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Abstract. The aim of this paper is to apply properties of the double dual endofunctor 
on the category of bounded distributive lattices and some extensions thereof to obtain 
completeness of certain non-classical propositional logics in a unified way. In particular, 
we obtain completeness theorems for Moisil calculus, n-valued Lukasiewicz calculus and 
Nelson calculus. Furthermore we show some conservativeness results by these methods.
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The double dual functor has a long and distinguished history. It was used 
by E. Galois in the XIX century and by M. Stone in ours. One can even 
say that it appears, in some form at least, in the work of J-B. Fourier in 
the XVIII century. In Stone’s work it originates through a duality between 
Boolean algebras and zero dimensional compact spaces, the so-called Stone 
spaces. The dual of a Boolean algebra is the set of Boolean morphisms 
between the algebra and the two-element Boolean algebra 2 with the Stone 
topology. Similarly, the dual of a Stone space is the Boolean algebra of the 
continuous maps between the space and the two-element discrete space 2. 
Since 2 belongs to both categories, it is usually referred to as a ‘schizophrenic’ 
object.

A fundamental feature of this duality is its functorial character: the du­
ality is extended to maps. Thus, the dual of a Boolean map between Boolean 
algebras is a continuous map between the corresponding topological spaces 
(although in the opposite direction). Similarly, the dual of a topological 
map between topological spaces is a Boolean map between the correspond­
ing Boolean algebras (again in the opposite direction). Stone’s paper was 
the starting point of related work on a large number of dualities: the Zariski 
duality between commutative rings and ringed topological spaces, the Pon- 
tryagin duality between abelian groups and compact abelian groups, the 
Lefschetz duality between vector spaces, the Grothendieck/Galois duality 
between ¿-algebras and profinite G-sets, etc. Several dualities related to 
Stone duality have appeared in logic. Probably the best-known among these 
is the Priestley duality between distributive lattices and compact totally
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order disconnected topological spaces. The reader may find some of these 
developments in [8].

In most of these dualities, the double dual of a structure is isomorphic 
to the structure itself. In fact, the word ‘duality’ is mainly used in this 
restricted sense. However, this need not happen in general: certainly the 
double dual of a vector space is not isomorphic to the original one, unless 
the original vector space has further properties, e.g., is finite-dimensional. 
We shall use the word ‘duality’ in this extended sense.

In this paper we follow [10] and exploit precisely the fact that the double 
dual of a structure may have more structure and may be better behaved 
than the original one. Thus, it may be profitably used to obtain information 
about the structure that we started with. We shall deal (as in [10]) with 
one basic duality, that between bounded distributive lattices and posets, and 
several of its enrichments. A basic fact is that the double dual of a bounded 
distributive lattice is a complete Heyting algebra, which is also a co-Heyting 
algebra (i.e. whose order-theoretic dual is a Heyting algebra). Such algebras 
are called bi-Heyting. Furthermore there is a natural map, the evaluation 
map, between the original lattice and its double dual having two remarkable 
properties. First it is one-to-one and secondly it is a lattice map which is 
conditionally bi-Heyting. In particular, if the original lattice is a Heyting 
(resp. co-Heyting, resp. bi-Heyting) algebra, the evaluation map preserves 
this further structure.

More generally, a basic property of the double dual construction is that if 
we enrich the original lattice with further structure, the double dual inherits 
this further structure in a large number of cases and the evaluation map 
preserves that added structure. By using the well-known connection between 
propositional logics and algebras due to Lindenbaum and Tarski, this results 
in completeness theorems. But this is not all: as its ñame indicates, the 
double dual functor is a functor and the double dual of a map preserves 
the richer structure that the double dual has. Furthermore, the evaluation 
map is a natural transformation. This allows us to obtain completeness 
theorems for propositional modal logics (as in [10]) and for propositional 
non-classical logics such as Nelson’s constructive logic with strong negation, 
Lukasiewicz n-valued logic, etc. This way of obtaining these completeness 
theorems seems to be new.

In [10] these methods were ‘lifted’ to define double duals for coherent cat- 
egories (which play the role of bounded distributive lattices among ‘lógica? 
categories) and some of their enrichments, thus obtaining completeness theo­
rems for first order intuitionistic and modal logics. We have not investigated 
the corresponding extensions in our case.
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This paper is organized as follows: in the first part we describe the 
basic duality between the category of bounded distributive lattices and the 
category of posets. One of the main tools is the known theorem that says 
that the evaluation map from a bounded distributive lattice is conditionally 
bi-Heyting (see e.g. [10]). Given the central role it plays in our paper we give 
a proof of this theorem. The second part is devoted to enrichments of (the 
category of) distributive lattices: De Morgan algebras, symmetric Heyting 
algebras, n-valued Lukasiewicz algebras and Nelson algebras. In each case 
we show that the double dual is an algebra of the same nature and that the 
evaluation map is a morphism of the corresponding category. Furthermore, 
the double dual of a map preserves the extra structure. Some of these 
results seem new. The last part deais with the applications to completeness 
theorems for different logics and conservation theorems between some of 
these. Roughly speaking we go from logic to algebra via the Lindenbaum- 
Tarski construction and then use the previous results. When interpreted in 
logical terms, these results yield the corresponding completeness theorems 
for the logics mentioned above.

