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a b s t r a c t 

The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy 

causality plane as a texture image descriptor. A multiscale generalization is introduced in order to dis- 

tinguish between different roughness features of images at small and large spatial scales. Numerically 

generated two-dimensional structures are initially considered for illustrating basic concepts in a con- 

trolled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that 

intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale sym- 

bolic information-theory approach. Consequently, we conclude that the proposed representation space is 

a versatile and practical tool for identifying, characterizing and discriminating image textures. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of complexity measures for two or higher di-

ensional data has been recognized as a long-standing goal [1] .

everal approaches were introduced during the last two decades

or a quantitative distinction between different types of ordering

r pattern in two-dimensional signals, such as images [2,3] . In par-

icular, techniques to detect fractal and multifractal features have

een shown to be useful for dealing with the characterization

f self-similar and extended self-similar objects [4–8] . These ap-

roaches have their roots in the seminal work of Mandelbrot [9] ,

ho just introduced fractal geometry to mimic natural textured

atterns. Cloudy textures, such as those associated with mammo-

raphic, terrain, fire, dust, cloud, and smoke images can be suit-

bly described by these scaling and multiscaling analysis [5,6] . Ac-

ually, recent effective applications in heterogeneous fields confirm

hat these fractal techniques are highly valuable tools, e.g. iden-

ification of lesion regions of crop leaf affected by diseases [10] ,

urst exponent estimation performed on satellite images to mea-

ure changes on the Earth’s surface [11] , and determination of scal-

ng properties in encrypted images [12] . Despite all these signif-

cant effort s, the development of a robust methodology to detect
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nd quantify spatial structures in images still represents an open

nd subtle problem. Along this research direction, we have previ-

usly introduced an extension of the complexity-entropy causality

lane to more than one dimension [13] . It has been shown that the

wo-dimensional version of this information-theory-derived tool is

ery promising for distinguishing between two-dimensional pat-

erns. Motivated by this fact, in the present paper, we implement

he two-dimensional complexity-entropy causality plane in differ-

nt numerical and experimental contexts with the aim of testing

ts potentiality as a texture image quantifier. Furthermore, a mul-

iscale generalization of the original recipe is proposed for char-

cterizing the dominant textures at different spatial scales. As it

ill be shown, this multiscale approach offers a considerable im-

rovement to the original tool introduced in Ref. [13] . Since any

mage corresponds to a two-dimensional ordered array, we conjec-

ure that the proposed multiscale ordinal symbolic approach can

e a useful alternative for an efficient and robust characterization

f its features, offering deeper insights into the understanding of

he underlying phenomenon that governs the spatial dynamics of

he system at different resolution scales. 

This paper is organized as follows. In the next section, a brief

eview of the two-dimensional complexity-entropy causality plane

s given. Besides, its generalization to multiple spatial scales is also

escribed. In Section 3 , we have included several numerical and

xperimental applications. More precisely, in Section 3.1 , an initial

eriodic ornament is carefully analyzed when adding a variable

http://dx.doi.org/10.1016/j.chaos.2016.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.09.005&domain=pdf
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degree of randomness by changing the color of each pixel with

a given probability. A numerically controlled example to illustrate

the importance of implementing a multiscale analysis is detailed in

Section 3.2 . The normalized Brodatz texture database is studied in

Section 3.3 and results obtained from the characterization of some

real images of interest are included in Section 3.4 . Finally, the main

conclusions of this research are summarized in the last Section 4 . 

2. Complexity-entropy causality plane for two-dimensional 

patterns 

A two-dimensional symbolization procedure, following the en-

coding scheme introduced by Bandt and Pompe (BP) [14] , is ap-

plied to the image under study. Given a N x × N y image (2D ar-

ray), the symbolic sequences are obtained by considering the spa-

tial ranking information (ordinal or permutation patterns) associ-

ated with overlapping subarrays of size D x × D y . This procedure

can be better introduced with a simple example; let us assume

that we start with the 3 × 3 array given below 

A = 

Ã 

3 4 8 

5 6 7 

2 8 9 

! 

. 

