimensionless distance Δx̄ and coupling ḡ. Obviously, the
region of self-consistency Tmax > Test ¼ 0.04 corresponds

to small values of Δx̄; we observe hardly any restriction on
the coupling ḡ in its allowed region.
In fact, the region where we consider (48) to be valid is

limited by the constraint that the first exponential factor
remains decaying for large T. This leads to a constraint on
the coupling:

1þ ḡbv0ð0Þ − ḡ
γ

2
> 0 ⇒ ḡ < ḡc ≃ 0.72: ð49Þ

For couplings stronger than the critical one, the inte-
grand (48) becomes divergent for large proper times.
The maximum displayed on the right panel of Fig. 8
therefore becomes only a local one beyond the critical
coupling.
Taken at face value, the limiting value g ¼ gc corre-

sponds to a coupling strength, where the propagator no
longer decays exponentially for large distances, i.e. where
the physical mass appears to tend to zero. At least in the
present approximation, we are lead to conclude that the
initially massive particle can become massless because of
the dressing through the photon cloud if the coupling
approaches the critical value. Whether this remains a
feature of the model beyond our approximation is difficult
to estimate, since it requires a careful study of the long-
distance limit of the propagator.
This can be appreciated in the left panel of Fig. 9, where

the propagator is plotted as a function of the distanceΔx̄ for
several values of the coupling. The exponential decay is
indeed softened as the coupling increases. In the right panel
of Fig. 9 we include, for ḡ ¼ 0.7, the comparison between
the propagator and the one-loop propagator G1-loop;WR in
the worldline regularization [cf. Eq. (D9) and in general
Appendix D for its definition]. Note that for large distances
both of them decay exponentially as the free propagator
given by expression (11) does. For this reason we propose
the following fit function for the propagators in the large
distance regime,

fðxÞ ¼ A

x3=2
e−m

⋆x; ð50Þ

FIG. 8. Left: peak-normalized integrand G of Eq. (48), for ḡ ¼ 0.5 and distances Δx̄ ¼ 1, 3, 5 (solid violet, dashed blue and dotted
cyan lines respectively). Right: density plot of the proper-time peak position Tmax of G as a function of ḡ and Δx̄.
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where A andm⋆, i.e. the physical mass corresponding to the
pole mass, are the fit parameters.7

Remarkably, the fits8 are in excellent agreement with
the propagators for x larger than unity, as can be seen in the
right panel of Fig. 9: the blue (violet) solid line corresponds
to the fit of the propagator ḠP (G1-loop;WR). Contrary to the
free case, the physical mass in the interacting case is not
equal to the scale-setting massmWR, which is taken as unity
in these plots. Rephrasing this, in the light of the results
(D5) and (D9), it is clear that the scale-setting mass mWR
does in general not coincide with the pole mass m⋆ of the
propagator in complex momentum space.
Performing the analysis of physical masses for a wide

range of coupling values, we summarize our findings in
Fig. 10. As a first benchmark, we plot the pole mass m⋆
as extracted from the asymptotic expansion of the one-
loop propagator within the worldline regularization, cf.
Appendix E, as orange squares. Since our numerical data
does not permit to go to asymptotically large distances, we
need to perform the numerical fits in a window of finite x
values (we use 5≲ x≲ 10). Applying this procedure to the
one-loop worldline result, we obtain the data points shown
as green triangles. Over the full range of couplings, this
estimate is satisfactorily close to the analytical result for the
pole mass with deviations due to the fit procedure on the
few percent level.
We consider the smallness of these deviations as indica-

tive for the reliability of the fit procedure for the full
propagator, whose results are shown as red circles. A direct
observation shows that the one-loop approximation is
quantitatively accurate up to ḡ≲ 0.2. For larger couplings,
our estimate for the pole mass of the propagator decreases

more rapidly than the one-loop estimate. We interpret this
as a consequence of the dressing of the charged particle
with the (scalar) photon cloud, which is described by the
infinite subclass of Feynman diagrams resummed by the
nonperturbative worldline formula (10). As discussed
above, the charged particle even becomes massless
for ḡ → ḡc ≃ 0.72.
For further comparison, we also show the pole mass as

derived from the one-loop propagator using a momentum
cutoff regularization (Ḡ1-loop;Λ, purple diamonds). The
qualitative trend of a decreasing pole mass for increasing
couplings is also visible. However, the dependence on the
coupling appears much weaker. As emphasized above and
explained in more detail in Appendix D, the difference
arises from the use of very different regularization methods.
Correspondingly, we expect the critical coupling gc to be
nonuniversal, i.e. to depend on the regularization scheme.
Nevertheless, the trend of the nonperturbative fluctuations
to lower the pole mass for larger couplings should persist in
any regularization scheme.