Acknowledgements. The first and the last author would like to thank the 
Universidad de La Plata for granting them a leave of absence, the ANPCYT 
and the FOMEC of Argentine and the NSERC of Cañada (through a grant 
to Reyes) for their financial support, and the Pontificia Universidad Católica 
de Chile and the Université de Montréal for their hospitality. The second 
author would like to acknowledge the financial support of the Fundación 
Andes de Chile, the FOMEC and the Universidad de La Plata, where most 
of this research was carried out during a sabbatical year (1996/1997) from 
the Université de Montréal. This year he spent as a guest of the Pontificia 
Universidad Católica de Chile. During all this time, he held a grant from 
NSERC (Cañada). The support of all of these institutions is greatfully 
acknowledged. Finally, we would like to thank Marie La Palme Reyes for 
her help in editing this paper and the referee for a careful reading of this 
paper that resulted in several improvements.

1. The basic duality

This section deais with the duality between bounded distributive lattices 
and posets, following [10]. To help the reader along, we have listed mostly 
without proofs all the relevant results of that paper.

Let T>1 be the category of bounded (i.e. with 0 and 1) distributive lat­
tices with lattice homomorphisms as morphisms. On the other hand, let 
Poseí be the category of ordered sets with order preserving functions as 
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morphisms. We let ‘2’ denote both the two-element distributive lattice and 
the two element total order. (The ‘schizophrenic’ object mentioned in the 
Introduction.)

From now on, we shall use VI for both lattices and lattice morphisms. 
Similarly for other categories.

A morphism f in VI is conservative if it reflects the order: if f(a) < f(b), 
then a < b. Notice that this boils down to f being a monomorphism, but 
order-reflection is a more basic property in our study.

We let ( )*:Vlop—>Poset to be the functor defined as follows: if D E 
VI, we let D* = Vl(D,2), i.e., the set of lattice morphisms D —±2 ordered 
with the pointwise ordering inherited from 2. Furthermore, if f:Di— 
we let f*:Dz—be the map /*() = () o f, i.e., post-composing with f. 
Clearly, f* is order-preserving.

In a similar vein, we define ()+: Poseí0?—>Vl by the following prescrip- 
tion: if P € Poseí, let P+ — Poset(P, 2), namely the set of order-preserving 
maps P —> 2 with the point-wise lattice operations V and A inherited from 2, 
0 is the constant map 0 and 1 the constant map 1. If /:Pi—we let 
f+:Pz —>P+ be the map of post-composing with f: /+( ) = ( ) o f. It is 
clear that P+ thus defined is a bounded distributive lattice and that f+ is 
a lattice morphism.

Proposition 1. (1) Let f,g:Di—>Z>2 be lattice morphisms such that f < 
g. Then f* <g*.

(2) Let f,g:Pi—>P¿ be order-preserving maps such that f < g. Then 
f+<3+-

Proof. We shall prove the first only, the other being similar. Let h G 
and x G Di. Then f(x) < g(x). Since h is order-preserving, h(f(xf) < 
h(g{xf), i.e., hof < hog, since x is arbitrary. Thus, f*(h) < g*(h) and this 
shows (since h is arbitrary) that f* < g*. ■

COROLLARY 2. The composite ( )*+ is a functor from the category VI into 
itself.

The functor ()*+ is called the double dual. Notice that ()+* is also a functor. 
We shall not consider it in this paper.

Remark 3. Set-theoretically, the above definitions and notions may be re- 
formulated as follows: let D E VI. A morphism h:D -» 2 may be iden- 
tified with a prime filter p of D\ ¥x E D(x E p <=> h(x) = 1). Thus, 
D* becomes identified with the poset of all prime filters of D, with the 
set-theoretic inclusión as order. Furthermore, if f:Di—is a lattice 
morphism, f*:D<¿—is identified with the inverse image map /_1.
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The elements f G F+, on the other hand, may be identified either with 
the upward closed subsets (or up-sets) X of P by the prescription: Vp G 
P{p EX f(p) — 1) or with the downward closed subsets (or down-sets) 
X of P by the prescription: Vp 6 P(p G X O f(p) = 0). We shall follow 
the first alternative.Thus, P+ becomes identified with the lattice of up-sets 
of P ordered by set-inclusion. Similarly, if f: P±—is an order preserving 
map, /*:P2*—^í* becomes identified with the inverse image map f-1.

For any poset P, P+ is a complete lattice. In fact, D*+ is a complete 
Heyting algebra (see below).

The following will be useful in the sequel.
Proposition 4. Let fiB—tA be a lattice morphism, B a Boolean algebra. 
If f is a monomorphism, then f* is an epimorphism and f*+ a monomor- 
phism.
Proof. Let m G B* and let m,A be a maximal filter that contains /(m). 
Then, m C f~1(mA), which implies m = f~x(mA} because m is maximal. 
This means that f* is an epimorphism.

