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Abstract

The weak interaction contribution to the proton–neutron mass difference is computed using a generalization of Cottingham’s
formula. When included in the analysis of the Eötvös experiment, this contribution reduces the bound on a possible weak
interactions violation to the equivalence principle by one order of magnitude.  2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The Principle of Equivalence is the physical basis
of General Relativity. It loosely states that any freely
falling reference frame is locally equivalent to an
inertial reference frame [1]. This is a very strong
statement: its unrestricted validity leads to General
Relativity as the unique theory for the gravitational
field [2] and experimental tests of its consequences
probe deeply the structure of gravitation.

The validity of the equivalence principle has been
studied in the weak interaction sector, both from neu-
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trino oscillations [3,4] and K0– �K0 physics [5,6]. In ei-
ther of the leptonic and mesonic sectors of the stan-
dard model, the bounds found for the breakdown of
the equivalence principle are much smaller than those
found in the baryonic sector. However, it is important
to study the baryonic sector since the equivalence prin-
ciple may be well satisfied for ultrarelativistic neutri-
nos and kaons while being violated by the weakly in-
teracting non-relativistic baryons.

In this case, we must turn to one of the conse-
quences of the equivalence principle, namely, the Uni-
versality of Free Fall (UFF), which states that the
world line of a test body submerged in a gravita-
tional field is independent of its composition and struc-
ture [7]. In order to clarify the former statement, let
us write the Lagrangian of a test body in the non-
relativistic approximation in the form [8]:

(1)L = −mRc
2 + 1

2
mIv2 −mPφ(x)+O

(
v4

c4

)
,
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where v and x are the velocity and the coordinate
of the center of mass of the test body, φ is the
gravitational potential and the parameters mR , mI

and mP are called, respectively, the rest, inertial
and passive gravitational masses for the test body.
UFF implies the equality of inertial and passive
gravitational masses:

(2)mI = mP

while Local Lorentz Invariance (LLI)—another conse-
quence of the equivalence principle—implies the addi-
tional equality:

(3)mR = mI .

UFF, among the consequences of the equivalence
principle, is one of the strongest tests of its validity.
For instance, it has been shown that sufficiently
sensitive related experiments can provide strict tests
on superstring theories (see, e.g., [9]) or Kaluza–Klein
theories (e.g., [10]), thus exhibiting the presence of
“new physics”. Indeed, the STEP satellite experiment
[11,12] will improve these tests sensitivity by about
six orders of magnitude.

One of the profound consequences of the equiva-
lence principle is that all forms of non-gravitational
energy, since they contribute to the inertial mass,
should couple in the same way to the gravitational
field. Any violation of UFF should break equation (2)
and the difference between inertial and passive grav-
itational mass of a test body could be expressed via
phenomenological parameters Γt specific to each type
of interactions t reflecting its degree of violation to the
equivalence principle:

(4)mP −mI = δm = −
∑
t

ΓtE
t ,

where the nuclear binding energies Et can be esti-
mated using the semiempirical mass formula [13] or,
in the case of weak interactions, a suitable generaliza-
tion [14,15]. In principle, the parameters Γt are mea-
sured in Eötvös-like experiments where they are fitted
to data, but they can also be predicted in some given
theories of gravitation, thus providing a sensitive test
of such theories.

Eötvös experiments [7,16–18] set an upper limit
on the difference of acceleration in a gravitational
field for different materials and so impose upper
bounds on the violation parameters Γt . While most

published estimates, taking into account only the
binding energy contribution to the nucleus mass,
show that strong and electromagnetic interactions
obey the equivalence principle to an accuracy bet-
ter than 10−8 [7,17], the upper bound on any vio-
lation of the equivalence principle by the weak in-
teractions is much higher (10−2) [7,17]. This is not
only due to the tiny contribution of weak interactions
to the total mass but also largely because the bind-
ing energy per nucleon due to weak interactions is a
very slowly varying function across the periodic ta-
ble which then leads to a large cancellation in the
analysis of Eötvös experiments [14,15]. Although the
weak interactions sensitivity can be improved by com-
paring elements which are as far apart as is possi-
ble in the periodic table, this slow variation will de-
stroy the accuracy obtained in any experimental test
of UFF.