FIG. 9. Left panel: behavior of the propagator ḠPð·Þ as a function of the distance for ḡ ¼ 0.1 (dashed red line), ḡ ¼ 0.4 (dot-dahed blue
line) and ḡ ¼ 0.7 (dotted green line). Right panel: propagator (dot-dashed red line) and the one-loop propagator G1-loop;WR in the
worldline regularization (dashed green line) together with their large distance fits (solid blue and violet line, for the full and one-loop
propagator, respectively).

FIG. 10. Pole mass m⋆ as a function of the coupling constant
for various estimates: within worldline regularization, the ana-
lytical one-loop result is shown as orange squares, exhibiting
satisfactory agreement with the same result extracted from a fit
procedure (green triangles). The nonperturbative worldline result
using the same fit procedure is shown as red circles. For
comparison, we show the one-loop pole mass extracted from
the propagator using cutoff regularization (purple diamonds).

7This is indeed the first term in an asymptotic expansion of the
one-loop propagator for large x, as proved in Appendix E.

8The fits are performed using the data for distances larger than
x ¼ 5 which appears to be sufficiently deep in the asymptotic
regime.
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Finally, we observe that the propagator in the deep UV
region remains unaffected by the fluctuations. For Δx̄ ≪ 1,
the behavior of both the one-loop propagatorG1-loop;WR and
the propagator ḠP coincide with that of the free propagator
Ḡ0. This can be deduced from the analytical expressions
(47) and (D9) by expanding for small Δx̄,

Ḡ1-loop;WRðΔxÞ ∼ ḠPðΔxÞ ∼
1

4π2Δx2
; Δx ≪ 1; ð51Þ

and is also confirmed by our numerical results. This
observation is also in line with the superrenormalizability
of the model: the only possible divergence is related to the
mass operator—UV-fluctuations are not strong enough to
also give rise to anomalous dimensions which could have
modified the short distance behavior given in formula (51).

V. CONCLUSIONS

We have extended nonperturbative worldline methods to
a computation of a full propagator in S2QED, a two-scalar
model with cubic interaction. For this, we have combined a
compact worldline representation for a large subclass of
Feynman diagrams with information carried by the prob-
ability distribution function of a relevant worldline observ-
able. This has enabled us to perform the renormalization of
the model nonperturbatively and to compute the propagator
of the scalar electron for large values of the coupling
beyond the perturbative validity region.
The fully resummed subclass of diagrams is the dom-

inant set in the formal small flavor Nf → 0 limit. For the
scalar electron propagator, it diagrammatically corresponds
to the electron line dressed by all possible photon radiative
corrections but without any additional electron loop. The
computation becomes accessible in the worldline formal-
ism as it corresponds to an expectation value of a world-
line observable which we have been able to compute
using the method of probability distribution functions.
Algorithmically, we have followed corresponding earlier
suggestions for effective action computations [18] and
generalizing these methods for propagators on the basis
of a newly developed v lines algorithm, cf. Appendix A.
These methods result in a semianalytical expression for the
propagator, i.e. an analytical form that depends on a few
parameters to be determined from worldline simulations.
Once the parameters are computed numerically, the analy-
sis of the propagator can be performed largely analytically.
This gives rise to a number of concrete results for the

model: as a general aspect, we observe that the propagator
is always positive for the range of accessible coupling
values, so that we observe no violation of reflection
positivity. More precisely, we have analyzed the depend-
ence of the propagator on the distance as a function of the
coupling. The large distance behavior is governed by the
physical (pole) mass corresponding to the inverse correla-
tion length characterizing the propagator.

