
Vertex intersection graphs of paths on a grid:
characterization within block graphs
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Abstract

We investigate graphs that can be represented as vertex intersections of horizontal
and vertical paths in a grid, the so called B0-VPG graphs. Recognizing this class
is an NP-complete problem. Although, there exists a polynomial time algorithm for
recognizing chordal B0-VPG graphs. In this paper, we present a minimal forbidden
induced subgraph characterization of B0-VPG graphs restricted to block graphs.
As a byproduct, the proof of the main theorem provides an alternative certifying
recognition and representation algorithm for B0-VPG graphs in the class of block
graphs.

Keywords. vertex intersection graphs, paths on a grid, forbidden induced sub-
graphs, block graphs.

1 Introduction

A VPG representation of a graph G is a collection of paths of the two-dimensional grid
where the paths represent the vertices of G in such a way that two vertices of G are adjacent
in G if and only if the corresponding paths share at least one vertex of the grid. A graph
which has a VPG representation is called a VPG graph. In this paper, we consider the
subclass B0-VPG.

A B0-VPG representation of G is a VPG representation in which each path in the
representation is either a horizontal path or a vertical path on the grid. A graph is a
B0-VPG graph if it has a B0-VPG representation.

Representations by intersections of paths on grids arise naturally in the context of
circuit layout problems and layout optimization [9] where a layout is modelled as paths
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(wires) on a grid. Often one seeks to minimize the number of times a wire is bent [3, 8] in
order to minimize the cost or difficulty of production. Other times layout may consist of
several layers where the wires on each layer are not allowed to intersect. This is naturally
modelled as the coloring problem on the corresponding intersection graph.

The recognition problem is NP-complete for both VPG and B0-VPG graphs (see [1]
for more details about this and related results). Since all interval graphs are B0-VPG
graphs, it is natural to consider other subclasses of chordal B0-VPG graphs. In [6], certain
subclasses of B0-VPG graphs have been characterized and shown to admit a polynomial
time recognition; namely split, chordal claw-free and chordal bull-free B0-VPG graphs.
Recently, in [5] the authors present a polynomial time algorithm for deciding whether a
given chordal graph is a B0-VPG graph. In [2], it was shown that chordal B0-VPG graphs
are equivalent to the strongly chordal B0-VPG graphs.

In this paper, we consider B0-VPG graphs more from a structural point of view. We
present a minimal forbidden induced subgraph characterization of B0-VPG graphs re-
stricted to block graphs. As a byproduct, the proof of the main theorem provides an
alternative recognition and representation algorithm for B0-VPG graphs in the class of
block graphs.

2 Preliminaries

In this paper all graphs are connected, finite and simple. Notation we use is that used by
Bondy and Murty [4].

Let G = (V,E) be a graph with vertex set V and edge set E.
We write G − v for the subgraph obtained by deleting a vertex v and all the edges

incident to v. Similarly, for A ⊆ V , we denote by G − A the subgraph of G obtained by
deleting the vertices in A and all the edges incident to them, that is, G− A = G[V \A].

If H is a graph, a graph G is H-free if G contains no induced H subgraph isomorphic
to H. If H is a collection of graphs, the graph G is H-free if G is H-free for every H ∈ H.

A complete is a set of pairwise adjacent vertices. A clique is a complete which is not
properly contained in another complete. A thin spider Nn is the graph whose 2n vertices
can be partitioned into a clique K = {c1, ...cn} and a set S = {s1, ..., sn} of pairwise
nonadjacent vertices such that, for 1 ≤ i, j ≤ n, si is adjacent to cj if and only if i = j.
We say that Nn is a thin spider of size n.

The following lemma will be use in our paper.

Lemma 1 [2] In a B0-VPG representation of a clique, all the corresponding paths share
a common grid point.

We will distinguish between two types of B0-VPG representations of a clique: a line
clique and a cross clique. We say that a clique is represented as a line clique if all paths
corresponding to the vertices of the clique use a common row or a common column and
intersect on at least one grid point of that row or column. A clique is said to be represented
as a cross clique if the paths corresponding to the vertices of the clique share exactly one
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grid point, say (xi, yj), and there exists at least one such path which uses column xi and
at least one such path which uses row yj. The grid point (xi, yj) is called the center of the
cross clique (see Figure 1 for examples). It is easy to see that any B0-VPG representation
of a clique is either a line clique or a cross clique.