Four parameters, the embedding dimensions D x , D y ≥ 2 ( D x , D y ∈
N , the number of symbols that form the ordinal pattern in the

two orthogonal directions) and the embedding delays τ x and τ y 

( τx , τy ∈ N , the spatial separation between symbols in the two or-

thogonal directions) are chosen. The matrix is partitioned into

overlapping subarrays of size D x × D y with delays τ x and τ y in

the horizontal and vertical directions, respectively. The elements

in each new partition are replaced by their ranks in the sub-

set. For instance, if we set D x = D y = 2 and τx = τy = 1 , there

are four different partitions associated with A . The first subarray

A 1 = ( 
a 0 a 1 
a 2 a 3 

) = ( 
3 4 
5 6 

) is mapped to the ordinal pattern (0123)

since a 0 ≤ a 1 ≤ a 2 ≤ a 3 . The second partition is A 2 = ( 
a 0 a 1 
a 2 a 3 

) =
( 

4 8 
6 7 

) , and (0231) will be its related ordinal motif because a 0 ≤
a 2 ≤ a 3 ≤ a 1 . The next subarray A 3 = ( 

a 0 a 1 
a 2 a 3 

) = ( 
5 6 
2 8 

) is as-

sociated with the ordinal pattern (2013), and the last one A 4 =
( 

a 0 a 1 
a 2 a 3 

) = ( 
6 7 
8 9 

) is also mapped to the motif (0123). Subarrays

with consecutive elements are taken in the above example because

the embedding delays τ x and τ y are fixed equal to one. How-

ever, non-consecutive elements of the original array can be consid-

ered by changing the embedding delays. For instance, by choosing

τx = 2 and τy = 1 only two partitions are obtained from array A,

namely A 1 = ( 
3 8 
5 7 

) and A 2 = ( 
5 7 
2 9 

) . Their related ordinal per-

mutations will be (0231) and (2013), respectively. Finally, in the

case τx = τy = 2 only one subarray, A 1 = ( 
3 8 
2 9 

) , with motif (2013)

can be obtained. It is worth remarking that different spatial reso-

lution scales are taken into account by changing the embedding

delays. 

An ordinal pattern probability distribution 

P BP = { p(πi ) , i = 1 , . . . , (D x D y )! } , (1)

is subsequently obtained by computing the relative frequencies of

the ( D x D y )! possible ordinal patterns π i . For a reliable estimation

of this distribution, the image size must be at least an order of

magnitude larger than the number of possible ordinal states, i.e.

N x N y À ( D x D y )!. It is clear that the 2D encoding scheme previously

described is not univocally defined. Actually, instead of ordering
he elements row-by-row, an alternative column-by-column order-

ng recipe could be proposed. However, the BP probability distribu-

ion ( Eq. (1) ) would remain unchanged since only the label given

o the accessible states would change by implementing this alter-

ative definition. 

Once the BP probability distribution has been obtained, any

nformation-theory-derived quantifier can be estimated. In particu-

ar, and in order to introduce the complexity-entropy diagram, the

wo involved measures—entropy and complexity—need to be de-

ned. Around a decade ago, Rosso et al. [15] proposed to use the

ormalized Shannon entropy and the normalized Jensen-Shannon

omplexity for such a purpose. It has been shown that chaotic

nd stochastic time series are located at different regions of this

epresentation space, thus allowing an efficient discrimination be-

ween these two kinds of dynamics that are commonly very hard

o distinguish. Given any arbitrary discrete probability distribution

 = { p i , i = 1 , . . . , M} , the Shannon’s logarithmic information mea-

ure is given by 

[ P ] = −
M X 

i =1 

p i ln p i . (2)

he Shannon entropy S [ P ] is regarded as a measure of the uncer-

ainty associated to the physical processes described by the prob-

bility distribution P . It is equal to zero when we can predict with

ull certainty which of the possible outcomes i whose probabil-

ties are given by p i will actually take place. Our knowledge of

he underlying process described by the probability distribution is

aximal in this instance. In contrast, this knowledge is minimal

nd the entropy (ignorance) is maximal ( S max = S[ P e ] = ln M) for

he equiprobable distribution, i.e. P e = { p i = 1 /M, i = 1 , . . . , M} . The

hannon entropy is a quantifier for randomness. It is well-known,

owever, that the degree of structure present in a process is not

uantified by randomness measures and, consequently, measures

f statistical or structural complexity are necessary for a better un-

erstanding of complex dynamics [16] . As stated by Lange et al.

17] : One would like to have some functional C[P] adequately captur-

ng the “structurednes” in the same way as Shannon’s entropy cap-

ures randomness . There is not a universally accepted definition of

omplexity [18] . In this work, we have implemented the effective

tatistical complexity measure (SCM) introduced by Lamberti et al.

19] , following the seminal notion advanced by López-Ruiz et al.

