
Morse potential in relativistic contexts from generalized momentum operator, Pekeris
approximation revisited and mapping

Ignacio S. Gomeza,, Esdras S. Santosa, Olavo Ablaa

aInstituto de Fı́sica, Universidade Federal da Bahia, Rua Barao de Jeremoabo, 40170-115 Salvador-BA, Brazil

Abstract

In this work we explore a generalization of the Dirac and Klein-Gordon (KG) oscillators, provided with a deformed linear mo-
mentum inspired in nonextensive statistics, that gives place to the Morse potential in relativistic contexts by first principles. In the
(1+1)–dimensional case the relativistic oscillators are mapped into the quantum Morse potential. Using the Pekeris approximation,
in the (3+1)–dimensional case we study the thermodynamics of the S-waves states (l = 0) of the H2, LiH, HCl and CO molecules (in
the non-relativistic limit) and of a relativistic electron, where Schottky anomalies (due to the finiteness of the Morse spectrum) and
spin contributions to the heat capacity are reported. By revisiting a generalized Pekeris approximation, we provide a mapping from
(3+1)–dimensional Dirac and KG equations with a spherical potential to an associated one-dimensional Schrödinger-like equation,
and we obtain the family of potentials for which this mapping corresponds to a Schrödinger equation with non-minimal coupling.
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1. Introduction

For compatibilizing the principles of quantum mechanics
with the special relativity, the Klein-Gordon (KG) and the
Dirac equations constitute the two most relevant cases that
were found, both satisfying the quadratic relativistic relation
E2 = p2c2 + m2c4. The KG equation is obtained by means of
the quantization this relation, which leads to a relativistic wave
equation with second order derivatives in time and space that
is Lorentz-covariant, while Dirac focused on a relativistic first
order wave equation describing the behavior of electrons con-
sistently with the special relativity [1].

In Refs. [2–4] an harmonic potential has been incorporated
by adding to the linear momentum (non-minimum coupling)
a linear function, thus obtaining the so called Dirac and KG
oscillators, that in the non-relativistic limit gives the quantum
harmonic oscillator for spinless and strong spin-orbit coupling
fermionic particles. These types of linear interactions were em-
ployed in quarks mass spectra [5], on a Coulomb-like poten-
tial [6, 7], in 2D massless fermions [8] and propagators [9], in
curved space-time [10], in systems with extended and gener-
alized uncertainty principle [11, 12]. Also, the non-relativistic
quantum-mechanical formalism was studied by some authors
[13–15], that have considered the harmonic oscillator provided
with a generalized linear momentum operator which allows to
obtain the Morse potential [16] by first principles. Recently,
some of us have characterized a deformed lattice using the same
generalized linear momentum operator [17].
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The goal of this letter is twofold. First, we extend the strat-
egy used in [14] to the one-dimensional and three-dimensional
KG and Dirac oscillators in order to obtain the correspond-
ing relativistic equations for a Morse potential coupling [18–
33]. Then, from a generalized Pekeris approximation we ob-
tain a mapping between (3+1)-dimensional KG and Dirac equa-
tions and Schrödinger-like ones for arbitrary spherical poten-
tials. The work begins with the preliminaries, with the develop-
ment of a generalized linear momentum operator formulation
in the Hamiltonian, showing that both oscillators with this cou-
pling are equivalent the one-dimensional KG and Dirac parti-
cles provided with a Morse potential coupling and the standard
linear momentum. We illustrate the results with those obtained
in the literature for the H2 molecule [34–36]. Using the Pekeris
approximation [37] in the three-dimensional case for the Morse
potential non-minimal coupling, we obtain the eigenvalues and
the eigenfunctions, and then we recover the non-relativistic and
the non-deformed limits for both cases. Hence, in order to test
our approximations in the three-dimensional case, we study the
thermodynamics of the S-wave states (l = 0) for the H2, LiH,
HCL and CO molecules (in the non-relativistic limit) and of an
electron in the high energy relativistic regime. Here, Schottky
anomalies are reported in the heat capacity as a consequence of
the spectrum finiteness of the Morse potential mapping. Next,
we revisit the generalized Pekeris approximation [38] to pro-
vide a mapping for passing from (3+1)-dimensional KG and
Dirac equations with an arbitrary spherical non-minimal cou-
pling to an associated Schrödinger-like equation. Also, we
determine the family of potential couplings from which the
mapping is performed onto a Schrödinger equation with non-
minimal coupling. Finally, we outline our conclusions.
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2. Preliminaries

We present the preliminaries used throughout the work.