Figure 1: A line clique and a cross clique.

3 Block graphs

In this Section we will give a characterization of B0-VPG graphs restricted to block graphs
by a family of minimal forbidden induced subgraphs.

Definition 2 A block graph is a connected graph in which every two-connected component
(block) is a clique.

A diamond is a graph obtained from K4 by deleting exactly one edge. A graph is called
chordal if it does not contain any chordless cycle of length at least four. It is known that
block graphs are connected chordal diamond-free graphs.

A cutpoint is a vertex whose removal from the graph increases the number of connected
components.

Definition 3 Let G be a block graph. An endblock is a block having exactly one cutpoint.
An almost endblock is a block B having at least two cutpoints and such that exactly one
of these cutpoints belongs to blocks (different from B) that are not endblocks. An internal
block is a block that is neither an endblock nor an almost endblock.

We will call 3-cutpoints to cutpoints that belong to exactly 3 blocks, and 2-cutpoints to
cutpoints that belong to exactly 2 blocks, one of which is an endblock.

Definition 4 [7] The block-cutpoint-tree bc(G) of a graph G is a graph whose vertices are
in one-to-one correspondence with the blocks and cutpoints of G, and such that two vertices
of bc(G) are adjacent if and only if one corresponds to a block H of G and the other to a
cutpoint c of G, and c is in H.

The graph N5, defined in [6], is the thin spider of size 5, i.e., is a split graph which
consists of a clique graph {c1, . . . , c5}, and a set {s1, . . . , s5} of pairwise nonadjacent vertices
such that si is adjacent to cj if and only if i = j.
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We let F denote the family of block graphs obtained from N5 by a finite sequence
of applications of the following procedure: let H be a complete subgraph of size 4 in G
having at least two 2-cutpoints, say v1 and v2, with endblocks B1 and B2, respectively. We
contract v1 and v2 into a single vertex x. Then, we replace B1−{x} and B2−{x} by two
thin spiders of size 3, making x adjacent to the vertices of the cliques of both the spiders.
In Figure 2 we offer some examples of graphs in F .

Figure 2: Some examples of graphs in F .

Proposition 5 Properties of graphs in F , different from N5:

i. each block is of size at most 4;

ii. all the vertices are either leaves, 2-cutpoints or 3-cutpoints;

iii. the endblocks are of size 2 and have a 2-cutpoint;

iv. the almost endblocks are of size 4 and have three 2-cutpoints and one 3-cutpoint;

v. the internal blocks are of size 3 and have one 2-cutpoint and two 3-cutpoints;

vi. a graph in F obtained from N5 by applying the procedure k times, k ≥ 1, has 6(k + 1)
blocks (4(k+1)+1 endblocks, k+2 almost endblocks, and k−1 internal blocks), 5(k+1)
cutpoints (k 3-cutpoints and 4(k + 1) + 1 2-cutpoints), and 9(k + 1) + 1 vertices.

Proof. We will prove it by induction on the number of times we apply the procedure.
By symmetry of N5, there is only one graph obtained by applying the procedure once
(Figure 2), and it has no internal blocks. It is easy to verify that this graph satisfies the
properties claimed.

Suppose the properties are satisfied by all graphs in F obtained from N5 by applying
the procedure k times, k ≥ 1, and let G be one such graph. Let us apply the procedure
once more. Let H be a complete subgraph of size 4 in G. By inductive hypothesis, H is
an almost endblock of G, and has three 2-cutpoints and one 3-cutpoint. By item iii, the
blocks incident to the 3-cutpoint are not endblocks.

Choose two vertices v1 and v2 which are 2-cutpoints, and let B1 and B2 be the endblocks
incident with v1 and v2, respectively. By item iii, B1 and B2 are of size 2. Contract v1 and
v2 into a single vertex x, and replace B1 − {x} and B2 − {x} by two thin spiders of size 3,
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induced respectively by the vertices {c1, c2, c3, s1, s2, s3} and {c01, c02, c03, s01, s02, s03}, making
x adjacent to the vertices of the cliques of both the spiders, i.e, {c1, c2, c3, c01, c02, c03}.

