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Abstract

We study R-charge transport in a wide class of strongly-coupled supersymmetric plas-

mas at finite temperature with ’t Hooft coupling corrections. To achieve this, we use the

gauge/string duality and include the full set of O(α′3) corrections to the supergravity back-

grounds given at zeroth order by the direct product of the AdS5-Schwarzschild black hole

with a five-dimensional compact Einstein manifold. On general grounds, the reduction leads

to a large number of higher derivative operators, which we reduce using the symmetries of the

solution. We are left with a universal set of operators whose coefficients can in principle be

fixed by carrying out an explicit compactification. We apply our results to the computation

of the R-charge conductivity of the supersymmetric plasma at finite yet strong coupling.
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1 Introduction

The past few years have seen increasing interest in the properties of the deconfined quark-

gluon plasma (QGP), obtained as a result of the collision of heavy nuclei. Observations

at the Relativistic Heavy Ion Collider (RHIC) imply that once this plasma is produced at

temperatures of order a hundred MeV, it behaves like an ideal fluid. We refer the reader to

several review articles discussing the phenomenology of the QGP [1, 2, 3, 4, 5, 6, 7]. Such

experimental motivation necessitates an understanding of the hydrodynamic properties of

the QGP from the theoretical side, and an excellent tool to use for this investigation is

the AdS/CFT correspondence [9, 10, 11, 12]. The latter conjectures a duality between a

class of highly symmetric strongly-coupled quantum field theories and strings propagating

in certain gravity backgrounds. The reason why the AdS/CFT correspondence is a good

candidate to approach the QGP is that the latter is strongly-coupled in the relevant regime of

temperature. An immediate focus would be to use the AdS/CFT correspondence to compute

the transport coefficients of highly-symmetric plasmas in the hydrodynamic regime, defined

as the regime in which the perturbations of the plasma have a momentum much smaller than

the temperature. The important observables, which hopefully can be used to compare with

experiment, are the usual transport coefficients of fluid dynamics entering the Navier-Stokes

equation. The recipe is to calculate the retarded two-point functions of conserved currents

of the theory at thermal equilibrium, following the rules established in [13, 14]. Using these

rules, and working in the gravitational holographic dual model, one is able to obtain the

transport coefficients of both mass (energy-momentum) and charge, extracting quantities

such as viscosity [15, 16, 17] and the R-charge conductivity [14, 16, 18].

Now we must bear in mind that the results obtained in these references, and in fact in all

of the literature utilizing the holographic duality, apply to theories with a large number of

degrees of freedom (large-N), and with a certain degree of supersymmetry and/or conformal

invariance. These are of course the limitations of the AdS/CFT correspondence, and so

a direct comparison to experimental observations is difficult. It is nonetheless important

to understand the strong-coupling regime of these highly-symmetric theories fully, as they

share many features with QCD. In fact, the shear viscosity results for N = 4 SYM theory

[15, 16, 17] obtained via the AdS/CFT correspondence are very close to those measured

for the QGP [1]. Moreover, the AdS/CFT correspondence allows us to identify universal

properties of the hydrodynamic coefficients [19], which would be very useful if QCD were to

be shown to be within the class of theories in which this universality is operative. In addition,

one may improve the approach to QCD by incorporating some of its essential aspects in the

gravity dual. This includes adding flavour fields in the fundamental representation into

the gravity dual [20], for instance using D3-D7 brane systems as in the Karch and Katz

model [21]. Another important direction to pursue is to go to finite coupling, by including

corrections to the infinite ’t Hooft parameter results. Within the context of the AdS/CFT
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correspondence, this is achieved by adding string-theoretic higher-curvature corrections to

the gravitational background. This is the premise of the present article.

There is by now a large volume of literature on finite-coupling corrections to the transport

properties of plasma in the hydrodynamic regime [19, 22, 23, 24, 25, 26, 27, 28]. Such trans-

port properties include the shear viscosity and the mass-density diffusion constants, both

of which can be obtained by studying tensor fluctuations of the supergravity metric with

higher-curvature corrections. On the other hand, the vector fluctuations of the metric yield

quantities such as the R-charge diffusion and conductivity. The finite coupling corrections

to the latter quantities have been considered so far only for the cases where the additional

curvature terms have been of mass-dimension four and six. In type IIB string theory, the

stringy corrections made up of the metric and the Ramond-Ramond five-form field strength

are known explicitly, and are found to yield dimension eight operators. In this paper, we

analyze the effect of these dimension-eight operators on the vector fluctuations of the su-

pergravity metric. We should mention that in a recent paper we have studied the effect

of the full O(α′3) corrections from type IIB string theory, including those derived from the

Ramond-Ramond five-form field strength, on the retarded current-current correlators at the

high energy regime, where the plasma is probed at distances smaller than the inverse of the

temperature [29].

Let us describe the general idea of the computation we carry out firstly and summarize our

results. The type IIB string theory action with leading order O(α′3) corrections, is given by

the usual two-derivative minimal Lagrangian with certain eight-derivative corrections added.

The schematic form of the O(α′3) corrections is Weyl4 +Weyl3T +Weyl2T 2, where Weyl

is the ten-dimensional Weyl tensor and T is based on the five-form field strength F5 of type

IIB string theory. A general solution to this complicated Lagrangian is a warped product

of a deformed AdS-Schwarzschild black hole with a five-dimensional Einstein manifold M5,

which for instance can be a Sasaki-Einstein manifold [30]. This is dual to a supersymmetric

conformal field theory (SCFT), with an R-symmetry group that contains at least one U(1)

factor.

We want to examine the R-charge correlators in this dual theory, focussing on the diagonal

U(1) which is dual to the graviphoton. Note that a weak gauging of this U(1) on the field

theory side, with a small gauge coupling in the manner of [18], allows us to interpret our

results as pertaining to an embedding of U(1)em in the R-symmetry group of the field theory.

