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a b s t r a c t

Anepidemicmodelwith births anddeaths is considered on a two-dimensional L×L lattice. Each individual
can have global infective contacts according to the standard susceptible–infected–recovered (SIR) model
rules or local infective contacts with their nearest neighbors. We propose a deterministic approach to this
model and, for the parameters corresponding to pertussis and rubella in the prevaccine era, verify that
there is a close agreement with the stochastic simulations when epidemic spread or endemic stationarity
is considered.We also find that our approach captures the characteristic features of the dynamic behavior
of the system after a sudden decrease in global contacts that may arise as a consequence of health care
measures. By using the deterministic approach, we are able to characterize the exponential growth of the
epidemic behavior and analyze the stability of the system at the stationary values. Since the deterministic
approximation captures the essential features of the disease transmission dynamics of the stochastic
model, it provides a useful tool for performing systematic studies as a function of the model parameters.
We give an example of this potentiality by analyzing the likelihood of the endemic state to become extinct
when the weight of the global contacts is drastically reduced.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical modeling of infectious diseases has become an
area of increasing interest in recent decades (Anderson and May,
1991; Keeling and Rohani, 2008; Heesterbeek et al., 2015). Mathe-
matical models are powerful tools for understanding the complex
problem of infectious disease transmission. After the success of the
simple SIR compartmental model in the description of the basic
and common features of the transmission process (Kermack and
McKendrick, 1927; Anderson andMay, 1991),models have become
more complex and specific for different infectious diseases in or-
der to help in the evaluation and design of control strategies (Heth-
cote, 1997, 1999; Granich et al., 2009; Fabricius et al., 2013). These
complexitiesmay include age structure of the population, immune
status of the individuals, structure of the social contacts and spatial
heterogeneity.
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Wherever possible, deterministic compartmental models are
usually chosen because it is easy to solve them numerically, inter-
pret their results directly, and gradually increase their complex-
ity by adding new compartments. However, we have known the
importance of stochastic effects from the beginning of infectious
diseasemodeling (Bartlett, 1956). Recent work has highlighted the
significance that a stochastic treatment could have in the transmis-
sion of some diseases such as pertussis (Rohani et al., 1999; Bauch
and Earn, 2003). In particular, the randomness and heterogeneity
of contacts are some of the intrinsically stochastic aspects of the
contagion process and knowing the accuracy that can be obtained
with a deterministic approach to the problem is not a trivialmatter.
This kind of exploration is one of the purposes of the present work.

The heterogeneity of contacts in epidemic models is usually
modeled by networks that range from the structureless random
networks (Keeling and Eames, 2003) or the simple square lat-
tice (Souza and Tomé, 2010) to more sophisticated networks
where a local household structure is combined with random
contacts (Ball et al., 1997, 2010), bipartite networks including
information from actual census and population-mobility data (Eu-
bank et al., 2004), or dynamical networks where the available
connections of each node may change with time (for a recent
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review on epidemics on networks see Pastor-Satorras et al., 2015).
In order to approximately treat the dynamics of different epi-
demic models on networks, some authors have taken a pair of
nodes as their basic variables to construct Pair-Wise Models for
networks (Keeling and Rohani, 2008). The transmission dynamics
are then described by systems of ordinary differential equations.
In a previous work, Joo and Lebowitz (2004) considered a sus-
ceptible–infected–recovered–susceptible (SIRS) spatial stochastic
model having only local infective contacts on the hypercubic lat-
tice and developed a pair approximation scheme to approximate
the dynamics by a system of ordinary differential equations.

In the present work, we study a stochastic model on a lattice
proposed by Verdasca et al. (2005) where local and global contacts
are considered by emulating the situation of social relations where
some ‘‘fixed’’ people are frequently contacted (the neighbors on the
lattice) and some other unknown people are met by chance (the
global contacts). In thismodel, which is inspired in the small-world
network proposed by Watts and Strogatz (1998), a parameter p is
introduced to characterize the weight of global random contacts
relative to local contacts. In thisway,we can systematically analyze
how the relative importance of the two contact types affects
the disease transmission dynamics. Other authors have studied
the stochastic fluctuations of this model for different values of
p and model parameters that include several infectious diseases
(Simöes et al., 2008). Dottori and Fabricius (2015) studied the
quasi-stationary state of the model for parameters corresponding
to pertussis and quantified the relation between the effective
transmission of the disease and the correlation of susceptible
individuals with their infected neighbors.

We propose a deterministic approximation to the stochastic
model with the local and global contacts mentioned above,
where the local contacts on the square lattice are treated here
under a pair approximation scheme based on the one used
by Joo and Lebowitz (2004). For an introduction to the pair
approximation in lattices, see Ellner (2001). We compare the
predictions of our proposed deterministic approximation with the
results of simulations performed with the stochastic model for
parameters corresponding to two infectious diseases: pertussis
and rubella. We make this comparison for different situations
of the disease transmission dynamics: the epidemic spread, the
endemic state of the disease, and dynamic perturbations that may
arise from implemented control measures against the disease.
Given the inability of the deterministic approach to account for the
heterogeneity of the local configurations present in the stochastic
model, it is not obvious a priori whether these heterogeneities
could play a decisive role in some of the considered scenarios.
However, in all the cases studied, the results obtained from the
stochastic model simulations are closely approximated by the
deterministic approach. Beyond this validation of the deterministic
approximation, in this paper we present additional benefits to be
gained from using this simpler approach.