2.1. Morse potential and generalized momentum operator
Some authors [13–15, 17, 39–41] have investigated a gener-

alized translation operator that gives a nonadditive spatial dis-
placement of the form

T̂γ(ε)|x〉 = |x + ε + γxε〉 (1)

being ε an infinitesimal displacement and γ a parameter with
dimension of inverse length in such a way that γq ≡ (1 − q)/ξ
(from now on we place implicitly the dependence on q in γ)
with ξ the characteristic length of the system, where the usual
translation is recovered for q → 1 (γ → 0). These investiga-
tions were inspired by the development of Tsallis nonextensive
thermostatistics [42–44] along with some of its mathematical
implications (the q-calculus [45]). In Ref. [13–15] by means
of T̂γ(ε) the authors obtained the generalized momentum oper-
ator p̂γ|α〉 = −i~Dγ|α〉 in the basis x, being Dγ the deformed
derivative in x

Dγ = (1 + γx)
d
dx
. (2)

By means of the Hamiltonian H = p̂2
γ + V(x) and using (2) it

follows the (deformed) Schrödinger-like equation

i~
∂

∂t
ψ(x, t) = −

~2

2m
D2
γψ(x, t) + V(x)ψ(x, t) (3)

that corresponds to a particle provided with an effective mass
m(x) = m/(1 + γx)2. Eq. (3) has been employed in applications
of semiconductor heterostructures [46, 47].

An interesting application of the deformed Schrödinger
equation (3) was given in order to derive the Morse potential
by using first principles [14]. More precisely, by considering
the coordinate transformation

η =
ln(1 + γx)

γ
(4)

in (3) along with the harmonic potential V(x) = mω2x2/2 and
φ(η, t) = ψ(x(η), t) the following equation is obtained (using
E = i~ ∂

∂t )

Eφ(η, t) = −
~2

2m
d2

dη2 φ(η, t) +
mω2

2γ2 (eγη − 1)2φ(η, t), (5)

which is precisely the eigenvalues equation of the quantum
Morse oscillator (QMO) [16]. This is provided of an effective
potential Veff(η) = D(eγη − 1)2, for the wave function φ(η, t)
in the η space with the dissociation parameter D = mω2

2γ2 . The
eigenfunctions of the QMO are given by

Φn(z) = Anzse−
1
2 zL2s

n (z) (6)

with An the normalization constant, z = 2mωeγη/(γ2~), s =

mω/(γ2~)−n−1/2 and L2s
n (z) = (z−2sez/n!)dn(e−zzn+2s)/dzn the

generalized Laguerre polynomial [48]. The energy spectrum of
the QMO is

En = ~ω
(
n +

1
2

) [
1 −

γ2~
2mω

(
n +

1
2

)]
(7)

being n restricted to the range 0 ≤ 2n ≤ 2mω/(γ2~) − 1, which
implies a finite number of states and En ≥ ~ω(n+1/2)/2. From
(7) it can be seen that the harmonic oscillator energies are re-
covered for γ → 0.

2.2. Klein-Gordon and Dirac oscillators

The substitution of the four-vector energy-momentum pµ =

(E/c,p) = (i~∂/∂t,−i~∇) in the quadratic relativistic relation
for the case of an harmonic coupling prescription gives the
Klein-Gordon oscillator [3, 4]

2mEψ = (p + imωr) · (p − imωr)ψ, (8)

where the form (p + imωr) · (p− imωr) ensures the Hermiticity
[49]. From now on, for practical and notation reasons we will
denote E as E2−m2c4

2mc2 with E the energy of the particle. Here ω
is the frequency of the oscillator, m the mass and r the position,
with the limit ω → 0 the corresponding one to the free particle
case. Using algebraic methods the energies EN for the one-
dimensional case result [49]

EN = N~ω , N = 0, 1, 2, . . . (9)

with EN = (E2
N − m2c4)/2mc2. In the non-relativistic limit

E = mc2 + ε with ε � mc2 and then we have εN ≈ N~ω
(N = 0, 1, 2, . . .) that correspond to the energies of the harmonic
oscillator provided with a zero ground state energy.

The usual form of the Dirac equation for a particle of mass m
is given by[
i~β

∂

∂t
+ i~β−→α ·

−→
∇ −

mc
~

]
ψ = 0 (10)

where β and −→α provide the (3 + 1) representation of the Dirac
matrices

β =

(
I 0
0 −I

)
; αi =

(
0 σi

σi 0

)
;

and I is the 2 × 2 identity with σ1, σ2 and σ3 the 2 × 2 Pauli
matrices. Using the non-minimal harmonic coupling p− imβωr
in (10) we obtain the Dirac oscillator [2]

(E − mc2)ψ1 = c−→σ · (p + imωr)ψ2

(E + mc2)ψ2 = c−→σ · (p − imωr)ψ1 (11)

where ω is the frequency of the oscillator and ψT = (ψ1, ψ2) is
the spinorial wavefunction. From (11) it follows the differential
equation for ψ1

Eψ1 =

[
p2

2m
+

mω2r2

2
−

3
2
~ω −

2ω
~

L · S
]
ψ1 (12)
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where L = r × p is the angular momentum and S = (~/2)σ is
the spin operator. By means of the total spin J = L + S it can
be shown that the energies ENl j are [2]

E2
Nl j − m2c4 = ~ω[2(N + 1 − j) ∓ 1]mc2, (13)

if l = j ∓ 1
2

which presents a degeneracy (typically of central potentials) for
the pairs (N ± 1, j∓ 1), (N ± 2, j∓ 2), . . .. From (13) in the non-
relativistic limit E = mc2 + ε with ε � mc2 we have E = εNl j ≈

~ω(N + 1 − j ∓ 1
2 ) for N = 0, 1, 2, . . . and l = j ∓ 1

2 , so we
recover the energies of the harmonic oscillator energies plus a
strong spin-orbit term.