20] , through the product 

 JS [ P ] = Q J [ P, P e ] H S [ P ] (3)

f the normalized Shannon entropy 

 S [ P ] = S[ P ] /S max (4)

nd the disequilibrium Q J [ P, P e ] defined in terms of the Jensen-

hannon divergence. That is, 

 J [ P, P e ] = J [ P, P e ] / J max (5)

ith 

 [ P, P e ] = S[(P + P e ) / 2] − S[ P ] / 2 − S[ P e ] / 2 (6)

he above-mentioned Jensen-Shannon divergence and J max the

aximum possible value of J [ P, P e ] . Being more precise, J max =
1 
2 [ 

M+1 
M 

ln (M + 1) − 2 ln (2 M) + ln (M)] is obtained when one of

he components of P , say p m 

, is equal to one and the remain-

ng p i are equal to zero. The Jensen-Shannon divergence quantifies

he difference between two (or more) probability distributions. For

urther details about this information-theory divergence measure

lease see Refs. [21,22] . Note that the above introduced SCM de-

ends on two different probability distributions, the one associated

o the system under analysis, P , and the uniform distribution, P e .
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Fig. 1. The original periodic image is depicted in (a). Randomized periodic ornaments with probabilities p = 10% , p = 30% , p = 50% , p = 80% and p = 100% are illustrated in 

(b), (c), (d), (e) and (f), respectively. Images are composed of 256 grayscale levels and have 2,040 × 2,040 pixels. 
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urthermore, it was shown that for a given value of H S , the range

f possible C JS values varies between a minimum C min 
JS 

and a max-

mum C max 
JS 

, restricting the possible values of the SCM in a given

omplexity-entropy plane [23] . Thus, it is clear that important ad-

itional information related to the correlational structure between

he components of the system is provided by evaluating the statis-

ical complexity measure. 

In this work, the normalized Shannon entropy, H S ( Eq. (4) ), and

he SCM, C JS ( Eq. (3) ), are evaluated using the permutation prob-

bility distribution ( Eq. (1) ). Defined in this way, these quantifiers

re usually known as permutation entropy and permutation statis-

ical complexity [24] . They characterize the diversity and correla-

ional structure, respectively, of the spatial orderings present in the

mage. The complexity-entropy causality plane (CECP) is defined as

he representation space obtained by plotting permutation statis-

ical complexity (vertical axis) versus permutation entropy (hori-

ontal axis) for a given system [15] . The term causality remembers

he fact that spatial correlations between samples are taken into

ccount through the BP recipe used to estimate both information-

heory quantifiers. The implementation of this kind of diagram

s a diagnostic tool was originally proposed by López-Ruiz et al.

20] more than two decades ago. The large number of applications

pread over multiple lines of research is a solid proof of its suc-

ess. Without being exhaustive, we can mention the classification

f literary texts [25] , the characterization of several financial time

eries (particularly records obtained from stock [26] , commodity

27] , and bond [28,29] markets), the discrimination of music gen-

es [30] , the identification of a universal behavior in the complex

ynamics of x-ray astrophysical sources [31] , the analysis of stream

ow time series within hydrological studies [17,32] , the description

f brain development in chickens [33] , the quantification of non-

tationarity effect in boundary-layer vertical velocity time series

f  
34] , and the study of fluctuating time series of different turbulent

lasmas [35] . 

As it has been mentioned before, the embedding delays deter-

ine the spatial separation between symbols. That is, they phys-

cally correspond to multiples of the spatial resolution scale of

he image under analysis. Consequently, different spatial resolu-

ion scales can be scanned by changing the embedding delays of

he symbolic reconstruction. We propose to generalize the estima-

ion of both symbolic quantifiers (permutation entropy and statisti-

al complexity) to different embedding delays τ x and τ y for given

mbedding dimensions D x and D y . This multiscale CECP seems to

e particularly suitable for characterizing the spatial correlations

f images at different resolution scales. 

. Numerical and experimental results 

.1. Two-dimensional noisy ornaments 

As a first numerically controlled application and following the

eometric ornament model proposed in Refs. [2,3] , we have gener-

ted a periodic figure composed of 256 grayscale levels of size 2,

40 × 2, 040. The original periodic ornament is shown in Fig. 1 (a).

his very regular 2D array is gradually randomized by changing the

olor of each pixel with probability p . An aleatory grayscale level

s assigned to the modified pixels. In Fig. 1 (b)–(f) five randomized

rnaments are illustrated. Spatial correlations are clearly dominant

or lower values of p whereas more random patterns emerge for

igher values of this parameter. 