2. The stochastic model

We consider the stochastic model studied by Dottori and Fabri-
cius (2015). Individuals are identified with sites of an L × L square
lattice under periodic conditions. Each one of the N = L2 individ-
uals may be in one of the three epidemiological states: S, I or R
(susceptible, infected or recovered). The dynamics of themodel are
described by a stochasticMarkovian process inwhich an individual
may undergo one of the following changes in its state: S → I (in-
fection), I → R (recovery), S → S, I → S, R → S (death and birth).
Infections occur through infective contacts among susceptible and
infected individuals. We define an infective contact as a contact
between two individuals such that if one individual is susceptible
and the other infected, the former becomes infected. We assume
that an individual at a given site has an infective contactwith a ran-
domly chosen individual on the lattice with transition rate pβ , and
with one of its four nearest neighbors with transition rate (1−p)β .
Local contacts represent the contacts in the circle of stable relations
of an individual, while global random contacts represent people
met by chance (for example, on a bus, at the supermarket, etc.). By
changing p, wemay change the relativeweight of the global and lo-
cal contacts in the system. The case p = 1 corresponds to the clas-
sical SIR model (uniformmixing) where an individual may have an
infective contact with any other individual in the system with the
same transition rate β . On the other hand, the case p = 0 corre-
sponds to the square lattice where an individual may only contact
one of its four nearest neighbors. Recovery from infection in this
model is the same for every site and occurs at a transition rate γ .
Deaths are assumed to be independent of the individual’s state and
occur at the same transition rate µ. When an individual dies at a
site, another individual is born simultaneously at this site in or-
der to avoid empty sites. We assume that all newborns are suscep-
tible individuals. Stochastic simulations are performed using the
Gillespie algorithm (Gillespie, 1976). For a detailed description of
themodel and the implementation of the simulation algorithm, see
Dottori and Fabricius (2015).

3. A deterministic approach

We consider an L× L lattice with periodic boundary conditions.
At each time t , the individuals must be in one of the three states: S,
I or R (susceptible, infected or recovered).We define Cs, Ci and Cr as
the total number of individuals in those states. We denote Ua = H
when the state of the individual a is H (for example, Ua = S). Each
pair ab of (horizontal or vertical) neighboring individuals can be
in six possible states: SS, SI , SR, II , IR, RR. We remark that in both
cases, (Ua = S,Ub = I) and (Ua = I,Ub = S), the pair ab is in state
SI (and the same holds for SR and IR). Let Css, Csi, Csr , Cii, Cir , Crr be
the total number of each pair type of neighboring individuals. We
define the unknowns Xs, Xi, Xr , Xss, Xsi, Xsr , Xii, Xir and Xrr as the
preceding quantities normalized by N .

They are functions of the time t that are linked by

Xs + Xi + Xr = 1, (1)

Xss + Xsi + Xsr + Xii + Xir + Xrr = 2, (2)

Xs =
2Xss + Xsi + Xsr

4
and (3)

Xi =
2Xii + Xsi + Xir

4
. (4)

In view of the above considerations:
(1) and (2) hold because there are N individuals and 2N

pairs of neighboring individuals (remember that we have periodic
conditions in the boundary). To obtain (3) (and analogously (4))
we consider that each individual in susceptible state S belongs to
four pairs of neighboring individuals of type SS, SR or SI but in their
total contribution 4Cs, the SS pairs are counted twice (remember
the proportionality between Xs, Xsi, .. and Cs, Csi, ..).

The pair approximation treatment of local infective contacts
follows Joo and Lebowitz (2004) where an SIRS model with only
local contacts is considered. It is basically a moment closure
method that stops at the second moment. We describe below its
basic idea.

Let ab and bc be two different pairs of neighboring individuals
sharing b. The key point consists in the approximation of the
probability that the triplet abc reaches a given state (Ua = H1,
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Ub = H2,Uc = H3) at time t by

Pt(Ua = H1,Ub = H2,Uc = H3)

≃
Pt(Ua = H1,Ub = H2)Pt(Ub = H2,Uc = H3)

Pt(Ub = H2)
. (5)

In order to apply (5) to the treatment of the local contacts in
the deterministic approximation, we consider the natural corre-
spondence between fractions (our unknowns in the deterministic
approximation) and probabilities. For example Xs (the fraction of
susceptible individuals at time t in the deterministic approxima-
tion) can be regarded as the probability that a given individual a is
of type S at time t in the stochastic model and Xsi/2 (the fraction of
SI pairs at time t in the deterministic approximation) as the prob-
ability that a given pair ab of neighboring individuals is of type SI
at time t in the stochastic model.