3. Morse potential for Klein-Gordon and Dirac equations
from generalized momentum couplings

We present the Klein-Gordon and Dirac equations with
Morse potential from the Klein-Gordon and Dirac oscillators
provided with a generalized momentum coupling. We consider
the one-dimensional and the three-dimensional cases.

3.1. One-dimensional case

Considering the Eq. (8) in one dimension with the deformed
derivative (2) we have

2mEψ(x) = (pγ + imωx)(pγ − imωx)ψ(x), (14)

that can be considered the Klein-Gordon version of the gener-
alized harmonic oscillator studied in [13, 14]. From (14) and
using the coordinate transformation (4) we have

Eφ(η) =
1

2m

{ [
−i~

d
dη

+ imω
(

eγη − 1
γ

)]
×[

−i~
d
dη
− imω

(
eγη − 1
γ

)] }
φ(η) (15)

which corresponds to the Klein-Gordon equation with the non-
minimal coupling pγ − imω(eγη − 1)/γ for relativistic wave-
function φ(η, t) = ψ(x(η), t) in the η-space. It is worthing to
note that Eqns. (14) and (15) extend the equivalence between
the harmonic oscillator with the generalized momentum pγ and
the Morse potential [14], in the context of the KG equation.
Moreover, by redefining η as η̃ = η − η0 and φ(η) as φ̃(̃η) =

φ(̃η + η0) the (15) can be rewritten as

Eφ̃(̃η) =

[
−
~2

2m
d2

dη̃2 +
mω̃2

2γ2 (eγη̃ − 1)2 −
~ω̃
2

]
φ̃(̃η) (16)

where η0 =
ln(ω̃/ω)

γ
and ω̃ = ω

(
1 +

γ2~
2mω

)
is a modified frequency

with η0 a displacement of the origin of the potential, both aris-
ing due to the relativistic coupling. By comparison between the
Eqns. (5)–(7) and the Eq. (16) it is obtained the energy spec-
trum of the KGMO (Klein-Gordon Morse oscillator)

EN = ~ω̃
(
N +

1
2

) [
1 −

γ2~
2mω̃

(
N +

1
2

)]
+
~ω̃
2

(17)

with N = 0, 1, 2, . . .. It is also instructive to obtain the null
deformation (γ → 0) and the non-relativistic (EN ≈ εN) limits
for the energy spectrum. In the former case, from Eq. (17) for
γ → 0 (ω̃ → ω) we recover the Eq. (9) that corresponds to
the energy levels of Klein-Gordon oscillator except by an extra
term ~ω/2, while in the later case we obtain the QMO energies
whose formula is identical to the Eq. (7) but with the modified
frequency ω̃. In both cases the limits are not strictly identical to
the standard ones due to the non-minimal coupling employed.

For the one-dimensional Dirac Morse oscillator (DMO), and
using the representation (σ3, iσ2) with the momentum pγ we
obtain

(E − mc2)ψ1 = c(pγ + imωx)ψ2

(E + mc2)ψ2 = c(pγ − imωx)ψ1,

from which results

Eψ1 =
1

2m
(pγ + imωx)(pγ − imωx)ψ1, (18)

that is identical to (14) for the spinor components (ψ1, ψ2). This
is expected since a one-dimensional particle cannot manifest
spin and angular momentum interactions, which is reflected by
the fact that pγ × x = 0.

In order to validate this generalization, we will reproduce
some of the S-wave states (l = 0) for the H2 molecule, with the
parameters extracted from the Ref. [35]. For accomplish this
we make an adjustment on Eq. (16) expressed by the constants
De = mω̃2

2γ2 , α = −γre. By replacing the values of De = 4.7446
eV, re = 0.7416Å, m = 0.50391 amu, α = 1.440558 and
E0 = ~2/mr2

e = 1.508343932 eV in Eq. (16) it is obtained
the eigenvalues equation

λφ =

{
−

~2

2m
d2

dη2 + De

[
e
−2α

(
η
η0
−1

)
− 2e

−α
(
η
η0
−1

)]2 }
φ (19)

with the corresponding energies λN = EN + ~ω̃
2 − De

λN = −
α2E0

2

(
2re
√

2mDe

α~
−

1
2
− N

)2

. (20)

From the Table 3.1 we see that the non-relativistic energies of
the S-wave states are a very good agreement with the literature
(see [34] and references therein), differing only from the ninth
decimal number.