This obviously gives our computations below added significance, because we may view them

as an investigation into the finite ’t Hooft coupling corrections to electromagnetic charge

transport in a wide class of theories. The fields dual to the field-theory U(1) are vectorial

perturbations of the metric and the five-form field strength. We thus must perturb the

background supergravity solution in the vectorial (mixed) directions Aµ = Gµa, plug the

perturbed supergravity solution into the corrected Lagrangian, and integrate out the M5

directions a to obtain a five-dimensional Lagrangian for the gauge fields Aµ. At infinite ’t
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Hooft coupling, one simply uses the minimal type IIB supergravity action, and obtains the

Einstein-Maxwell Lagrangian in AdS-Schwarzschild black hole, i.e. five-dimensional gravity

(with a cosmological constant) coupled to a U(1) graviphoton. The computation at finite

coupling is much more complicated, as one must take into account all of the dimension eight

string-theory operators when performing the compactification. To achieve this, we focus our

attention on the construction of the full (complete) set of five-dimensional operators that can

be induced by the ten-dimensional operators Weyl4+Weyl3T +Weyl2T 2. We find 26 such

operators, and they have the schematic form C2F 2, C2(∇F )2 and (∇F )2, where F is the

field-strength of the U(1) boson. Observe that these operators will be present in any type

IIB string theory dual model, giving our computation an added incentive. The numerical

values of the coefficients of the operators may be dependent on the explicit type of internal

manifold, but the hope is that some of them are universal (i.e. independent of the internal

manifold M5).

Having obtained the complete five-dimensional Lagrangian with arbitrary coefficients, we

apply our results to obtain the equations of motion of the transverse gauge field Ax, whose

solution we require to compute the R-charge conductivity. This field decouples from the other

perturbations, as we show explicitly. We solve the equations of motion of this field in the

hydrodynamic regime as a series in the momentum, requiring ingoing boundary conditions at

the horizon. We find that the frequency of the waves at the horizon is unchanged with respect

to the infinite ’t Hooft coupling results, for any gauge-invariant set of operators: our results

therefore strongly suggest that any gauge invariant Lagrangian for the vector perturbations

yields an equation of motion with the same singularity structure and indices at the horizon.

We then obtain a general expression for the leading ’t Hooft coupling corrections to the

R-charge conductivity.

We view our results as a step towards a better understanding of charge-transport in

strongly-coupled gauge theory plasmas for a range of theories. We emphasize that the set

of operators enumerated in this work are present in any type IIB string theory holographic

dual model, because the order O(α′3) ten-dimensional terms are present regardless of the

details of the dual theory (e.g. whether it has flavour branes or not). Thus, obtaining this

complete set of operators in this setting is of intrinsic value even if the exact coefficients of

the operators in five dimensions are unknown. The hope is that some (or many) of these

coefficients will be universal, as we speculate in later sections of the paper.

2 The corrected background

Let us define the premise of the paper more carefully: we are interested in the retarded

correlators of the vector currents associated with a gauged U(1) subgroup of the global R-

symmetry group of a SCFT plasma. For example, the conductivity is extracted from the
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retarded current-current commutator

Rµν(q) = i
∫

d4x e−iq·xΘ(x0) < [Jµ(x), Jν(0)] > , (1)

where Θ(x0) is the Heaviside function, while Jµ(x) is the conserved current associated with

the gauged U(1) subgroup mentioned above. The expectation value is understood as a

thermal average over the statistical ensemble of the SYM plasma at temperature T . Let

us first consider the string theory holographic dual description of this theory at infinite ’t

Hooft coupling. This is a solution of type IIB supergravity with only the leading curvature

terms, namely the Einstein-Hilbert action coupled to the dilaton and the Ramond-Ramond

five-form field strength:

S10 =
1

2κ2
10

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)

2
]

. (2)

The solution to the equations of motion of this Lagrangian sourced by N D3-branes at

finite temperature is given by the direct product of an AdS-Schwarzschild black hole with

a compact Einstein manifold M5. The five-form field strength is given as the sum of the

volume forms on the two manifolds,

F
(0)
5 = − 4

R
(1 + ∗)ǫ5 , (3)

where the superscript (0) indicates that this is a pure supergravity solution, i.e. with no

stringy corrections. Its total flux through the compact manifold gives N units. The current

operator Jµ(x) is dual to the s-wave mode of the vectorial fluctuation about this background.

In order to obtain the correct AdS-Schwarzschild Lagrangian for the vectorial perturbation,

one must construct a consistent perturbed ansatz for both the metric and the five-form field

strength, such that a proper U(1) subgroup of the R-symmetry group is obtained (see [31, 32,

33, 34] for the S5 solution, and [30] for the five-dimensional Sasaki-Einstein solution). The

result of inserting the consistent perturbation ansatz into the minimal type IIB supergravity

action is the minimal U(1) gauge field kinetic term in the AdS-Schwarzschild black hole.

Therefore, by studying the bulk solutions of the Maxwell equations in the AdS-Schwarzschild

black hole with certain boundary conditions, we can obtain the retarded correlation functions

[13, 14, 18] of the operator Jµ(x). Our aim in this section is to describe this procedure for the

α′3-corrected type IIB supergravity action, which contains dimension-eight higher curvature

operators. These higher-curvature corrections on the supergravity side correspond to finite-

coupling corrections in the field theory, hence our interest in their effect. Essentially, for any

given field-theoretic observable O, we can write a series O0 +O1/λ
n1 + · · ·, where λ is the ’t

Hooft coupling, and n1 is a positive number which indicates that the lowest order correction

to the result at infinite coupling O0 need not begin at order one. We are interested in the

case where O0 is the two-point current correlator, and we must thus determine the effect of

the string-theory corrections on the vectorial perturbations of the metric.
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The inclusion of higher-derivative corrections to the supergravity must take place at the

level of the ten-dimensional action, through the evaluation of stringy corrections to Eq.(2).

The leading corrections were found to begin at O(α′3). These corrections were found to

have no effect on the metric at zero temperature [35], verifying certain non-renormalization

theorems of CFT correlators. At finite temperature [36, 37], much of the work focussed on

the corrections to the thermodynamics of the black hole. The corrections were then revisited

in references [38, 39, 40], where the computation of the α′-corrected metric was improved

and attempts were made to address the issue of the completeness of the corrections at

leading order in α′. Much of the interest of the community has focussed on the effect of

higher curvature corrections on the spin-2 sector of the fluctuations [22, 24, 41, 42], as these

determine the viscosity and mass-diffusion constants of the plasma. In [43, 25] the higher

curvature corrections to the dual of N = 4 SYM were parsed thoroughly to determine how

they affect the metric. Crucially, the corrections to the metric were found to be universal,

i.e. independent of the internal manifold for a wide class of internal manifolds, of which

Sasaki-Einstein is a member.

