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ABSTRACT 

 

When components of a substance or material are subject to a mass balance constraint, test results 

of the components’ contents are intrinsically correlated because of the constraint. That is in 

addition to possible metrologically-related correlation of test results, and natural and/or 

technological correlation of the components’ contents. Such correlations may influence 

understanding of compositional data and evaluation of risks in conformity assessment of the 

substance or material due to measurement uncertainty. A Bayesian multivariate approach to 

evaluate the conformance probability of multicomponent materials or objects and corresponding 

risks of false decisions, able to take into account all observed correlations including spurious, is 

discussed for different scenarios of compositional data. A Monte Carlo method, which includes 

the mass balance constraint, written in the R programming environment is provided for the 

necessary calculations. A technique for separation of spurious correlations from experimental 

(natural and/or technological) correlations is proposed.  
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1.  Introduction  

 

    A number of techniques are used during development of a chemical analytical method to 

overcome possible correlations between test/measurement results of concentrations or contents of 

different components (main as well as impurities) of a substance or material. Some of these 

techniques include extraction of target components (analytes) from a sample and chromatographic 

separation of an analyte from other components of the sample [1]. Chemometrics software is 

applied for separation of spectral signals and multivariate calibrations of spectrometers [2]. Sample 

digestion [3] and standard additions of an analyte to a sample [4] are used for calibration of a 

measuring system to overcome multiplicative matrix effects, and so on. There are validation 

requirements for “analytical selectivity” of a standard operating procedure (SOP), as its 

performance characteristic, to prove the procedure’s fitness for purpose. IUPAC 

Recommendations [5] and the Eurachem Guide [6] define that “analytical selectivity relates to the 

extent to which the method can be used to determine particular analytes in mixtures or matrices 

without interferences from other components of similar behavior”. This definition is consistent 

with “selectivity of a measuring system” in JCGM 200 [7]. The corresponding procedure 

validation parameter in the pharmaceutical industry is termed in ICH Guideline [8] “specificity”. 

A procedure not able to answer the requirements of selectivity or specificity is not ‘fit-for-purpose’ 

and cannot be applied to the given task. Validation of the SOP, training analysts and proficiency 

testing, supervision and quality control are elements of the quality system of an analytical 

laboratory that should prevent human error causing metrologically–related correlation, unless, as 

shown in Fig. 1, the Swiss-cheese model [9] lines up an error in each element. Therefore, 

correlations that have arisen in the routine measurement process should be in general negligible 

and test results for two or more components of the same item (sample) are expected to be 

metrologically independent. In practice, if statistically significant correlation between measured 

values of concentrations or contents of components of the same sample is detected, analysis cannot 

be continued without a thorough chemical analytical inspection of the reason for the correlation in 

the laboratory. For example, when a medication is tested routinely with a pharmacopeial HPLC 

procedure, correlations might be related to the resolution of the chromatography column used, not 

able to separate the analytes completely, and the column must be replaced by another one. In the 

IUPAC/CITAC Guide [9] such an event is rated as a skill-based mistake or omission error (lapse).  

Fig. 1 
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     However, test results of chemical compositions of different batches, lots or objects are 

inevitably correlated when their actual (“true”) values are correlated. Correlations of contents of 

sample components can be caused by natural physicochemical properties of substances, such as 

stoichiometry [10-12], and by technological reasons in a material production [13, 14]. These 

correlations are taken into account using “conventional” multivariate statistical methods.        

     When components i = 1, 2, …, n of a substance or material are subject to a mass balance 

constraint (sum of their contents ci - mass fractions, mole fractions or any other positive quantity 

ratios - is 100 % or 1), test results of the components’ contents are called “compositional data”. 

These data are intrinsically correlated because of the constraint, and the relevant correlation was 

named by Karl Pearson in 1897 as “spurious” [15-17]. It is a kind of mathematical property of the 

data, not related to physicochemical interdependence of true values of contents of a material 

component. Compositional data may be depicted in a multi-dimensional simplex, as in Fig. 2, in 

which, in general, Euclidean geometry cannot be blindly applied. Compositional Data Analysis 

(CoDA) based on an isometric logratio transformation of the original test results was developed in 

the 1980’s by John Aitchison [18-20]. Logratios of amalgamations of test results for pairs of 

components (parts of the data) – pairwise logratios – were recently used for practical simplification 

of CoDA [21-24]. There are a number of examples of CoDA applications in geochemistry [25, 

26], agriculture and environmental analysis [27-30], bioinformatics [31, 32], forensic science [33, 

34], materials [35], and other fields. More publication references, software, slides and lecture notes 

can be found at website CODAWEB [36].       

     There is also a strong message in the literature (e.g., in refs. [25, 26, 37]) stressing how 

traditional statistical techniques may produce inadequate results if applied to raw compositional 

data without suitable transformation. However, the relevant techniques of CoDA are still not 

implemented widely, neither in metrology in chemistry nor in conformity assessment. Spurious 

correlations may influence evaluation of measurement uncertainty of compositional data (e.g. of 

standard gas mixtures [38, 39]) and quantification of risks of false decisions due to measurement 

uncertainty in the conformity assessment of a substance or material. A special case is 

characterization of materials based on a mass balance [40-43], for example matrix reference 

materials, as well as evaluation of purity of substances and corresponding (pure) certified reference 

materials.        