After the procedure, H 0 = H − {v1, v2} ∪ {x} is a block of size 3, and it has two
3-cutpoints and still one 2-cutpoint. The new blocks {c1, c2, c3, x} and {c01, c02, c03, x} are
almost endblocks, they are of size 4 and have three 2-cutpoints and one 3-cutpoint, namely
x. And since the blocks incident to the other 3-cutpoint of H 0 are not endblocks, H 0 is
an internal block. The six new endblocks {ci, si} and {c0i, s0i}, i = 1, 2, 3 have a 2-cutpoint
each (vertices ci and c0i) and a leaf each (vertices si and s0i). The remaining blocks as well
as their conditions are not affected. So items i–v are satisfied by the new graph. To see
item vi, notice that we have replaced 2 endblocks by 8 new blocks, 6 of which are endblocks
and 2 of which are almost endblocks. Also, one almost endblock has become an internal
block. We have replaced 4 vertices by 13 vertices and, in particular, two 2-cutpoints by
one 3-cutpoint and six 2-cutpoints. 2

Corollary 6 The family F is infinite.

Proof. By Proposition 5, for every graph in F there is always an almost endblock on
which we can perform the procedure in order to obtain a new graph in F with strictly
more vertices. 2

Corollary 7 Each graph in F is minimal, i.e., it does not contain another graph in F as
induced subgraph.

Proof. Let G ∈ F and let G0 be a proper connected induced subgraph of G. The blocks
of G0 are the blocks of G intersected with V (G0). Suppose G0 ∈ F , and suppose B0 is a
block of G0 such that B0 = B ∩ V (G0), with B a block of G, and |B0| < |B|. Then, B
cannot be an endblock of G because, by Proposition 5.iii, endblocks of G have size 2 and
|B0| < |B|; B0 cannot be an almost endblock of G0 because by Proposition 5.i B has at
most 4 vertices, and by item iv B0 should have 4 vertices; B0 cannot be an internal block
of G0 because, in that case, by Proposition 5 and the cardinalities of each type of block,
B should be an almost endblock but, by item v, B0 should have two 3-cutpoints while B
has only one 3-cutpoint, and no 2-cutpoint of G may become a 3-cutpoint in an induced
subgraph of it. So, B0 is an endblock and B is either an almost endblock or an internal
block. Let x be the cutpoint of B0 in G0. By Proposition 5.iii, x is a 2-cutpoint of G0. If
x is a 2-cutpoint in G, as B is not an endblock, we have that G0 = P3, and it does not
belong to F (by Proposition 5.vi). If x is a 3-cutpoint in G, let B1 and B2 be the other two
blocks in G that contain x. Since x is a 2-cutpoint in G0, the intersection of one of these
blocks with V (G0) is {x}. Without loss of generality, suppose this is the case of B2. If B1

is an almost endblock in G, then G0 is an induced subgraph of the thin spider N4, that is
not in F (by Proposition 5.vi). If B1 is an internal block, by cardinality, it may be either
an endblock or an internal block in G0. In the first case, G0 = P3, that is not in F . The
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second case cannot arise, because B1 cannot have two 3-cutpoints in G0 (no 2-cutpoint of
G may become a 3-cutpoint in an induced subgraph of it). 2

We will prove now some properties about the B0-VPG representations of block graphs.

Lemma 8 If a clique K of a block graph G has 3 cutpoints, then, in a B0-VPG repre-
sentation of G, it has to be represented as a cross clique. Similarly, if the clique K has 4
cutpoints.

Proof. Let vi, 1 ≤ i ≤ 3, be the cutpoints of K. Since vi, 1 ≤ i ≤ 3, are cutpoints there
exist vertices xj, 1 ≤ j ≤ 3, such that vi is adjacent to xj if and only if i = j. Suppose that
the clique K is represented as a line clique. So, all the paths which represent vertices of
K are horizontal (respectively vertical) paths using a common row (respectively column)
of the grid. Suppose that Pv1 is the farthest line in the East direction (by farthest line in
some direction, in the context of a clique whose paths intersect at point p of the grid, we
mean the path belonging to the clique and such that one of its endpoints maximizes the
distance to p in that direction) and Pv2 is the farthest lines using the West. But, Pv3 is
an horizontal (respectively vertical) path lying in the same row (respectively column) that
Pv1 and Pv2 and it has to be adjacent to Px3 , and Px3 is not adjacent with Pv1 and Pv3 . So,
it is impossible to represent Px3 .