For the case of the vectorial fluctuations of the background, there are two distinct parts

to the calculation: the first part consists of obtaining the minimal gauge-field kinetic term

using new perturbed and corrected metric and five-form field strength ansätze. The second

part of the computation consists of obtaining the corrections to the gauge field Lagrangian

coming directly from the higher-derivative operators. The reason why these two steps are

distinct is that the first step will require insertion of the corrected perturbation ansätze

into the minimal ten-dimensional supergravity two-derivative part Eq.(2). The second step

requires insertion of the uncorrected perturbation ansätze into the higher-curvature terms in

ten dimensions, for consistency in the α′ expansion.

Below we choose to use a specific manifold, the S5 manifold, as an illustration of the

methodology, but we emphasize to the reader that the discussion below applies directly

without modification to any five-dimensional compact Einstein manifold. The only restric-

tion comes from the requirement that in the zeroth-order background supergravity solution

the only non-trivial fields are the metric and the five-form field strength. Our discussion

thus applies to all supergravity backgrounds with an internal component satisfying these

requirements, and these internal manifolds happen to be Einstein. Thus, we could have used

the ansätze espoused in [30] to arrive at the same conclusions. We only use the five-sphere

in what follows for simplicity and familiarity.

We begin by examining the corrected metric and F5 solutions, then proposing ansätze for

the perturbations that may be inserted into Eq.(2) to obtain the minimal gauge kinetic term.

The corrections to the ten-dimensional type IIB action are given by [25]

Sα′

10 =
R6

2κ2
10

∫

d10x
√
−G

[

γe−
3

2
φW4 + · · ·

]

, (4)

where γ encodes the dependence on the ’t Hooft coupling λ through the definition γ ≡
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1
8
ξ(3) (α′/R2)3, with R4 = 4πgsNα′2. Setting λ = g2YMN ≡ 4πgsN , we get γ = 1

8
ξ(3) 1

λ3/2 .

The W4 term is a dimension-eight operator, and is given by

W4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmn C

rsp
h Cq

rsk , (5)

where Cq
rsk is the Weyl tensor. The dots in Eq.(4) denote extra corrections containing

contractions of the five-form field strength F5, which we can schematically write as γ(C3T +

C2T 2+CT 3+T 4), where C is the Weyl tensor and T is a tensor found in [25] and composed of

certain combinations of F5. The authors of [25] showed that the metric itself is only corrected

by W4, essentially due to the vanishing of the tensor T on the uncorrected supergravity

solution. This conclusion was found to be independent of the internal manifold, as long as

the only non-trivial fields in the zeroth-order supergravity background are the metric and

the five-form field strength. As we mentioned this holds for any compact Einstein manifold.

Hence, all Sasaki-Einstein manifolds Lpqr, as well as Y
p,q and T 1,1 which are special cases of

them, are covered by what follows.

After taking into account the contribution of W4 to the Einstein equations, one finds the

corrected metric [36, 37, 39]

ds2 =
(

r0
R

)2 1

u

(

−f(u)K2(u) dt2 + d~x2
)

+
R2

4u2f(u)
P 2(u) du2 +R2L2(u) dΩ2

5 , (6)

where f(u) = 1−u2 and R is the radius of the AdS5. In these coordinates the AdS-boundary

is at u = 0 while the black hole horizon is at u = 1. We denote the AdS5 coordinates by the

indices m, where m = {(µ = 0, 1, 2, 3), 5}, where

K(u) = exp [γ (a(u) + 4b(u))] , P (u) = exp [γ b(u)] , L(u) = exp [γ c(u)] , (7)

and

a(u) = −1625

8
u2 − 175 u4 +

10005

16
u6 , b(u) =

325

8
u2 +

1075

32
u4 − 4835

32
u6 ,

c(u) =
15

32
(1 + u2) u4 , with r0 =

πTR2

(1 + 265
16
γ)

, (8)

where T is the physical temperature of the plasma. Having obtained the corrected metric,

the next step is to deduce the appropriate perturbation ansätze. This is in fact where the

complications of the problem appear: the vector perturbation enters into both the perturbed

metric and the perturbed F5 solution. This is distinct from the case where one considers ten-

sor perturbations of the background, which are relevant for viscosity computations, because

they only enter into the metric ansatz, not into the F5 ansatz, making the computations far

simpler.

Let us first consider how we would obtain the minimal (two-derivative) kinetic term for

the gauge fields. We must insert our corrected ansatz into the two-derivative supergravity

6



action Eq.(2). The metric ansatz we use is as follows, with obvious substitutions, where we

have imposed that the internal metric is the five-sphere (for ease of demonstration)

ds2 = gmn dx
m dxn +R2L(u)2

3
∑

i=1

[

dµ2
i + µ2

i (dφi +
2√
3
Aµdx

µ)2
]

, (9)

where the µi are the direction cosines for the sphere, as usual.

As for the ansatz for F5 = G5 + ∗G5 we use the fact that we are only interested in the

terms which are quadratic in the gauge-field perturbations. Thus we use the following ansatz

G5 = − 4

R
ǫ5 +

R3L(u)3√
3

(

3
∑

i=1

dµ2
i ∧ dφi

)

∧ ∗F2 , (10)

where F2 = dA is the Abelian field strength and ǫ5 is the deformation of the volume form of

the five-dimensional metric of the AdS-Schwarzschild black hole 3. The Hodge dual ∗ is taken

with respect to the ten-dimensional metric, while ∗ denotes the Hodge dual with respect to

the five-dimensional metric piece of the black hole. Note that we have not dwelled on the

details of the ansatz because the main point of the paper is that the operators derived below

are in fact independent of the internal manifold in form. The only dependence comes in

through their coefficients. Inserting these ansätze into Eq.(2), and discarding all the higher

(massive) Kaluza-Klein harmonics of the five-sphere, we get the following action for the

zero-mode Abelian gauge field Am:

S = − Ñ2

64π2R

∫

d4x du
√−g L7(u) gmp gnq Fmn Fpq , (11)

where the Abelian field strength is Fmn = ∂mAn − ∂nAm, the partial derivatives are ∂m =

∂/∂xm, while xm = (t, ~x, u), with t and ~x = (x1, x2, x3) being the Minkowski coordinates,

and g ≡ det(gmn), where the latter is the metric of AdS-Schwarzschild black hole piece of

the corrected metric. The dependence on the dimensionless factor L(u) is acquired by the

proper reduction from ten dimensions [16], and ultimately arises as a consequence of the

non-factorisability of the corrected metric [37]. This factor is independent of the internal

metric M5. Note also that the volume of the internal manifold has been absorbed into the

definition of the factor Ñ .