In order to examine further the present accuracy
of Eötvös experiments with respect to weak inter-
actions, one should include the individual nucleons
contribution to the nucleus mass since it changes
much faster along the periodic table. There has not
been, to our knowledge, a study of the weak in-
teractions effect within nucleons in the analysis of
Eötvös experiments and the object of this Letter
is to provide just such a study. We shall evaluate
the proton–neutron mass difference due to weak in-
teractions and reassess the Eötvös experiments re-
sults.

There is a model-independent approach to the
weak contribution to the nucleon mass difference
consisting of the development of a sum rule that
gives the nucleon self mass in terms of observable
quantities. We shall call this approach the general-
ized Cottingham’s formula since it was first done
by Cottingham for the electromagnetic interactions
[19]. This sum rule is a rigorous model-independent
way for computing the proton–neutron mass dif-
ference. We describe very briefly this approach in
Section 2 while we develop the generalized Cotting-
ham’s formula corresponding to the weak interac-
tions in Section 3. In Section 4 we implement the
weak p–n mass splitting result in a re-analysis of
Eötvös experiments’ results and find that they lead
to an improved upper bound in that weak interac-
tions violation of the equivalence principle is less
than 10−3.
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2. The proton–neutron mass difference

One of the most interesting results in basic quantum
field theory is that the proton–neutron mass difference
is finite and can be computed, in principle, from
experimental data. The method is due to Cottingham
[19] and has been generalized to strong interactions
[20,21]. In this section, we shall recall the main steps
in the derivation of Cottingham’s formula. Detailed
proofs can be found in references [19,20,22].

To first order in the fine structure constant, the
electromagnetic contribution to the self-energy of the
nucleon may be written as:

(5)�Mem
N = ie2

2(2π)4

∫
d4q Gµν

em
(
q2)T em,N

µν (q, q0),

where G
µν
em = ηµν/q2 is the photon propagator and

T em,N
µν (q, q0) is the Compton scattering amplitude of

a virtual photon with momentum q by a nucleon N at
rest. In the Born approximation this amplitude reduces
to:

T em,N
µν (q, q0)

= (2π)4

2
4Mq2

q4 − 4M2q2
0

(
1 + q2

2M2

)

(6)

×
∑
spin

[〈N |J em
µ (0)|N ′〉

× 〈N ′|J em
ν (0)|N〉 +µ ↔ ν

]
,

where M is the mass of the nucleon N at rest, N ′
indicates a nucleon with four-momentum (q, q0 +M)

and the sum is over both its spin states.
In the same approximation, the electromagnetic

current matrix elements between two nucleons of
momentum p, p + q and spin α and α′ can be
expressed in the form:
〈
N(p,α)

∣∣J em
µ (0)

∣∣N ′(p + q,α′)
〉

= ū(α)(p)
[
FN

1
(
q2)γµ + iFN

2
(
q2)σµνqν

]
(7)× u(α

′)(p + q),

where u(p) are Dirac spinors and F1,F2 are the Dirac
and Pauli form factors of the nucleon.

Plugging (7) into (6) and doing a Wick rotation,
one can get, after some algebra, the expression for the

electromagnetic nucleon self energy:

�Mem
N = − 1

π

∞∫
0

q dq

q2

q∫
0

dν

√
q2 − ν2 4Mq2

q4 + 4M2ν2

(8)×
[
3q2f1

(
q2) − (

q2 + 2ν2)f2
(
q2)],

where the quantities f1(q
2), f2(q

2) can be written in
terms of the electromagnetic Sachs form factors GN

E,M

of the nucleon:

(9)f1
(
q2) = α

π

G2
M(q2)−G2

E(q
2)

q2 + 4M2 ,

(10)f2
(
q2) = α

π

q2G2
M(q2)+ 4M2G2

E(q
2)

q2(q2 + 4M2)

while, in turn, the Sachs form factors are expressed in
terms of the Dirac and Pauli form factors via

(11)GE

(
q2)=F1

(
q2) + q2

4M2F2
(
q2),

(12)GM

(
q2)=F1

(
q2) + F2

(
q2).

The Sachs form factors, which can be measured
from e-nucleon scattering data, have a simple physical
interpretation in that they are closely related to the
Fourier transforms of the nucleon charge and magnetic
moment densities, respectively.