For small couplings, our nonperturbative results coincide
with that of the one-loop approximation given by the
resummation of the lowest-order self-energy diagrams.
Even though asymptotically large distances are numerically
difficult to deal with, the accessible distances already
exhibit the expected asymptotic behavior and allow for a
determination of the pole mass for comparatively large
couplings ḡ ∼ 0.5.
From about ḡ ∼ 0.2 on, we observe a clear deviation from

the perturbative estimate indicating the onset of a non-
perturbative domain. The inclusion of more diagrams
corresponding to a full radiative dressing of the electron
with a photon cloud reduces the physical pole mass
compared to the leading-order perturbative estimate. Our
results are compatible with the existence of a critical
coupling value for which the physical mass approaches
zero as a consequence of the radiative dressing. This result
agrees with the fact that our semianalytical expression (48)
shows a constraint on the coupling parameter given by (49),
which can be interpreted as an estimate of the critical
coupling.
For these results, we have used a specific regularization

prescription which arises naturally in the worldline for-
malism in the form of a discretization of dimensionless
worldline trajectories in terms of polygons of N segments.
While this worldline regularization of keeping N finite is
simple and straightforward to use in analytical as well as
numerical worldline computations, the relation to conven-
tional regularizations of Feynman diagrams is more
involved. This is already obvious from the fact that the
dimensionless parameter N needs to be related to a
dimensionful parameter (such as a UV cutoff Λ or a
renormalization scale μ) which requires the dimensionality
to be balanced by the physical momentum or distance scale
(at least in the deep Euclidean region). As a consequence,
our worldline result for the propagator determined with our
regularization differs from those of standard regularizations
by computable logarithmic terms. Such regularization
dependences correspondingly occur for all nonuniversal
quantities such as the critical coupling value where the
mass vanishes. Still, the existence of a critical coupling is
also suggested by the behavior of the propagator in
standard regularization schemes.
Finally, we observe that the small-distances behavior of

the propagator is not affected by photonic corrections,
neither perturbatively nor in the nonperturbatve worldline
computation. We consider this as evidence that the super-
renormalizable structure of the theory as suggested by
power-counting is preserved also nonperturbatively. As a
result, the anomalous dimension of the scalar electron field
in S2QED remains zero both in perturbation theory and
beyond.

ACKNOWLEDGMENTS

The authors are grateful to Felix Karbstein, Horacio
Falomir, Anton Ilderton, and Luca Zambelli for helpful

SEBASTIÁN FRANCHINO-VIÑAS and HOLGER GIES PHYS. REV. D 100, 105020 (2019)

105020-14



discussions. S. A. F. V. acknowledges support from
the DAAD and the Ministerio de Educación de la
República Argentina under the ALE-ARG coope-
ration program. This work has been funded by the
Deutsche Forschungsgemeinschaft (DFG) under Grants
No. 416611371 and No. 392856280 within the Research
Unit FOR2783/1.

APPENDIX A: THE v-LINES ALGORITHM

In the following, we construct an algorithm that gen-
erates open worldlines that obey a Gaußian velocity
distribution. This v lines algorithm is a generalization of
the efficient v loops algorithm introduced in [48] which
generates corresponding closed worldlines. Open world-
lines can also efficiently be generated by a variant of the d
loop algorithm [18] that also works for open lines [59,60];
however, the following v lines algorithm can be employed
for an arbitrary number of points (for d lines or loops they
always come in powers of 2).
First of all, we intend to create an ensemble of lines that

run from y0 to yN in D dimensions according to the
discretized Gaussian velocity distribution

N̄
Z

yN

y0

Dye−
N
4
SW ½y�≔N̄

Z YN−1

j¼1

dDyje
−N

4

P
N
i¼1

ðyi−yi−1Þ2 ; ðA1Þ

where N̄ is the normalization needed to have a normalized-
to-one distribution. The idea is to perform a set of linear
variable transformations such that the probability distribu-
tion becomes a Gaußian one. As a first step we complete
the squares for y1:

SW¼2

�
y1−

y0þy2
2

�
2

þ1

2
ðy22þy20Þ−y0y2þ

XN
i¼3

ðyi−yi−1Þ2:

ðA2Þ

This naturally suggests to introduce a new variable z1
defined by

z1 ≔ y1 −
y0 þ y2

2
; ðA3Þ

encoding all y1 dependence of Y. The same procedure can
be applied to the dependence of the exponent on y2:

SW ¼ 2z21 þ
3

2

�
y2 −

y0 þ 2y3
3

�
2

þ 1

3
ðy23 þ y20Þ −

2

3
y0y3 þ

XN
i¼4

ðyi − yi−1Þ2: ðA4Þ

In this case, we obtain a purely quadratic dependence by introducing the new variable z2,

z2 ≔ y2 −
y0 þ 2y3

3
: ðA5Þ

The general pattern for completing the squares for the ith variable yi is an expression of the form

aiy2i − 2yiðyiþ1 þ biy0Þ ¼ ai

�
yi −

yiþ1 þ biy0
ai

�
2

−
ðyiþ1 þ biy0Þ2

ai
; ðA6Þ

with coefficients ai and bi. After defining the variable zi, we are left with the following yiþ1-dependent contributions:

�
2 −

1

ai

�
y2iþ1 − 2yiþ1

�
yiþ2 þ

bi
ai
y0

�
: ðA7Þ

Consequently, the coefficients ai and bi are sequences that satisfy a system of recursion relations,

� aiþ1 ¼ 2 − 1
ai
; a1 ¼ 2;

biþ1 ¼ bi
ai
; b1 ¼ 1.

ðA8Þ

The solution to these recursion relations can be straightforwardly obtained,

�
ai ¼

iþ 1

i
; bi ¼

1

i

	
; ðA9Þ

and hence, the general form of the variable zi reads
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zi ¼ yi −
y0

iþ 1
−

i
iþ 1

yiþ1: ðA10Þ

The quadratic form Y rewritten in terms of these new zi
variables is finally diagonalized:

SW ¼
XN−1

i¼1

iþ 1

i
z2i þ cy20 þ dy2N: ðA11Þ

The values of the numbers c and d, as well as the constant
Jacobian resulting from the change of variables yi → zi are
not relevant when computing expectation values, since they
cancel with the contributions coming from the correspond-
ing normalization. Therefore we are left with the task to
generate a Gaußian probability distribution for the variables
zi, what is straightforward, e.g., with the Box-Müller
method.
In summary, the generation of v lines with end points y0

and yN , and N − 1 intermediate points obeying a Gaußian
velocity distribution can be performed as follows:
(1) generate N − 1 numbers wi, i ¼ 1…; N − 1 via the

Box-Müller method in such a way that they are
distributed according to e−w

2
i ,

(2) normalize the wi, obtaining thus the auxiliary
variables zi:

zi ¼
ffiffiffiffi
4

N

r ffiffiffiffiffiffiffiffiffiffi
i

iþ 1

r
wi; ðA12Þ

(3) compute the points yi of the v line for i ¼ N −
1;…; 1 by means of the recursive formula

yi ¼ zi þ
1

iþ 1
y0 þ

i
iþ 1

yiþ1: ðA13Þ

For the special case of y0 ¼ yN , the algorithm generates
closed v loops attached at y0 (so-called common point
loops), which can be transformed into common center-of-
mass loops by a simple translation.

1. Test of the v lines algorithm

As a way to test the code developed for the v lines, we
consider a simple model in which analytical expressions
can be obtained. Consider then a probability distribution
P½y� for a discretized path y in aD-dimensional space given
by the “action” SW ½y� in Eq.9 (A1), i.e.