We have thus completed the first step in our programme, that of obtaining the minimal

gauge kinetic term from the two-derivative supergravity action. The next step is to obtain

the effect of the eight-derivative corrections of Eq.(4). Concretely, we must determine the

five-dimensional operators that arise once the perturbed metric and five-form field strength

ansätze of equations (10) and (9) are inserted into Eq.(4). Crucially, we are able to use

3Note that we are not interested in the part of G5 which does not contain the vector perturbations. This

part only contributes to the potential of the metric, and is thus accounted for by the use of the corrected

metric in the computation.
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the uncorrected ansätze in this step, because using the corrected ones results in terms of

even higher order in γ. The uncorrected ansätze are derived from those of equations (10)

and (9) by taking L(u), K(u), P (u) → 1 and ǫ5 → ǫ5. Our philosophy will be to consider

the structure of the C3T and C2T 2 terms, and use the symmetries of the various tensors

to deduce the most general set of five-dimensional operators that can be obtained via the

compactification. We describe how this is achieved in the next section.

3 Operator enumeration

The ten-dimensional corrections in totality are schematically given by

C4 + C3T + C2T 2 + CT 3 + T 4 , (12)

where T is given by

Tabcdef = i∇aF
+
bcdef +

1

16

(

F+
abcmnF

+
def

mn − F+
abfmnF

+
dec

mn
)

, (13)

where the RHS must be antisymmetrized in [a, b, c] and [d, e, f ] and symmetrized with respect

to interchange of abc ↔ def [43] and we have defined the tensor

F+ =
1

2
(1 + ∗)F5 . (14)

The perturbed ansatz for the five-form field strength contains only one power of the gauge

field strength. Therefore, we can write T = T0 + T1 + T2, with each subscript denoting

the number of powers of the gauge field contained in the tensor. The tensor T0 is zero for

all supergravity backgrounds given by a direct product of an AdS5-Schwarzschild black hole

with a five-dimensional compact Einstein manifold, provided that the five-form field strength

F
(0)
5 can be written as in Eq.(3) [25]. Therefore, splitting the ten-dimensional Weyl tensor

in a similar fashion, the corrections can be schematically written as

C2
0C

2
1 + C3

0C2 + C2
0C1T1 + C3

0T2 + C2
0T 2

1 . (15)

Now, let us study the term C3
0T2. As we are considering a direct product space, the Weyl

tensor factorizes into its AdS-Schwarzschild black hole and M5 factors. Hence, C3
0 must

reside entirely in one of the two factors. If it resides in the AdS-Schwarzschild black hole

factor, then the only five-dimensional operators that can result from this are of the form

C̃3F 2 , (16)

where C̃ denotes the Weyl tensor of five-dimensional AdS-Schwarzschild black hole and F is

the U(1) field strength tensor. We have checked explicitly that, for any given M5, the non-

zero entries of T2 correspond to zero entries of C̃3, and so this operator vanishes generally,
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and operators of the form C̃3F 2 are therefore not induced. The same argument can be

constructed for the contribution of C3
0C2. However, the tensor C3

0 may reside in the M5

factor, in which case the induced operators in five dimensions are of the form F 2. Of course,

there is only one such operator, proportional to the kinetic term.

Let us now focus on the terms given by C2
0T 2

1 and C2
0C

2
1 . Again, C

2
0 factorizes; if it resides

in the AdS-Schwarzschild black hole factor, then we must obtain operators of the form

C̃2F 2 and C̃2(∇F )2 . (17)

If C2
0 resides in the M5 factor, then we must obtain all operators of the form

F 2 and (∇F )2 . (18)

A bit of thought should then convince the reader that the same considerations apply to

C2
0C1T1 because in this way of thinking C1 is entirely equivalent to T1 in that it also contains

only one power of the gauge field. Therefore, the problem reduces to finding the set of

independent monomials comprising all contractions of two Weyl tensors and two ∇F , as

well as two Weyl tensors and two F . In addition, we require a set of monomials to represent

all contractions of two ∇F , and all contractions of two powers of F .

This can all be very quickly computed by Cadabra, the program developed by Kasper

Peeters. We find 26 such operators in total, and we list them here. One of them may

be eliminated on shell (it does not contribute to the on-shell action), and so the final set

contains 25 operators in total. Note that these comprise a full linearly-independent set up to

the use of dimension dependent identities that are similar in nature to the Schouten identities

of [19]. We expect these identities to reduce the set by four, but we have not undertaken

the reduction in what follows. We would like to stress that this result is indeed a massive

reduction compared with the very large number of general five-dimensional operators which

are possibly induced by the five-dimensional reduction of the ten-dimensional operators of

Eq.(12) upon a general compact Einstein manifold. Just to give an idea of this consider for

instance that an operator like C2(∇F )2 leads to 720 distinct operators induced from the

permutations of the operator (∇F∇F )abcdef before any symmetry operations are taken into

account.