In the equations that we propose, the terms related to the
birth–death and recovery rates do not depend on the local
structure and are treated as in the classic SIR scheme. We have
different transfer rates r between classes due to infections. For each
one of to the cases (S → I , SS → SI , SI → II SR → IR) we know the
transfer rates r1 and r2 for local and global infections, respectively.
Then, according to the stochastic model rules we take the transfer
rate r =: qr1 + pr2, where q = 1 − p.

We present now a characteristic case to show how the
preceding observations are used (we omit the details of the whole
construction of the system because the procedure for the other
terms is similar).

Let r be the rate at which Xii grows at the expense of the
decrease of Xsi. For global contacts, r2 = βXi. Let ab be a pair of
type SI at a fixed time t such that Ua = I, Ub = S. The rate of local
infection for this pair is the product ofβ and the fraction of infected
individuals in the four nearest neighbors of b. This fraction can be
regarded as (1 + 3p1)/4, where p1 is the probability that a fixed
triplet abc (c being a fixed nearest neighbor of b different from a) is
in situation (Ua = I,Ub = S,Uc = I), given that (Ua = I,Ub = S).
We have

p1 =
Pt(Ua = I,Ub = S,Uc = I)

Pt(Ua = I,Ub = S)
.

Then, using (5) and Pt(Ua = I,Ub = S) = Pt(Ua = S,Ub = I),

p1 ≃
Pt(Ua = S,Ub = I)

Pt(Ua = S)
,

which corresponds to Xsi/4Xs in the deterministic approximation.
Then we take

r1 = β


3Xsi

16Xs
+

1
4


and (qr1 + pr2)Xsi is incorporated as a subtracted term in Eq. (10)
and as an added term in Eq. (12) of the system that we present
below.

dXs

dt
= −pβXsXi −

qβXsi

4
+ µXi + µXr , (6)

dXi

dt
= −γ Xi − µXi + pβXsXi +

qβXsi

4
, (7)

dXr

dt
= −µXr + γ Xi, (8)

dXss

dt
= −2pβXiXss −

3qβXsiXss

8Xs
+ µXsi + µXsr , (9)

dXsi

dt
= −pβXiXsi − qβ


3(Xsi)

2

16Xs
+

Xsi

4


− γ Xsi − µXsi

+ 2pβXiXss +
3qβXsiXss

8Xs
+ 2µXii + µXir , (10)
dXsr

dt
= −pβXiXsr −

3qβXsiXsr

16Xs
− µXsr

+ γ Xsi + µXir + 2µXrr , (11)

dXii

dt
= −2µXii − 2γ Xii + pβXiXsi + qβ


3(Xsi)

2

16Xs
+

Xsi

4


, (12)

dXir

dt
= −2µXir − γ Xir + 2γ Xii + pβXiXsr +

3qβXsiXsr

16Xs
, (13)

dXrr

dt
= −2µXrr + γ Xir . (14)

By using equalities (1)–(4) we reduce the system to five
equations to perform our numerical calculations. In Appendix we
make some considerations about this system.

4. Results and discussion

In this section we compare the results obtained from the
stochastic model simulations with the results obtained using the
deterministic approximation. In Section 4.3.2 we present a study
that involves only the deterministic approximation.

We consider L = 800, which mimics a city of N = 640,000
inhabitants. For pertussis we take µ = 1/(50 years), γ =

1/(21 days) and β = 0.8 1/day, which are standard parameters
for SIR description of the disease in the pre-vaccine era (Rozh-
nova and Nunes, 2012). For rubella we take µ = 1/(50 years),
γ = 1/(18 days) and β = 0.389 1/day (Keeling et al., 2001). In or-
der to choose the range of p to be studied, we first estimate the ba-
sic reproductive ratio R0 for the stochastic model, which is defined
as the average number of secondary infections that an infected in-
dividual produces in the population when all the other individuals
are susceptible (Anderson and May, 1991; Diekmann et al., 2013).
R0 is a widely used parameter because R0 = 1 gives a threshold
above which the disease is expected to spread in the system and
below which it is expected to die out. The analytical computation
of R0 is not an easy task even for p = 0, as has already been noted
by other authors in similar models (Aparicio and Pascual, 2007).
We compute R0 numerically for the stochastic model and obtain
that for p = 0 it approaches 2.77 for pertussis and 2.34 for rubella,
being an increasing function of p. Therefore, for the two problems
to be studied, the disease could in principle be established in the
stochastic model for any value of p. However, in this study we con-
sider values of p ≥ 0.2 since Dottori and Fabricius (2015) observed
that for lower values of p the probability of establishment and sur-
vival of the steady state for the stochastic model (representing the
endemic state of pertussis in the prevaccine era) is very low be-
cause of fluctuations (see Section 4.2). In the case of rubella, this
probability is low even for p = 0.2. In this work, we are inter-
ested in considering values of the parameters that may represent
real systems; however, we include the case p = 0.2 for rubella for
comparison purposes.

In the deterministic approach, differential equations are
integrated using the Euler method with a time step of 0.01 days.