In a similar way, it is easy to see that the results follows if K has 4 cutpoints. 2

Lemma 9 If a clique K of a block graph G has 4 cutpoints, then, then, in a B0-VPG
representation of G, the 4 cutpoints are represented as the farthest lines South, North, West
and East, respectively. Similarly, if a clique K has 3 cutpoints, then they are represented
as the farthest lines of three different cardinal points.

Proof. Suppose that K has 4 cutpoints. By Lemma 8, K has to be represented as a
cross clique. Using the same idea that in the proof of Lemma 8, it is easy to see that the 4
cutpoints are represented as the farthest lines South, North, West and East, respectively.

In a similar way, it is easy to see that the results follows if K has 3 cutpoints. 2

Lemma 10 In any B0-VPG representation of the graph W , given in Figure 3, the inter-
section points of cliques C1, K, and C2 lie in a same line of the grid, and the intersection
point of clique K lies between the intersection points of cliques C1 and C2.

Proof. Let x1, x2, x3 be the intersection points in the grid of the cliques C1, K, C2,
respectively. Suppose, by the contrary, that there is a B0-VPG representation of the graph
W such that x2 does not lie between x1 and x3. Without loose of generality, we can assume
that x2 is to the left of x1 and x3. By Lemmas 9 and 8, since C1 and C2 have 4 cutpoints,
they are represented as cross cliques where the 4 cutpoints are the farthest lines South,
North, West and East, respectively. So, it is impossible to represent the vertex w of W . 2
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Figure 3: The graph W .

Remark 1 Observe that all the graphs of F − {N5} have W as induced subgraph.

Lemma 11 The graphs of F are not B0-VPG.

Proof. The graph N5 is not B0-VPG [6]. We will proceed by induction on the number
of applications of the procedure in the construction of the graph from N5. Assume that if
we applied the procedure k times, then we obtain a graph of F which is not B0-VPG.

Let G be a graph of F which is obtained applying the procedure k + 1 times. Suppose,
on the contrary, that G ∈ B0-VPG. We take a B0-VPG representation of G.

By Remark 1, G has W as induced subgraph. Let v be the vertex of W as in Figure
3, let Pv be the path which represents v in the B0-VPG representation of G that we took.
Let x1, x2, x3 be the intersection points in the grid of the cliques C1, K, C2, respectively.
Clearly, the three vertices lie in a same line of the grid and, by Lemma 10, x2 lies between
x1 and x3.

We are going to construct a new B0-VPG representation. This is obtained of the
previous one by removing the paths which correspond to C1, C2 and their corresponding
endblocks; and adding the paths Pvi , with 1 ≤ i ≤ 4, such that V (Pv1) = {x1, x2},
V (Pv2) = {x2, x3}, V (Pv3) = {x1} and V (Pv4) = {x3}. Observe that this is a B0-VPG
representation of a graph of F that was obtained applying the procedure k times, which
is a contradiction.

Hence, the graphs of F are not B0-VPG. 2

We have proved the following theorem:

Theorem 12 Let G be a block V PG graph. Then G is B0-VPG if and only if G is F-free.
Moreover, the graphs of F are minimal not B0-VPG.

Proof. The only if part follows from Lemma 11. For the if part, let G be a block F -free
graph. Let s be a BFS ordering of the vertices of the block-cutpoint-tree bc(G), in such a
way that s1 is a vertex of bc(G) corresponding to a block of G. Let Hi be the i-th block
in s. We will consider the graph Gi as the graph induced by the first i blocks H1, . . . , Hi

in s, and proceed by induction on i. Notice that the graph Gi is connected and that Hi is
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an endblock of Gi; moreover, by the BFS algorithm, if i > 1, there is only one cutpoint c
of G belonging to Hi and appearing in s before Hi. We will denote that cutpoint as c(i).
Notice that c(i) is a cutpoint of Gi. All the blocks between c(i) and Hi containing c(i) are
endblocks of Gi and are consecutive in s. For each such block Hj, it holds c(j) = c(i).

For each cutpoint c of G, there is only one block containing c and appearing before c
in s. We will denote that block by Hc.