The full set of 26 five-dimensional scalar operators is given by

(C4 + C3T + C2T 2 + CT 3)|5d =
a1CabcdC

abcd∇eFef∇gF f
g + a2CabcdC

acbd∇eFfg∇fF eg +

Cabc
dCacbe

[

b1∇fFd
f∇gFe

g +2 ∇dFef∇gF
fg + b3∇dFfg∇eF

fg
]

+

b4Cabc
dCabce∇fFdg∇fFe

g +

Ca
b
c
dCaecf [c1∇bFeg∇gFdf + c2∇bFde∇gFfg + c3∇bFdg∇fFe

g + c4∇bFeg∇dFf
g] +

Ca
b
c
dCacef [c5∇bFdg∇eFf

g + c6∇bFef∇gFd
g + c7∇bFeg∇fFd

g] +

9



c8Cab
cdCabef∇cFeg∇gFdf +

Ca
bcdCaefg [d1∇bFce∇fFdg + d2∇cFbe∇fFdg + d3∇bFcf∇gFde + d4∇cFbd∇fFeg] +

e1CabcdC
acbdFefF

ef + f1Cabc
dCacbeFdfFe

f +

g1Ca
b
c
dCaecfFbeFdf + Ca

b
c
dCacef [g2FbdFef + g3FbeFdf ] +

h1FabF
ab + h2∇aFbc∇bF ac + h3∇bFbc∇aFa

c . (19)

We remind the reader that this does not mean that all of these will be induced by the

compactification: in all probability only a handful of them will be induced, but the statement

we can definitively make is that the operators listed here comprise the most complete allowed

set. Note that the final operator, with coefficient h3, can be eliminated on-shell, and we do

this in what follows. Note also that for the sphere the coefficients hi = 0, because the

sphere is Weyl flat. This is not necessarily the case for other manifolds, unless there is a

miraculous cancellation at work. Perhaps this points the way to a non-universal behaviour

in this particular sector of the dual field theory, and we shall have more to say on this later.

4 The Lagrangian for the transverse modes

As an application of the above, we will consider the two-point correlators of the R-symmetry

current Jx. The dual field on the supergravity side is the gauge field in the x-direction

Ax. Two-point functions of Jx are useful for a range of physical phenomena, including the

conductivity and diffusion constant of the EM charge, and the computation of photoemission

spectra by gauge-theory plasma [18]. Specifically, we will compute the leading ’t Hooft

coupling corrections to the conductivity associated with the U(1) R-charge. The conductivity

is given by the following relationship:

σ = −i lim
ω→0

1

2T
Rxx(ω, q = 0) , (20)

where we have used Eq.(1) and the Kubo formula from reference [18]. Because we are

interested only in the size of the corrections to this quantity, we will measure our conductivity

below in terms of the uncorrected conductivity, so that our result will have the form 1+ ρ
λ3/2 ,

where ρ is the number we shall compute below.

As we saw in the last section, the eight-derivative O(α′3) corrections introduce a multitude

of higher-derivative operators upon compactification on the M5, and we must take account

of them properly to solve the equation of motion within perturbation theory. The situation

is entirely analogous to that studied by Buchel, Liu and Starinets in [22]. In that paper,

the authors were concerned with the tensor perturbations of the metric, but the logic is the

same. From our effective Lagrangian, we see immediately that Ax decouples from the other

perturbations. Computing the effect of the minimal kinetic term of Eq.(11) and the above

10



general set of operators of Eq.(19) yields the following Lagrangian for the transverse mode

Ax

Stotal = − Ñ2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du

[

γAWA′′

kA−k + (B1 + γBW )A′

kA
′

−k

+γCWA′

kA−k + (D1 + γDW )AkA−k + γEWA′′

kA
′′

−k + γFWA′′

kA
′

−k

]

, (21)

where we have introduced the following Fourier transform of the field Ax

Ax(t, ~x, u) =
∫

d4k

(2π)4
e−iωt+iqz Ak(u) . (22)

There are also a number of boundary terms that must be included for this higher-derivative

Lagrangian to make sense, and this is discussed in detail in [22, 29]. The coefficients B1 and

D1 arise directly from the minimal kinetic term F 2. The subscript W indicates that the

particular coefficient comes directly from the eight-derivative corrections, and the functions

AW → FW are listed in the appendix. Moreover, B1 and D1 contain some γ-dependence,

but they are non-vanishing in the γ → 0 limit, while every other coefficient vanishes in that

limit. The equation of motion is given by

A′′

x + p1A
′

x + p0Ax = γ
1

2f(u)
V (Ax) , (23)

where

AW A′′

x + CWA′

x + 2 (δD1 +DW )Ax

−∂u (2δB1A
′

x + 2BWA′

x + CWAx + FWA′′

x)

+∂2
u (AWAx + 2EWA′′

x + FWA′

x) = V (Ax) , (24)

where B1 − B1|γ→0 = δB1 and D1 − D1|γ→0 = δD1. First we have the coefficients with no

γ-dependence p0 and p1, given by

p0 =
̟2

0 − f(u)κ2
0

uf 2(u)
and p1 =

f ′(u)

f(u)
, (25)

where ̟0 = ω/(2πT ) and κ0 = q/(2πT ). For the coefficients originating from the F 2 term

in the action of the gauge field, we obtain

B1 =
K(u)f(u)L7(u)

P (u)
,

D1 = −K(u)P (u)L7(u)

[

̟2 − f(u)K2(u)κ2

uf(u)K2(u)

]

, (26)

where ̟ = ωR2/(2r0) and κ = qR2/(2r0). The terms originating from the higher curvature

terms in the action are listed in the appendix. At this stage it is convenient to reduce the

11



equation to a second-order differential equation using a simple trick [28]. The idea is that

γA′′

x = −γ (p1A
′

x + p0Ax) + O(γ2). Thus, we may reduce the entire RHS of the equation

of motion to terms which are first or zeroth order in derivatives. The resulting equation is

given by:

A′′

x +

[

p1 −
γ

2f(u)
[θ1(u)− p1θ2(u)]

]

A′

x +

[

p0 −
γ

2f(u)
[θ0(u)− p0θ2(u)]

]

Ax = O(γ2) , (27)

where

θ0(u) = 2 (δD1 +DW )− C ′

W + A′′

W − 4E ′

W p′0 + 2EW (p1p
′

0 − p′′0)

θ1(u) = 2A′

W − 2 (δB1 +BW )′ + F ′′

W − 4E ′

W (p′1 + p0) + 2EW [p1(p
′

1 + p0)− p′′1 − 2p′0]

θ2(u) = 2AW − 2 (δB1 +BW ) + F ′

W + 2E ′′

W − 4E ′

W p1 + 2EW [p21 − 2p′1 − p0] . (28)