4.1. Epidemic behavior

We first study the epidemic spread of the disease for the case
p = 0.4. We consider the evolution of the system when a
single infected individual is introduced in a population of N − 1
susceptible individuals. From these initial conditions, 5000 inde-
pendent runs are performed for the stochastic model with differ-
ent sets of random numbers. For the deterministic approach we
take Xs = 1 − 1/N, Xi = 1/N, Xss = 2 − 4/N, Xsi = 4/N , and
everything else 0 as initial conditions.
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Fig. 1. Fraction of infected individuals as a function of time (t) during the epidemic spread for p = 0.4. (a) Comparison of the deterministic approximation (DA) result with
the stochastic model (SM) simulations for pertussis. For the stochastic model, 4694 survival samples from the 5000 generated ones with the same initial conditions and
different stochastic evolutions are shown; (b) the same as (a) for rubella, but in this case only 3703 samples survive; (c) the same as (a) but the curves are shifted by tmax , the
time when the epidemic peak occurs for each case; the inset shows a zoom of the epidemic beginning; (d) the same as (c) for rubella; (e) comparison of the deterministic
approximation result with the mean value function of the stochastic model averaged over the 5000 samples for pertussis; (f) the same as (e) for rubella; (g) initial growth of
the epidemic for pertussis (details of figure (e)); (h) initial growth of the epidemic for rubella (details of figure (f)).
Because in the stochastic model there is a single infected indi-
vidual at the beginning, there is a chance that it will recover before
infecting anyone else, and the system will become extinct before
developing the epidemic peak. In Fig. 1(a) and (b) we compare,
for pertussis and rubella, the dynamical evolution of the survival
samples for the stochastic model with the deterministic approx-
imation results. There is a large dispersion of the time at which
the epidemic peak occurs for the different stochastic model sam-
ples, but the height of the peak is quite regular and close to the
one obtainedwith the deterministic approximation. To analyze the
evolution of the epidemic development independently of the time
when the peak is reached, in Fig. 1(c) we plot the same curves as in
Fig. 1(a), but shifting them rigidly such that all themaxima occur at
the same time. The almost perfect collapse obtained for all the sam-
ples when the fraction of infected individuals is greater than 0.001
indicates that stochasticity influences the beginning of the process,
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but when the epidemic regime is established, the dynamical evo-
lution is slightly influenced by stochastic effects. The same analysis
is valid for the case of rubella in Fig. 1(d), where the deterministic
approximation curve is hardly distinguishable from the collapsed
stochastic model sample curves in the linear scale plot.

In Fig. 1(e) and (f) we compare again the result for the
deterministic approximation but nowwith the average of the 5000
runs of the stochastic model simulations. The discrepancy in the
maximum of the fraction of infected individuals in this case is
because in the average for the stochastic model runs we include
the extinctions. With the purpose of analyzing in more detail the
beginning of the epidemic spread, in Fig. 1(g) and (h) we plot
a detail of Fig. 1(e) and 1f on a logarithmic scale. At the first
step of the dynamics, the value of p is irrelevant as the infected
individual can only contact susceptible ones regardless of whether
the contacts are local or global. This can be seen in Fig. 1(g) and
1h, where at t = 0 the stochastic model simulations and the
deterministic approximationpredict an exponential increase in the
fraction of infected individuals at a rate β − γ − µ, that is, 0.752
1/day for pertussis and 0.333 1/day for rubella. This is the behavior
expected for the classical SIR model with the corresponding
β, γ , µ parameters. To obtain this agreement between the
averages over the different stochastic model samples and the
deterministic approximation result at the very beginning of the
epidemic spread, it is necessary to consider all the samples, even
those inwhich the recovery of the infected individual occurs before
the contagion to other susceptible individuals; if only survival
samples were kept, the stochastic model averages would give an
initial rate greater than β − γ − µ. An interesting result predicted
by the stochastic model simulations (and closely described by the
deterministic approach) is the approximately exponential growth
of the epidemic a few days after its beginning with an exponent
that differs from the initial one. This can be concluded from the
linear behavior observed in the curves of Fig. 1(g) from5 to 15 days,
and in Fig. 1(h) from 10 to 30 days. Exponential fits, c exp(ϵt), to
the curves in the mentioned ranges give exponents ϵSM = 0.615
and ϵDA = 0.626 for pertussis, and ϵSM = 0.267 and ϵDA = 0.272
for rubella, where the subscripts SM and DA refer to the stochastic
model and the deterministic approximation, respectively.

In order to characterize this behavior as a function of p in this
exponential regime, the exponents could be written as: ϵ(p) =

b(p) − γ − µ. That is to say, the same as in the classical SIR model
(where only global contacts are present) but with an effective
contact rate at the epidemic growth, b(p), that is different from β
because of the presence of local contacts. So, we define

bSM(p) = ϵSM(p) + γ + µ (15)

and

bDA(p) = ϵDA(p) + γ + µ, (16)

where ϵSM(p) and ϵDA(p) are obtained through fits to the stochastic
model and the deterministic approximation curves for the corre-
sponding p-value, as we did for the case p = 0.4 by fitting to the
curves in Fig. 1(g) and (h).

