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Abstract

The Gamow–Teller resonance in 208Pb is discussed in the context of a self-consistent RPA, based on the relativistic mean field
theory. We inquire on the possibility of substituting the phenomenological Landau–Migdal force by a microscopic nucleon–
nucleon interaction, generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small
when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple
extraction of the contact terms from the resulting nucleon–nucleon interaction.  2000 Elsevier Science B.V. All rights reserved.
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The quantum hadrodynamics (QHD) aims to de-
scribe the nuclear many-body system in terms of nu-
cleons and mesons [1]. Proposed initially as a full-
fledged renormalizable quantum field theory, nowa-
days it is seen as an effective field theory, derivable,
in principle, from the quantum chromodynamics [2].

The relativistic mean field theory (RMFT), which
can be thought as a mean field (Hartree) approxima-
tion to the QHD, has been applied with great success
during the last few decades. For instance, it accounts
for both (i) the nuclear matter saturation, and (ii) the
ground state properties of finite nuclei along the whole
periodic table [3]. More recently, the RMFT has also
been exploited for the description of unstable nuclei
all up to the nucleon drip lines [4].
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Through a relativistic version of the random phase
approximation (RRPA), various excited states and
resonances have been studied in the context of the
RMFT [5–9] as well. Quite recently we have also
reported [10] the first calculation of this type for
the Gamow–Teller (GT) and isobaric analogue (IA)
resonances, excited from the ground states of 48Ca,
90Zr and 208Pb nuclei.

Because of its pseudoscalar nature, the pion does
not participate in the description of the the ground
states in the RMFT. Thus, besides the nucleon and the
Coulomb fields, only the σ , ω and ρ mesons are usu-
ally involved in the calculations. Yet, in dealing with
isovector excitations it is essential to include, together
with the ρ meson, the π meson as well. This has al-
ready been done in our previous work [10], with the
pseudovector pion–nucleon coupling fπ fixed at its
experimental value. For the remaining mesons, only
the nonderivative couplings to the nucleon were in-
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cluded, as usually done in RMFT. With this prescrip-
tion we were not able to reproduce the excitation en-
ergies of the just mentioned resonances. This has been
possible only after introducing the repulsive Landau–
Migdal (LM) delta force

(1)VLM(1,2)= g′
(
fπ

mπ

)2
τ 1 · τ 2 σ 1 · σ 2 δ(r1 − r2),

of the same magnitude (g′ = 0.7) as the one used in
the nonrelativistic calculations [11].

Here we wish to analyze whether the tensor (deriv-
ative) coupling of the ρ meson to the nucleon could
generate a sufficiently repulsive nucleon–nucleon
force in order to locate the GT resonance at the cor-
rect experimental energy and in this way substitute
the phenomenological LM force. The IA resonance is
practically not affected by this part of the ρ-meson-
exchange potential and therefore it will not be dis-
cussed so exhaustively as we do with the GT reso-
nance.

As mentioned above, it is not usual to include the
tensor coupling of the vector mesons to the nucleon
in RMFT. This is because its effect on the ground
state is (rightly) thought to be small. On a more
general perspective, however, there are two good
reasons why one should do so. For one, according to
the rules of effective field theory such terms should
appear in the effective QHD Lagrangian [12]. For
another, and perhaps more important reason for the
phenomenological stand we are taking, it is well
known that the tensor ρ-nucleon coupling gives a
large contribution to the spin–isospin component of
the nucleon–nucleon interaction [13], and as such it
could have an important effect on the dynamics of the
GT resonance.