We are now in a position to solve this equation in the hydrodynamic regime. The first step

is to examine the singularity structure of the equation at the horizon u = 1. As usual, we

change variables to x = 1− u, so that the singularity is at x = 0, then insert the functional

form Ax = xβ. We obtain the indicial equation:

β2 +
(

ω

4πT

)2

= 0 . (29)

This is of course the same indicial equation that would have been obtained in the infinite

’t Hooft coupling limit. Thus, as long as the Lagrangian originates from a gauge-invariant

series of operators, then the indicial equation is unchanged. We have made several checks of

this statement, using operators of arbitrary dimension, containing up to four derivatives of

the gauge field. Hence, the fact that the indicial equation is unchanged is a consequence of

the gauge-invariance in five dimensions, which is in turn a consequence of the U(1) isometry

of the internal manifold M5, and has nothing to do with supersymmetry. We are aware that

this behaviour is expected [24, 26, 27, 28] and in fact Buchel mentions it in his paper [24],

focussing on scalar and tensor fluctuations of the metric. It would be very interesting to find

a general proof of this statement.

5 Solving the equations of motion in the hydrodynamic

regime

We now turn to the solution of the equations for Ax. In order to compute the conductivity,

we must solve the equation for Ax up to linear order in γ and ω, which is of course the

hydrodynamic regime. Guided by our observations of the behaviour at the horizon, we

propose the following form for the solution:

Ax(u) = A0(u) + γA1(u) = [1− u]−σ (φ0(u) + γφ1(u)) , (30)
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where σ = iω/(4πT ). We now write φ0,1(u) = h0,1(u)+σg0,1(u). We insert this decomposition

into the equation of motion, and realize immediately that the only relevant terms are B1,W (in

the limit ω and q → 0), FW and EW , because everything else enters with at least quadratic

powers in ω and q (see the appendix for BW , EW , FW ). This is actually a consequence

of gauge-invariance: any gauge-invariant Lagrangian of the form of Eq.(47) will have this

property. This is not the case for tensor-fluctuations of the metric.

First we focus on φ0(u). Comparing powers of σ in the equation of motion, we simply

obtain

h0(u) = C and g0(u) = C log(1 + u) +D , (31)

where we will not fix any of the constants C,D until the very end. The only requirement

at this stage is regularity of all of the functions at the horizon. We now turn to A1 =

[1− u]−σ φ1(u). This function obeys a rather complicated equation of motion which can be

deduced straightforwardly from the parent equation:

A′′

1 + p1A
′

1 + p0A1 =
1

2f(u)
V (A0) . (32)

We obtain the following equation for h1(u)

f(u)h′′

1 + f ′(u)h′

1 = E ′′

Wh′′

0 + 2E ′

Wh′′′

0 + EWh′′′′

0

+
1

2
{(F ′

W − 2 (δB1 +BW ))h′′

0 + (F ′′

W − 2 (δB′

1 +B′

W ))h′

0} , (33)

which solves to h1(u) = Cγ, also a constant. We must now solve for g1(u). Using the explicit

forms for h0,1(u) and g0(u), the equation for g1(u) simplifies to

∂u

(

f(u)g1(u)
′ +

Cγf(u)

1− u

)

=
1

2
∂u

{

(F ′

W − 2 (δB1 +BW ))
[

g′0(u) +
C

1− u

]}

+ ∂2
u

{

EW

[

g′′0(u) +
C

(1− u)2

]}

.(34)

Note the appearance of the combination F ′

W − 2 (δB1 +BW ), which could have been antici-

pated from the work of [27]. The above equation for g1(u) solves to

g1(u) = θ log(1 + u) + (Cγ − θ) log(1− u) +Dγ + Φ(u) , (35)

where Φ(u) is given by the following integrals

Φ(u) = C
∫

du
1

f 2(u)
(F ′

W − 2(δB1 +BW )) + 4C
∫

du
1

f(u)
∂u
(

EW u/f 2(u)
)

. (36)

Therefore, the function g1(u) is given by

g1(u) = θ log(1 + u) + (Cγ − θ) log(1− u) +Dγ

+ C
((

185

4
+ 2α̃

)

u+
(

185

8
+ z

)

log
[

1− u

1 + u

])

+O(u2) ,

(37)
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where α̃ is composed of the coefficients of the Lagrangian

α̃ = 216a2 + 144b3 + 192b4 + 30c1 + 54c3 − 12c4 + 6c5 − 60c7 −
12c8 − 12d1 − 18d2 + 18d3 − 36e1 − 8f1 + 5g1 − 2g2 − g3 + h2 , (38)

and z drops out upon requiring regularity at the horizon. This yields the following solution

to linear order in u

g1(u) =
(

Cγ + C
[

185

4
+ 2α̃

])

u+Dγ . (39)

We now have the full solution of the equations of motion to linear order in γ and σ:

Ax(u) = [1− u]−σ
(

C + γCγ + σ
{

D + γDγ +
(

C + γCγ + γC
[

185

4
+ 2α̃

])

u
})

. (40)

Letting C = C + γCγ and D = D + γDγ , we then have that, to linear order in γ

Ax(u) = [1− u]−σ
(

C + σ
{

D + C
(

1 + γ
[

185

4
+ 2α̃

])

u
})

. (41)

If we call the boundary value of the field AT , we then immediately have that AT = C + σD.