Fig. 2 

22 
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     A multivariate Bayesian model was recently elaborated for evaluation of risks of false decisions 

in conformity assessment of multicomponent materials or objects, also taking into account possible 

correlations between measured concentrations or contents of an item’s components [13, 14, 44-

47]. This “conventional” approach applies integration of the relevant posterior multivariate 

probability density function on the tolerance/specification multi-domain of the material (or object) 

compositions in order to obtain total specific risks, or integration of the joint probability density 

function of true and measured values to give total global risks. All observed correlations are 

embedded in the corresponding experimental covariance matrix. This matrix influences the 

subsequent multivariate results. 

     A problem of application of CoDA in this field is that a subset of the components may not be 

related directly to the mass balance, i.e. be outside of the multidimensional simplex; for example, 

when a sum of impurities’ contents is a member of the mass balance, but individual impurities or 

a subset of those impurities also have to undergo conformity assessment. Since each component 

participating in conformity assessment has content tolerance/specification limits, the mass balance 

constraint forms a multivariate sub-domain of the feasible material or object compositions in the 

domain of specification limits. Moreover, spurious correlation coefficients may be comparable or 

smaller (in absolute values) than coefficients of correlations caused by natural properties of the 

materials and technological reasons [14], and in general be not easily distinguishable from them. 

In addition, using isometric logratio transformation of data, it might be difficult to interpret 

relevant estimates for conformity assessment purposes in the original variable space.  

     In this regard, a new IUPAC project [48] was started with the aim of developing guidelines for 

treatment of influence of a mass balance constraint on measurement uncertainty of test results of 

a substance or material and risks in its conformity assessment. In the present position paper of the 

project, a Bayesian multivariate approach for evaluating the probability of conformance of a 

substance or material and the risks of false decisions is discussed for different scenarios of 

compositional data. A Monte Carlo method, which includes the mass balance constraint, written 

in the R programming environment, is developed for the necessary calculations. A technique for 

separation of spurious correlations from experimental (natural and/or technological) correlations 

is also proposed.  
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2. A Bayesian multivariate approach to conformity assessment of compositional 

data 

 

     The chemical composition of a material or substance is considered to conform when the actual 

(“true”) value of the content ci of each i-th component under control, i = 1, 2, …, n, is within its 

tolerance (specification) interval Ti = [TLi, TUi], where TLi and TUi are lower and upper tolerance 

limits of the interval, respectively. The term “component” relates to a main component or an 

impurity or a group of impurities in the item (sample, batch or lot). To decide whether the material 

or substance conforms or not, the measured content value cim is compared with the limits of the 

acceptance interval Ai = [ALi, AUi], where ALi and AUi are lower and upper limits of the interval, 

respectively, taking into account the standard measurement uncertainty ui associated with cim. This 

uncertainty causes risks of a false decision on conformity [49]. 

 

2.1. Compositional data properties 

 

     The vector of measured values cm = [𝑐1m, 𝑐2m,  … , 𝑐𝑛m] describes the n-component (n-part) 

composition of a material or substance. The compositional data space is the simplex  

  

𝑆𝑛 = {𝒄𝐦 = [𝑐1m, 𝑐2m,  … , 𝑐𝑛m] | 𝑐𝑖m > 0,  𝑖 = 1, 2, … , n;  ∑ 𝑐𝑖m
𝑛
𝑖=1 = 𝑘},              (1) 

 

where 𝑘 is usually equal to 1 or 100 %, but might be any other positive constant value. As cim are 

positive quantity ratios, a vector of measured values 𝒄𝐦 multiplied by any positive constant 

contains the same information as the original one, i.e. represents the same composition and can be 

considered as an equivalence class. This property is termed “scale invariance”. In other words, if 

𝒄𝐦 is scaled by a constant, e.g. measured content values cim changing from parts-per-unit to 

percentages, the information which 𝒄𝐦 conveys is completely equivalent. Therefore, it is natural 

to select a representative of the equivalence class to facilitate data analysis and interpretation of 

corresponding results. This selection is formalized by the closure operation:  
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clo (𝒄𝐦) = [
𝑘∙𝑐1m

∑ 𝑐𝑖m
𝑛
𝑖=1

, … ,
𝑘∙𝑐𝑛m

∑ 𝑐𝑖m
𝑛
𝑖=1

 ].          (2) 

 

     Compositional data do not depend on the order of measured contents 𝑐𝑖m within vector 𝒄𝐦. The 

order does not influence conclusions of any analysis on 𝒄𝐦. This is known as the “permutation 

invariance” property. Another property is “subcompositional coherence”, which means that 

analyses concerning a subset of the component contents should not depend on the remaining part. 

If a metric is used to compare two compositions on the simplex, the distance between the two 

should be greater than or equal to that obtained comparing any couple of corresponding 

subcompositions. That is called “subcompositional dominance”. This property is used to measure 

distances between compositions and subcompositions following the rule of a projection: distances 

become smaller in a projection.  

     Note, ordinary correlations (natural and/or technological) depend on the subcomposition 

considered and violate subcompositional coherence. The ordinary Euclidean distance between the 

vectors cannot be evaluated here, as both scale invariance and subcompositional dominance are 

violated [18]. 