We have applied the proposed approach to these noisy

rnaments in order to follow how the symbolic quantifiers

hange as a function of the probability of change p ( p ∈
 1 , 2 , 3 , 4 , 5 , 10 , 15 , . . . , 95 , 100 } ). Curves described in the 2D CECP

or different embedding dimensions D x and D y are depicted in
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Fig. 2. Curves described by the noisy periodic ornaments in the 2D CECP for different embedding dimensions: (a) D x = D y = 2 , (b) D x = 2 & D y = 3 , (c) D x = 3 & D y = 2 , 

and (d) D x = D y = 3 . The probability of change p ∈ { 1 , 2 , 3 , 4 , 5 , 10 , 15 , . . . , 95 , 100 } is increasing from left to right. Mean and standard deviation (as error bar) of the ordinal 

quantifiers estimations for ten independent realizations for each p−value are plotted. Empty circles indicate the location of the original periodic ornament. 
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Fig. 2 . In this case, we have analized the images with their original

spatial resolutions, i.e. with τx = τy = 1 . For each value of the prob-

ability p , ten independent realizations were generated. Mean and

standard deviation of the ordinal quantifiers for this set of realiza-

tions are plotted in Fig. 2 . Comparing Fig. 2 (b) and (c), we noticed

that the curve described in the CECP is invariant under the rotation

D x → D y and D y → D x , a feature that reflects the image symmetry.

The 2D CECP locates the noisy ornaments in accord with intuitive

notions, i.e. regular two-dimensional patterns have lower values for

both entropy and complexity, whereas random structureless orna-

ments have entropies near one and complexity close to zero. In the

intermediate generated ornaments, hidden order behind a random-

ness environment can be visually discriminated. These more com-

plex structures are suitably characterized by the 2D CECP. More

precisely, a maximum of the normalized Jensen-Shannon complex-

ity is reached at the frontier between order and disorder as it is

expected. Particularly, the maximum complexity value estimated

for embedding dimensions D x = D y = 3 corresponds to the noisy

ornament with parameter p = 30% depicted in Fig. 1 (c). 

3.2. Multiscale analysis: discriminating roughness at different scales 

It is widely recognized that natural images are complex struc-

tures with different textures at relatively small and large spatial

scales. As stressed by Alvarez-Ramirez et al. [6] : rarely natural tex-

tures can be characterized with a single roughness parameter. Indeed,

the multiscale Hurst exponent has been proposed as an alterna-

tive for quantifying roughness at various scales [4,5] . The Hurst

exponent is a parameter that control the roughness of the frac-

tional Brownian motion (fBm) model. Mandelbrot introduced this

self-similar stochastic process for simulating natural textures [9] . 

In order to test the ability of the ordinal symbolic quantifiers

for distinguishing between different textures at small and large
esolution scales, a second numerically generated application is

tudied. A fBm surface with Hurst exponent H = 0 . 9 is simulated

hrough the random midpoint displacement algorithm. Further de-

ails about this method for generating fractal landscapes can be

ound in Ref. [13] . The simulated fractal surface, of size 2,0 0 0 ×
,0 0 0 pixels, is shown in Fig. 3 (a). The original image is then

egmented into non-overlapping arrays of size L cross × L cross pix-

ls, and the elements inside these arrays are subsequently shuf-

ed spatially. In such a way, all the underlying spatial correla-

ions for scales lower than the crossover length L cross are destroyed

hereas spatial correlations at larger scales are conserved. Illus-

rative examples of the transformed images obtained by applying

his procedure are depicted in Fig. 3 (b)-(d) for crossover lengths

qual to 25, 50, and 100, respectively. Both ordinal quantifiers ( H S 

 C JS ) are estimated for these four fractal surfaces fixing the em-

edding dimensions ( D x = D y = 2 ) and varying the embedding de-

ays τx = τy = τ (1 ≤ τ ≤ 200). Results are plotted in Fig. 4 . For

ow τ−values, H S and C JS are close to 1 and 0, respectively, con-

rming the presence of uncorrelated random behavior for small

patial scales. On the other hand, the estimated values for both or-

inal quantifiers tend to those associated with the original “pure”

Bm surface with H = 0 . 9 for large spatial scales. Thus, the pro-

osed multiscale quantifiers are shown to be able to discriminate

etween different roughness features according to the considered

patial resolution. Last but not least, this analysis also confirms

hat the crossover length can be suitably identified with this ap-

roach. 

