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We study in detail a very natural metric for quantum states. This new proposal has two basic
ingredients: entropy and purification. The metric for two mixed states is defined as the square root
of the entropy of the average of representative purifications of those states. Some basic properties
are analyzed and its relation with other distances is investigated. As an illustrative application, the
proposed metric is evaluated for 1-qubit mixed states.
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I. INTRODUCTION

The study of distances and metrics between quantum states is a topic of permanent interest, which has been lately
rekindled on account of problems emerging in quantum information theory (QIT) [1]. Distances are used as measure
of distinguishability between quantum states [2] and in the definition of the degree of entanglement [3], just to mention
two very relevant examples. They also characterize the geometrical structure of the space of quantum states [4].
In the mathematical formalism of quantum mechanics the states of a physical system S are represented by operators

(density operators) acting on a Hilbert space H. More precisely the states of the system S are represented by the
elements of B(H)+1 , that is, the set of positive, trace-one operators on H. The notion of a state as a unit vector of
H refers to the extremal elements of B(H)+1 (ρ ∈ B(H)+1 is extremal if and only if it is idempotent, ρ2 = ρ). In this
case ρ is of the form |ψ〉〈ψ| for some unit vector |ψ〉 ∈ H, and it is called a pure state. If ρ is not idempotent, the
corresponding state is called mixed.
In introducing distances between quantum states different roads have been traversed [5, 6, 7, 8, 9, 10, 11]. For

example Wootters arrived at the distance

dW (|ψ〉, |ϕ〉) = arccos(|〈ψ|ϕ〉|) (1)

by analyzing the statistical fluctuations in the outcomes of measurements into the quantum mechanics formalism [5].
In Eq. (1), 〈ψ|ϕ〉 represents the inner product between the pure states |ψ〉 and |ϕ〉, and therefore dW gives the “angle”
between these two states.
Another way of dealing with the problem of introducing distances between quantum states is to generalize the

notions of distance defined in the space of classical probability distributions. This is the case of the relative entropy,
which is a generalization of information theoretic Kullback–Leibler divergence. The relative entropy of an operator ρ
with respect to an operator σ, both belonging to B(H)+1 , is

S(ρ, σ) = Tr[ρ(log2 ρ− log2 σ)] (2)

where log2 stands for logarithm in base two. The relative entropy is not a metric (because it is not symmetric and
does not verify the triangle inequality). Even worst, it may even be unbounded. In particular, the relative entropy
is well defined only when the support of σ is equal to or larger than that of ρ [12] (the support of an operator is the
subspace spanned by the eigenvectors of the operator with nonzero eigenvalues). This is a strong restriction which is
violated in some physically relevant situations, as for example when σ is a pure reference state.
Recently we have investigated a distance between mixed quantum states that was named the quantum Jensen–

Shannon divergence (QJSD) and that is a symmetrized version of relative entropy (2):

DJS(ρ, σ) =
1

2

[

S

(

ρ,
ρ+ σ

2

)

+ S

(

σ,
ρ+ σ

2

)]

. (3)

The main properties of the QJSD as a distinguishability measure have been presented in Ref. [13]; the metric character
of the square root of DJS has also been reported recently [14, 15]. It has several interesting interpretations into the
realm of QIT and it has been applied as a measure of the degree of entanglement [16].
In this work we propose an alternative metric between quantum states, that we think, from a conceptual point of

view, is a very natural one and which is, in some sense, a derivative of the QJSD. This proposal hinges on two central
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concepts of QIT: entropy and purification. Relevant properties of these notions are quoted in the following section.
The rest of the paper is organized as follows: in Section III we consider a measure of distance for pure states defined
using von Neumann entropy and we study its properties. Section IV is devoted to the new proposal of a distance
between mixed states by recourse to the concept of purification. We then present in Section V an application for the
case of 1-qubit mixed states with a numerical example. Finally, concluding remarks are drawn in Section VI.