This work [34]
N=0 4.476013136977448 4.476013136943936
N=1 3.962315359052883 3.962315358958284
N=2 3.479918845289036 3.479918845141218
N=3 3.028823595685905 3.028823595492864

Table 1: Non-relativistic energies (in eV) of the KGMO and DMO given by
the formula (20) for some S -wave states (l = 0 and N = 0, 1, 2, 3) of the H2
molecule along with those obtained in Ref. [34]. The agreement is up to the
eighth decimal number.
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3.2. Three-dimensional case: the generic radial differential
equation

The three-dimensional non-minimal couplings lead to the ra-
dial differential equation [6]

EΦ =

{
−

~2

2m
d2

dr2 +
mω2

2
U2 −

~ω
2

dU
dr

−[1 + f ( j, l)]
~ωU

r
+
~2l(l + 1)

2mr2

}
Φ (21)

where

f ( j, l) =

 0 for KG case;
2[ j( j + 1) − l(l + 1) − 3/4] for Dirac case

contains total spin and angular momentum effects. The pres-
ence of the term ∝ U/r and the centrifugal one ∝ 1/r2 makes
(21) to be not analytically solvable. The usual strategy for this
case is to employ the Pekeris approximation in both terms. Now
defining U as a deformed linear potential (recovering the har-
monic potential U(r) = r − re when γ → 0) given by

U(r) =
eγ(r−re) − 1

γ
, (22)

we can recast the generic radial equation as (see Appendix)

ẼΦ(r) =

(
−
~2

2m
d2

dr2 + Ueff

)
Φ(r), (23)

where Ueff(r) = mΩ2

2γ2 [eγ(r−reff)−1]2+U0 can be considered as a re-
sultant effective Morse potential. In Fig. 1 we illustrate the ac-
curacy of the generalized Pekeris approximation (45) compared
with the coulomb and the centrifugal terms, r/re and (r/re)2, for
the H2 molecule with α = −γre = 1.440558. It can be seen that
the Pekeris approximation fits well both terms within the in-
terval r/re ∈ (0.5, 1.5), which justifies its employment for the
vibrational states r ∼ re.

We obtain the energies of the KGMO and DMO in the
Pekeris approximation, given by

ẼN = ~Ω

(
N +

1
2

) [
1 −

γ2~
2mΩ

(
N +

1
2

)]
+ U0, (24)

which for γ → 0 allows to recover a relativistic harmonic
oscillator-like energy

ẼN −→ ~Ω

(
N +

1
2

)
+ U0 (25)

where the modified frequency is (see Appendix)

Ω2 −→ ω2A(α, δ, j, l)
[
1 − B (α, δ, j, l)/(2A(α, δ, j, l))

]2 (26)

with

U0 =
mΩ2

2γ2

[
C(α, l) − B(α, δ, j, l)2/(4A(α, δ, j, l)2)

]
. (27)

The functions A(α, δ, j, l), B(α, δ, j, l) and C(α, l) express the
generalized Pekeris approximation (45) in terms of the angu-
lar momentum l and the total spin j (by means of f ( j, l)) along

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

r

re

α=-γre=1.440558 (H2)

re

r

Pekeris

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

r

re

α=-γre=1.440558 (H2)

r
e

2

r
2

Pekeris

Figure 1: Accuracy of the generalized Pekeris approximation (45) for the
terms r/re and (r/re)2 in the case of the H2 molecule with Morse potential
non-minimal coupling (22).

with the parameterization α = −γre > 0 and δ = ~
mωr2

e
> 0.

The differences between the Dirac oscillator energies (13) and
its corresponding limit case of null deformation of the DMO
given by (25) manifest that the Pekeris approximation do not
allow to make a perfect limit but rather to obtain effective oscil-
lator. Considering some diatomic molecules it can be seen that
δ � 1 represents a typical situation, which is shown in Table
3.2 along with the Nmax of allowed S-wave states (l = 0). In this

Molecule δ Nmax De (eV) [34]
H2 0.0276729 18 4.7446
LiH 0.0106979 29 2.515287
HCl 0.00708095 24 4.61907
CO 0.00177962 83 11.2256

Table 2: Parameter δ =
√

E0/(2α2De) in function of the Hartree energy E0 =
~2

mr2
e

and the dissociation energy De, along with the maximum number of S-wave
states (l = 0) that are allowed in the generic equation (23).

regime we can interpret the effects of the spin and angular mo-
mentum contributions to the energy as follows. When δ � 1 all
the quadratic terms ∝ δ2 in A, B and C can neglected so Ω2

turns out ≈ ω2
(
1 + δ

(
3 + 2(1 + f ( j, l)) 1+α

α
+ l(l + 1)α

2+3α+2
α

))
,

thus carrying all the differences respect to the one-dimensional
case (along with the spin and angular momentum contributions)
in the term with δ. Also, the term U0 results ≈ mω2

2γ2 δ(l(l+1)−1).
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In Fig. 2 it is shown the allowed energies of the H2 and the LiH
molecules of the S-wave states.