We will label the cutpoints of G as A or B, according to some rules, in decreasing
order with respect to s. As s was obtained by a BFS of bc(G), by the moment of labeling
the cutpoint c, all the other cutpoints of the blocks containing c and different from Hc

are already labeled. The cutpoint c will be labeled B if it belongs to at least two blocks,
different from Hc, such that each of them either has at least four cutpoints or has exactly
three cutpoints and one of them is already labeled B. The cutpoint c will be labeled A
otherwise.

We will show by induction on i that we can find a B0-VPG representation of Gi such
that if c is a cutpoint of G that is a vertex of Gi, then it corresponds to the farthest North,
South, East or West line of the line or cross representation of the clique Hc and, moreover,
if c is labeled B, then it corresponds to the farthest North and South, or East and West
(simultaneously) line of the line or cross representation of the clique Hc.

Claim. Since G is F -free, the following conditions hold: (i) no block of G has five (or
more) cutpoints; (ii) a cutpoint c labeled B belongs to exactly two blocks, different from
Hc, such that each of them either has at least four cutpoints or has exactly three cutpoints
and one of them (different from c) is labeled B; (iii) if a cutpoint c is labeled B, then Hc

has at most three cutpoints; and (iv) no block of G having at least three cutpoints is Hc1

and Hc2 for two cutpoints c1 and c2 labeled B.
Proof of the claim. Condition (i) holds since G is N5-free. Let us assume from now on

that (i) is satisfied.
Suppose by contradiction that one of conditions (ii), (iii) or (iv) does not hold. We

will prove, by induction in the number of cutpoints labeled B on bc(G), that G contains a
member of F as an induced subgraph.

If there is only one vertex v labeled B, then the conditions that should fail are (ii) or
(iii). By the labeling rules and since v is the only vertex labeled B, it belongs to at least
two blocks, different from Hv, such that each of them has four cutpoints. Either if the
number of such blocks is at least three or if Hv has four cutpoints, then G contains the
second graph in Figure 2 as induced subgraph.

Suppose that the number of vertices labeled B is greater than one, and let v be the
first vertex labeled B in the BFS sequence s (i.e., the one with higher index in s).

By the labeling rules and since v is the first vertex labeled B, it belongs to at least
two blocks, different from Hv, such that each of them has four cutpoints. Either if the
number of such blocks is at least three or if Hv has four cutpoints, G contains the second
graph in Figure 2 as induced subgraph. Assume then that v belongs to exactly two blocks,
different from Hv, such that each of them has four cutpoints, and that Hv has at most
three cutpoints.
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If Hv has three cutpoints, let w be other cutpoint of G such that Hv = Hw. If w is
labeled B, since s is a BFS order and v is the first vertex labeled B, w belongs to at least
two blocks, different from Hv, such that each of them has four cutpoints. Then G contains
the third graph in Figure 2 as induced subgraph. If w is labeled A, conditions (ii), (iii)
and (iv) are “locally” satisfied by v, w, and Hv. We can replace v and all the connected
components of G− v, except the one containing Hv − v, by four vertices v1, v2, v

0
1 and v02

by making v1 and v2 adjacent to each other and to Hv − v, v01 adjacent just to v1, and v02
adjacent just to v2. Call G0 the obtained graph. Now the block H 0 = Hv − v ∪ {v1, v2} of
G0 has four cutpoints (all of them labeled A), so the label of every cutpoint placed before
v in s remains unchanged in a labeling of bc(G0), and the condition among (ii), (iii) and
(iv) that was violated in G is still violated in G0. Since all cutpoints of H 0 are labeled A,
G0 has one less cutpoint labeled B than G. By inductive hypothesis, G0 contains a graph
F of F as induced subgraph. Notice that G0−{v1, v01} and G0−{v2, v02} are isomorphic to
an induced subgraph of G. So, since F is connected, if F does not contain one of {v1, v2},
then G contains F as an induced subgraph. If F contains v1 and v2, by Proposition 5, F
contains H 0 ∪ {v01, v02}, and H 0 is an almost endblock of F . Let F 0 be the graph obtained
from F by applying the procedure given in the definition of F to the vertices v1 and v2.
Then F 0 belongs to F and F 0 is an induced subgraph of G.