II. SOME COMMENTS ON ENTROPY AND PURIFICATION

Entropy is a fundamental notion in classical and in quantum information theory. In the classical case most of the
results concerning the coding problem can be expressed in terms of the Shannon entropy

HS(P ) = −
∑

i

pi log2 pi (4)

where P = {pi ≥ 0,
∑

i pi = 1} is a (discrete) probability distribution [17]. In the quantum context the expression
for entropy differs from the Shannon entropy. For a mixed state described by the density operator ρ, von Neumann
defined the entropy of ρ as

HN (ρ) = −Tr(ρ log2 ρ) = −
∑

i

λi log2 λi (5)

with {λi} being the set of eigenvalues of the operator ρ.
The von Neumann entropy has several interesting properties [18]. Among them we remark the one that gives an

upper bound for a convex combination ρ =
∑

i piρi (with
∑

i pi = 1):

HN(ρ) ≤
∑

i

piHN (ρi) +HS({pi}). (6)

Equality is verified if and only if the states ρi have supports in orthogonal subspaces.
Although expressions (4) and (5) look similar, they are quite different. These differences are particularly relevant

for quantum information theory. For example, if a is a message taken from the source A and p(a) is the probability
of the message a, the Shannon entropy of the source is

HS [A] = −
∑

a

p(a) log2 p(a).

Let us now suppose that we have a quantum signal source, that is a device that codes a message a taken from the
source A into a signal state |aS〉 of a quantum system S. The ensemble of signals from the signal source will be
represented by the density operator

µ =
∑

a

p(a)|aS〉〈aS |. (7)

Then, if the signal states |aS〉 are not orthogonal and from (6), the inequality

HN (µ) < HS({p(a)}) (8)

is satisfied. The physical consequences of this inequality have been analyzed in detail by Jozsa and Schlienz [19].
Another important property of von Neumann entropy is that it gives the number of qubits necessary to represent

a quantum signal faithfully. Indeed, let us suppose that Alice has a source of pure qubit signal states |ψ〉 and |ϕ〉.
Each emission is chosen to be |ψ〉 or |ϕ〉 with an equal prior probability one half. Then in this case the density matrix
of the source is π = 1

2 (|ψ〉〈ψ|+ |ϕ〉〈ϕ|). Alice may communicate the sequence of states to Bob by transmitting one
qubit per emitted state. But, according to the quantum source coding theorem, the quantity

HN

( |ψ〉〈ψ|+ |ϕ〉〈ϕ|
2

)

gives the lowest number of qubits per state that Alice needs to communicate the quantum information (with arbitrarily
high fidelity) [20].
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Purification is the second key concept we use in proposing a metric for quantum states. It has to do with the fact
that every mixed quantum state can be interpreted as being part of a higher-dimensional pure state. From a physical
point of view the notion of purification provides, for example, insight into the mechanism of quantum decoherence [21].
Formally it can be described in the following way: let ρ be any mixed state on the Hilbert space H. A purification of
ρ is any pure state |ψ〉 in any extended Hilbert space H⊗Haux with the property that

ρ = Traux|ψ〉〈ψ|

where Traux stands for the partial trace on the Hilbert space Haux. In other words a purification is any pure state
having ρ as the reduced state for subsystem [8].
If ρ admits the decomposition ρ =

∑

i pi |ei〉〈ei| where pi ≥ 0 and
∑

i pi = 1, an example for a purification of ρ is
given by

|ψ〉 =
∑

i

√
pi |ei〉 ⊗ |ai〉 (9)

with the auxiliary states |ai〉 being mutually orthogonal.
We complete this section by remarking two facts on purifications that will be used later on:

1. It can be shown that for two purifications |ψ1〉 and |ψ2〉 of the state ρ, there exists a unitary transformation U
acting on Haux such that

|ψ1〉 = (I ⊗ U)|ψ2〉 (10)

where I is the identity operator on the space H [1].

2. If one is interested in purifications of two states it can be assumed, without loss of generality, that the purifications
lie in the same extended Hilbert space [8].