0 5 10 15
0

1

2

3

4

5

N

ϵ
(e
V
)

H2 S-wave energies

j  1
2

j  - 1
2

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

N

ϵ
(e
V
)

LiH S-wave energies

j  1
2

j  - 1
2

Figure 2: Energies (28) in eV of the H2 and the LiH molecules of the allowed
S-wave states (l = 0). In both cases the projection spin j = +1/2 increases the
energy and the states hold non-degenerated within the ranges 0 ≤ N ≤ 18 (H2)
and 0 ≤ N ≤ 29 (LiH).

4. Thermodynamics of the S-wave states and Morse spec-
trum finiteness: Schottky effect

We explore the effects of the approximated radial equation
(23) in the statistical properties of the S-wave states (l = 0) that
manifest the vibrational features of the system. With the aim
to obtain the partition function of the canonical ensemble, we
consider that the system is in equilibrium with a thermal bath
of finite temperature T . We shall consider only the states with
positive energy to avoid the negative energies that are unlimited
by below, which also guarantees a stable ensemble [50]. For
reasons of calculus we recast the formula of the energy (24) as

ẼN, j=±1/2/~ω =
√

1 + δ(3 ± 2(1 + α)/α)
(
N + 1

2

)
×[

1 − α2δ
2
√

1+δ(3±2(1+α)/α)

(
N + 1

2

) ]
− 1

2α2 (28)

where ± stands for the spin projections +1/2 and −1/2 respec-
tively. Thus, we can perform two partitions functions

ZNR =
∑

j=±1/2

Nmax∑
N=0

eγ
NRẼN, j=±1/2/~ω (29)

and

ZR =
∑

j=±1/2

Nmax∑
N=0

eγ
R
√

1+2γẼN, j=±1/2/~ω (30)
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HCl
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S
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B
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0.0
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0.2
0.3
0.4
0.5
0.6
0.7
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LiH
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0.0
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0.4
0.6
0.8
1.0
1.2

1

γNR

C
/k
B

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.1

0.2

0.3

0.4

H2

LiH

HCl

CO

Figure 3: (a) Internal energy (top), (b) entropy (center) and (d) heat capacity
(bottom) of the S-wave states (l = 0) of the H2, LiH, HCl and CO molecules
in the non-relativistic regime in the presence of the effective radial Morse po-
tential (23) for the Dirac case. The parameters of the Table 3.2 along with
the approximated energy (28) (for δ2 vanishingly small) were employed. Two
peaks are observed for the heat capacity (the first one in the inset), in virtue of
the finiteness of the energy levels (Schottky effect).

corresponding to the non-relativistic and the relativistic cases.
Here the dimensionless parameters γNR = ~ω

kBT , γR = mc2

kBT mea-
sure the ratios between the vibrational energy and the rest mass
energy with respect to the thermal excitations, and γ = ~ω

mc2 mea-
sures the ratio between the vibrational energy and the rest mass
one. These coefficients allow to characterize all the regimes of
interest from the low to the high temperatures as well as the
intermediate ones. It is also assumed that γ is fixed for each
molecule of the Table 3.2 in terms of its characteristic param-
eters. To complete our analysis the (dimensionless) thermody-
namical potentials are needed

U = −
∂ ln ZNR,R

∂γNR,R (internal energy)

F = −
1

γNR,R ln ZNR,R (Helmholtz free energy)

S = (γNR,R)2 ∂F
∂γNR,R (entropy)

C = −(γNR,R)2 ∂U
∂γNR,R (heat capacity) (31)
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Figure 4: (a) Internal energy (top), (b) entropy (center) and (d) heat capacity
(bottom) of the S-wave states (l = 0) of electrons with ~ω ∼ 124eV (ultraviolet
spectrum) in the relativistic regime in the presence of the effective radial Morse
potential (23) for the Dirac case. The parameters γ = 0.000242661 = ~ω/mec2,
δ = Eh/~ω = 0.219444 and α = 1 along with the approximated energy (28)
were employed. As in the molecules case, a peak is observed for the heat
capacity due to the Schottky effect.

from which all the thermodynamics of the S-wave states can be
derived. For recovering the units of the thermodynamical po-
tentials it is enough to add the energy factor ~ω or mc2 in U
and F, and to add kB in S and C. The notations ZNR,R and γNR,R

stand for their respective magnitudes in the non-relativistic and
relativistic contexts. For the molecules above mentioned the
coefficient γ = ~ω/mc2 results vanishingly small, due to their
enormous value of the rest mass mc2 (of the order of the ∼ 1000
Mev) against the small photon energy ~ω characteristic of the
level spacements in typical quantum transitions. So, in order
to see relativistic effects and to maintain δ � 1 we shall con-
sider ~ω ∼ 124eV, that corresponds to the extreme ultravio-
let spectrum, along with mc2 = mec2 = 511keV (i.e. the rest
mass of the electron). In virtue that δ = Eh/~ω with Eh the
Hartree energy, we have γ = 0.000242661 and δ = 0.219444 so
δ2 = 0.0481555 can be neglected in relation with δ, and then the

approximation (28) holds valid. We set α = −γre = 1. Thus,
the number Nmax of allowed states for the states with projection
spin 1/2 and −1/2 result 6 and 3 respectively 1.