It is possible to obtain an analytical approximate expression to
estimate bDA using the deterministic equations as follows. At the
beginning of epidemic growth, when Xi ≪ 1, we have that Xr , Xsi
and Xsr are also ≪ 1. So, we drop all the second order terms in
Xi, Xr , Xsi and Xsr , and also the terms Xii, Xrr , Xir . As Xs = 1−Xi−Xr ,
we may write Eq. (7) as

dXi

dt
≃ −γ Xi − µXi + pβXi +

qβXsi

4
. (17)
Fig. 2. Comparison of the stochastic model (SM) and the deterministic
approximation (DA) predictions for the effective contact rate during the exponential
growth in an epidemic as a function of p. Values are relative to the corresponding
β-value for each disease. For the deterministic approximation b∗

DA/β is computed
through Eq. (19). For the stochasticmodel, bSM is obtained through Eq. (15) by fitting
the exponential regime of the average fraction of infected individuals as a function
of time (shown in Fig. 1(g) and (h) for the case p = 0.4).

If Xi(t) presents an exponential behavior, dXi/dt should be
proportional to Xi, so, we assume that in this exponential regime:
Xsi ≃ KXi, K being a constant. Eq. (17) may now be written as:

dXi

dt
≃ −γ Xi − µXi +


p +

qK
4


βXi, (18)

where (p + qK/4)β plays the same role as β in the exponential
growthwhen only global contacts are present. So, we define b∗

DA =

(p + qK/4)β .
Taking Xsi ≃ KXi and replacing it in Eqs. (7) and (10), we may

obtain the value of K and compute:

b∗

DA ≃
1
4


1 + p +


1 + 10p − 7p2


β. (19)

For p = 0.4, this equation gives the same value we obtained
above for bDA within the precision of the fit to the deterministic
approximation curve in Fig. 1(g).

An interesting point here is that Eq. (19) predicts that b∗

DA/β
only depends on p and not on the other parameters characterizing
the disease transmission. In Fig. 2weplot this relation and compare
with bSM/β obtained through the fits for different p-values for
pertussis and rubella. The agreement between the deterministic
approximation and the stochastic model is good, but it becomes
worse for lower values of p. However, even for p = 0.2, when
the agreement of the stochastic model and the deterministic
approximation is not so good (bSM = 0.529, bDA = 0.57, for
pertussis, and bSM = 0.259, bDA = 0.277, for rubella) bSM/β
verifies quite well the deterministic approximation prediction of
being dependent only on p for pertussis (0.661) and rubella (0.666).
Wemean that for low p, Eq. (19) does not approach bSM accurately,
but bSM/β seems to basically depend on p, as the deterministic
approximation predicts.

4.2. Stationary behavior

For the stochastic model presented in Section 2 and a
finite value of N , the only fixed point (stationary equilibrium)
corresponds to the case where all the individuals on the lattice
are susceptible. Due to the stochastic nature of the system, sooner
or later a fluctuation leads the number of infected individuals to
zero, and there is no process that produces new infected people
if there are none. But for large values of N (as the one taken
in the present study) the system may fluctuate for a long time
around a quasi-stationary state before extinction. The definition
and properties of such a state have been addressed in other
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Fig. 3. Comparison of the deterministic approximation and the stochastic model results for the stationary behavior. (a) Fraction of susceptible individuals; (b) fraction of
infected individuals, and (c) fraction of SI pairs on the lattice. In the key, ‘‘DA’’ refers to the stationary values of the deterministic approximation equations, ‘‘SM’’ to the
estimated average magnitudes in the stochastic model, ‘‘per’’ to pertussis and ‘‘rub’’ to rubella.
contexts from a mathematical point of view (Darroch and Seneta,
1967; Nåssel, 1999) or with empirical approaches (Martins de
Oliveira and Dickman, 2005; Blanchet et al., 2012). In the present
work, we adopt the empirical strategy developed by Dottori and
Fabricius (2015), where the quasi-stationary state of the same
stochastic model defined in Section 2 is studied. We define a time
window (ta, tb) and generate (for each system studied) more than
20,000 independent samples, keeping those that do not become
extinct before tb. We compute the averages of susceptible and
infected individuals over the surviving samples and observe that
in the (ta, tb) interval they remain constant in time within a given
precision. We take ta = 20,000 days and tb = 40,000 days;
with these values the considered averages are independent of the
initial conditions as ta is large enough so that correlations in the
system may be established. For details of the definition of the
quasi-stationary state and characterization of the fluctuations for
the pertussis case, see Dottori and Fabricius (2015).

In the case of the deterministic approach, stationary values are
defined as the values of the variables that make all the derivatives
in Eqs. (6)–(14) equal to zero. They are obtained by numerically
solving the equations from given initial conditions, until the
unknowns are constant in time with a precision 10−5. As initial
conditions we take, for Xs, Xi and Xr , the values corresponding
to the stationary solution of the SIR model and complete the
remaining initial values as in the uncorrelated case. For example,
Xsi is initialized as 4XsXi because it is twice the probability that a
given pair is of type SI , whose value is 2XsXi in the uncorrelated
case.