Our Lagrangian density is now

L= ψ̄(iγµ∂µ −M)ψ
+ 1

2
∂µσ∂

µσ − 1
2
mσ

2σ 2 − 1
3
g2σ

3

− 1
4
g3σ

4 − gσ ψ̄ψσ

− 1
4
ΩµνΩ

µν + 1
2
mω

2ωµω
µ − gωψ̄γµψωµ

+ 1
2
∂µπ · ∂µπ − 1

2
mπ

2π · π

− fπ

mπ
ψ̄γ5γµτψ · ∂µπ

− 1
4
Rµν ·Rµν + 1

2
mρ

2ρµ · ρµ

− gρψ̄γµτψ · ρµ

− fρ

2M
ψ̄σµντψ · ∂µρν

(2)−1
4
FµνF

µν − eψ̄γµ 1+ τ3

2
ψAµ,

where

Ωµν = ∂µων − ∂νωµ,
Rµν = ∂µρν − ∂νρµ − 2gρρµ × ρν,

(3)Fµν = ∂µAν − ∂νAµ.
This Lagrangian is identical to that of Ref. [10],
except for the ρ-nucleon tensor coupling term (the one
proportional to fρ ). 1 Therefore, following the same
route one arrives at identical equations for the mean
boson fields, except for that of the ρ-meson (only the
component ρ0

3 survives for spherical, definite-charge
nuclei), which now takes the form

(4)
(−∇2 +mρ2)ρ0

3 = gρρ3(r)+ fρ

2M
∇ · ρt3(r),

where the (vector) isovector density ρ3 is as defined
in [10] and we have introduced the tensor isovector
density

(5)ρt3 = 〈ψ̄iατ3ψ〉 =
A∑
α=1

SUαiατ3Uα.

The summation is over all the occupied single-particle,
positive-energy states Uα , which obey the mean-field
Dirac equation. This is also modified to{−iα · ∇ + β[M + Vs(r)]

(6)+ Vv(r)+ (iβα · r/r)Vt(r)
}
Uα =EαUα.

Again the scalar (Vs) and vector (Vv) potentials are as
defined in [10], while the tensor potential,

(7)Vt =− fρ2M
dρ0

3
dr

τ3,

is the contribution from the tensor-coupling term
in (2).

1 There is a minor correction to be made in [10]. One must
replace gρ by 2gρ in Eqs. (1) and (2) of that reference for
consistency with the remaining equations.
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The general structure and derivation of the RRPA
for charge-exchange excitations, in the discretized
spectral version we use, has been delineated in [10].
An alternative, more detailed account can be found in
[14]. The main ingredient is the residual interaction V .
For a self-consistent calculation, this must be obtained
from the same Lagrangian (1) used for the mean field.
Also, since Fock terms are ignored in RMFT, we must
consider only the direct matrix elements of V . Hence
only the isovector mesons contribute, and we get V =
Vπ + Vρ , with, in the instantaneous approximation,

Vπ(1,2)

=−
(
fπ

mπ

)2
τ 1 · τ 2 (σ 1 · ∇1 σ 2 · ∇2)

(8)× Y (mπ, r12),

Vρ(1,2)= τ 1 · τ 2

(9)

×
[(
gρ − fρ

2M
iβα · ∇

)
1

(
gρ − fρ

2M
iβα · ∇

)
2

−
(
gρα + fρ

2M
βσ ×∇

)
1

×
(
gρα+ fρ

2M
βσ ×∇

)
2

]
Y (mρ, r12),

where r12 = |r1 − r2| and Y (m, r) = exp(−mr)/
(4πr).

For the numerical values of the parameters we fol-
low mostly the philosophy of [10], adopting the para-
meter set NL1 [3,15]. Yet, in view of the difficulties
encountered by Ma et al. [9] in accounting for the E1
and E0 giant resonances with the NL1 parameters, a
few results for the TM1 model, worked out by Suga-
hara and Toki [16], will be presented as well. 2 Taking
experimental values for the pion, the only new para-
meter is the ρ-nucleon tensor coupling constant fρ .
As mentioned in [17], the vector dominance model
predicts for the ratio fρ/gρ ≡ Kρ a value equal to
the isovector magnetic moment of the nucleon, i.e.,
µp − µn − 1 = 3.7. On the other hand, most meson-
exchange models for the nuclear force use Kρ = 6.6
[13]. The former choice was preferred in the descrip-
tion of the ground state properties in closed shell nu-
clei within the relativistic Hartree–Fock approxima-

2 In the latter case, the ω-meson self-interaction term, not
appearing in (2), was also included in the numerical calculations.