P½y� ¼ N̄ e−SW ½y�: ðA14Þ

Introducing an auxiliary variable κ as a multipli-
cative factor in front of the action, we can straightforwardly

compute expectation values of powers of the action, for
example

hSWi ¼ N̄
Z

dy1 � � � dyN−1SW ½y�e−SW ½y�

¼ N̄
Z

dy1 � � � dyN−1
de−κSW ½y�

dκ

����
κ¼1

¼ 1

2
ðN − 1ÞDþ 1

4
Δy2: ðA15Þ

Analogously, we can also compute the root mean square
(RMS) of the action

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðSWÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2Wi − hSWi2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1ÞD

2

r
: ðA16Þ

For the interested reader, the detailed computations can be
followed in [18].
Analytical results are compared to the corresponding

numerical ones for the mean value of the action SW together
with an error given by the RMS in Table10 I for several
values of N and distances Δy ¼ yF − yI; here, we have
chosen an ensemble of 104 lines and D ¼ 4. As can be
seen, the relative difference of these two values,

ΔSW
SW

≔
hSWi − hSWinum

hSWi
; ðA17Þ

remains smaller than the percent level even for a com-
paratively small number of points per line as N ¼ 32.
Moreover, we see that also their RMSs are similar, and
overstimate the difference between the numerical and the
analytical results in every case.11

As a next step we consider the probability distribution
function PðS0WÞ for the action SW ,

TABLE I. Mean value of the action SW , employing both the
analytical result (hSWi) and the numerical computation involving
the v lines algorithm (hSWinum), for different values of points per
line N and distances Δy, employing an ensemble of 104 lines and
D ¼ 4. Their relative difference ΔSW=SW is also shown.

N Δy hSWinum hSWi ΔSW=SWð%Þ
32 1 62.177.96 62.257.87 0.1
256 1 510.0823.5 510.2522.6 0.03
2048 1 4094.6686 4094.2564 −0.01
256 10 535.1423.5 535.2522.6 −0.03
2048 10 4117.5586 411964 0.03

9This would correspond to the probability that governs the
behaviour of a quantum particle in a D-dimensional space,
moving from yI to yF in a unit time T ¼ 1, and motivates the
name action for SW ½y�.

10The values computed numerically with the v lines algorithm
are denoted with the subscript “num.”

11We have intentionally kept nonrelevant decimals for the
uncertainties in Table I in a nonstandard fashion for reasons of
illustration.

SEBASTIÁN FRANCHINO-VIÑAS and HOLGER GIES PHYS. REV. D 100, 105020 (2019)

105020-16



PðS0WÞ ¼ N̄
Z

dy1 � � � dyN−1δðSW − S0WÞe−SW

¼ N̄ðS0W − SclassÞ−1þ
ðNþ1ÞD

2 e−ðS0W−SclassÞθðS0w − SclassÞ;
ðA18Þ

where the classical value for the action Sclass is given by

Sclass ¼ Δy2: ðA19Þ

The agreement between expression (A18) and the numeri-
cal data is remarkable even for an ensemble of just 104

lines. This can be seen from the histogram with 100 bins for
Δy ¼ 10, D ¼ 4 and N ¼ 25, depicted in Fig. 11 as violet
rectangles, and the corresponding analytic expression (solid
green line).

APPENDIX B: ONE-LOOP CONTRIBUTION TO
THE PROPAGATOR IN THE DISCRETIZED

FORMULATION

As stated in Sec. III, in order to obtain a closed
expression for the mean value of the potential, we consider
the Fourier transform of the interaction kernel

hV½y�iyNy0 ¼ 8T3−D=2

N2ΓðD−2
2
Þ
XN−1

0¼l<m

N
Z

yN

y0

Dye−
N
4

P
j
ðyj−yj−1Þ2

Z
dDp

ð4πÞD=2

eipðyl−ymÞ

p2
; ðB1Þ

which is evidently of Gaußian form and is valid for D > 2.
At this point, the method used in Appendix A to diago-
nalize the quadratic form in the v lines algorithm can be
mutatis mutandis employed. Indeed, let us inspect the
quadratic form

Y ¼
XN
j¼1

ðyj − yj−1Þ2 −
4i
N
pðyl − ymÞ: ðB2Þ

Up to the (l − 1)-th variable, the change of basis to the zj
used before does the trick to diagonalize the quadratic form
in the exponent, i.e.,

zj ¼ yj −
y0

jþ 1
−

j
jþ 1

yjþ1; 0 < j < l: ðB3Þ

The next term, however, receives an extra contribution
coming from the interaction kernel so that by completing
the square for yl we obtain the contribution

al

�
yl−

bly0þ2ip=Nþylþ1

al

�
2

−
ðbly0þ2ip=Nþylþ1Þ2

al
:

ðB4Þ
In turn, this implies that the structure of the remaining

terms in the quadratic expression (B2) for yj is of the form

ajy2j − 2yjðyjþ1 þ cjα0Þ; ðB5Þ

where we have restricted ourselves to l < j < m and
defined a shifted initial position α0 ≔ bly0 þ 2ip=N.
Consequently we are left with a pair of recursion relations
analogous to (A8) with cj taking the rôle of the bj, except
for the fact that the initial condition is cl ¼ 1. In other
words, the initial condition corresponds in this case to a
condition on the coefficients where the first potential
insertion occurs. The diagonalizing variables are thus

zj ¼ yj −
l

jþ 1
α0 −

j
jþ 1

yjþ1; 1 for l ≤ j < m: ðB6Þ

The diagonalization proceeds analogously for the variables
between the second insertion of the potential and the end of
the line. The result is

zj ¼ yj −
l

jþ 1
β0 −

j
jþ 1

yjþ1; for m ≤ j < N − 1;

ðB7Þ

with the shifted initial position β0 ≔ l
m α0 −

2ip
N .

Although the dependence of the quadratic form on the
integrating variables zj is the same as in the free case, we

FIG. 11. Probability distribution function for the action SW
considering Δy ¼ 10, D ¼ 4 and N ¼ 25. The histogram con-
tains 100 bins and corresponds to an ensemble of 104 lines,
whereas the solid green line is given by Eq. (A18).
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are left with an extra factor coming from the completion of the squares which depends on the insertion points (l, m) of the
potential and on the end points of the line. Notice also that the Jacobian for the change of variables yj → zj does not get
modified, since the zj variables are only translated with respect to the ones defined in the free case. Ergo, the normalized
expression is independent both of the Jacobian and of the determinant coming from the integration over the z variables:

hV½y�iyFyI ¼
8T3−D=2

N2ΓðD−2
2
Þ
XN−1

m¼1

Xm−1

l¼0

Z
dDp

ð4πÞD=2

1

p2
e−p

2ðm−lÞ
N ð1−ðm−lÞ

N Þ−iðm−lÞ
N pðyF−yIÞ: ðB8Þ

Notice that this expression depends only on the relative position (m − l) of the insertions, which could be understood as an
inherited symmetry of paths “translations” in the continuum worldline expression.
After performing the redefinition ðm − lÞ → n of the summation index, we find the desired expression (19), exhibited in

Sec. III:

hV½y�iyFyI ¼
8T3−D=2

N2ΓðD−2
2
Þ
XN−1

n¼1

ðN − nÞ
Z

dDp

ð4πÞD=2

1

p2
e−p

2 n
Nð1−n

NÞ−inNpðyF−yIÞ

¼ 2
T3−D=2

ðΔyÞD−2

XN−1

n¼1

ND−4ðN − nÞ
nD−2

�
1 −

ΓðD−2
2

; nΔy2
4ðN−nÞÞ

ΓðD−2
2
Þ

�
: ðB9Þ

APPENDIX C: THE LARGE-N ASYMPTOTICS OF THE DISCRETIZED hViyFyI
Recall that according to expression (20) the mean value hViyFyI of the potential in the discretized wordline regularization in

D ¼ 4 is given by

hV½y�iyFyI ¼ 2
T
Δy2

XN−1

n¼1

ðN − nÞ
n2

½1 − e−
nΔy2
4ðN−nÞ�: ðC1Þ

In order to extract the large N asymptotics out of this expression, we recast it in the following way:

hV½y�iyFyI ¼ 2
T
Δy2

XN−1

n¼1

ðN − nÞ
n2

�
1 − e−

nΔy2
4ðN−nÞ −

nΔy2

4ðN − nÞ þ
nΔy2

4ðN − nÞ
�
: ðC2Þ

The reason for this is that the sum of the last term can be explicitly computed as