 

2.2. Modelling composition of a material or substance 

 

Vector c = [𝑐1, 𝑐2,  … , 𝑐𝑛] represents the actual (“true”) n-component composition of a material 

or substance. Component contents ci, i = 1, 2, …, n, are the measurands in conformity assessment, 

and c is the vector of the measurands. Using a multivariate Bayesian approach [13, 14, 44-47], 

knowledge about a composition c can be modelled by a random multivariate posterior variable and 

expressed in terms of its probability density function (pdf). Such a pdf combines prior knowledge 

about the measurands and new information acquired during the measurements: 

 

𝑔(𝒄 𝒄m) = 𝐶𝑔0(𝒄)ℎ(𝒄m 𝒄),                                                        (3) 
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where 𝑔(𝒄 𝒄m) is the posterior pdf; C is a normalizing constant; 𝑔0(𝒄) is the multivariate prior 

pdf; and ℎ(𝒄m 𝒄) is the multivariate likelihood function taking into account the measurement 

uncertainties and possible covariance terms.  

     A large enough dataset of results of testing items of the same material produced at the same 

factory, or results of monitoring the same environmental compartment, can be used for modelling 

the prior pdf 𝑔0(𝒄). The assumption is that the actual content values are approximated by the 

test/measurement results adequately, since measurement uncertainty is negligible in comparison 

with item-to-item (batch-to-batch) variations caused by changes of conditions of the material 

production, environmental conditions, etc. Based on this assumption, normal and gamma 

distributions in JCGM 106 [49], as well as normal, lognormal and Weibull distributions in 

IUPAC/CITAC Guide [50], were considered as prior pdfs in univariate conformity assessment. 

Multivariate normal distributions in refs. [13, 14], normal and lognormal distributions in refs. [44, 

45] were used in conformity assessment of materials and an environmental object.  

     If there is no detailed prior knowledge about distribution of the component content in the tested 

items, the prior pdf is vague. According to the principle of maximum entropy, a multivariate 

normal distribution is usually considered as the joint prior pdf for the vector of actual component 

contents c when the mean μ and covariance matrix V constitute the only available information 

about the vector quantity [51]. In case of compositional data c, however, their properties need to 

be taken into account when assigning a corresponding pdf. Since the vector c is non-negative, and 

the first two moments of the distribution (the expected value and variance) are known, the 

maximum entropy distribution is a truncated multivariate normal distribution, not a logarithmic 

one [52]. This is also the case for an elliptical truncation region [53], when the pdf is supposed to 

be nonzero-valued just for (c - μ)T V–1(c - μ) ≤ k.  

     Therefore, in the present work, a truncated multivariate normal (TMN) distribution on the nD 

region [0, k]n is employed in modelling the prior pdf of c. It is written TMN(μ,V),  μ and V being 

the location and scale parameter, respectively, of the original normal pdf from which the TMN 

distribution arises by truncation on [0, k]n. For the univariate case, the TMN pdf for ci on the 

interval [0, k] is  

fi = 
(

𝑐𝑖−𝑖
𝑖

)

𝑖((
𝑘−𝑖
𝑖

)−(
−𝑖
𝑖

))

 ,      (4)                                            

https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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where μi and i are the mean and standard deviation (the location and scale parameters) of the 

normal pdf from which this TMN distribution arises; (∙) is the pdf of the standard normal 

distribution and (∙) is its cumulative distribution function. Outside the interval [0, k], the pdf fi is 

equal to zero. 

     Accordingly, the likelihood function ℎ(𝒄m|𝒄) can be also modelled on the base of a TMN of 

the measured values, having location parameter equal to the vector 𝒄 of actual/“true” values, i.e. 

TMN(𝒄,U), where U is the covariance matrix of measurement uncertainties ui and covariance 

terms uij whose corresponding correlation coefficients are the same as for V. Correlation between 

measured content values 𝑐𝑖m and 𝑐𝑗m is  the same as between the corresponding actual ones 𝑐𝑖 and 

𝑐𝑗, when no other (metrologically-related) correlation arose in the measurement process. 

     The multivariate truncated distribution accommodates the constraint of compositional data to 

lie on the region [0, k]n  and is promising for overcoming the above-mentioned problems of 

application of CoDA for evaluation of risks of false decisions in conformity assessment. 

      

2.3. Models for the prior distribution  

 

     Let us consider the case of c1 + c2 + c3 = 100 %, or without loss of generality c1 = 100 % − c2 − 

c3. As an example, the composition of a PtRh alloy described in paper [14] is discussed below. 

Here, c1 is the Pt content in the PtRh alloy, c2 is the Rh content, and c3 is the content of eight 

impurities (sum of their mass fractions). Prior means 𝜇𝑖 and standard deviations 𝑖, as well as 

observed correlation coefficients rij, i  j, for these three components are shown in Table 1. The 

content of an additional component of the alloy that is under control in conformity assessment – 

the sum of mass fractions of the three precious impurities (a part of c3) – is not considered here as 

it is not related directly to the mass balance.  