If Hv has two cutpoints, conditions (ii), (iii) and (iv) are “locally” satisfied by v and
Hv, and the label of the other cutpoint of Hv does not depend on the block Hv. We can
delete from G all the connected components of G − v, except the one containing Hv − v,
and call G0 the obtained graph. The block H is now an endblock of G0, the label of every
cutpoint placed before v in s remains unchanged in a labeling of bc(G0), and the condition
among (ii), (iii) and (iv) that was violated in G is still violated in G0. Moreover, v is
no longer a cutpoint in G0, so G0 has one less cutpoint labeled B than G. By inductive
hypothesis, G0 contains a graph F of F as induced subgraph. Since G0 is an induced
subgraph of G, so is F . ♦

As a block H is Hc for all but at most one of its cutpoints c, item (iii) of the previous
claim implies that no block has four cutpoints such that two of them labeled B, and item
(iv) of the previous claim implies that no block has three cutpoints labeled B.

Since, by item (i), no block has five or more cutpoints, the possible label multisets for
the blocks of G are {A}, {B}, {A,A}, {A,B}, {B,B}, {A,A,A}, {A,A,B}, {A,B,B},
{A,A,A,A} and {A,A,A,B}.

Let i = 1, so Gi has only one block H1. Note that H1 is Hc for every cutpoint c
of G belonging to H1. So, considering the label multiset of the vertices of H1, the cases
{A,A,A,B} and {A,B,B} cannot arise (by items (iii) and (iv) of the claim, respectively).
In the cases {A}, {B}, and {A,A}, the block can be represented either as a line clique or
as a cross clique, satisfying the conditions. In the cases {A,B} and {B,B}, the block can
be represented as a cross clique where one of the labeled vertices is the farthest North and
South line, and the other one is the farthest East and West line. In the cases {A,A,A} and
{A,A,B}, the block can be represented as a cross clique where one of the labeled vertices
(the vertex labeled B in the second case) is the farthest North and South line, and the
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other two are the farthest East, respectively West, line. In the case {A,A,A,A}, the block
can be represented as a cross clique where each labeled vertex corresponds to the farthest
North, South, East or West line.

We will proceed now by induction. Let i > 1, and let v := c(i), the only cutpoint of Hi

appearing in s before Hi. Let Hj, Hj+1, . . . , Hi be the blocks between v and Hi containing
v (it can be j = i). As noticed above, Hj, Hj+1, . . . , Hi are endblocks, and since the first
element of s is a block, j > 1. In particular, Hv ⊆ Gj−1. Notice also that for j ≤ k ≤ i
and for every cutpoint c of G, different from v, that belongs to Hk, it holds Hk = Hc.

We know by inductive hypothesis that there is a B0-VPG representation of Gj−1 such
that each cutpoint c of G that belongs to Gj−1 corresponds to the farthest North, South,
East or West line of the line or cross representation of the clique Hc and, moreover, if
c is labeled B, then it corresponds to the farthest North and South, or East and West
(simultaneously) line of the line or cross representation of the clique Hc.

We will show that, possibly refining the grid, we can extend this representation to a
representation of Gi with the desired properties.

We will consider the possible cases for the label of v and the remaining labeled vertices
of Hj, . . . , Hi.

Case 1: v is labeled B.

Without loss of generality, assume that vertex v corresponds to the farthest North and
South line of the representation of Hv, say Pv. As Hv is the only clique of Gj−1 containing
v, Pv has two segments PN

v and P S
v that do not intersect any other path in Gj−1, and each

of them contains an endpoint of Pv.
Since v is labeled B, we have that the possible multisets for the blocks Hj, . . . , Hi are

{B}, {A,B}, {B,B}, {A,A,B}, {A,B,B}, and {A,A,A,B}. By the item (ii) of the
claim, at most two of them have labels {A,A,A,B} or {A,B,B} (there are exactly two
such blocks in G, but some of them may have index greater than i). We will assign to each
block a segment of PN