From Figs. 3 and 4 we see the Schottky effect is present in
both regimes, the non-relativistic and the relativistic one, due to
the finite number of allowed states. The peaks in the heat capac-
ity are physically interpreted due the fact that the more higher
is the temperature the less number of states that the system has
to be possibly occupied. So when the temperature sufficiently
increases that the factor kBT approaches to the difference of
the energy levels, a peak in the heat capacity emerges, and
from there small changes in the temperature produce changes
in the entropy in such a way the heat capacity continues de-
creasing up to be zero for T → ∞. For comparing the Dirac
and KG cases, the behavior of the Schottky peaks and their crit-
ical temperatures for the systems studied is shown in Table 3.
We can see that for the molecules the first peaks give place at

System C(Tc) (Dirac) C(Tc) (KG) Tc (Dirac) Tc (KG)
H2 0.44 1.8 × 10−11 −154.1 −265.2

1.31 1.29 9804.4 10606.6
LiH 0.44 7.474 × 10−11 −259.2 −271.7

1.32 1.31 4749.6 4876.6
HCl 0.44 1.34 × 10−11 −255.1 −270.

1.3 1.29 8750.6 8883
CO 0.44 8.99 × 10−11 −269.8 −270.5

1.04 1.04 7435.2 7454.71
e− 0.85 1.11 6.03 × 105 2.11 × 106

Table 3: Schottky peaks (in units of kB) of the systems studied and their associ-
ated critical temperatures in Celsius for the Dirac and KG cases. The differences
between the Dirac and KG cases are appreciable in the low temperature limit
(first row of each molecule) or in the relativistic regime (electron case).

low temperatures within the range of the −270 ≤ T ≤ −150
degrees Celsius, while the second peaks arise in the interval
4700 ≤ T ≤ 10700 that correspond to thermal energies kBT of
the order of the dissociation energy of the molecules ∼ eV. For
temperatures T ≥ 10700 the predictions of the Morse model
are no longer valid and then the heat capacity exhibits a typical
decreasing with the temperature. In the non-relativistic regime
of the molecules studied the spin effects are predominant at the
low temperature regime [−270,−150], with an appreciable dif-
ference in the magnitude order of the values of the peaks of
the Dirac and KG cases. On the other hand, for the electron
provided with a high energy ~ω ∼ 124 eV the spin contribu-
tions to the heat capacity are visible still at high temperatures
∼ 105 − 106.

5. General Pekeris approximation revisited: map-
ping from three-dimensional radial equation to one-
dimensional Schrödinger-like equation

In order to solve the generic radial equation (21) with an
arbitrary spherical potential U(r), we revisit the generalized

1As in the case of the Table 2, the maximum number of allowed is calculated
from α and δ by the formula Nmax = [(δα2)−1 √1 + δ(3 ± 2(1 + α)/α) − 1/2],
with ± and [x] standing for the spin projection and the integer part of x.
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Pekeris approximation of [38] by establishing the variable of
the Pekeris expansion y in function of the potential coupling
U(r), and by deducing the family of potentials from which a
mapping onto a Schrödinger equation with non-minimal cou-
pling emerges. More generally, if U(r) represents an spherical
radial potential, we can define the dimensionless variable

y = γU(r) + 1 = f −1(γ(r − re)) (32)

with γ a real parameter having units of distance−1, f −1(x) =

γU(x/γ + re) + 1 and f (x) = γU−1((x − 1)/γ) − γre. In partic-
ular, for the Morse potential coupling U(r) = (1/γ)(eγ(r−re) − 1)
we recover the previously used y = eγ(r−re) with f −1(x) = ex. In
order to provide the method, we assume that U has a differen-
tiable inverse U−1 and then f and f −1 result also differentiable.
Thus, from (32) it follows approximated expressions for re/r
and (re/r)2 up to terms of order 2 around y = 1 (r = re)

re/r = (1 + f (y)/(γre))−1 ≈
1

f (1)
γre

+ 1
+

2∑
i=1

ai(y − 1)i

(re/r)2 = (1 + f (y)/(γre))−2 ≈
1(

f (1)
γre

+ 1
)2 +

2∑
j=1

a j(y − 1) j

a1 = −
γre f ′(1)

(γre + f (1))2

a2 = −

(
γre

(
γre f ′′(1) + f (1) f ′′(1) − 2 f ′(1)2

))
2 (γre + f (1))3

b1 = −
2(y − 1)

(
γ2r2

e f ′(1)
)

(γre + f (1))3

b2 = −
γ2r2

e

(
γre f ′′(1) + f (1) f ′′(1) − 3 f ′(1)2

)
(γre + f (1))4 , (33)

which for the Morse potential case result more simplified since
f (1) = 0. For avoiding terms of the type ∝ U3 in the term U/r
in (46) we can still make a2 = 0. Then, using (33) the effective
potential (46) can be recasted in terms of y − 1 = γU for r ∼ re

as

Ueff(r) ≈
(

mω2

2γ2 − [1 + f ( j, l)]~ω
γre

a1 +
~2l(l+1)