III. VON NEUMANN ENTROPY AS A METRIC FOR PURE STATES

Let |ψ〉 and |ϕ〉 be two pure states in a given Hilbert space H. We define the distance between these two states in
the form:

DN (|ψ〉, |ϕ〉) ≡
√

HN

( |ψ〉〈ψ|+ |ϕ〉〈ϕ|
2

)

. (11)

It should be noted that this expression corresponds to the square root of the QJSD when evaluated between pure
states. Indeed, in terms of the von Neumann entropy (5), the QJSD (3) can be rewritten in the form:

DJS(ρ, σ) = HN

(

ρ+ σ

2

)

− 1

2
HN (ρ)− 1

2
HN (σ).

But for a pure state the von Neumann entropy vanishes; then for the corresponding operators ρ = |ψ〉〈ψ| and
σ = |ϕ〉〈ϕ| it results:

DJS(|ψ〉〈ψ|, |ϕ〉〈ϕ|) = D2
N(|ψ〉, |ϕ〉).

After some algebra, we can rewrite the square of Eq. (11), in terms of the inner product between |ψ〉 and |ϕ〉:

D2
N (|ψ〉, |ϕ〉) = Φ(|〈ψ|ϕ〉|) (12)

where

Φ(x) ≡ −
(

1− x

2

)

log2

(

1− x

2

)

−
(

1 + x

2

)

log2

(

1 + x

2

)

, 0 ≤ x ≤ 1. (13)

The main properties of DN (|ψ〉, |ϕ〉) given by Eq. (11) are:

• It is symmetric.
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• It vanishes if and only if |ψ〉 = eiα|ϕ〉 (i.e., both states belong to the same ray).

• It is bounded: 0 ≤ DN (|ψ〉, |ϕ〉) ≤ 1 (this can be easily verified from inequality (6) and from the fact that the
von Neumann entropy vanishes for a pure state).

• It verifies the triangle inequality (but HN

(

|ψ〉〈ψ|+|ϕ〉〈ϕ|
2

)

does not) [14, 15].

All these properties give DN the metric character.
The distance DN between two neighboring pure states |ψ〉 =

∑

j

√
pj e

iφj |j〉 and |ψ̃〉 = |ψ〉 + |dψ〉 =
∑

j

√

pj + dpj e
i(φj+dφj)|j〉, where {|j〉} in an orthonormal basis, is given by:

D2
N(|ψ〉, |ψ̃〉) ≃

1

8

∑

j

dp2j

pj
. (14)

From expression (1) it is easily checked that, up to second order in dpj , the following relation exists between
Wootters distance and the distance DN given in (11):

d2W (|ψ〉, |ψ̃〉) = 2DN(|ψ〉, |ψ̃〉).
A similar relation is also true for the Fubini–Study metric [22].

IV. EXTENSION OF THE DEFINITION OF THE METRIC TO MIXED STATES

In the previous section we have thought the square root of the von Neumann entropy of the average
1
2 (|ψ〉〈ψ|+ |ϕ〉〈ϕ|) as a true metric between two pure states |ψ〉 and |ϕ〉. Here we investigate its extension to mixed
states.
We start by recalling that the Bures distance between two mixed states, that is for two operators ρ and σ belonging

to B(H)+1 , is given by

DB(ρ, σ) =
√

2− 2F (ρ, σ)

where F (ρ, σ) = Tr
√

ρ1/2 σρ1/2 is the fidelity function (see, for instance, Ref. [1]). A well-known result (Uhlmann’s
theorem [7, 8]) asserts that the fidelity F (ρ, σ) can be expressed in the form

F (ρ, σ) = max
|ψ〉,|ϕ〉

|〈ψ|ϕ〉| (15)

where the maximization is performed over all purifications |ψ〉 of ρ and all purifications |ϕ〉 of σ. Then, the Bures
metric can be rewritten in the form:

DB(ρ, σ) = min
|ψ〉,|ϕ〉

√

2− 2|〈ψ|ϕ〉| (16)

where the minimum is taken over all purifications of ρ and σ.
By mimicking this last expression, we can define from Eq. (11), a metric for arbitrary mixed states ρ and σ belonging

to B(H)+1 :

DN (ρ, σ) ≡ min
|ψ〉,|ϕ〉

√

HN

( |ψ〉〈ψ| + |ϕ〉〈ϕ|
2

)