In Fig. 3(a) and (b) we compare the deterministic approxima-
tion stationary values obtained for the fractions of susceptible
and infected individuals for pertussis and rubella with the val-
ues of these observables averaged over the samples in the quasi-
stationary state of the stochastic model. In Fig. 3(c), we make the
same comparison for the fraction of SI pairs on the lattice. For both
diseases, the deterministic approximation results show a close
agreement with the stochastic model averaged magnitudes. The
points corresponding to the stochasticmodel and the deterministic
approximation in Fig. 3 are distinguished from each other only at
low p values, where the difference between the values calculated
by the two methods is at most 2%.

In Appendix, using the deterministic approximation, we
analyze the stability of the system at the stationary values
and find that the system is asymptotically stable for a wide
range of the model parameters. Therefore, the deterministic
approach proposed here could be applied to the study of the
steady state for parameters corresponding to other infectious
diseases. However, it is not obvious that the close agreement
between the deterministic approximation and the stochastic
model results found here will be obtained for other model
parameters, in particular, if they lead to a greater presence of
S and I individuals in the system. The key point of the pair
approximation (which describes the local infective contacts in the
deterministic approximation) is to approach the probability of
occurrence of a given triplet through Eq. (5). If the triplets that
influence the dynamics of the local rate of infection, SSI and ISI,
do not appear very often (as in the case of all the quasi-stationary
states of the stochasticmodel studied in the presentwork), the pair
approximation seems to work well enough in the deterministic
approach. But for other parameters that involve a greater presence
of S and I individuals, it could be necessary to implement other
schemes that go beyond the pair approximation to obtain a
quantitative agreement with the stochastic model results. For
example, we could implement schemes that explicitly include the
triplets and approach the probability of the quadruplets, such as
the triplet approximation used by Rozhnova and Nunes (2009) to
study an SIRS model in random networks (see also Keeling and
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Fig. 4. Time evolution of the fraction of infected individuals for pertussis when a sudden reduction in global contacts occurs. (a) Comparison of the deterministic
approximation (DA) result with the stochastic model (SM) simulations when the p parameter is changed from 0.5 to 0.4 at t = 20,000 days. Initially the system is at
the quasi-stationary state for the stochastic model and at stationarity for the deterministic case. (b) The same as figure (a) but p is changed from 0.6 to 0.4. In this case, the
three samples shown for the stochastic model are representative of the ones that survive in the timewindow shown in the figure. The survival samples in this case represent
a fraction of 26% from all the generated samples.
Rohani, 2008 for other approaches that have been tried beyond the
pair approximation).

4.3. System response to a change in p

4.3.1. Comparison between the stochasticmodel and the deterministic
approximation results

We here study the ability of the deterministic approximation to
describe the system response to a sudden change in the weight
of global contacts represented in the model by the parameter p.
We simulate disease transmission at the endemic state in a city
where, at a given time, infective contacts among people change
and become more local. Such a change could occur because of
several circumstances that affect social activities. For example,
in Argentina, during the 2009 pandemic flu, the authorities took
preventive measures that included suspension of classes at school
in July. The population was advised to stay at home whenever
possible and to avoid crowded places. These measures aimed
at reducing the possibility of an epidemic outbreak during the
winter. Our purpose here is to simulate the consequences that this
sudden reduction in the global contacts may have on the disease
transmission of other infectious diseases that are at the endemic
state.

We perform simulations with the stochastic model for parame-
ters corresponding to pertussis in the prevaccine era and p = 0.5.
Once the quasi-stationary state is established, at a given time (t =

20,000 days) we change the value of p to 0.4, which corresponds to
a 20% reduction in global contacts. In Fig. 4(a) we compare the dy-
namical evolution of the system for three samples obtained from
the stochastic model simulations and the deterministic approxi-
mation result. To obtain the deterministic approximation curve, as
initial conditions we take the values corresponding to the station-
ary state for p = 0.5 and at t = 20,000 we change the value of p to
0.4.

We observe that the deterministic approximation captures the
decrease in the fraction of infected individuals after lowering p
and the pronounced peaks observed in the following years. The
perturbation at t = 20,000 days puts in phase the oscillations for
the different samples that becomeout of phase again from the third
peak. The deterministic approximation also accurately reproduces
the time elapsed between peaks. Oscillations are exponentially
damped out in the deterministic approximation until the new
stationary value is reached. In the case of the stochastic model,
fluctuations may be different from sample to sample (Dottori
and Fabricius, 2015), but as we have seen in Section 4.2, once
the quasi-stationary state is reached, the fraction of infected
individuals oscillates around a value similar to that predicted by
the deterministic approximation.

We repeated this study for the case in which the system is
initially at the quasi-stationary state corresponding to p = 0.6
and at t = 20,000 p is changed to 0.4. In this case, although the
final state is the same, the reduction in global contacts is 33%.
In Fig. 4(b) it can be seen that after the perturbation, the system
reaches a deep minimum followed by pronounced maxima much
higher than in the previous case when the change in p was 20%.
Again, the deterministic approach gives a good description of the
observed effects. In this case, most of the samples obtained from
the stochastic model simulations become extinct when the system
is at the first and pronounced minimum. This is not surprising
and could be inferred from the deterministic approximation result
that predicts the number of infected individuals to be below
15 in the time interval (20,400–20,800 days) for the population
considered here. Extinctions in the stochastic model simulations
are thus expected, given the fluctuations in the number of infected
individuals observed in the dynamic behavior of the system.