2r2
e

b2

)
(y − 1)2

+
(
−[1 + f ( j, l)]~ω

γre
+

~2l(l+1)
2r2

e
b1

)
(y − 1) +

~2l(l+1)
2r2

e
− ~ω

2γ
d(y−1)

dr

= A1γ
2
[
U(r) + A2/(2γA1)

]2
+ A3 − A2

2/4A1 −
~ω
2

U(r)
dr (34)

with the pertinent identifications for the constants A1, A2, A3.
Hence, we arrive to one of the main results of the paper. For
r ∼ re we can map the differential radial equation (21) for an
arbitrary spherical potential U(r) such that U and its inverse
U−1 are differentiable in a neighbouring of r = re and of U(re)
respectively, into the one-dimensional Schrödinger-like equa-
tion

EΦ =

{
−

~2

2m
d2

dr2 + A1γ
2
[
U(r) + A2/(2γA1)

]2

+A3 − A2
2/4A1 −

~ω
2

U(r)
dr

}
Φ, (35)

that does not contain cross terms of the type U(r)/r nor
Coulomb or centrifugal terms as the radial equation (21). The
constants A1, A2, A3 are determined by

A1 =

(
mω2

2γ2 − [1 + f ( j, l)]
~ω
γre

a1 +
~2l(l + 1)

2r2
e

b2

)
A2 =

(
−[1 + f ( j, l)]

~ω
γre

+
~2l(l + 1)

2r2
e

b1

)
A3 =

~2l(l + 1)
2r2

e
, (36)

which together with (33) and f (x) = γU−1((x − 1)/γ) − γre

give a complete proof of the desired mapping. To emphasize its
construction, we refer to the formula (35) as a Pekeris mapping.
Besides the Morse potential previously studied, next we shall
examine other illustrative examples.

5.1. Example 1: modified 12-6-9 Lennard-Jonnes potential
A classical example for modelling the intermolecular inter-

actions between a pair of neutral atoms of molecules is the
Lennard-Jones potential, that we can consider in a modified 12-
6-9 form2

V(r) = ε
[ ( re

r

)6
−
√

2
( re

r

)3 ]2
= VLJ − 2ε

√
2
( re

r

)9
(37)

with ε the depth of the potential well and VLJ standing for the
Lennard-Jonnes potential. In this case, from the identifications
ε = mω2/2γ2 and γ = 1/re we deduce the non-minimal cou-
pling U(r) = (1/γ)[(γr)−6 −

√
2(γr)−3], and then by inverting

U(r) (where we choose the positive branch) it follows f (x)

f (x) =

(
2

√
2 +
√

2 + 4(x − 1)

)1/3

− 1, (38)

where x = 1 corresponds to U−1(0), i.e. the minimum of the po-
tential r = re/21/6. Having obtained f (x) the Pekeris mapping
follows straightforwardly by (33), (35) and (36).

5.2. Example 2: homographic-squared potential
Other type of invertible non-minimal coupling U(r) that we

can consider is an homographic-squared potential, expressed by

V(r) = ε

(
a(r/re) + b
c(r/re) + d

)2

(39)

which for c = 0, d = 1 and a = 0; b, c , 0 collapse in the har-
monic and the 1/r2 potentials respectively. Again, ε represents
the strength force of the potential and we can make the identi-
fications ε = mω2/2γ2 and γ = 1/re. Then, the non-minimal
coupling results U(r) = 1

γ
(a(γr) + b)/(c(γr) + d). By inverting

the homographic coupling U(r) we obtain

f (x) =
−b(x − 1) + d
−c(x − 1) + a

− 1. (40)

In this case, the choice f (1) = 0 simplifies the constants
a1, b1, b2 of (33) and also implies a = d.

212-6-9 refers to the sequence of the exponents in the terms (re/r)n.
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5.3. Example 3: Pekeris mapping into Schrödinger equation
with non-minimal coupling

We also can consider the special family of non-minimal cou-
plings U(r) satisfying the differential equation

dU
dr

= α2U2 + α1U + α0 (41)

with αi (i = 0, 1, 2) real coefficients. We notice that (41) and the
expressions (35) allow to rewrite the radial equation (21) with
the effective potential being a quadratic function of U, i.e.

EΦ =

[
−
~2

2m
d2

dr2 + K1(U(r) − K2)2 + K3

]
Φ, (42)

where K1,K2,K3 are constants to be determined (with the help
of (33)) and that depend on the quantum numbers n, j, l along
with the parameters m, γ, re, ω, α1, α2, α3. In this case we say
that the Pekeris mapping is allows to rewrite (42) as

2mEΦ = [(pr − iK1(U(r) − K2)) (pr − iK1(U(r) − K2))†

+K3]Φ. (43)

that is the free one-dimensional Schrödinger equation dotted
with the non-minimal coupling pr − iK1(U(r) − K2) in the r-
direction. By solving (41) we find out what are the potentials
that belong to the Pekeris mapping (42), which are given by