.3. Normalized Brodatz texture database 

The 112 texture images given in the Normalized Brodatz Tex-

ure (NBT) album have been analyzed through the 2D CECP. This

ormalized database is an improvement regarding the original Bro-
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Fig. 3. (a) Numerically simulated fBm surface with Hurst exponent H = 0 . 9 of size 2, 0 0 0 × 2, 0 0 0 pixels. (b)-(d) Modified fractal surfaces with L cross = 25 , L cross = 50 , and 

L cross = 100 , respectively. Spatial correlations for scales lower than the crossover length L cross are destroyed by shuffling (randomly reordering). 

Fig. 4. Estimated H S and C JS as a function of the embedding delay τ ( τx = τy = τ ) with D x = D y = 2 for the four images displayed in Fig. 3 . Vertical solid, dashed and dash- 

dotted black lines indicate the crossover lengths 25, 50 and 100, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 5. Four samples of the NBT album with their corresponding labels are illustrated: (a) D15, (b) D44, (c) D49, and (d) D71. 

Fig. 6. Location of the 112 texture images from the NBT album in the CECP. Quantifiers were estimated by implementing a symbolic reconstruction with D x = D y = 3 and 

τx = τy = 1 . 
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Fig. 7. (a) Normalized Brodatz texture labeled as D101. (b) Multiscale analysis ( τx = τy = τ, 1 ≤ τ ≤ 100 ) of this normalized Brodatz texture for embedding dimensions 

D x = D y = 2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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atz texture database since grayscale background effects have been

emoved [36] . Consequently, it is impossible to discriminate be-

ween textures from this normalized database using only first or-

er statistics. Four different samples of the NBT database are il-

ustrated in Fig. 5 . It is worth remarking that the standard Bro-

atz grayscale texture album [37] , composed of 112 grayscale im-

ges representing a large variety of natural textures, has been

idely used as a validation dataset of texture methods ( e.g. , Refs.

38–43] , among many others). The NBT image database is
vailable at the following link: http://multibandtexture.recherche.

sherbrooke.ca/normalized _ brodatz.html . The images of the NBT

lbum have dimensions of 640 × 640 pixels and 8 bits/pixel, which

rovides 256 grayscale levels. Locations of these normalized 112

exture images in the CECP for D x = D y = 3 and τx = τy = 1 are

hown in Fig. 6 . Notice that they spread over the proposed rep-

esentation space. Locations of the four particular normalized Bro-

atz images displayed in Fig. 5 are indicated. It is worth noting

hat both quantifiers should be estimated to discriminate between

http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
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Fig. 8. Real image analysis: (a)-(b) two high-resolution images from Mars (PIA18121 and PIA18624 from the Planetary Image Archive, Photojournal interface); (c)-(d) Multi- 

scale analysis of the green channel performed for D x = D y = 2 , τx = τy = τ and 1 ≤ τ ≤ 10. Similar curves are obtained for the red and blue channels. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the different texture images. For instance, D15 and D44 have ap-

proximately the same estimated H S value. However, the calculated

C JS value for D44 is higher than that estimated for D15. 

Evidently, due to their intrinsic heterogeneity, texture images

from the NBT database call for a multiscale analysis in order to

achieve a more comprehensive characterization of their features at

different scales. This contrasts with the homogeneity that charac-

terizes self-similar structures (please compare with Fig. 3 (a)). As

an illustrative example of this fact, we have performed the mul-

tiscale analysis of the normalized Brodatz texture labeled as D101

depicted in Fig. 7 (a). Permutation quantifiers as a function of the

embedding delay τ ( τx = τy = τ, 1 ≤ τ ≤ 100 ) for embedding di-

mensions D x = D y = 2 are plotted in Fig. 7 (b). We noticed that the

values estimated for both ordinal measures are strongly dependent

on the spatial scale under which the image is analyzed. Further-

more, the underlying periodicity of the texture image is clearly re-

flected on the quantifiers’ behaviors. 