Let U,V G B*+ such that f*+(U) = f*+(V). For reí/ there exists some 
q G A* such that r = /-1(q). But /-1(q) G U if and only if C V. So,
U = V. ■

Notice that we have a canonical evaluation map

eD-.D—>D*+

given by:
cdGW) = <Kd)

or, in set-theoretical formulation, G epfd) iff d G <f.
Proposition 5. The evaluation map en'.D—>P*+ is a conservative lattice 
morphism.
The following property of the evaluation map will be fundamental for us: 
Proposition 6. The family e = (gd) dcdi is a natural transformation 

e:um—>(y+

in the sense that the diaqram

Di--------

f r+

D2--------eD2
is commutative.
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Proposition 7. If f:Di—>P2 € VI, then f*+:D*+ D^+ has both a left
and a right adjoint:

o r+ -f <
given explicitly (for p € and Y E ) as follows:

<S> VqED*2(f*q>p^q£Y)
peOY 3qeD$(f*q<p&qeY)

Let D be a bounded distributive lattice. If x, y £ D the implication of x and 
y, x —> y is the element (if it exists) determined uniquely by the property;

'iz^.D(z<x—^y^x/\z<y)

The negation of x is defined by -ix = x 0 (provided that x —> 0 exists).
Recall that a Heyting algebra is a bounded distributive lattice in which 

all implications exist.
The following notation will be useful in the next proof and elsewhere. If 

P is a poset and Z C P

(Z] = [y € P : Bz G Z y < z}
[Z) = {yGP:BzGZy>z}

Proposition 8. Por any poset P, the lattice P~ is a complete Heyting al­
gebra.

Proof. In fact, for X, Y 6 _P+, we have:

x G X ^Y &Vy > x (y G X y GY)

Equivalently,
x->y = (Tnyc]c

where ( )c denotes set-theoretical complementation.

Corollary 9. The double dual D*+ of a bounded distributive lattice D is 
a Heyting algebra

A morphism h\ A B 6 VI is conditionally Heyting if it preserves all 
existing implications: if x, y E A, and x y exists, then h(x) —> h(y) exists 
in B and is equal to h(x —> y).

Since the following result is fundamental for our paper, we will sketch a 
proof:
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Theorem 10. Let D be a bounded distributive lattice. Then the evaluation 
map

eD-.D^D*+

is conditionally Heyting.

Proof. We musí show that:

e(di -> ¿2) = e(di) e(d2)

provided that d\ —> d2 exists.
Assume that di —> d2 exists.
C: Since e G DI, e(di —> d2) A e(di) = e((di d2) A di) C e(d2). Thus, 

by definition e(di —> d2) C e(di) —> e(d2).
D: Suppose that p $ e(di —> d2), i.e., dT —> d2 p. We claim that there 

exists a (prime filter) q D p such that ( q G e(di) & q £ e(d2)). Thus, 
di G q & d2 £ q.

Indeed, let r = [d : d > di A x, x G p} = [p, di]. Then r is a filter and 
d2 r (otherwise d2 > di A x. Therefore x < di —> d2 and di -> d2 G p, 
a contradiction). By Zorn’s lemma, there exists a filter q which is maximal 
among those with the following property: q D r & d2 q. This q is a prime 
filter with the required properties. ■

If A and B are Heyting algebras, a Heyting morphism h:A —> B is a 
lattice morphism that preserves the Heyting implication. Notice that in this 
case, ‘Heyting’ and ‘conditionally Heyting’ coincide.

Proposition 11. For a map </>:Q —> P of Poset a sufficient condition for
P+ —> Q+ to be a Heyting morphism is for </> to be upward surjective in 

the sense that for any q G Q and p G P with p > </>(q) there is r G Q with 
r > q and <f(r) = p.

The following gives a sufficient condition for upward surjectivity:

Proposition 12. For a Heyting morphism h'.A—t B, h*'.B* —>• A* is up­
ward surjective.

COROLLARY 13. If h: A —> B is a Heyting morphism, then h*+: A*+ -> B*+ 
is Heyting.

Let D be a bounded distributive lattice. If x,y G D the difference x \ y 
is the element (if it exists) determined uniquely by the condition

x\y < z & x < y V z
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A co-Heyting algebra is a bounded distributive lattice such that any two 
elements have a difference. It follows that every element has a supplement 
~x = 1 \ x. Notice that, equivalently, a co-Heyting algebra is a bounded 
distributive lattice whose order-theoretic dual is a Heyting algebra (since the 
dual of the implication x -> y is the difference y \ x and the dual of -> is ~.)

A bi-Heyting algebra is a bounded ditributive lattice that is both a Heyt­
ing and a co-Heyting algebra. Equivalently, a co-Heyting algebra is a Heyting 
algebra whose order-theoretic dual is again a Heyting algebra.

Theorem 14. If P is a poseí, P+ is a complete bi-Heyting algebra.
(1) The implication is given by

x E X Y ^-\/y > x [y E X y eY')

Equivalently,
x y = {x n yc]c

(2) The difference is given by

x€Y\X&By<x (y eY&y$X)

Equivalently,
y\x — [rny)

A conditionally co-Heyting (respectively bi-Heyting) map is a lattice map 
which preserves all existing differences (respectively all existing implications 
and differences) of the domain lattices.

The following is a consequence of theorem 10 and duality:

Theorem 15. eo-D D*+ is conditionally bi-Heyting.

If A and B are co-Heyting (respectively bi-Heyting) algebras, a co- 
Heyting morphism (respectively a bi-Heyting morphism) h: A—>B is a lat­
tice morphism which preserves all differences (respectively all differences and 
all implications) of the domain.