(17)

where, once again, the minimum is taken over all purifications |ψ〉 of ρ and all purifications |ϕ〉 of σ. Recalling Eq. (12)
and due to the decreasing nature of Φ(x) as a function of x = |〈ψ|ϕ〉| ∈ [0, 1], Eq. (13), to seek the minimum out in our
proposal (17) is equivalent to look for the purifications that maximize the overlap |〈ψ|ϕ〉|. Clearly, by construction,
the metric character of DN(ρ, σ) is kept for mixed states. It also is always well defined.
From a conceptual point of view, our proposal is equivalent to replace the problem of measuring the distance between

two arbitrary mixed states, ρ and σ, by the problem of distinguishability of all the ensembles E = {|ψ〉, |ϕ〉; p1 = 1
2 , p2 =

1
2} built from purifications of ρ and σ respectively [19]. This is the central point in our proposal.
According to identity (15), the metric DN(ρ, σ) can be expressed in terms of the fidelity in the form:

DN (ρ, σ) =
√

Φ(F (ρ, σ)) (18)

By using this representation, we can derive the main properties of the metric DN(ρ, σ). For example
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• DN is invariant under unitary transformations: DN (UρU †, UσU †) = DN (ρ, σ).

• If Q is a trace-preserving quantum operation, then: DN(Q(ρ),Q(σ)) ≤ DN(ρ, σ).

As a textbook exercise we can derive an alternative expression for fidelity [1]:

F (ρ, σ) = max
|ϕ〉

|〈ψ|ϕ〉| (19)

where |ψ〉 is any fixed purification of ρ, and the maximization is performed over all purifications |ϕ〉 of σ. Therefore,
by using this expression and Eq. (18), the new metric (17) can be reexpressed in a more convenient way:

DN (ρ, σ) = min
|ϕ〉

√

HN

( |ψ〉〈ψ| + |ϕ〉〈ϕ|
2

)

(20)

where |ψ〉 is any fixed purification of ρ, and the minimization is taken over all purifications |ϕ〉 of σ.
Several interesting questions arise from the definition of distance between quantum states given by Eq. (17). Among

them we remark the following two:

• The first one has to do with the computability of DN (ρ, σ). As it was said, the purifications of ρ and σ can be
thought as belonging to the same extended Hilbert space. Furthermore, according to Eq. (10), every purification
is related to another one by a unitary transformation. Therefore the technical task of finding the minimum in
Eq. (20) is equivalent to finding unitary operations acting on the auxiliary Hilbert space that maximize the
overlap |〈ψ|ϕ〉|. This point will be analyzed, for a particular example, in the next section.

• The second point to be remarked is the relevance of the metric DN (ρ, σ) to the light of decoherence. Decoherence
can be viewed as the unitary evolution of a compound system consisting of the system itself and its environment,
under which both components become entangled [21]. In this context, the auxiliary space Haux corresponds to
the environment.

V. EVALUATION OF THE METRIC DN FOR 1-QUBIT MIXED STATES

As an illustrative application, we now evaluate the metric DN given in Eq. (17), for two 1-qubit states. In this case
it is convenient to use the Bloch representation for a mixed 1-qubit state:

ρ =
I2 + ~r · ~σ

2
(21)

where In denotes the n× n identity matrix, the Bloch vector ~r is a 3-dimensional vector such that ‖~r‖ ≤ 1, and the
vector ~σ has as components the Pauli matrices. The matrix ρ belongs to the complex plane C2. In Ref. [23] it is
shown that a purification of an arbitrary density ρ acting on C2 ⊗ C2 (that is, a 4× 4 matrix) is given by

Pρ =
1

2



I4 +
∑

i

ri σi ⊗ I2 +
∑

i

γi I2 ⊗ σi +
∑

i,j

Aij σi ⊗ σj



 (22)

where i, j = 1, 2, 3, ri are the components of the vector ~r, γi are the components of the vector ~γ = AT~r, and the
3× 3 real matrix A is a solution of the system of equations:

AAT = (1− ‖~r‖) I3 + ~r ~rT

det(A) = ‖~r‖2 − 1 (23)

The result by Constantinescu et al. [23] establishes further that all purification of ρ is of the form (22) with matrix