3.4. Experimental applications 

To test the performance of the multiscale approach in a prac-

tical context, we include here the analysis of real images. Two

high-resolution images from Mars, publicly available in the Pho-

tojournal interface to the Planetary Image Archive (PIA) (Courtesy

NASA/JPL-Caltech), have been carefully studied. More precisely, we

have selected images labeled as PIA18121 (Chevrons on a Flow Sur-

face in Marte Vallis, 2880 x 1800 pixels) and PIA18624 (The Icy

Surface of the North Polar Cap, 2880 x 1800 pixels). They are dis-

played in Fig. 8 (a) and (b), respectively. Further details about them

can be obtained at the following link: http://photojournal.jpl.nasa.

gov/ . Permutation quantifiers were estimated for different embed-

ding delays ( τx = τy = τ and 1 ≤ τ ≤ 10) with D x = D y = 2 . Re-

sults obtained for the green channel of both images are shown

in Fig. 8 (c) and (d). Similar behaviors are found for the red and
lue channels. For the original spatial sampling scale ( τ = 1 ) these

mages have a similar texture according to the values estimated

or H S and C JS . However, their roughness properties can be distin-

uished for larger spatial scales since PIA18624 appears to be more

andom ( H S → 1 & C JS → 0 ) than PIA18121 for τ ≥ 5. 

Another experimental application we have studied is related to

iquid crystal. In particular, we investigated the isotropic–nematic–

sotropic phase transition of a thin sample of a lyotropic liquid

rystal. These transition can be visualized by looking at the texture

atterns of the sample in a polarized light microscope as func-

ion of the temperature. Fig. 9 (a) shows three examples of these

extures for three different temperatures. It is very clear that the

sotropic phases are characterized by a noisy texture; on the other

and, the nematic phase displays a more complex pattern. The tex-

ures analyzed here are the same we have previously investigated

n Ref. [13] . The values of H S and C JS were calculated considering

 x = D y = 2 and the embedding delays τx = 2 and τy = 1 as well as

he τx = 1 and τy = 2 (that is, the rotated version); also, we have

onsidered the average value of the pixels of the three layers (RGB)

f the original images. As shown in Fig. 9 (b) and (c), the permu-

ation quantifiers are able to identify the transitions from isotropic

o nematic and from nematic to isotropic, a feature that is actu-

lly not surprising due to the very distinct patterns of the tex-

ures in these mesophases. Intriguingly, we observe that the values

f H S in the isotropic phases for τx = 1 and τy = 2 are systemati-

ally smaller than the values obtained for τx = 2 and τy = 1 . Re-

iprocally, values of C JS are larger for τx = 1 and τy = 2 than for

x = 2 and τy = 1 . Thus, these results suggest that there are more

rdered structures along the y direction, which matches the axis

f the elongated capillary tube where the sample was placed. Be-

ause of this coincidence, it is very hard to not infer that this “ad-

itional” order is caused by a surface effect acting on liquid crys-

al molecules. It is well known that, despite of the isotropic phase

een macroscopically homogeneous, locally (on a short distance

http://photojournal.jpl.nasa.gov/
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Fig. 9. (a) Examples of textures of a lyotropic liquid crystal in the (reentrant) isotropic, nematic and isotropic phases. Estimated values for (b) H S and c) C JS as a function of 

the temperature with embedding dimensions D x = D y = 2 and embedding delays τx = 2 and τy = 1 as well as τx = 1 and τy = 2 . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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cale) nematic-like order exists and can be caused by a surface ef-

ect [44] . Here, despite the lack of more experimental evidence, we

elieve that our multiscale generalization may be employed as a

ery simple tool for identifying local order in isotropic phases, a

ask that is usually more tricky [44] . 

. Conclusions 

In this study, we address the problem of the identification and

haracterization of spatial correlations in two-dimensional pat-

erns. The proposed multiscale 2D CECP provides a feasible alter-
ative for the quantitative characterization and discrimination of

wo-dimensional structures at different spatial scales from a novel,

nformation-theory, perspective. It could complement the informa-

ion extracted from more traditional tools. Taking into account

he key role played by texture analysis in the image processing

rom a wide number of significant applications, including remote

ensing, assisted medical diagnosis, and automatic target recogni-

ion, we consider that this multiscale symbolic approach can be

f potential interest and utility to researchers working in these

elds. Moreover, thanks to its robustness to noise, the multiscale

D CECP seems to be especially suited for the analysis of exper-
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imental images. In particular, we conjecture that this methodol-

ogy could be successfully applied in the digital image encryption

field to objectively quantify the efficiency of different image en-

cryption schemes. We are planning to address this hypothesis in

a future study. The possibility to replace the original quantifiers,

namely permutation entropy and permutation statistical complex-

ity, by other alternatives, such as the cluster entropy [45,46] , look-

ing for potential improvements could be another avenue of re-

search for the future. 
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