Eq. (8) with (9) and (10) is the celebrated Cotting-
ham’s formula. It expresses the electromagnetic con-
tribution to the nucleon self mass as a weighted in-
tegral on the observable form factors and the results
are finite, due to the fast decrease of the measured
Gi . The electromagnetic contribution to the proton–
neutron mass difference is obtained by subtracting the
two electromagnetic self masses of the proton and the
neutron �Mem

p–n = �Mem
p − �Mem

n . Using the “Gal-
ster parameterization” [23,24] for the electromagnetic
form factors, a numerical integration results in:

(13)
(
Mn −Mp

M

)em
= −8.3 × 10−4

which amounts to a nucleon mass difference of
−0.79 MeV making the proton heavier than the neu-
tron.

In the same way, the “strong” contribution to
proton–neutron mass difference can be traced to
ρ–ω mixing [20] or computed assuming certain mod-
els such as Skyrme models [25,26], chiral solitonic
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models [27] and Sigma models [28]. In [20], an equa-
tion of the form (8) was established for the mass dif-
ference, in terms of the strong ρNN , ωNN and the
ρ–ω mixing parameter ε, with the result:

(14)
(
Mn −Mp

M

)st
= 2.22 × 10−3

which is equivalent to a mass difference of 2.08 MeV.
The final result is the sum of (13) and (14):

(15)
(
Mn −Mp

M

)tot
= 1.39 × 10−3

equivalent to a mass split of 1.31 MeV in excellent
agreement with the experimental value 1.35 MeV.
A careful error analysis of these results can be found
in Ref. [22].

The above results are valid in the Born approxi-
mation, i.e., the lowest order in α while higher order
corrections to the Cottingham formula are divergent
and must be properly renormalized. However, follow-
ing [29] for a careful discussion of this renormaliza-
tion, we can see that the corrections to the mass differ-
ence, which depend on the renormalization point µ,
are very small and have no practical importance. This
is because the mass differences between particles be-
longing to the same isospin multiplet are finite in the
chiral limit mq = 0 and all the corrections introduced
through counter terms are of the order of O(mq/M),
smaller than experimental errors. The same situation
occurs with respect to the breakdown of isospin sym-
metry and other similar higher order effects.

3. Analysis of the weak p–n mass splitting

In this section, we shall derive a weak Cottingham’s
formula to express the weak p–n mass splitting value
in terms of experimental weak form factors.

Our starting point is the formula for the four-
fermion interaction as a low energy approximation to
the IVB theory corresponding to exchange of (W+,
W−, Z0) bosons:

Leff =Leff
cc +Leff

nc

(16)= −g2

2M2
W

J+
µ J−µ + −g2

2M2
W

JN
µ JNµ,

where, restricting our attention to one family of
fermions, the charged current is given by

J+
µ = J+V

µ − J+A
µ

= 1
2

∑
f=ν,e,u,d

f̄ γµ(1 − γ5)T
−f,

(17)J−
µ = (

J+
µ

)†

and the neutral current is given by

JN
µ = 1

2

∑
f=ν,e,u,d

[
f̄ γµ

(
T3 − 2Q sin2 θW

)
f

− f̄ γµγ5T3f
]

(18)= JNV
µ − JNA

µ ,

where Q is the charge matrix, Ti = σi/2 are the gener-
ators of SU(2) algebra, T ± = T1 ± iT2 and the vector
and axial components correspond to the γµ and γµγ5
terms, respectively. We deduce that the weak interac-
tions would contribute a term in the Hamiltonian of the
nucleon given by

(19)H = 4GF√
2
J+
µ J−µ + 4GF√

2
JN
µ JNµ

and our objective is to calculate the difference between
proton and neutron matrix elements of this operator
since it gives the p–n mass splitting due to weak
interactions.

It should be noted that approximating Leff in the
form (16) for purely hadronic interactions presumably
has large QCD corrections, which can be estimated
as log(m2

W/m2
ρ) ∼ 9 assuming mρ = 770 MeV to

be a typical strong interaction scale [30]. To take
into account these effects, we shall introduce an
enhancement factor G in the Hamiltonian (19). In [15]
this factor has been estimated to be G ∼ 7 from current
algebra considerations, and we shall use:

(20)G ∼ 8

as a reasonable estimate of G.
Now, following the steps sketched in Section 2, we

can develop a sum rule corresponding to the weak
interactions and which is similar to Cottingham’s
formula. Because of weak isospin symmetry we can
see that neither charged currents nor the axial part
of the neutral current will contribute to the neutron–
proton mass difference. Only the vector neutral current
will give a non-zero contribution for the difference.
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This current, however, has the same structure as
the electromagnetic current and so the assumptions
involved in the derivation of Cottingham’s formula are
still valid. Indeed, following the steps in the derivation
of (8) and noting that the term eJ em