A simple calculation then reveals that

A′

x(u = 0) = 2σAT

[

1 +
γ

2

[

185

4
+ 2α̃

]]

. (42)

The on-shell action is given by

Stotal = − Ñ2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du

[

1

2
A−kLAk + ∂uΨ

]

. (43)

where LAk = 0 is simply the equation of motion, and Ψ is a boundary term. Upon evalu-

ating the on-shell action, the only surviving term is the boundary term, as we expect from

holography. This is given by

Ψ = (B1 + γBW − γAW )A′

kA−k +
γ

2
(CW − A′

W )AkA−k − γE ′

WA′′

kA−k

+γEWA′′

kA
′

−k − γEWA′′′

k A−k + γEW (p1A
′

k + 2p0Ak)A
′

−k − γ
F ′

W

2
A′

kA−k . (44)

The functions AW , CW , DW start at O(̟2
0, κ

2
0), and so do not contribute to the order of

momentum in which we are interested. The function EW starts atO(u2), and the regularity of

Ax at the boundary ensures that the contribution from terms containing EW vanishes at the

horizon. Therefore, we only get contributions from B1, BW and FW inside Ψ. Remembering

that r0 = πTR2(1− 265/16γ), we obtain that the conductivity is then corrected by a factor

1 + γ (α− 10) , (45)

where

α = α̃− h1 − 3h2 . (46)
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6 Conclusions

In this work we have considered a strongly-coupled SCFT plasma at finite temperature

with O(α′3) corrections from type IIB string theory using the gauge/string duality. The

corrections include those derived from the Ramond-Ramond five-form field strength and

consist of a set of dimension-eight operators in the ten-dimensional type IIB supergravity

action. We focused on the effect of these dimension-eight operators on the behaviour of

vector fluctuations of the supergravity background. The O(α′3) corrections to type IIB

supergravity are dual to 1/λ3/2 corrections to the large N limit of the SCFT. Our aim was

to study the vectorial fluctuations of the ten-dimensional supergravity background in order

to get an insight into R-charge transport in the SCFT. In a certain limit [18], R-charge

transport can be equated to EM transport, essentially because a weak gauging of the R-

symmetry U(1) allows us to embed U(1)em into the theory, and then reinterpret our results

with this is mind.

We recall that the type IIB string theory action with leading O(α′3) corrections is given

by the usual two-derivative minimal Lagrangian plus a number of eight-derivative operators.

The tensor structure of these operators is given by contractions of four factors which are the

Weyl tensor and the T tensor, where the latter is constructed from the five-form field strength

F5 of type IIB string theory. This complicated Lagrangian leads to a background which is a

warped product of a deformed AdS-Schwarzschild black hole with a compact five-dimensional

Einstein manifold M5, providing that T0 vanishes. We emphasize that the corrections in

AdS factor of the background are independent of the internal manifold as long as the latter

is Einstein [19]. Using this corrected background we consider vector perturbations of the

metric and investigate the dimensional reduction of the ten-dimensional type IIB string

theory action at O(α′3) on the M5. This leads to a five-dimensional effective action for

the U(1) gauge fields, and we study the full set of five-dimensional operators induced by

the ten-dimensional operators Weyl4 +Weyl3T +Weyl2T 2. We find 26 independent five-

dimensional operators of the form C2F 2 and C2(∇F )2, F 2 and (∇F )2. One of these operators

vanishes on-shell leading to only 25 general five-dimensional scalar operators. In principle this

Lagrangian can be used to study the finite-coupling corrections to the two-point functions

of R-symmetry currents in a wide range of strongly-coupled SCFTs.

As an application of our general effective Lagrangian, we then study the transverse gauge

fields Ax, whose solution we need in order to obtain the conductivity of the QGP. In order

to solve the EOM of Ax in the hydrodynamic regime we require ingoing boundary conditions

at the horizon. Importantly, we find that the frequency of the waves at the horizon does not

change compared with the infinite ’t Hooft coupling results. Our results indicate that any

gauge invariant Lagrangian for the vector perturbations yields an equation of motion with the

same singularity structure and indices at the horizon. Finally, we obtain a general expression

for the leading ’t Hooft coupling corrections to the conductivity for any Lagrangian quadratic
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in the gauge field and containing up to four derivatives.

The results of this work constitute a step towards the understanding of charge-transport

at finite-coupling in a range of SCFTs. We emphasize that the set of operators enumerated

in here are present in any type IIB string theory holographic dual model, because the order

O(α′3) ten-dimensional terms are present regardless of the details of the dual theory. Thus,

computing the conductivity in this setting is of intrinsic value even if the exact coefficients

of the operators in five dimension are unknown. For simple internal manifolds the exact

contributions of the ten-dimensional terms can be determined exactly. For S5, where the

dual theory is N = 4 SYM, we will consider the full ten-dimensional calculation of the

conductivity with 1/λ3/2 corrections in a future work [44].

We end with a word on the universality of the corrections computed here. We recall that

Buchel et al. found that the corrections to the shear viscosity to entropy density ratio for all

theories dual to AdS5×M5, where M5 is Einstein, was a universal quantity. This was shown

by proving that the five-dimensional Lagrangian for the tensorial metric perturbations, which

govern both the viscosity and entropy of the theory, is the same regardless of the internal

manifold. This was obviously a very exciting result, as it shows us a universal feature shared

by the strongly-coupled regime of a wide class of theories which have totally different field

contents in the weak-coupling description. Naturally, we must ask if there is a possibility

that the five-dimensional effective Lagrangian we compute above also exhibits universal

behaviour. The problem we have here is that the operators with coefficients hi have a direct

dependence on the Weyl tensor of the internal manifold, making it seem unlikely that the hi

are manifold-independent. However, the operators with coefficients ai −→ gi have no such

dependence on the internal manifold, and it could be that those coefficients are universal.

These are, however, very speculative comments, and clearly require a lot of work to settle

them.
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Appendix: The full Lagrangian

The Lagrangian for the higher-dimensional terms is given by:

AW = −2u5
[

aw1 f(u)κ
2
0 + aw2 ̟

2
0

]

+ ÃW ,

BW = −4u4
[

(bw1 − bw2 u
2 + bw3 u

4)− bw5 ̟
2
0u− bw4 uf(u)κ

2
0

]

+ B̃W ,

CW = −4
u4

f(u)

[

3f(u)(cw1 u
2 − cw2 )κ

2
0 +

(

cw4 − cw3 u
2
)

̟2
0

]

+ C̃W ,

DW = − u3

f 2(u)

[

dw6 uf
2(u)κ4

0 + dw7 u̟
4
0 + dw8 uf(u)κ

2
0̟

2
0

+4f 2(u)(dw1 u
2 − dw2 )κ

2
0 + 4(dw3 − dw4 u

2 + dw5 u
4)̟2

0

]