U(r) =

√
4α0α2 − α

2
1 ×

tan
[

1
2

(√
4α0α2 − α

2
1K +

√
4α0α2 − α

2
1r

)]
− α1

2α2
(44)

with K an arbitrary integration constant. Some representative
non-minimal couplings generated by the family (44) are shown
in Table 4.

coupling type α2 α1 α0 U(r)
tangent 1 0 1 tan (r + K)
Morse < 0 0 α2 Keα2r − 1

Coulomb , 0 0 0 (−α2r − K)−1

harmonic 0 0 > 0 α0r + K
quotient exponential , 0 α2 0 −eK+α2r/(eK+α2r − 1)

Table 4: Some characteristic couplings belonging to the family (44). Their
Pekeris mappings correspond to a Schrödinger equation with a non-minimal
coupling U(r), given by (43).

6. Conclusions

We have presented the one-dimensional and the three-
dimensional relativistic equations for the Morse potential that
result from a generalized momentum operator provided with a
deformed non-minimal coupling. By means of the Pekeris ap-
proximation in the 3D case we have converted the not exactly
solvable radial wave equation (21) into the Morse-like equation
(23), whose solutions and energies are obtained by a mapping
onto the one-dimensional Morse problem (5), corresponding to

the vibrational states (r ∼ re). We have recovered the non-
relativistic energies of the S-wave states of the H2 in a very
good agreement (Table 1) and we have shown that the Pekeris
approximation gives a good accuracy of the Coulomb and cen-
trifugal terms (Fig. 1) within the range re/2 ≤ r ≤ 3re/2.

For the three-dimensional case and employing the
Pekeris approximation (45), we have seen that the
corrections of the spin and momentum angular con-
tributions to the one-dimensional Morse energies
(7) are contained in the effective angular frequency
Ω2 = ω2

[
+δ

(
3 + 2(1 + f ( j, l)) 1+α

α
+ l(l + 1)α

2+3α+2
α

)]
, leading

to the energy formula (28), which is valid for the H2, LiH, HCL
and CO molecules when δ � 1 (Table 2). We have illustrated
the spin effect to the Dirac energies of the S-wave states with
the H2 and LiH molecules, where an splitting in the energies is
evidenced (Fig. 2). Regarding the thermodynamical properties,
for the molecules studied and for a high energy electron in
the non-relativistic and relativistic regimes respectively, we
have reported Schottky effects in the heat capacity due to the
finiteness of the allowed spectrum of the Morse potential (Figs.
3 and 4). In the Dirac and KG systems, the Schottky peaks
express the screening of the spin contributions to the heat
capacity (caused by thermal excitations), thus making them
appreciable at low temperatures in the non-relativistic regime
or at high temperatures in relativistic particles (Table 3).

By revisiting the generalized Pekeris approximation [38],
we have established the functional form f (x) = γU−1((x −
1)/γ) − γre of the expansion variable y = f −1(γ(r − re)), and
we have extended this perspective to the relativistic domain.
Thus, given U(r) we have a Pekeris mapping from the three-
dimensional KG and Dirac equations to a one-dimensional like
Schrödinger equation, given by Eqns. (33) (35) and (36). We
have illustrated the complexity of the Pekeris mapping for the
12-6-9 Lennard-Jones and the homographic-squared potentials.
Moreover, we have obtained the family of non-minimal cou-
plings whose Pekeris mapping becomes into a one-dimensional
Schrödinger equation provided with a minimal coupling (44),
from which the tangent, Morse, Coulomb, harmonic and the
quotient exponential result to be special cases (Table 4).
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7. Appendix

We have that up terms of second order [37, 38]

re/r = (1 + ln y/γre)−1 ≈ 1 − 1
γre

(y − 1)

+
2+γre
2(γre)2 (y − 1)2

(re/r)2 = (1 + ln y/γre)−2 ≈ 1 − 2
γre

(y − 1)

+
3+γre
(γre)2 (y − 1)2 (45)
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with y = eγ(r−re) and the expansions are around y = 1 (r = re).
The effective potential of the radial equation (21) is

Ueff(r) =
mω2

2
U2−

~ω
2

dU
dr
−[1+ f ( j, l)]

~ωU
r

+
~2l(l + 1)

2mr2 . (46)

In order to adimensionalize variables we set −γre = α > 0
and ~/(mωr2

e ) = δ > 0. Thus, replacing U = eγ(r−re )−1
γ

and the
Pekeris approximated expressions of re/r, (re/r)2 of (45) in (46)
we can rewrite the effective potential Ueff(r) as

Ueff(r) =
mΩ2

2γ2

[
eγ(r−reff) − 1

]2
+ U0

where

Ω2 = ω2A
(
1 − B

2A

)2

reff = re + 1
γ

ln
(
1 − B

2A

)
U0 = mΩ2

2γ2

(
C − B2

4A

)
and

A = 1 + δ (2(1 + f ( j, l)) + l(l + 1)(3 − α))

B = −δ
[
1 − 2 1+ f ( j,l)

α
− 2 l(l+1)

α

]
C = δ [(l + 1) − 1]
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