Notice that if A and B are co-Heyting, a conditionally co-Heyting mor­
phism between them is the same as a co-Heyting morphism. Similarly for 
the Heyting case.

2. Enrichments of the basic duality

In this section we study some enrichments of the basic duality: symmetric 
Heyting algebras, n-valued Lukasiewicz algebras and Nelson algebras.



Completeness Theorems vía the Double Dual Functor 69

2.1. Symmetric Heyting algebras

A De Morgan algebra is a bounded distributive lattice together with a unary 
operator ()' satisfyingthe following identities:
(MI) (x V y)f ~ x' Ny'
(M2) x" = x

Thus, a De Morgan algebra is an algebra of the form (A, V, A,', 0,1). In the 
following we deal with symmetric Heyting algebras (see [11]), also called De 
Morgan-Heyting algebras or briefly DH-algebras defined as follows:

An algebra (A, V, A, —, 0,1) is a DH-algebra if (A, V, A/, 0,1) is a De 
Morgan algebra and {A, V, A, —>, 0,1) is a Heyting algebra.

A DH-morphisrrt is a lattice morphism which preserves the De Morgan 
and Heyting operators.

We let DH be the category of DH-algebras and DH-morphisms.

Remark 16. The difference \ can be defined in every DH-algebra A. In 
fact, for all x, y G A y \ x = (x1 —> y'Y (see [11]). Thus, every DH-algebra 
is a bi-Heyting algebra.

For each DH-algebra A, B(A) will denote the center of A, i.e., the subalgebra 
of all complemented or boolean elements of A. (Notice that this makes sense 
for any distributive lattice.)

For x,y E A, x => y (respectively y \\ x) will denote, in case it exists, 
the greatest boolean element z such that z A x < y (respectively the least 
boolean element z such that zVx > y). In particular, 1 => x is the necessity 
operator □(#) and x \\ 0 is the possibility operator O(x) (see [12], [6]).

For a fixed x of A, define the operators IX.B(A)—>A by Ix(z) = z f\x 
and Sx(z) = z\! x. We let Rx: A—>B(A) to be the right adjoint of Ix (if it 
exists) and, similarly, Lx: A—>B(A) to be the left adjoint of Sx (if it exists). 
Thus

Rx(y) = x^y
Ar(y) = y\\z

In particular, when = Sq is the inclusión i:B(A) «-> A and the above 
adjoints exist, R\ = □, Lo = O. So we have O H i H □.

Remark 17. We use the Symbol O (respectively □) to denote both the 
function from A to B(A) and the function from A to A.

Given a De Morgan algebra A the dual structure (A*, C,g¿) of A is defined 
by the set A* ordered by inclusión and the map gA: A* —> A* given by the 
prescription:

9a(p) = A-{x' :x Ep}
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The map gA is called the transformation of Birula-Rasiowa (see [11]). It is 
an antiisomorphism of period 2.

On the other hand, let (P. <) be a poset that is endowed with an anti­
isomorphism g of period 2. Then, {P+, U, A, n, 0,1) is a De Morgan algebra, 
where n(X) = g(X)c, for X G P+.

Given a De Morgan algebra A, we cali (A*+, U, A, n, 0,1) the double dual 
structure of A. By the above, it is also a De Morgan algebra.

PROPOSITION 18. If A is a De Morgan algebra, then the map e¿: A —> A*+ 
is a De Morgan morphism, i.e., for all x e A, eA(xl) = n{eA{xf).

Proof. Immediate from the condition: y £ if and only if y1 G p,
which follows from the definition of gA- ■

Proposition 19. Let f:M —> N be a De Morgan morphism. Then f*+ is 
a De Morgan morphism, i.e., /*+(n(X)) = n(/*+(X)).

Proof. It is easy to see that, for every q G N*, <jm(/-1(<7)) = /-1(9n(q))- 
Also, we have: /*+(n(X)) = {q : gM(f~1(q)) and n(/*+(X)) = {q :

t x}. Then, /’+(n(^)) = n(/’+(^)). ■

Theorem 20. The double dual ()*+ is an endofunctor on the category DH. 
Furthermore, e is a natural transformation such that for every object A of 
DH, ex is conservative.

Proof. From [10] and the last two propositions. ■

Lemma 21. Let (A, V,A,—>/,0,1) be a DH-algebra such that for every 
x,y (= A there exist x => y and y \\ x. Then,
(1) x ==> y = R(x—>y),
(2)
(3)

y\\z = 
o(xf) =

Proof. Both terms in (1) are defined to be the largest b G B(A) such that 
6Ai <y. We deduce (3) from the definitions and (2) from (1) and (3). ■

Remark 22. (1) There are some sufñcient conditions for the existence of 
possibility and necessity operators. In [12], Reyes and Zolfaghari define the 
operators On on a bi-Heyting algebra A as the composition: (~->)n. In 
particular, in A*+ we have On = [([(...])]) with n times [( and n times ]).