A = ÃS, with S being an element of the Lie group SO(3,R3) and Ã a particular solution of the system (23).
Therefore, in this case the evaluation of the minimum in Eq. (20) to obtain DN leads to an extremization problem
over the parameter space of the Lie group SO(3,R3).
As a particular example, let us show how to find this minimum by evaluating the distance DN(ρ, Ep(ρ)) between

an input state ρ and the state emerging from a depolarizing channel

Ep(ρ) =
p I2

2
+ (1 − p) ρ, 0 ≤ p ≤ 1. (24)
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FIG. 1: Values of the distance DN (ρ, Ep(ρ)) between the state ρ and the emerging ones from the depolarizing channel as a
function of p, for different values of the norm r = ‖~r‖ of the Bloch vector (see Eqs. (21) and (24)).

The depolarizing channel can be viewed as a process that takes a system to a fully mixed state with probability p, or
leaves it unchanged with probability 1−p. The effect of the depolarizing channel (24) over the state ρ is to “contract”
the vector ~r in the factor (1 − p):

ρ(~r) → Ep(ρ) = ρ(~r′) , ~r′ = (1− p)~r

.
A strategy for evaluating the metric DN (ρ, Ep(ρ)) could be established in the following way: let A be a solution of

the system (23) corresponding to a Bloch vector ~r, and let Ap be the solution of (23) corresponding to (1 − p)~r. A
simple calculation shows that

ApA
T
p = AAT + f(p)Ω

detAp = detA− f(p)‖~r‖2 (25)

where f(p) = 1 − (1 − p)2 and Ω = ‖~r‖2I3 − ~r ~r T . Now we take a fixed purification of ρ characterized by the

matrix A (solution of (23)) and evaluate a matrix Ãp that satisfies (25) (associated with purification PEp(ρ)). Then

every purification of Ep(ρ) can be expressed in the form Ap = ÃpS with S being an element of SO(3,R3). Thus
to find S ∈ SO(3,R3) that minimizes our proposal (20), is equivalent to find S ∈ SO(3,R3) such that minimizes

the norm ‖ÃpS − A‖HS [23]. Here ‖.‖HS stands for the Hilbert–Schmidt norm. This is the classical Procrustes
problem. An algorithmic solution of the Procrustes problem can be found in Ref. [24]. By solving the systems of
equations (23) and (25) and applying the algorithm for solving the Procrustes problem, we can find the purification

PEp(ρ) that extremizes (20). Then by calculating the eigenvalues of the “average”
Pρ+PEp(ρ)

2 we can evaluate the
distance DN(ρ, Ep(ρ)). Figure 1 shows the values of the new distance DN (ρ, Ep(ρ)) as a function of the parameter p,
corresponding to different 1-qubit states ρ characterized by different values of the norm of the Bloch vector ~r.

VI. SUMMARY AND CONCLUSIONS

We have studied in detail a new proposal in order to define a metric for quantum states. In the case of two pure
states |ψ〉 and |ϕ〉, the metric DN (|ψ〉, |ϕ〉) given in Eq. (11) corresponds to the square root of a von Neumann entropy,
more precisely the square root of the quantum Jensen–Shannon divergence. In the case of two mixed states ρ and σ,
the metric DN(ρ, σ) given in Eq. (17) is defined as a natural extension of the latter and results to be given as the



7

minimum of the distance between pure states corresponding to purifications of both mixed densities. From a physical
point of view we have replaced the problem of evaluating the distance between two mixed states by the problem of
distinguishing ensembles built from purifications of that states.
We have analyzed some of the properties of the new proposal, justifying its metric character, and illustrated how

to implement the minimization procedure with an application for two 1-qubit mixed states. As a particular example,
we have considered a depolarizing channel. By using the representation for the purifications of multiple qubits states
[23], an evaluation of the distance DN in this case can be also performed.
It should be emphasized that our proposal, although close, differs from another ones. For example the definition

of the Shannon distinguishability [25] involves the Shannon entropy and quantum measurement processes. It should
be stressed also that, although the computational effort of evaluating the minimum in (17) and (16) could be similar,
the metric DN is grounded in two very relevant physical concepts as are entropy and purification. The study of some
applications of this metric in the context of decoherence and entanglement is in progress.
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