     The following scenarios have been considered for modelling the multivariate prior probability 

distribution of the actual (“true”) three-component composition described by the vector 𝒄: 

1) Modelling all the actual values of the components’ contents: the closure operation clo(𝒄) 

is applied to 𝒄 following a TMN(𝝁,V) distribution on the 3D region [0, 100]3.  

2) Modelling actual values of two components’ contents and deriving the third: [c2, c3] 

follows a bivariate TMN(𝝁23,𝑽23) distribution on the 2D region [0, 100]2, where subscript 

Table 1 
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“23” indicates that the applied operation refers just to components 2 and 3. The scale 

parameter 𝑽23 involves the correlation coefficient r23 = 0.228, and c1 is deterministically 

calculated as c1 = 100 % − c2 − c3, disregarding possible negative values.  

3) Sequential modelling: c2 follows a TN(𝜇2,𝜎2), a univariate normal distribution truncated 

on the interval [0, 100]; c3|c2 has a conditional probability distribution following a 

TN(𝜇3,𝜎3)  on the interval [0, 100 – c2]; and, again deterministically, c1|(c2, c3) = 100 % − 

c2 − c3. 

     In order to assess the suitability of the models, two parameters are considered: 1) the correlation 

matrix encompassing correlation coefficients rij of the multivariate prior pdf, and 2) the pdf 

coverage probability p, calculated as its integral over the multivariate tolerance region, which is 

[92.2 %, 92.8 %]  [7.3 %, 7.7 %]  [0 %, 0.18 %] for the present example. By definition, p is the 

probability that the prior values of all the three variables lie within corresponding tolerance 

intervals. The calculation of p using the Monte Carlo (MC) method is described in Appendix 1. 

Equivalence or dissimilarity of this parameter’s values from model to model indicate that the 

multivariate pdfs generated by the various models are actually the same or different, respectively. 

Results of calculating rij and p obtained by means of 107 MC simulations for each model, are 

reported in Table 2. For comparison, p = 0.979 was obtained when the ordinary multivariate 

normal distribution was applied in ref. [14] and the original/experimental correlation coefficients 

shown in Table 1 were used. 

     Correlation coefficients in Table 2 for the prior pdf obtained by models 1 and 2 are equal, within 

the precision of the MC simulation, to the experimental ones in Table 1, considering that two 

decimal digits in the coefficient estimates can be taken as reliable when 107 MC simulations are 

performed. For both models 1 and 2, coverage probabilities slightly greater than p = 0.979 are 

obtained, meaning that the prior pdfs generated by these models are narrower than the ordinary 

multivariate normal pdf. 

     To show the influence of the closure operation on a TMN pdf, boxplots of the marginal pdfs of 

the three variables by model 1, before the closure operation (boxplot 1) and after it (boxplot 2), 

are depicted in Fig. 3. The closure operation shifts the marginal pdf location towards smaller 

values, especially for c1, i.e. the Pt content. More details of this pdf are shown in the histogram of 

c1 in Fig. 4.  

Table 2 

Fig. 3 

22 

Fig. 4 

22 
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     By model 3, the contents of Rh (c2) and the impurities (c3) are each drawn from a univariate 

truncated normal distribution, one of which depends on the other just in its truncation limits. Pt 

content values are deterministically generated to satisfy the mass balance constraint. In this model, 

there is no place for a covariance matrix encompassing the correlation coefficients which reflect 

different kinds of correlation between the contents. The correlation matrix by model 3 can reveal 

only the spurious correlations arising from the truncation effect and the mass balance constraint. 

In the present example, as the sum of Rh and impurities contents is always far away from 100 %, 

correlation between the two due to the truncation effect is negligible. Thus, the correlation 

coefficient arising from spurious correlations between Rh and the impurities contents is zero, 

despite the fact that the experimental correlation coefficient is 0.288. Also, the spurious correlation 

coefficient for Pt and the impurities contents is different from the observed correlation coefficient, 

due to both the mass balance constraint and the nature of the raw materials. Nonetheless, the 

coverage probability obtained for model 3 is very close or equal to those by models 1 and 2.  

     In general, modelling 1 is suitable for matrix reference materials, standard gas mixtures, food 

products, etc., i.e. for materials whose composition is tested completely and the test results should 

correspond to a mass balance. Modelling 2 can be applied for pure substances or materials in which 

the main component content is not tested using physicochemical measurement methods but 

calculated based on a mass balance constraint. Sequential modelling 3 is more complicated, since 

the sequence of c2 and c3 can be exchanged and that may lead to different results as the conditional 

probabilities are different. Moreover, the number of such models increases significantly with the 

number of components n > 3. This modelling does not allow consideration of types of correlation 

other than spurious and cannot be implemented adequately when natural (stoichiometric) and/or 

technological correlations are significant. On the other hand, modelling 3 could be a helpful tool 

for understanding sources of the experimental correlation, disentangling its spurious part from the 

rest. 