µ Aµ for the
electromagnetic part of the Hamiltonian is substituted
by the term g

cos θW JNV
µ Zµ for the weak neutral vector

part, one gets the similar result:

�MW−NV
N

= − 1
π

∞∫
0

q

M2 dq

q∫
0

dν

√
q2 − ν2 4Mq2

q4 + 4M2ν2

(21)×
[
3q2f Z

1
(
q2) − (

q2 + 2ν2)f Z
2

(
q2)],

where the quantities f Z
1 (q2), f Z

2 (q2) are related to the
neutral weak form factors:

(22)f Z
1

(
q2) = αW

π

[GZ
M(q2)]2 − [GZ

E(q
2)]2

q2 + 4M2 ,

(23)f Z
2

(
q2) = αW

π

q2[GZ
M(q2)]2 + 4M2[GZ

E(q
2)]2

q2(q2 + 4M2)
,

where M is the nucleon mass ≈ 1 GeV, and

(24)αW =
√

2GFM
2

π
= 0.463 × 10−5.

The sum rule (21) is the contribution to the self
mass of the nucleon coming from the isospin-breaking
part of the weak interaction which is, as we said
above, related to the vector part of the weak neutral
current. The weak contribution to the proton–neutron
mass difference is obtained, then, by straightforward
subtraction of the proton and neutron weak neutral
vector self masses

�MW
p–n = �MW−NV

p −�MW−NV
n .

The weak form factors, except for isolated points,
have not been measured [31]. However, using CVC,
they can be related to the electromagnetic form fac-
tors [32]:

(25)GpZ = 1
2
(
Gp −Gn

) − 2 sin2 θWGp − 1
2
GsZ,

(26)GnZ = −1
2
(
Gp −Gn

) − 1
2
GsZ,

where we have normalized them to the weak isospin
values G

p,nZ
E (0) = t3L and where Gs is the contribu-

tion of the s-quark sea to the weak form factor. Mea-
surements show that this latter quantity is very small
and we shall neglect it [31].

The “weak Cottingham formula” (21) provides,
in principle, a model independent calculation of the
proton–neutron mass difference. The measured form
factors neatly package many things that cannot yet
be computed ab initio, such as the QCD structure
of the nucleon. As discussed in [29], the corrections
to the “weak Cottingham formula” introduced by the
renormalization process should be much smaller than
the rather large experimental uncertainties.

We use the “Galster parameterization” [23,24] for
the electromagnetic form factors and get the final
result

(27)
(
Mn −Mp

M

)W

= (−5.0 ± 1.0)× 10−9

equivalent to a mass split of −4.7 ± 0.9 eV. The
error was estimated from the known discrepancies
of the Galster parameterization with experiment, plus
a generous allowance for the largely unknown strange
contribution.

4. Discussion and the Eötvös experiments

In order to see how this result can be implemented
in a re-analysis of Eötvös experiments, we remind
that these experiments, by measuring the difference of
acceleration a for different bodies (say A,B) falling
freely in a gravitational field g, set an upper limit on
the difference in δm

mI
for these bodies, where mI is the

inertial mass and δm = mP −mI is the passive-inertial
mass difference, which serves to define the Eötvös
parameters η(A,B) via

aA − aB ≡ η(A,B)g

(28)=
[(

δm

mI

)
A

−
(
δm

mI

)
B

]
g.

Considering the mass of a nucleus with Z protons,
N neutrons and binding energy B

(29)m(Z,N) =ZMp +NMn −B

one then introduces the violation parameters Γt=S,W,E

corresponding to different types of interactions (strong,
weak and electromagnetic) through Eq. (4). As we said
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earlier, the binding energy per nucleon b̄ = B/(N+Z)

is changing slowly across the periodic table and one
should take into account the individual nucleons con-
tribution to the nucleus mass in order to refine the
analysis, so we get

δm =
(
N −Z

2

)(
δMn − δMp

) + (N +Z)δM

(30)−
∑

t=S,W,E

ΓtE
t ,

where

δM = δMp + δMn

2
is the individual nucleon average passive-inertial mass
difference. For simplicity, we will assume, plausibly,
that the violation parameters are similar for the bind-
ing energy (3rd term) and the nucleon mass-difference
(1st term) above then we have

δm =
∑

t=S,W,E

Γt

[(
N −Z

2

)(
Mn −Mp

)t −Et

]