It is worth mentioning that a dynamic behavior similar to that
observed in Fig. 4 has been found in a recent study of pertussis
transmission performed with an age-structured deterministic
model with nine epidemiological classes (Pesco et al., 2014). In
that work, the authors proposed that a sudden change in contact
rates among individuals could cause a dynamic effect with the
presence of deep valleys followed by sharp maxima such as those
recently observed in some US states. Here we obtain a similar
behavior for the disease transmission as a consequence of reducing
the relative importance of the global contacts in a much simpler
epidemiological model.

4.3.2. Further study with the deterministic approach
In this section, our purpose is to explore with the deterministic

approach some dynamical features of this problem that would
be cumbersome to achieve with the stochastic model. We do
not pretend to exhaust the analysis of this problem but to show
the usefulness of the deterministic approach. We now introduce
the dynamical variables to be studied. The system is initially
at stationarity with p = pin. When the weight of the global
contacts is reduced to pf , the fraction of infected individuals is
drastically reduced reaching aminimum value Xmin

i and then, after
several outbreaks, the system reaches the new stationary state
corresponding to pf . We call T1 the time period between the first
two outbreaks after the change in p. The period between successive
outbreaks decreases approximating a limiting value T∞ when the
system is infinitely close to the steady state. The T∞ value is
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Fig. 5. Dynamic behavior of the fraction of infected individuals computed with the deterministic approximation when a sudden reduction in global contacts from pin to
pf occurs. Parameters correspond to the case of pertussis. Initially the system is at stationarity with p = pin . (a) Time period between the first two outbreaks after the
perturbation, T1 . Different curves correspond to different initial p values, pin . The circles indicate a 50% reduction of the p parameter with respect to the corresponding initial
value. The curve T∞(pf ) is the asymptotically approached value of the outbreak period when stationarity is being reached for the final p value: pf . (b) Fraction of infected
individuals at the minimum after perturbation, Xmin

i . The circles and crosses indicate 50% and 33% reduction of the p parameter, respectively. The light gray and dark gray
areas correspond to a number of infected individuals between 1 and 10, and below 1, respectively, for the 640,000 population considered in the present work.
also the period of the oscillations of infinitesimal amplitude that
would be obtained by any slight perturbation of the new stationary
state corresponding to pf . Therefore, T∞ is a magnitude associated
with the new stationary state only, while T1 depends on both pin
and pf . We calculate with the deterministic approximation the
magnitudes T1 and Xmin

i for four values of pin considering in each
case a range of values for pf from 0.2 to 1 with a p-step of 0.001.
The results are presented in Fig. 5.

In Fig. 5(a), we show the curves T1(pf ) for different pin values,
and the curve T∞(pf ). For a given pin value, the larger the reduction
in p to the new value pf , the larger the value of T1(pf ), and also
the larger the difference between T1(pf ) and the asymptotic period
T∞(pf ). On the other hand, comparison among different pin-curves
shows that for the same relative reduction of p, the values of T1
and T1 − T∞ are significantly larger for smaller values of pin. The
approach of all the T1-curves to the T∞-curve as pf increases may
be understood as follows: for pin ≃ pf , the stationary state before
the perturbation is in fact a slight alteration of the stationary state
after the perturbation; then, when letting the system evolve with
p = pf , the system approaches stationarity from the beginning
with small amplitude oscillations of period T∞(pf ).

We now analyze the tendency to extinction of the system at
the first minimum. We find this interesting because extinction
is an exclusive feature of the stochastic model that cannot occur
workingwith thedeterministic approximation.However, the value
of the fraction of infected individuals at the minimum, Xmin

i , is an
indicator of the proximity to extinction in the stochastic model.
For example, for a change in p from 0.5 to 0.4 (Fig. 4(a)), out
of 50,000 samples considered only 11% become extinct, while
for a change in p from 0.6 to 0.4 (Fig. 4(b)) 74% die out. This
is clearly related to the fact that Xmin

i values obtained with the
deterministic approximationare 1.4 10−4 and 1.3 10−5 for Fig. 4(a)
and (b), which correspond (for the 640,000 population used for
the stochastic model simulations) to having 90 and 8 individuals
at the minimum, respectively. In Fig. 5(b), the Xmin

i curves for the
same changes of p analyzed in Fig. 5(a) are shown. We notice
that Xmin

i values are sensitive to the change in the value of the p-
parameter. To analyze the tendency of the system to extinction,
we shaded an area (light gray) in the figure that includes the
Xmin
i values corresponding to having between 1 and 10 infected

individuals at the minimum. We assume that this area indicates
a very probable ‘‘extinction zone’’, and that it is not reasonable
to think that the corresponding simulations of the stochastic
model in the zone below (dark gray area) will survive beyond the
minimum. From the results presented in Fig. 5(b), the deterministic
approximation suggests that for no initial value of p the system
supports a 50% reduction in its value (circles). While for a 33%
reduction of p (crosses), the tendency to extinction increases when
pin diminishes, since the deterministic approximation predicts 75,
20, 8 and 3 infected individuals at the minimum for pin = 1, 0.8,
0.6 and 0.4, respectively.