Table 1
RMFT results for the energy per particle and the root-mean-square
radii of the neutron and proton point-particle distributions in 208Pb
computed with several values of the ρ-nucleon tensor coupling
constant fρ . The remaining parameters are kept fixed at their NL1
and TM1 values

Kρ ≡ fρ/gρ E/A−M [MeV]
√
〈r2
n〉 [fm]

√
〈r2
p〉 [fm]

NL1 parameter set:

0 −7.884 5.795 5.474

3.7 −7.882 5.777 5.480

6.6 −7.883 5.763 5.485

TM1 parameter set:

0 −7.874 5.755 5.485

3.7 −7.871 5.741 5.492

6.6 −7.871 5.730 5.497

Experiment −7.868a 5.593b 5.452c

a Taken from Ref. [18].
b Taken from Ref. [19].
c Taken from Refs. [20] and [21, Eq. (6.1)].

tion [17]. Thus, the discussion that follows will mainly
rely on the lower value for Kρ , even though we are
aware of the fact that the inclusion of Fock terms can
considerably change the adjusted values of the QHD
parameters [17].

Another point to consider is whether the inclusion
of the tensor coupling term in the Lagrangian (2)
does not sensitively affect the values of the remaining
parameters. Fortunately, while the contribution of this
term is not strictly zero in RMFT, its effects on the
single particle energies as well as on the ground state
properties are certainly very small. We therefore feel
justified in keeping the remaining parameters fixed
at their NL1 or TM1 values. With Kρ = 3.7, for
instance, the spin-orbit splitting is modified in less
than 150 keV. 3 Similarly tiny effects on the energy per
particle and the root-mean-square radii are displayed
in Table 1. An interesting side remark can be made
concerning the latter observables. It is well known
that, at variance with the nonrelativistic calculations,
it is a common feature of the relativistic models to

3 For identical particles, the NL1 paramerization yields signif-
icantly larger spin-orbit splittings than the TM1 model, while the
opposite happens for nonidentical particles.
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overestimate the neutron skin thickness [16,23]. But,
as seen from the results shown in Table 1, the tensor
ρ-N coupling has the tendency to correct the RMFT
for this handicap. This fact, in turn, could have very
important consequences on the estimates of the atomic
parity nonconservation [24,25].

The GT and IA resonances in 208Pb were computed
in RRPA, for both the NL1 and TM1 sets of parame-
ters and within the same model space as that of [10],
i.e., including only 0h̄Ω and 2h̄Ω excitations, and
only those single-particle states that are bound at least
for neutrons. For simplicity, we ignored the negative-
energy states, although it has been shown [8] that they
are required in principle even if the no-sea approxima-
tion is made for RMFT, since one needs a complete
single-particle basis to develop a perfectly consistent
RRPA. In fact, the transitions from Fermi- to Dirac-sea
states are essential to ensure certain desirable features,
such as current conservation and the removal of the
spurious Jπ = 1− translational state. However, such
issues are not crucial for our present purposes and,
furthermore, Ma et al. have shown in a recent calcu-
lation [26] that the contribution of the negative-energy
states is of decisive importance only for the isoscalar
modes. We therefore feel safe to leave their inclusion
for a future, more sophisticated and detailed treatment
of those isovector resonances.

In Fig. 1 are shown the NL1 results for the GT
strength distribution, both in terms of the individual
strengths,

(10)sλ =
∣∣∣∣∣∑
pn̄

Xλpn̄〈p‖σ‖n̄〉 +
∑
np̄

Y λnp̄〈p̄‖σ‖n〉
∣∣∣∣∣
2

,

and of a “strength function” obtained by replacing the
spikes by Lorentzians of conveniently chosen widths
∆ [10], i.e.,