(31)+ (N +Z)δM,

where (Mn − Mp)t is the neutron–proton mass split-
ting due to interactions of type t . Since δM , Mn, Mp

are invariant across the periodic table one can see,
considering the slow change of b̄ and the fact that
(N−Z

2 )(Mn − Mp) is negligible compared to (N +
Z)(M

n+Mp

2 ), that the last term of Eq. (31) divided by
m is practically independent of the nucleus nature and
can be dropped altogether from the Eötvös parameters
expression, so we get

η(A,B)

=
(∑

t=S,W,E Γt [(N−Z
2 )(Mn −Mp)t −Et ]
m

)
A

(32)

−
(∑

t=S,W,E Γt [(N−Z
2 )(Mn −Mp)t −Et ]
m

)
B

.

With the known expressions for Et [13–15], the
values of (Mn − Mp)S,E [19,20] given by Eqs. (13)
and (14) (Section 2) and taking our result (Eq. (27)) for
(Mn −Mp)W , we could compare to the experimental
η(A,B) parameters in order to set bounds on Γt (see
Table 1).

Table 1
Results of the Eötvös experiment

Materials η(A,B)× 1011 Reference

Al–Au 1.0 ±3.0 [33]
Al–Pt 0.0 ±0.1 [34]
Cu–W 0.0 ±4.0 [35]
Be–Al −0.02 ±0.28 [36]
Be–Cu −0.19 ±0.25 [36]
Si/Al–Cu 0.51 ±0.67 [36]

Table 2
Upper bounds for the UFF violation parameters. The first two
columns show the upper bounds obtained assuming that a sin-
gle interaction breaks the equivalence principle. The first column
(�M = 0) excludes the nucleon structure contribution while the sec-
ond column (�MCt) includes it. The last two columns show the up-
per bounds obtained assuming that all three interactions break
the equivalence principle with the same conventions for �M

�Mn−p = 0 �M
n−p
Ct �Mn−p = 0 �M

n−p
Ct

Γ S 1.0 × 10−9 1.1 × 10−9 1.2 × 10−8 9.6 × 10−9

Γ E 1.2 × 10−9 1.2 × 10−9 2.8 × 10−8 1.4 × 10−8

Γ W 2.8 × 10−2 1.0 × 10−3 4.0 × 10−1 3.3 × 10−2

The last two columns of Table 2 show a sample of
results obtained in that way with a least squares adjust-
ment of Eq. (32) to the data in Table 1, both excluding
and including the nucleon structure contribution. We
have not included the QCD enhancement factor as it
is quite uncertain and because we are interested in up-
per bounds. We find that while the inclusion of indi-
vidual nucleons effect does not change much the up-
per limit on the strong and electromagnetic violation
parameters (1/108), it lowers the bound on ΓW from
(4 × 10−1) to (3 × 10−2): an order of magnitude in-
crease in sharpness. The first two columns of Table 2
show the much sharper upper bounds obtained consid-
ering that only one of the basic interactions violates the
Equivalence Principle. Again, the inclusion of nucleon
structure contribution affects only slightly ΓS and ΓE

but lowers by one order of magnitude the bound on
ΓW from 10−2 to 10−3.

Also, if one includes the QCD enhancement factor
G with its value from Eq. (20), one obtains, assuming
that only weak interactions break the equivalence
principle, the upper bound:

(33)|ΓW | < 2 × 10−4.
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This is two orders of magnitude tighter than previously
reported bounds on ΓW [7].

As a final remark, let us observe that while proton–
neutron weak mass splitting originates in the neutral
currents, the “nuclear” contribution of weak interac-
tions is dominated by the charged ones [14,15]. Thus
our present results put a strong bound on both neutral
and charged currents, although the present accuracy of
the data and the large correlations between the Γt vari-
ables preclude a meaningful separation of them. The
STEP experiment, with its larger accuracy and better
cover of the periodic table may help to put bounds on
the separate currents. However, this will depend on the
exact choice of the test mass materials which, up till
now, does not seem to be public. We can only expect,
after the launch of STEP, an enhancement of about five
or six orders of magnitude for the bounds of Table 2.

Even though we should interpret our results with
caution (see Ref. [37], for examples, on mistaken
analysis related to the principle of equivalence) they
confirm that present Eötvös experiments do test weak
interactions effect with an accuracy, at least one order
of magnitude, better than previous studies.
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