Dually, the operators □” are defined by: □” = (-i~)n.
If A is cu-complete (that is, has supremum and infimum of countable 

subsets) then possibility and necessity operators are defined by the equalities 
<>X = Vn>l and aa: = An>l ün;c-
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(2) Notice that if A is a DH-algebra in which: ~>x V -»->£ = 1 holds 
(Stone condition) then the Monteiro possibility operator A (a:) = -r^x (see 
[11]) coincides with Reyes-Zolfaghari operator O because for each x, ->->x is 
the least boolean element greater than x.

Let (P, <) be a poset. The components of P are the equivalence classes 
given by the equivalence relation generated by the relation of comparability. 
More precisely, let M be the relation of comparability, i.e., p ixl q iff p < q 
or p > q. We define p lxin q iff there are pi, p2, ■ ■ •, P2n+i such that 
p = pj m p2 M ps M • • • M p2n+i = q- If for every pair p, q of elements in 
a component of P p Mn q holds, then the component is n-linked. If every 
component of P is n-linked then P is n-linked.

Recall that X C P is a boolean element iff X is an up-set and a down-set. 
In particular, each component is a boolean element.

Let IIo(P) be the quotient of P by the equivalence relation generated by 
the relation of comparability and II: P —> IIo(P) the canonical map.

Proposition 23. For a lattice A, let i be the inclusión i:B(A) A and 
let II be the canonical map from A* onto lio (A*). The following statements 
are equivalent:
(1) Ker¿* = KerU;
(2) the map Iq: (B(A))*+ —> B(A*+) defined by the prescription Iq(X) = 

[r £ A* : r n B(A) 6 X} is an isomorphism.

Proof. Let ¿:B(A) M- A and let j:B(A*+) c-> A*+ be the canonical in- 
clusions. Then the map i*+ factors through j: i*+ = j o IQ. From the 
proposition 4 we have that i*+ is a monomorphism and then the same is 
true for Iq.

Assume (2). Let p,q € A* such that ¿*(p) = i*(q), that is, p (~l B(A) = 
qOB(A). Since lo is an epimorphism, there is some X G (B(A))*+ such that 
Iq(X) = n(p). So, p G Iq(X), which implies q A B(A) E X, i.e. q E Io(X). 
Therefore, ü(p) = n(g).

If II(p) = n(^), then there is some n such that p Wnq. But p C q implies 
that p AB(A) = q A B(A) because prime filters in B(A) are maximal filters. 
Reasoning by induction on n we conclude that i*(p) = i*(q)-

Conversely, it sufñces to show that (1) implies that lo is an epimorphism. 
Let n(p) be a component of A* and set X = {r AB(A)|r E ü(p)}. Therefore, 
Io(X) — {q : A B(A) = p A B(A)}. From (1) we deduce Io(X) = ü(p). 
The result follows taking into account that every boolean element of A*+ is 
a unión of components. ■

Proposition 24. If A is a Heyting algebra that satisfies the Stone condi­
tion, then condition (1) above holds.
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Proof. Let p,q G A* and suppose q maximal. Then, p C q if and only 
if p A B{A} = g A B(A). Indeed, if x G p then G p A B(A). Since q 
is maximal, x € q or -¡x 6 q. Then, x € q. The converse follows from the 
maximality of prime filters in B{A}.

It is a known fact that if A satisfies the Stone condition then every prime 
filter of A is contained in a unique maximal. From the argument in the 
preceeding paragraph we can see that if p A B(A) = q A B(A) then p and q 
are contained in the same maximal filter. Henee, n(p) = n(g). ■

Lemma 25. If pMn q, then p G On[g).

Proof. By induction on n. For n = 1 we have two possibilities.
(1) There exists r such that p > r, r < q.
(2) There exists r such that p < r, r > q.
By a direct computation of OL[g) in both cases and using remark 22 it is 
immediate that p G O*[g).

Suppose the statement true for k < n and let p q. Therefore there is 
some r such that p^r and r q. By the inductive hypothesis, r G Ofc[g). 
Henee [r) C Ofc[g) which implies that Ox[r) C O1(Ofc)[g) = Ofc+1[g). From 
the proof for n = 1 we have that p G O:[r). Therefore p G Ofc+1[g). ■

Both the possibility and necessity operators always exist in A*+. For 
X G A*+, <>(X) (respectively □(-X’)) is the unión of the components C of 
A* such that C A X 0 (respectively such that C C X).

Lemma 26. If A is a bi-Heyting-algebra such thatfor some n, A* is n-linked, 
then:
(1) the inclusión i:B(A) t-~» A has adjoints O H i d □.
(2) the map preserves O and □.

Proof. If X G A*+, then O(X) = Ucnx#0C- Let P G <>(X). Therefore, 
there exists q G X such that p G n(g). Henee, p g, which implies by a 
previous lemma p G On[g). But On[g) C On(A"), so p G On(X), and thus 
the equality On(X) = O(X) follows. By unicity of adjoints we have also 
□n(X) = □ (%).