2
T
Δy2

XN−1

n¼1

ðN − nÞ
n2

nΔy2

4ðN − nÞ ¼
1

2
TðlogN þ γÞ: ðC3Þ

On the other hand, it can be shown that the sum running over the first three terms can be replaced by an integral in the large-
N limit,

hVR½y�iyFyI ≔ 2
T
Δy2

Z
1

0

dn
ð1 − nÞ
n2

�
1 − e−

nΔy2
4ð1−nÞ −

nΔy2

4ð1 − nÞ
�

¼ 2
T
Δy2

Z
∞

0

dz
z2ð1þ zÞ

�
1 −

zΔy2

4
− e−

Δy2z
4

�

¼ T
2Δy2

�
4e

Δy2
4 Ei

�
−
Δy2

4

�
þ Δy2 − ðΔy2 þ 4Þ

�
γ þ log

�
Δy2

4

���
: ðC4Þ

This is what we call the renormalized mean value of the potential hVR½x�iyFyI . From this expression, we can derive both a large
and small Δy asymptotics, reading

hVR½y�iyFyI ¼
� TΔy2

32
ð4 logΔyþ 2γ − 3 − 4 log 2Þ þOðΔy3Þ; Δy ≪ 1

Tð− logΔy − γ
2
þ 1

2
þ log 2Þ þOðΔy−1Þ; Δy ≫ 1

: ðC5Þ
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APPENDIX D: SELF-ENERGY FOR
THE ϕ FIELD

In this appendix, we show how the worldline
regularization and a cutoff regularization are related.
First of all, recall that the one-loop propagator
G1-loopðxÞ may be expressed in terms of the self-energy
ΣðqÞ as

G1-loopðxÞ ¼
Z

d4q
ð2πÞ4

eixq

q2 þm2 − ΣðqÞ : ðD1Þ

Expanding to first order in the coupling g and comparing
with the expansion of the propagator (10), the self-energy
contribution ΣðqÞ in momentum space relates to a world-
line expectation value:

ΣðqÞ
ðq2 þm2Þ2 ¼

1

ð4πÞ2
Z

d4Δxe−iqΔx
Z

∞

0

dT
T2

e−m
2Te−

ðxF−xIÞ2
4T h−gV½x�ixFxI : ðD2Þ

Now, using the integral expression obtained in the second line of (C4) and ignoring momentarily the divergences that will be
regularized later, we get

ΣðqÞ
ðq2 þm2Þ2 ¼ −

g
8π2

Z
d4Δxe−iqΔx

Z
∞

0

dTe−m
2Δx2T− 1

4T

Z
∞

0

dz
z2ð1þ zÞ ð1 − e−

z
4TÞ: ðD3Þ

The Fourier integral in this expression can be readily performed and, after rescaling the integration variables, the divergence
for small z becomes evident. As a regularization, we introduce a UV cutoff Λ in units of mass,

ΣðqÞ
ðq2 þm2Þ2 ¼ −

g
8

1

ðq2 þm2Þ2
Z

∞

0

dT
T2

e−
1
4T

Z
∞

m2

Λ2

dz
z2½1þ zðq2=m2 þ 1Þ� ð1 − e−

z
4TÞ: ðD4Þ

The calculation of the remaining two integrals finally yields a closed expression for the self-energy,

ΣðqÞ ¼ g
2

�
1þm2

q2

�
logðq2=m2 þ 1Þ − g

2
log

Λ2

m2

≕ΣRSðqÞ −
g
2
log

Λ2

m2
: ðD5Þ

Here, we find the standard Feynman diagrammatic result
for the regularized self-energy ΣRSðqÞ, as it follows
straightforwardly from a one-loop computation, e.g., in
dimensional regularization after subtraction. The last term
parametrizes the divergence as obtained from our UV
cutoff regularization. Again, we observe that the divergence
can be absorbed by a renormalization of the mass in a way
similar to the result of (24). In order to cancel the
divergence to leading order in g in the combination
m2 − ΣðqÞ, cf. Eq. (D1), the dependence of the bare mass
on Λ is governed by the renormalization group function

σRS ¼
∂m2

∂ lnΛ ¼ −g: ðD6Þ

This agrees precisely with the result from the worldline
computation in Eq. (25), provided that the UV cutoff Λ and

the worldline cutoff N are related as anticipated below
Eq. (25).
In fact, since our worldline-regularized computation uses

a discretization of the paths into a concatenation of N line
segments, we are working with a resolution of OðN−1