+ D̃W ,

EW = −ew1 u
6f 2(u) + ẼW ,

FW = 4u5f(u)(fw
1 u

2 − fw
2 ) + F̃W , (47)

where we denote the contributions coming from F 2 and ∇F 2 by ÃW , B̃W , C̃W , D̃W , ẼW , F̃W ,

and we write the rest explicitly. From our Lagrangian of Eq.(19) we have the identifications:

aw1 = 2 (72a1 − 4b1 + 8b2 − 2c2 + 5c3 − c4 + 2c6 − c7 + d3 + d4) ,

aw2 = 2 (−72a1 + 4b1 − 12b2 + 6c2 + 3c3 + 9c4 − 2c6 + 9c7 + 3d1 + 3d2 − 2d3 + d4) ,

bw1 =
1

4
(2[11c1 + 3(13c3 + 2c4 + c5 − 2(3c7 + c8))] + 2(−2d1 − 5d2 + 9d3 + 4d4)

−36(−6a2 − e1) + 8(16b3 + 22b4 + f1)− 5g1 + 2g2 + g3) ,

bw2 =
1

4
(576a2 − 32b2 + 352b3 + 480b4 + 64c1 + 32c2 + 256c3 + 80c4 + 16c5 − 48c7 − 32c8

+8d1 − 8d2 + 40d3 + 32d4 + 36e1 + 8f1 − 5g1 + 2g2 + g3) ,

bw3 =
1

4
(−576a1 + 504a2 + 32b1 − 128b2 + 320b3 + 432b4 + 62c1 + 80c2 + 238c3 + 132c4

+14c5 − 16c6 + 20c7 − 28c8 + 28d1 + 14d2 + 18d3 + 32d4) ,

bw4 = −36a2 − 16b3 − 24b4 − c1 − c3 + 6c4 − c5 + 2(c7 + c8) + d1 ,

bw5 = 36a2 + 24b3 + 32b4 + 5c1 + 9c3 − 2c4 + c5 − 10c7 − 2c8 − 2d1 − 3d2 + 3d3 ,

cw1 =
2

3
(−72a1 − 36a2 + 4b1 − 10b2 − 16b3 − 20b4 + c1 + 4c2 − 10c3 + 5c4 − c5 − 2c6 + 3c7

+2c8 + d1 − 2(d3 + d4)) ,

cw2 = −2

3
(36a2 + 2b2 + 16b3 + 20b4 − c1 − 2c2 + 5c3 − 4c4 + c5 − 2c7 − 2c8 − d1 + d3 + d4) ,

cw3 = −144a1 + 36a2 + 8b1 − 28b2 + 24b3 + 32b4 + 5c1 + 16c2 + 23c3 + 24c4 + c5 − 4c6 + 16c7

−2c8 + 7d1 + 6d2 − 2d3 + 4d4 ,

cw4 = −72a2 − 4b2 − 48b3 − 64b4 − 10c1 + 4c2 − 10c3 + 12c4 − 2c5 + 28c7 + 4c8 + 7d1 + 9d2

−7d3 + 2d4 ,
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dw1 =
1

4
(−108a2 − 56b3 − 64b4 + c1 − 3c3 + 22c4 − 3c5 + 6c7 + 6c8 + 4d1 − d2 + d3) ,

dw2 =
1

4
(−108a2 − 56b3 − 64b4 + c1 − 3c3 + 22c4 − 3c5 + 6c7 + 6c8 + 4d1 − d2 + d3 − 36e1

−4f1 − 3g1 − 2g2 − g3) ,

dw3 =
1

4
(−108a2 − 64b3 − 104b4 − 11c1 − 19c3 + 10c4 − 7c5 + 26c7 + 14c8 + 8d1 + 7d2 − 7d3

−36e1 − 8f1 + 5g1 − 2g2 − g3) ,

dw4 =
1

4
(16b3 − 16b4 + 8c1 + 16c3 + 8c4 − 8c5 − 8c7 + 16c8 + 4d1 − 4d2 + 4d3 − 36e1 − 8f1

+5g1 − 2g2 − g3) ,

dw5 =
1

4
(−36a2 − 16b3 − 40b4 − c1 − c3 + 6c4 − 5c5 + 6c7 + 10c8 + 4d1 + d2 − d3) ,

dw6 = −2 (72a1 − 36a2 − 4b1 + 4b2 − 8b3 − 16b4 + 3c1 + 2c2 − 4c3 − 7c4 − c5 + 2c6 + c7

+2c8 − d1 − d3 − d4) ,

dw7 = 2 (−72a1 + 36a2 + 4b1 − 12b2 + 24b3 + 32b4 + 5c1 + 6c2 + 12c3 + 7c4 + c5 − 2c6 − c7

−2c8 + d1 + d3 + d4) ,

dw8 = 4 (72a1 − 36a2 − 4b1 + 8b2 − 16b3 − 24b4 − c1 − 2c2 + 4c3 + 5c4 − c5 + 2c6 + c7 + 2c8

+d1 + d3 + d4) ,

ew1 = 2 (−72a1 + 36a2 + 4b1 − 12b2 + 24b3 + 32b4 + 5c1 + 6c2 + 12c3 + 7c4 + c5 − 2c6

−c7 − 2c8 + d1 + d3 + d4) ,

fw
1 =

1

2
(−288a1 + 180a2 + 16b1 − 56b2 + 120b3 + 160b4 + 25c1 + 32c2 + 73c3 + 42c4

+5c5 − 8c6 + 2c7 − 10c8 + 8d1 + 3d2 + 5d3 + 8d4) ,

fw
2 =

1

2
(108a2 − 8b2 + 72b3 + 96b4 + 15c1 + 8c2 + 43c3 + 10c4 + 3c5 − 14c7 − 6c8 − 3d2

+7d3 + 4d4) .

We also have the contributions given by

ÃW = 0 ,

B̃W = −h1f(u) + 2h2(−3 + u(8u− 7u3 − 2κ2
0f(u) + 2̟2

0)) ,

C̃W = −8h2κ
2
0f(u) +

4h2(2 + u2)̟2
0

f(u)
,

D̃W =
1

uf(u)2

(

−κ2
0f(u)

2(h1 + h2(3f(u) + 2κ2
0u))

+(h1f(u) + h2(3 + u4 + 4κ2
0uf(u)))̟

2
0 − 2h2u̟

4
0

)

,

ẼW = −2h2u
2f(u)2 ,

F̃W = −2h2uf(u)(3− 5u2) . (48)
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