The map ex preserves the operators and therefore: ex(<^n(^)) = 
ex((~ -l)nW) — _1)n(eA(^)) = O(ex(^))- We have also: ex(On+1(£)) =
<>(ex(a?)), because n-linked implies n + 1-linked. Therefore, On(x) — 
On+1(z), since ex is a monomorphism. But this equality implies: O(x) = 
On(x). Therefore, the inclusión has a left adjoint O wich is preserved by ex- 
We can deduce in a dual way the existence of the right adjoint □, which is 
also preserved by ex-



Completeness Theorems via the Double Dual Functor 73

Corollary 27. If A is a DH-algebra and A* is n-linked, then the operators 
==> and \\ exist on A and are preserved by the map e^. In particular, the 
unary operators a and 0 defined by:

a(x) — xl\\x,
/3(x) = x1 => x

exist and are preserved by e¿-

Proof. It follows from lemma 21 and lemma 26. ■

2.2. n-valued Lukasiewicz algebras

An algebra (A, V, A/ , $i,..., sn_i, 0,1) is an n-valued Lukasiewicz algebra if 
(A, V, A,', 0,1) is a De Morgan algebra and the unary operators i = 1, 
..., n — 1 satisfy:

Í(U)
(L2)
(L3)
(L4)
(L5) 

l(L6)

Si(x V y) = s¡x V s¡y
SiSjX — SjX,j = 1, ... ,72 — 1
s^x') = (sn_tx)'
six V (síxY = 1
Si# < • • • < Sn_iX
If (s{X = Siy) for 2 = 1,... ,72 — 1, then x = y.

For an equational definition, see [3].

Remark 28. (1) If A is a 5-valued Lukasiewicz algebra then □, ex, 0, O are 
the operators S{, for i = 1, ..., 4 (see [4]).

(2) The operators si, ..., sn_i of an n-valued Lukasiewicz algebra have 
no intrinsic definition for n > 5. Nevertheless, the fact that e¿ preserves si, 
..., sn_i is true for every n, as we shall see in this section.

(3) It is well known that if A is an n-valued Lukasiewicz algebra then 
A is a Heyting algebra ([7]) and the Stone condition holds in A. Therefore, 
according to 23 and 24 B(A*+) « (B(A))*+. From now on in this section 
we identify B(A*+) with (B(A))*+.

(4) In n-valued Lukasiewicz algebras every component ü(p) of A* is a 
chain of at most n elements and ü(p) = n(gx(p)), where gA is the Birula- 
Rasiowa transformation. In fact, every component II(p) is determined by 
the maximal filter r = p A B(A) of B(A) because q C ü(p) iff q A B(A) = r. 
Moreover, ü(p) = {si_1(r), s2_1(r), ...,

Following the terminology of Fidel ([5]), for i = 1, ..., n — 1 we let g¡ be 
the functions s*, i.e., for p E A* define gi(p) = 5~1(p).
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The operators i = 1, ..., n — 1 have the following properties ([5]):

Í(K3) pCq implies gi(p) C g^q) for i
(K4) 9i ° 9j = 9i for i, j = 1,..., n -
(K5) 9A ° 9i ~ 9n-i
(K6) A* =

t(K7) 9i < 9i+i for i = 1,... , n — 2

For every X G A*+ set: S¿(X) = s*+(X), i.e., S$(X) = {p G A* : 
9í(p) e X}.

We have that exísit®)) = Si(ex(^)) for i = 1, ..., n — 1, since e is a 
natural transformation.

PROPOSITION 29. The algebra (A*+,U, n,n,Si,...,Sn_i,0,1) is an n-val- 
ued Lukasiewicz algebra.

PROOF. From (Ll) and (L3) we deduce that is a lattice morphism, for 
i — 1, ..., n — 1. Therefore, conditions (Ll) and (L2) hold for Si, i = 1, 
..., n — 1, because ()*+ is a functor. (L3) follows from (K5).

To prove (L4), we observe first that S¿(ex(^)) U n(Si(eJ4(^)) = 1, which 
follows from the equalities ex(s¿(^)) = Si(e¿(a!)) and e^ís^z)') = 
n(Si(eyi(íE)))- Let X G A*+. It is well known that X = UpexíClsepeA(^))- 
Therefore S¿X = UpexCDxep Henee, E{X is boolean (increasing
and decreasing). It is easy to see that S¿X = ^(SjX), and this implies 
that (SiX)c - n(SiX) .

Condition (L5) follows from (L5) for the operators sí and the fact that 
()*+ is a functor.

The Moisil determination principie (L6) is proved considering the form 
of the components ü(p). ■

COROLLARY 30. The double dual ( )*+ is an endofunctor on the category 
En of n-valued Lukasiewicz algebras and e is a natural transformation such 
that for every object A of En e¿ is conservative.

2.3. Nelson algebras

A De Morgan algebra is a Kleene algebra if it satisfies the following additional 
condition

(K) Vx, y (x A x < y V y'}

A quasi-Nelson algebra is a Kleene algebra A such that for each pair x, y € A, 
the implication x —> (x'Vy) = xt>y exists. The binary operation > so defined 
is called weak implication.
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A Nelson algebra is a quasi-Nelson algebra satsifying the equation:

(N) (x A y) > z = x > (y > z)

(These algebras are called N-lattices or quasi-pseudo-Boolean algebras by 
H. Rasiowa).

The class of Nelson algebras constitutes a variety in the sense that it may 
be defined by a set of equations (see [1]).

Lemma 31. If A is a Kleene algebra then so is A*+.