2Þ in
configuration space or analogously, a resolution of order
OðN1

2Þ in momentum space. It is then natural to assign to N
a relation of proportionality with the cutoff; however, there
should be a dimensionful energy scale characterizing the
system and linking them. In a loop expansion this role is
played by the energy of the propagating particle, which in
units of mass is ð1þ q2=m2Þ. Therefore, in order to do a
meaningful comparison with a cutoff or dimensional
regularization, one needs to consider

Λ2

m2
¼

�
1þ q2

m2

�
N → ∞: ðD7Þ
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Of course a thorough computation keeping track of N from
the beginning of the computation gives the same result.
Technically, the resolution in coordinate space contains a
proper-time factor

ffiffiffiffi
T

p
, as observed in Sec. III. This is

linked to the energy scale of the worldline particle and
hence causes the momentum dependent factor to appear on
the RHS of (D7).
In summary, the renormalized expression ΣWR for the

self-energy in the wordline regularization is

ΣWRðqÞ ¼
g
2

m2
WR

q2
logðq2=m2

WR þ 1Þ; ðD8Þ

which is precisely the result for ΣðpÞ when starting from
(D2), keeping track of the explicit dependence on a
regularizing finite value of N and renormalizing the mass
a la (24). Correspondingly, the one-loop propagator in the
worldline regularization reads

G1-loop;WRðxÞ ¼
Z

d4q
ð2πÞ4

eixq

q2 þm2 − ΣWRðqÞ
: ðD9Þ

APPENDIX E: THE LARGE DISTANCE
ASYMPTOTICS OF THE ONE-LOOP

PROPAGATOR

Let us analyze the large-distance asymptotics of the one-
loop propagator. For this, we start from expression (D9) for
the one-loop propagator, using the worldline regularized
expression for the self-energy given by (D8). This can be
rewritten as

G1-loop;WRðxÞ ¼
1

ð2πÞ4
Z

dq0d3qeixq
q20 þ q2

Fðq2 þ q20Þ
; ðE1Þ

where we have chosen x0 ¼ 0 without loss of generality,
and introduced the function

Fðq2Þ ¼ q2ðq2 þm2
WRÞ −

g
2
m2

WR log
�

q2

m2
WR

þ 1

�
: ðE2Þ

The angular integration in the q variable is straightforward,
yielding

G1-loop;WRðxÞ ¼
1

ð2πÞ3
Z

∞

−∞
dq0

Z
∞

−∞
dq

eixq

ix
qðq20 þ q2Þ
Fðq2 þ q20Þ

:

ðE3Þ

Now consider the integrand of Eq. (E3) in the complex q
plane. There are singularities for q ¼ �iðq20 þm2

WRÞ
(branch cuts arising from the logarithm) but there are also
poles where Fðq2 þ q20Þ ¼ 0. Let us call q2⋆ ¼ q2⋆ðgÞ the
roots of the equation Fð−q2⋆Þ ¼ 0. It is clear that whenever
g ¼ 0 the roots of F coincide with the branch points.
However, once we turn on the interaction, two imaginary
and complex conjugate roots appear. It can be proven that
q2⋆ < m2

WR, i.e., these poles are isolated and not contained
in the cut.
At this point we are allowed to change the path over the

real domain of q into a path encircling the pole at q ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ q2⋆

p
and a path going around the cut in the upper

plane ImðqÞ > 0. After this step, it is clear that the main
contribution in the large x limit is given by the integral
around the pole. After a Laplace-type expansion of the
remaining q0 integral we obtain our final expression

G1-loop;WRðxÞ ∼
1

ð2πÞ3=2
q5=2⋆ ðq2⋆ −m2

WRÞ
ð4q4⋆ − 6m2

WRq
2⋆ þ 2m4

WR − gm2
WRÞ

e−q⋆x

x3=2
: ðE4Þ

It is worth noticing the exponential decay of this expression
and the power x−3=2 of the accompanying prefactor. Also,
this expansion is only valid for couplings g < 2m2

WR, since

at this point the roots of the function Fðq2Þ become zero.
This is also seen as a divergence of the prefactor in
formula (E4).
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