 

2.4. Likelihood modelling for a component content calculated based on a mass balance constraint 

 

     According to the propagation of uncertainty prescribed by JCGM 100 [55] for correlated input 

quantities, when contents of a main component (i = 1) are calculated based on a mass balance 
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constraint c1 = 100 % - ∑ 𝑐𝑖
𝑛
𝑖=2 , the squared measurement uncertainty associated with the calculated 

c1m is  

𝑢1
2 = ∑ 𝑢𝑖

2

𝑛

𝑖=2

+ 2 ∑ ∑ 𝑢𝑖𝑢𝑗𝑟𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛

𝑖=2

.                                                (5) 

 

In the example of the three components of the PtRh alloy participating in the mass balance, the 

standard measurement uncertainty 𝑢1 associated with the calculated Pt content c1m is evaluated as 

following:  

 

𝑢1 = (𝑢2
2 + 𝑢3

2 + 2𝑢2𝑢3𝑟23)0.5 = (0.0402 + 0.0112 + 20.0400.0110.228)0.5 =  0.044 (%), 

 

where 𝑢2 = 0.040 % is the standard uncertainty associated with the measured Rh content c2m in its 

tolerance (specification) interval, and 𝑢3 = 0.011 % is the standard measurement uncertainty 

associated with the measured mean of the impurities content 𝑐3m = 0.059 % (the relative standard 

uncertainty being 𝑢3/c3m = 0.18). When correlation between contents of components 2 and 3 is 

ignored, e.g. in model 3 where 𝑟23 = 0, the measurement uncertainty associated with the calculated 

c1m is 𝑢1 =  0.041 %.  

     The modelling of the likelihood function for measured content values cm is based on the idea 

that an appropriate pdf with zero expectation is chosen for an error em and then translated to the 

vector of actual (“true”) content values c generated for the prior. Therefore, cm is recovered as cm 

= c + em. The covariance matrix U associated with cm contains the squared above-mentioned 

uncertainties ui and the covariance terms uij whose corresponding correlation coefficients are the 

same as for V.  The error em pdf, having zero mean, is the same as that for the likelihood when 

translated into the vector c. The truncation limits are chosen such that each component of the vector 

cm has to be between zero and 100 %: 0 % < cm = c + em < 100 %. Hence, a vector of errors is 

extracted between – c % and (100 – c) %, where c is drawn from the prior pdf. For ease of 

computation, the c values in these truncation limits are approximated with corresponding mean 

values 𝝁. Thus, the modelling of the likelihood follows that of the prior: 

1) Modelling the likelihood of all the measured component contents: em|c is used as a 

TMN(𝟎,U) distribution on the region [−𝜇1, 100 − 𝜇1] % × [−𝜇2, 100 − 𝜇2] % × [−𝜇3, 
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100 − 𝜇3] % for the cm generation, where c is approximated by , and then applying the 

closure operation clo(cm). 

2) Modelling the likelihood of two measured component contents and deriving the third: 

[e2m, e3m]|𝒄23 is taken as a bivariate TMN(𝟎,𝑼23) distribution on the region [−𝜇2, 100 

− 𝜇2] % × [−𝜇3, 100 − 𝜇3] % for the 𝑐2m and 𝑐3m generation, where 𝒄23 is approximated 

by 𝝁23, and 𝑼23 involves the correlation coefficient r23 = 0.228. Then, c1m = 100 % – c2m 

– c3m is calculated directly, disregarding its possible negative values.  

3) Sequential modelling the likelihood: e2m|c2 is represented by a univariate TN(0,𝑢2) 

distribution on [−𝜇2, 100 − 𝜇2] % interval for the c2m generation, where 𝑐2 is 

approximated by 𝜇2, and e3m|𝒄23 by a univariate TN(0,𝑢3) on the interval [−𝜇3, 100 

− 𝜇3 − 𝑐2m] % for the c3m generation, where 𝑐3 is approximated by 𝜇3. Then, c1m = 

100 % – c2m – c3m is calculated directly, as in the previous modelling. 

     When the prior pdf and likelihood function are modelled, the joint pdf for true and measured 

values given by the product 𝑔0(𝒄)ℎ(𝒄m 𝒄), and the posterior pdf for the measurand 𝒄 may be 

obtained by eqn. (3). Thus, evaluation of risks in conformity assessment of a material or substance, 

using compositional data, is possible. 

 

3. Risks in conformity assessment of compositional data 

 

3.1. Kinds of risks 

 

Several kinds of risk of a false decision on conformity of an item due to measurement 

uncertainty may be evaluated. The probability of accepting a batch of the material, when it should 

be rejected, is the ‘consumer’s risk’, whereas the probability of falsely rejecting the batch is the 

‘producer’s risk’. For a specified batch, they are referred to as the ‘specific consumer’s risk’ 𝑅c𝑖
∗  

and the ‘specific producer’s risk’ 𝑅p𝑖
∗ , respectively, for the i-th particular component of the material 

under control [49]:  

 

                             𝑅c𝑖
∗ = ∫ 𝑔(𝑐𝑖 𝑐𝑖m)𝑑𝑐𝑖𝑇𝑖

c    and   𝑅p𝑖
∗ = ∫ 𝑔(𝑐𝑖 𝑐𝑖m)𝑑𝑐𝑖𝑇𝑖

 ,                          (6) 
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where 𝑇𝑖
c is the interval complementary to the tolerance (specification) interval Ti, and measured 

value 𝑐𝑖m is inside of the acceptance interval in the case of 𝑅c𝑖
∗  and outside – in the case of 𝑅p𝑖

∗ . 