5. Conclusions

In this work, we propose a deterministic approach for an
SIR-type epidemiological model that includes global and local
contacts on a square lattice.When comparing our deterministic ap-
proach with simulations performed with the stochastic version of
the model, we obtain a close agreement for qualitatively different
scenarios of disease transmission and parameters corresponding
to pertussis and rubella in the prevaccine era.

We study the epidemic spread in a fully susceptible population
and find that stochastic fluctuations can produce a considerable
variability of the triggering time for the epidemic. However, once
the epidemic regime is established, the dynamical evolution of
the system is only slightly influenced by stochastic effects and is
closely described by the deterministic approximation.We find that
the epidemic growth is characterized by an exponential regime
with an exponent that decreases when the relative importance
of the local contacts increases. Using the deterministic approach,
we are able to find an explicit approximated expression for the
exponent as a function of the model parameters.

At the quasi-stationary state of the system, the average frac-
tion of susceptible and infected individuals, as well as the average
fraction of susceptible–infected pairs is also closely approximated
by the stationary values obtained using the deterministic approx-
imation. Even though our study focuses on pertussis and rubella,
other infectious diseases could be studied using the deterministic
approximation, as the system is asymptotically stable around the
stationary values for a wide range of model parameters.

We also consider, for the particular case of pertussis, the
perturbation of the quasi-stationary state of the system by a
sudden reduction of the global contacts. Such a change in the
social behavior could be caused, for example, as a consequence of
a health control measure that urges people to avoid public places.
The fraction of infected individuals shows a dynamic behavior after
the perturbation characterized by the presence of a deepminimum
followed by a series of sharp and well-defined outbreaks. We
find that this behavior is also qualitatively well reproduced by
the deterministic approximation and, taking advantage of the
much simpler computations involved, we characterize the period
between outbreaks after the perturbation and the propensity of
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
−pβXi − µ −pβXs 0 −qβ/4 0

pβXi pβXs − γ − µ 0 qβ/4 0
4µ + UVW −2pβXss −2pβXi − UV − 2µ −UW 0

UV (V/2 − W ) pβ(2Xss − Xsi) + 4µ 2pβXi + UV U(W − V − 2/3) − pβXi − γ − 2µ 0
−UV 2/2 pβXsi 0 pβXi + UV + qβ/4 −2(γ + µ)


where U = 3qβ/8, V = Xsi/Xs, W = Xss/Xs.

Box I.
the system to extinction as a function of the relative reduction
of global contacts. An interesting prediction obtained from the
deterministic approximation study but concerning the stochastic
simulations is the extinction of infected individuals at the first
minimum after perturbation if the global contacts are reduced by
50%. This prediction holds regardless of the weight of the global
contacts at the initial state of the system before it is drastically
reduced.

It would be valuable to increase the complexity of the model
used in the present work in order to study pertussis transmission
in the vaccine era. The introduction of pertussis vaccination in
the model forces one to include new epidemiological classes that
account for individuals that have partially (or totally) lost their
immunity (Hethcote, 1997, 1999; Fabricius et al., 2013), as it is
well known that immunity to pertussis conferred by vaccines is not
lifelong (Wendelboe et al., 2005). On the basis of the deterministic
approximation developed in Section 3, it would be straightforward
to implement a deterministic approach to a stochastic model with
local and global contacts that includes additional epidemiological
classes. Stochastic simulations for a more complex model could be
much more time-consuming, and a deterministic approximation
would be a convenient alternative to study the problem.
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Appendix

In this Appendix we examine the stability of the deterministic
equations under changes in themodel parameters. For this purpose
we first reduce the system of equations (6)–(14) by using (1)–(4),
obtaining

dXs

dt
= −pβXsXi −

qβXsi

4
− µXs + µ, (20)

dXi

dt
= −(γ + µ)Xi + pβXsXi +

qβXsi

4
, (21)

dXss

dt
= −2pβXiXss −

3qβXsiXss

8Xs
+ 4µXs − 2µXss, (22)

dXsi

dt
= −pβXiXsi − 3qβ


(Xsi)

2

16Xs
−

XsiXss

8Xs


+ 2pβXiXss

−


qβ
4

+ γ + 2µ

Xsi + 4µXi, (23)

dXii

dt
= −2(µ + γ )Xii + pβXiXsi + qβ


3(Xsi)

2

16Xs
+

Xsi

4


. (24)

We study the stability of this autonomous system by analyzing
the Jacobian matrix of the linearized system (given in Box I).

We perform a numerical eigenanalysis of the preceding
matrix at the stationary values, concluding that the system is
asymptotically stable in the range of p included in this study
(0.2 ≤ p ≤ 1) for a wide range of the parameters (γ /µ, β/µ)
that includes most of infectious diseases in the pre-vaccine era:
2 ≤ β/γ ≤ 30, 0.0005 ≤ µ/γ ≤ 0.002 (Anderson and May,
1991; Simöes et al., 2008).
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