(11)S(E)= ∆
π

∑
λ

sλ

(E −Eλ)2 +∆2 ,

where Xλpn̄ and Yλnp̄ are, respectively, the forward
and backward going RPA amplitudes for the state at
excitation-energy Eλ. The upper, middle and lower
panels correspond, respectively, to: (a)Kρ = 0, g′ = 0;
(b)Kρ = 3.7, g′ = 0 and (c)Kρ = 3.7, g′ = 0.7. From
these results one is induced to conclude that the tensor
ρ-N coupling has a very small effect on the GT reso-
nance. That is, it seems as though this coupling could

Fig. 1. Gamow–Teller strength distribution for the parent nu-
cleus 208Pb for the parametrization NL1. The upper, middle and
lower panels correspond, respectively, to: (a) Kρ = 0, g′ = 0; (b)
Kρ = 3.7, g′ = 0 and (c) Kρ = 3.7, g′ = 0.7. The spikes (r.h.s.
scale) give the raw RRPA results and the continuous curve (l.h.s.
scale), the strength function smoothed out by means of Lorentzians
having widths of: (a) and (b) 3.0, and (c) 3.65 MeV. The strength
function for the resonance peak extracted from experiment [22] is
drawn in dotted line.

merely redistribute the GT strength in the energy re-
gion between 5 and 15 MeV, but was incapable of pro-
moting it to the correct experimental energy. The lat-
ter is only achieved after introducing an LM force of
the same magnitude that has been used in the previous
calculation, where the just mentioned coupling has not
been considered at all [10]. The issue of the NN-force
generated by the ρ-N coupling is, however, not so
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simple and deserves further discussion, which is pre-
sented below. Before proceeding, let us just mention
that we have not noticed large differences between the
NL1 and TM1 results for the IA and GT resonances.
For instance, in the case (c) we get that these exci-
tations are localized at: EIA(NL1) = 18.6 MeV and
EGT(NL1) = 19.5 MeV and EIA(TM1) = 18.7 MeV
and EGT(TM1) = 20.3 MeV, while the experimental
results are: EIA(exp) = 18.8 MeV and EGT(exp) =
19.2 MeV. Thus, henceforth only the parametrization
NL1 will be used.

In the upper panel of Fig. 2 are confronted several
diagonal Jπ = 1+ proton-particle neutron-hole matrix
elements for the VLM, Vπ , V VV

ρ , V VT
ρ and V TT

ρ

potentials. (The meaning of the upper indices is self-
explanatory.) One can see, in particular, that the matrix
elements of V TT

ρ are very small in comparison with
those coming from VLM. However, when we rewrite
V TT
ρ in the form

V TT
ρ (1,2)=

(
fρ

2M

)2
τ 1 · τ 2β1β2

(12)

×
{
− (α · ∇)1(α · ∇)2Y (mρ, r12)

− 1
3
m2
ρ

(
3

m2
ρ r

2
12
+ 3
mρr12

+ 1
)

× Y (mρ, r12)S12

+ 2
3
[
m2
ρY (mρ, r12)− δ(r1 − r2)

]
× σ 1 · σ 2

}

and evaluate different parts separately, we find out
that the Yukawa and contact pieces in the last term
engender, each one, very large matrix elements. In
fact, as shown in the lower panel, their individual
values are larger than those of VLM, but the overall
contribution to V TT

ρ is small, because they cancel each
other very strongly. (A similar cancellation, though not
so pronounced, also occurs in the case of Vπ .)

It should be remembered that the contact terms in
Vπ and V TT

ρ would be smeared over a finite region
if finite-nucleon-size effects (FNSE) were introduced,
and they would be totally killed by realistic short range

Fig. 2. Diagonal matrix elements of: (a) the several terms of
the π + ρ NN-interaction and (b) different pieces of V TT

ρ , taken
between proton-particle neutron-hole 1+ states in 208Pb. The matrix
elements of the Landau–Migdal contact force are also shown in both
panels for comparison. The states are positioned at their unperturbed
energies.

correlations (SRC). 4 Yet, none of these two effects
is considered in a mean field treatment, such as the
present one. In return, it is common practice [5,17] to
extract the contact parts from (8) and (9) by adding
to the residual interaction the correction term δV =

4 Note, however, that the contributions of the contact terms
are nonzero when, both the FNSE, and the SRC are considered
simultaneously [27].