Thus, 𝑅c𝑖
∗  relates to the situation when a batch is accepted at the value 𝑐𝑖 out of Ti, while 𝑅p𝑖

∗  - 

when a batch is rejected at 𝑐𝑖 in Ti. 

The risks of incorrect conformity assessment of a batch randomly drawn from a statistical 

population of such batches are the ‘global consumer’s risk’ 𝑅c𝑖 and the ‘global producer’s 

risk’ 𝑅p𝑖, respectively, as they characterize the material production globally [49]: 

 

  𝑅c𝑖 = ∫ ∫ 𝑔0(𝑐𝑖)ℎ(𝑐𝑖m 𝑐𝑖) 𝑑𝑐𝑖m𝑑𝑐𝑖𝐴𝑖𝑇𝑖
c    and   𝑅p𝑖 = ∫ ∫ 𝑔0(𝑐𝑖)ℎ(𝑐𝑖m 𝑐𝑖) 𝑑𝑐𝑖m𝑑𝑐𝑖𝐴𝑖

c𝑇𝑖
 ,       (7) 

 

where 𝐴𝑖
c is the interval complementary to the acceptance interval 𝐴𝑖. 

     When conformity assessment for each i-th component of a material is successful (i.e. the 

particular specific or global risks are small enough), the total probability of a false decision 

concerning the material as a whole (the total specific 𝑅∗ or total global 𝑅 risk) might still be 

significant. The total risks are also consumer’s and producer’s, as shown below with subscripts 

“c” and “p”, respectively: 

 

𝑅c
∗ = ∫ 𝑔(𝒄 𝒄m)𝑑𝒄

𝑇c  (for 𝒄m in A) and 𝑅p
∗ = ∫ 𝑔(𝒄 𝒄m)𝑑𝒄

𝑇
 (for 𝒄m outside A),              (8) 

 

𝑅c = ∫ ∫ 𝑔0(𝒄)ℎ(𝒄m 𝒄) 𝑑𝒄m𝑑𝒄
𝐴𝑇c  and 𝑅p = ∫ ∫ 𝑔0(𝒄)ℎ(𝒄m 𝒄) 𝑑𝒄m𝑑𝒄

𝐴c𝑇
,                     (9) 

 

 

where T is the tolerance region T1×T2× …× Tn ; A is the acceptance region A1×A2× …× An ; and 

superscript “c” means “complementary”. 

Altogether, for n > 1 components under control, one can distinguish 4(n +1) kinds of risks of 

false decisions [56]. Evaluation of the total global risks of false decisions on the conformity of 

compositional data (constrained by a mass balance) using a Monte Carlo method in the R 

programming environment is discussed below. Quantification of total specific risks will be 

addressed in the framework of the project [48] at a subsequent stage.  

 

3.2. Evaluation of the total global risks  
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     To evaluate the global risks in the case of three variables related to a mass balance, prior pdf and 

likelihood function are modelled as in sections 2.3 and 2.4, respectively. Then, 107 MC simulations 

of the joint pdf 𝑔0(𝒄)ℎ(𝒄m 𝒄) are generated simulating prior values from 𝑔0(𝒄) and corresponding 

likelihood values from ℎ(𝒄m 𝒄). The three models for the prior and likelihood discussed in the 

previous section give three ways to obtain the joint pdf. The function “rtmvnorm” [57] is applied in 

the first and the second model, and the function “rtnorm” [58] in the third model. Finally, the joint 

pdf is represented by values of the vector [𝑐1, 𝑐2, 𝑐3, 𝑐1m, 𝑐2m, 𝑐3m].     

     The total producer’s risk 𝑅p is evaluated considering the fraction of the number of cases (from 

the total number of 107 MC simulations) when all the actual values 𝑐1, 𝑐2, 𝑐3 are within the 

corresponding tolerance region T, while at least one of the measured values 𝑐1m, 𝑐2m, 𝑐3m is out of 

its acceptance interval Ai, i = 1, 2, 3, respectively. The total consumer’s risk 𝑅c is evaluated as the 

fraction of the number of cases when all the measured values 𝑐1m, 𝑐2m, 𝑐3m are within the 

acceptance region A, while at least one of the actual values 𝑐1, 𝑐2, 𝑐3 is out of its tolerance interval 

Ti, i = 1, 2, 3, respectively. Core calculations of the developed R code are presented in Appendix 

B. 

     For the three discussed models, the total global consumer's risk at the acceptance limits equal 

to the tolerance limits (A = T) was the same 𝑅c = 4.7×10–3. A similar result 𝑅c = 5.1×10–3 was 

reported in the paper [14] for a scenario when Pt, Rh and the eight impurities contents only were 

taken into account: the slight difference in the risk values is due to different numerical 

implementations of the risk calculation. For more details, the 𝑅c dependence on A2 and A3 (at A1 = 

T1) was also studied, as shown in Fig. 5a for model 1. The arrows on both the plots in Fig. 5 show 

the acceptance intervals from A2 = T2 and A3 = T3, at the beginning of the axes, to the acceptance 

intervals with limits differing from the tolerance limits by three times the relevant measurement 

uncertainty (3ui), at the axes’ ends. Specifically, in Fig. 5a, these are the lower acceptance limit 

AL2 = TL2 + 3u2 = 7.3 + 3×0.04 = 7.42 (%) and the upper acceptance limit AU2 = TU2 – 3u2 = 7.7 – 