Proof. Let X,Y G A*+, i.e., increasing subsets of A*. We must prove that 
X n n(X) C Y U n(Y). Since by definition n(X) — (#(X))C, we are reduced 
to prove that X A(g(X))c C YU(g{Y))c or, what amounts to the same using 
the properties of set-theoretical complement, that

xnOcyug(X)

Notice first that since g is an anti-isomorphism of period 2, r G g(X) iff 
g(r) e X.

Let r G X A gfY). By the above remark, r G X and g(r) G Y. Since 
A is a Kleene algebra, either r C g(r) or g(r) C r. (See [3]). In the first 
case, g(r) G X, i.e., r G g(X) (using the remark once more). In the second, 
r G K. In either case we have the conclusión. ■

Because our previous results we have:

Corollary 32. If A is a quasi-Nelson algebra, so is _A*+.

Theorem 33. (Cignoli, Monteiro) A quasi-Nelson algebra A is a Nelson 
algebra if and only if it satisfies the interpolation property.

Recall that a Kleene algebra satisfies the interpolation property iff for every 
pair r and s of prime filters such that
(1) r G g(r)
(2) rCg(s)
(3) s Q g(r)
(4) s C g(s)
there exists a prime filter q such that r C q, s C q, q C g(r) and q G g(s). 
That is r, s and q satisfy r C q G p(r) and s C q C g(s). Notice that (2) and
(3) are equivalent conditions.

The following is known (see [13]) but we give a proof for the sake of 
completeness.
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Theorem 34. If A is a Nelson algebra, then so is A*+.

Proof. Given X, Y, Z G A*+, we have to check that

(x n y) > z = x > (y > z)

where X > Y = X -> (g(X)c U Y).
By spelling out the definition of > we have to check that

ny)(9(xnYfuz) = x^ (9(xyu(y(g(y)cuz)».

But notice that we have the following equivalences for p to belong to the 
term on the left:

pe (XñY)^(g(XYY}cUZ)
Vq p (q € X HY b q € g(X QY) => qEZ) 

Vg 2 p (q, g(q) eXC\Y => qEZ)

The first equivalence follows from the definition of —> and the last from the 
trivial fact that r G g(X) iff g(r) G X.

Similarly, the following is an equivalent condition for p to belong to the 
term on the right:

Vg3p(gGX g G g(X)c) or (g G y => ge(g(y)cUZ))
Vg 3 p (g G A =í> g G g(X)c) or (¥r D q (r eY => rE g(Y)c U Z))

To finish the proof, we have to check the equivalence between
(1) Vg Dp (g,g(g) G A?ny => g G Z)
(2) \/qZ) p (q e X => g G g(X)c) or (Vr 3 g (r G Y r G g(Y)c U Z)) 
(2) -> (1): clear.
(1) (2): assume (1) and suppose that (2) is not true, i.e., there is some
g 3 p such that g, g(g) G X and some r 3 g such that r, g(r) G Y but r £ Z.

Since r 3 g, g(r) C g(g). But Y is an upset and henee g(g) G Y. Thus 
g(g) G X A y and g G X. Assume that g G y. From (1), g G Z and so 
r G Z, a contradiction. Therefore q & Y and g C g(g).

Similarly, r G X A y and g(r) G Y but g(r) £ X. This clearly implies 
that g(f) C r.

By interpolation, there is some s such that s 3 g,g(r). Thus s G X A y. 
But g(s) 3 q,g(r). Henee g(s) G X A Y and, by (1), s G Z. Since Z is an 
up-set, r G Z, a contradiction. ■

COROLLARY 35. The double dual ( )*+ is an endofunctor on the category 
Af of Nelson algebras and e is a natural transformation such that for every 
object A of ff ea is conservative.
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3. Completeness Theorems

In this section we show the relation between completeness theorems for 
some extensions of intuitionistic propositional calculus (briefly: IPC) and 
the embedding theorem for the corresponding distributive lattices with fur­
ther structure. The basic result is one already studied:

Theorem 36. The evaluation map e¡y.D —> Z)*+ is conservative and con­
ditionally bi-Heyting

3.1. Modal symmetric propositional calculus

Modal symmetric propositional calculus (briefly: MSPC) was introduced by 
Moisil in 1942 (see [11]). This calculus is an extensión of the intuitionistic 
propositional calculus (IPC). In fact,

MSPC = IPC + DM + CR

where DM and CR stand for the following axioms and rule of inference,
respectively:

(dm)
l X —> X 

(CR) 4-=^
y' —> x'

The algebraic counterpart of MSPC (via the Lindenbaum-Tarski algebra) is 
the structure of a DH-algebra (see 2.1).

Let T — (L-fD) be a theory, where £ is a language of MSPC (i.e., a 
language whose logical operators are A, V, T, ±, —>, -» and ( ) ) and S 
is a set of sentences (of that language). Let A be the Lindenbaum-Tarski 
algebra of T. This is clearly a DH-algebra. If <7 is a formula, we let [<j] be 
its equivalence class. We mention the following known result which can be 
proved syntactically:

Proposition 37. Let a e L. Then T\- a iff [a] = l in A.

The appropriate notion of model for MSPC is that of a g-Kripke model. A 
g-Kripke model ([6]) is a pair (M,g) where M = (P, <, K) is a Kripke model 
and g is an involution from P onto its dual .