v or P S
v , in such a way that the blocks having labels {A,A,A,B}

or {A,B,B} receive the segments of PN
v , respectively P S

v , that contain an endpoint of Pv.
It is easy to see that we can extend the representation to a B0-VPG representation of H
satisfying the required properties: in the case of labels {B}, we add the remaining vertices
in a line clique on the assigned segment; in the case of labels {A,B} or {B,B}, we add the
remaining vertices in a cross clique on the assigned segment, in such a way that the other
labeled vertex corresponds to the farthest East and West line of the clique; in the case of
labels {A,A,B}, we add the remaining vertices in a cross clique on the assigned segment, in
such a way that the other two labeled vertices correspond to the farthest East, respectively
West, line of the clique; in the case of labels {A,B,B}, we add the remaining vertices
in a cross clique on the assigned segment, in such a way that the other vertex labeled B
corresponds to the farthest East and West line of the clique, and the third labeled vertex
corresponds to the farthest North line if the segment assigned contains the North endpoint
of Pv, and to the farthest South line, otherwise; finally, in the case of labels {A,A,A,B},
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we add the remaining vertices in a cross clique on the assigned segment, in such a way
that two of the other labeled vertices correspond to the farthest East, respectively West,
line of the clique, and the third labeled vertex corresponds to the farthest North line if
the segment assigned contains the North endpoint of Pv, and to the farthest South line,
otherwise.

For a scheme, see the leftmost draw in Figure 4.

Figure 4: Scheme for the extension of a representation of Gj−1 to Gi. The cutpoints are
represented by bold lines.

Case 2: v is labeled A.

Without loss of generality, assume that vertex v corresponds to the farthest North line
of the representation of Hv, say Pv. As Hv is the only clique of Gj−1 containing v, Pv has
a segment PN

v that does not intersect any other path, and contains the North endpoint of
Pv.

Since v is labeled A, the possible multisets for the blocks Hj, . . . , Hi are {A}, {A,A},
{A,B}, {A,A,A}, {A,A,B}, {A,A,A,A}. Notice that, since for j ≤ k ≤ i and for
every cutpoint c of G, different from v, that belongs to Hk, it holds Hk = Hc, the multisets
{A,A,A,B} and {A,B,B} cannot arise (by items (iii) and (iv) of the claim, respectively).

By the labeling rules, at most one block in Hj, . . . , Hi has labels {A,A,A,A} or
{A,A,B}. We will assign to each block a segment of PN

v , in such a way that the block
having labels {A,A,A,A} or {A,A,B} receives the segment of PN

v that contains the North
endpoint of Pv. It is easy to see that we can extend the representation to a B0-VPG rep-
resentation of H satisfying the required properties: in the case of labels {A}, we add the
remaining vertices in a line clique on the assigned segment; in the case of labels {A,A}
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or {A,B}, we add the remaining vertices in a cross clique on the assigned segment, in
such a way that the other labeled vertex corresponds to the farthest East and West line of
the clique; in the case of labels {A,A,A}, we add the remaining vertices in a cross clique
on the assigned segment, in such a way that the other two labeled vertices correspond to
the farthest East, respectively West, line of the clique; in the case of labels {A,A,B}, we
add the remaining vertices in a cross clique on the assigned segment, in such a way that
the vertex labeled B corresponds to the farthest East and West line of the clique, and
the third labeled vertex corresponds to the farthest North line of the clique; finally, in the
case of labels {A,A,A,B}, we add the remaining vertices in a cross clique on the assigned
segment, in such a way that two of the other labeled vertices correspond to the farthest
East, respectively West, line of the clique, and the third labeled vertex corresponds to the
farthest North line of the clique.

For a scheme, see the rightmost draw in Figure 4.

The minimality holds by the equivalence of B0-VPG and F -free within block graphs,
and Corollary 7. 2

Corollary 13 Let G be a chordal diamond-free V PG graph. G is a B0-VPG graph if and
only if G is F-free.

Proof. It follows directly by the fact that block graphs are connected chordal diamond-
free graphs. 2

4 Conclusion

In this paper we considered B0-VPG graphs, that is, intersection graphs of paths on a
grid such that each path is either a horizontal path or a vertical path on the grid. We
characterized whether a block graph is a B0-VPG graph in terms of minimal forbidden
induced subgraphs.

The proof of Theorem 12 (i.e., the labeling process and the conditions of the claim)
provides an alternative recognition and representation algorithm for B0-VPG graphs in
the class of block graphs. This algorithm is a certifying algorithm, since if the answer is
negative it provides a minimal forbidden induced subgraph.
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