3×0.04 = 7.58 (%). Since the upper only tolerance limit TU3 is set for the content of the impurities, 

at the end of the A3 axis AL3 = 0 and AU3 = TU3 – 3u3 = 0.18 – 3×(0.059×0.18) = 0.15 (%), where 

0.059 % is the value of the content prior mean 𝜇3 of the impurities (Table 1). The color column 

bar in the plot gives indication of the risk 𝑅c values between the minimum and the maximum on 

the surface, from 3×10–6 to 4.7×10–3. One can see on the plot that the influence of the impurities’ 

Fig. 5 

22 
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content on the risk is negligible under these conditions. That is because the content prior mean 𝜇3 

= 0.059 % is far enough from the tolerance limit TU3 = 0.18 %.  

     The dependences of 𝑅c on the acceptance intervals for the second and the third models are very 

similar (𝑅c varying from 4×10–6 to 4.7×10–3 and 𝑅c from 6×10–6 to 4.6×10–3, respectively). These 

results show that the mass balance influence on 𝑅c in the small sub-domain of feasible alloy 

compositions is practically negligible. 

     The total global producer's risk at A = T was 𝑅p = 2.4×10–2 for models 1 and 2, and a bit smaller 

𝑅p = 2.0×10–2 for model 3. The producer’s risk values were not discussed in ref. [14] but have 

been calculated, for sake of comparison, according to the approach proposed there, leading to the 

same value 𝑅p = 2.4×10–2. The 𝑅p dependence on A2 and A3 (at A1 = T1) is presented for model 1 

in Fig. 5b, where, at the end of the axes, AL2 = TL2 – 3u2 = 7.3 – 3×0.04 = 7.18 (%) and AU2 = TU2 

+ 3u2 = 7.7 + 3×0.04 = 7.82 (%), and AL3 = 0 and AU3 = TU3 + 3u3 = 0.18 + 3×(0.059×0.18) = 0.21 

(%), respectively. The color column bar gives indication of 𝑅p values from 4.9×10–3 to 2.4×10–2. 

The influence of the impurities’ content on the producer’s risk is minor at these conditions, as it is 

for the consumer’s risk for the same reason.  

     The dependence of 𝑅p on the acceptance intervals for the second model is very similar as well, 

its values being practically the same: 𝑅p from 4.8×10–3 to 2.4×10–3. However, the third model 

produces smaller values of  𝑅p from 3.7×10–4 to 2.0×10–3.  

      The obtained results show that the mass balance influence on the consumer’s and producer’s 

risks, evaluated with models 1 and 2, is not visible in the small sub-domain of feasible alloy 

compositions. The plots by these two models, like in Fig. 5, allow choice of acceptance limits 

corresponding to the suitable risks of the consumer(s) and the producer. The departure of results 

by model 3, with respect to the results obtained with models 1 and 2, is caused by the fact that 

model 3 does not take into account correlations other than spurious (natural and technological). 

Therefore, this model is helpful not only to separate spurious correlation from the 

observed/experimental (cumulative) correlation, but also to indicate how significant the difference 

between them in a material conformity assessment is.   

 

4. Conclusions 

 

Fig. 6 

22 



17 

 

Three kinds of correlation can be considered between components’ contents of a substance or 

material which meet requirements of a mass balance: 1) metrologically-related, 2) natural and 

technological, and 3) spurious. All these kinds of correlation have been taken into account in the 

Bayesian multivariate approach modified for evaluating the conformance probability of a 

substance or material and the risks of false decisions in its conformity assessment when the 

material components’ contents satisfy a mass balance constraint.  

     Three models of prior pdfs and likelihood functions describing the compositional data in the 

framework of the Bayesian multivariate approach can be applied. Model 1 is suitable for materials 

whose composition is tested completely and for which the test results should correspond to a mass 

balance. Model 2 can be applied for testing pure substances or materials in which the main 

component content is not measured using physicochemical measurement methods, but calculated 

based on a mass balance constraint. Model 3 is a helpful tool for understanding sources of 

experimental correlation, disentangling the spurious part from natural and/or technological 

correlations. 

     A Monte Carlo method, coded in the R programming environment, was developed for 

calculations of the coverage probability of the prior pdf and the total global risks of false decisions 

on conformity of a material or substance, taking into account the mass balance constraint of the 

data. 

    The approach to conformity assessment of compositional data is demonstrated using an example 

of a PtRh alloy, for which spurious correlation effects were minor. 
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Appendix A. Evaluation of coverage probability 

 

     Evaluation of the coverage probabilities for three variables according to the models of prior pdfs 

described in sec. 2.3 was performed in the R programming environment using  the library 

“compositions” [59] and a Monte Carlo method with 107 simulations.  
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     For the first model, where 𝒄 follows a TMN(𝝁,V) distribution on the region [0, 100]3, a prior pdf 

as a trivariate truncated normal distribution was generated using the function “rtmvnorm” with 

truncation limits equal to [0, 0, 0] and [100, 100, 100]. Note, a non-singular matrix is inserted as an 

approximation of matrix V. Then, the function “clo” was applied for performing the closure operation 

with the constraint equal to 100 %.  