The next theorem, implicit in [6], uses the embedding theorem 10 to 
prove adequacy of MSPC.

Theorem 38. Let a and T = (£, S) be a formula and a theory, respectively, 
in a language L of MSPC. Then T H <r iff a is valid in every g-model ofT.
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Proof. Let o be valid in all g-Kripke models of T. Consider the triple 
(A*,C,7<), where K is the composition of the canonical map [ ] and the 
evaluation map e^. It is clear that (A*, C, K,g) is a g-Kripke model of T, 
and both [ ] and are morphisms in 7??/. Therefore, /C(cr) = 1. Since 
is conservative, [cr] = 1 in A and this implies that T H <j is a theorem, by 
proposition 37. ■

3.2. n-valued Lukasiewicz propositional calculus

An n-valued Lukasiewicz algebra can be characterized (see [7]) as an algebra 
(A,V,A,—>, ( 1) such that (A, V,A,—>,( 0,1) is a
DH-algebra and the unary operations i = 1, 2, ..., n — 1 satisfy:

(L2), (L3), (L4) of3.2
¿ (L5Z) si# V x = x
[ (L6') si(x —> y) = h^-tsjx —> Sjy)

This algebraic characterization allows us to define n-valued Lukasiewicz 
propositional calculus (nLPC) as an extensión of IPC by means of the De 
Morgan negation ( ) , the modal operators si for i — 1, ..., n — 1 and the 
deduction rules of substitution, modus ponens and the Godel rule:

x
Sl(x)

The added logical axioms are those corresponding to the algebraic ones.
We can show the relationship between the theorem of double dual functor 

in the case of category n£ and adequacy for nLPC in the same way that we 
did for MSPC.

This gives a proof of the following (unpublished) result of [5]
Theorem 39. (M. Fidel) Let o and T = (L, S) be a formula and a theory, 
respectively, in a language L of nLPC. Then T H o iff a is valid in every 
nL~model ofT.

4. Conservative extensions

As a final application of our methods, we shall prove conservativeness results 
among some extensions of coherent logic.

The first one asserts the following theorem
Theorem 40. (C. Rauszer) Bi-intuitionistic propositional calculus (BIPC) 
is a conservative extensión of intuitionistic propositional calculus (IPC).
Before we go into the proof, let us be more precise about the formulation 
of BIPC. As logical connectives we take A, T, V, _L, \. Notice that we 
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can define ->p = p —> ± and ~p = T \p. To formúlate BIPC we add to the 
formulation of IPC in [9] the following two rules of inference:

p\q\- r piq^r
pbqVr p\q\~ r

The theorem may now be stated more precisely as follows

Theorem 41. Assume that a and T = (L, S) are a formula and a theory, 
respectively, in a language L of IPC. Then

T Hbipc c iff T Hipc f

PROOF. If Var is the set of propositional variables of L, we let L~ be the 
language generated by Var using the logical operators from BIPC and we let 
H be the Lindenbaum-Tarski algebra of T relative to IPC. The composite 
en o [ ] may be extended to a map v\ L~—>H*+ by recursion. In fact, if 
p is a variable, then v(p) = en ° [p]. The definition for the other clauses is 
obvious. For \ we define

v(p\q}= v(p}\v{q)

Notice that this makes sense, since 7f*+ is a bi-Heyting algebra.
To conclude the proof, assume that T Fbipc Then a is valid in the 

Kripke model (H*+,C,v), i.e., v(cr) = 1 and this implies that T Hpc 
since en is conservative. ■

There is a categorical formulation of conservative results in [10]. To 
formúlate the particular case under consideration, let F and BF be the cat- 
egories of of Heyting algebras and bi-Heyting algebras, respectively. Assume 
that U: BH—is the obvious forgetful functor and let F : H—>BH be its 
left adjoint. Thus, UFH is the free bi-Heyting algebra generated by H

Theorem 42. The unit Id UF of the adjunction F -\U is a monomor- 
phism

Proof. The bi-Heyting algebra U(F(H)) is freely generated by H. There­
fore, given the evaluation map eu, whose codomain H*+ is a bi-Heyting alge­
bra, we have a bi-Heyting map f such that the following diagram commutes:

h----------

Henee t¡h is a monomorphism, because en is a monomorphism.
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(K) 0
(N) {

Remark 43. Lindenbaum-Tarski algebras give a way of constructing the 
free bi-Heyting algebra over a given Heyting algebra H. Indeed, present 
H as the Lindenbaum-Tarski algebra of a theory T = (L, E) in IPC. Then 
the free bi-Heyting algebra over H is the Lindenbaum-Tarski algebra of 
T~ = where L~ is as above (the language generated by the set of
propositional variables Var obtained by using the logical operators of BIPC).

Similarly it is possible to see that the constructive calculus with strong nega- 
tion (i.e., the logical counterpart of Nelson algebras) has a conservative ex­
tensión NMSPC. This calculus has the language whose logical operators are 
A, V, —>, ( )' and a new one > which is defined by

x > y = x —> (x' y y).

The axioms and rules are those of MSPC with three further axioms

! A x') -* (y V y')

((x A y) > z) (x > (y > z)) 
((x > (y > z) -> ((57 A y) > z)

and one new rule of inference
x > y x

y
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