C. De Conti et al. / Physics Letters B 494 (2000) 46–52 51

δVπ + δVρ , with

δVπ(1,2)= 1
3

(
fπ

mπ

)2
τ 1 · τ 2 σ 1 · σ 2 δ(r1 − r2),

δVρ(1,2)= 1
3

(
fρ

2M

)2
τ 1 · τ 2 β1β2

(13)× (α1 · α2 + 2σ 1 · σ 2)δ(r1 − r2).

For consistency, one must also perform such an
extraction in the mean field part. Since, differently
from the Hamiltonian formalism followed in [17], we
are working within a Lagrangian formalism, we did
this extraction in the baryon self-energy computed
in the Hartree approximation (which is equivalent to
RMFT). As a consequence the replacementVt → Vt +
δVt has to be done in the Dirac equation (6), with

(14)δVt = 1
3

(
fρ

2M

)2 ρt3 · r
r

τ3

being a correction that arises upon the extraction from
the baryon self-energy of the contact part due to this
derivative coupling in Eq. (2). But, when this recipe is
implemented in the numerical calculation we get too
much repulsion and the GT resonance is pushed up
very high in energy. This comes from the fact that δV
is basically a δ-force of the type (1), with

(15)g′π+ρ ∼=
1
3
+ 2

3

(
fρ

fπ

)2(
mπ

2M

)2
= 1.6,

which is significantly larger than g′ = 0.7.
Note that in the nonrelativistic approximation the

contact term also appears in V VV
ρ and V VT

ρ , and
instead of (15) one would have

(16)g′π+ρ ∼=
1
3
+ 2

3

(
gρ + fρ
fπ

)2(
mπ

2M

)2
= 2.3.

There is no consensus on whether one should proceed
in the same way in the relativistic case. Some authors
exclude the contact terms only from Vπ and V TT

ρ [17],
while others do that for the full π + ρ interaction [5,
28]. That the potentials V VV

ρ and V VT
ρ also contain a

contact term follows from the substitution [29]

(17)γµ←→ 1
2M

(
2Pµ + σµν∂ν

)
for the vector ρ-N coupling.

It is worth noting that Toki and Weise [30] have
interpreted microscopically the LM force as arising

from the π+ρ meson-exchange model combined with
the SRC and FNSE. In the static limit, which is used
here, the result is [31]:

g′LM(ω = q = 0)

∼= 1
3

(
Λ2 −m2

π

Λ2 +m2
0

)2 m2
0

m2
0 +m2

π

(18)+ 2
3

(
gρ + fρ
fπ

)2(
mπ

2M

)2 m2
0

m2
0 +m2

ρ

,

where Λ is the cut-off mass for the pion–nucleon ver-
tex and m−1

0 is the correlation length. For Λ= 1 GeV,
m0 = mρ and gρ + fρ = 17.2 this leads to g′LM(ω =
q = 0) = 0.67 [31]. (In the present work gρ + fρ =
23.4.)

Our results can be summarized as follows:
(1) When the short range correlations are not consid-

ered, the tensor ρ-nucleon coupling plays only a
minor role in the description of the GT resonances.

(2) If one tries to take these correlations into account
by merely extracting the contact terms from the
NN interaction, the GT resonance is pushed up too
high in energy.

Thus, the simulation of the short range correlations
by the simple-minded extraction of the contact terms
alone is not a satisfactory procedure; at least not in
the case of the heavier mesons. The explanation is
that the contact terms in the π + ρ NN-interaction
are not the only ones to be strongly modified by the
short range correlations. In particular, because of the
large ρ-meson mass, also the Yukawa terms generated
in (9) should be strongly reduced. We conclude hence
that the implementation of, both realistic short range
correlations, and finite-nucleon-size effects, in the
context of the relativistic RPA, is required. Presently,
we are working on this issue.

Finally, let us mention that the tensor ρ-nucleon
coupling plays an important role in the transverse spin
response, and that some progress in assessing this
through a relativistic many-body calculation has been
made quite recently by Yoshida and Toki [32].
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