     For the second model the function “rtmvnorm” was applied to generate a bivariate truncated 

normal distribution with truncation limits [0, 0] and [100, 100]. Then, the third variable was 

computed as c1|(c2, c3) = 100 % – c2 – c3.  Rows [𝑐1, 𝑐2, 𝑐3] of the matrix, containing negative generated 

values of the third component content, were removed.  

     In the third model, c2 is generated using the function “rtnorm” with the truncation lower limit 0 % 

and the upper limit 100 %. Then, variable c3|c2 was given by the same function, “rtnorm”, but with 

the truncation limits 0 % and 100 % − 𝑐2, i.e. for each value of 𝑐2 the corresponding value of c3 was 

in the interval [0, 100 −  𝑐2]. In this way 0 < c2 + c3|c2 < 100. Finally, the third variable was computed 

as c1|(c2, c3) = 100 % – c2 – c3.  

     When the prior pdf is generated in the form of a matrix containing rows of values [𝑐1, 𝑐2, 𝑐3], the 

coverage probability can be evaluated using function “length” to count cases where 𝑐1, 𝑐2 and 𝑐3 

values are simultaneously within their limits. For each row corresponding to this condition, the 

function gives the number 3, because three variables were treated. Thus, to obtain the coverage 

probability, the result of the “length” function should be divided by 3×107. One can also compute 

marginal coverage probability, taking into account the variables one by one. Core calculations of the 

developed R code are presented in Appendix B. 

 

Appendix B. Core calculations of the R code 

 

B.1. Calculation of the coverage probability of the prior pdf 

 

library(mvtnorm) 

library(msm) 

library(tmvtnorm) 

library(compositions) 

library(nortest) 

 

rm(list=ls()) 
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# Tolerance limits 

lrl1 = 92.2 

url1 = 92.8 

lrl2 = 7.3 

url2 = 7.7 

lrl3 = 0 

url3 = 0.18 

 

########### 

# MODEL 1 

 

n = 10000000 

mu1 = 92.483 

mu2 = 7.547 

mu3 = 0.059 

uc1 = 0.081  

uc2 = 0.073  

uc3 = 0.021  

mean = c(mu1,mu2,mu3) 

sigma = matrix(c(uc1^2,-0.967*uc1*uc2,-0.467*uc1*uc3,-

0.967*uc1*uc2,uc2^2,0.228*uc2*uc3,-0.467*uc1*uc3,0.228*uc2*uc3,uc3^2), nrow = 3) 

lower = rep(0,3) 

upper = rep(100, 3) 

 

priorTMN = rtmvnorm(n, mean = mean, sigma = sigma, lower, upper) 

prior = clo(priorTMN, total=100) 

 

prior1 = prior[,1] 

prior2 = prior[,2] 

prior3 = prior[,3] 

 

# Correlation matrix of the modelled multivariate prior PDF 

cor(cbind(prior1, prior2, prior3)) 

 

# Joint coverage probability 

Pcov123 = length(prior[(prior1>=lrl1 & prior1<=url1) & (prior2>=lrl2 & prior2<=url2) & 

(prior3>=lrl3 & prior3<=url3)])/(3*n) 

Pcov123 

 

# X Marginal coverage probability 

Pcov1 = length(prior1[prior1>=lrl1 & prior1<=url1])/n 

Pcov1 

 

# Y Marginal coverage probability 

Pcov2 = length(prior2[prior2>=lrl2 & prior2<=url2])/n 
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Pcov2 

 

# Z Marginal coverage probability 

Pcov3 = length(prior3[prior3>=lrl3 & prior3<=url3])/n 

Pcov3 

 

 

########### 

# MODEL 2 

 

n = 10000000 

mu2 = 7.547 

mu3 = 0.059 

uc2 = 0.073  

uc3 = 0.021  

mean23 = c(mu2,mu3) 

sigma3 = matrix(c(uc2^2,0.228*uc2*uc3,0.228*uc2*uc3,uc3^2), nrow = 2) 

lower = rep(0,2) 

upper = rep(100,2) 

 

prior23 = rtmvnorm(n,mean23,sigma3,lower,upper)  

prior2 = prior23[,1] 

prior3 = prior23[,2] 

prior1 = c(rep(100,n)) - prior2 - prior3 

prior123 = cbind(prior1,prior2,prior3) 

prior = prior123[prior123[,1]>=0,]  # Only generated vectors in which X values are non-negative 

are retained 

prior1 = prior[,1] 

prior2 = prior[,2] 

prior3 = prior[,3] 

 

# Correlation matrix of the modelled multivariate prior PDF 

cor(prior) 

 

# Joint coverage probability 

Pcov123 = length(prior[(prior1>=lrl1 & prior1<=url1) & (prior2>=lrl2 & prior2<=url2) & 

(prior3>=lrl3 & prior3<=url3)])/(3*n) 

 

# X Marginal coverage probability 

Pcov1 = length(prior1[prior1>=lrl1 & prior1<=url1])/length(prior1) 

 

# Y Marginal coverage probability 

Pcov2 = length(prior2[prior2>=lrl2 & prior2<=url2])/length(prior1) 

 

# Z Marginal coverage probability 

Pcov3 = length(prior3[prior3>=lrl3 & prior3<=url3])/length(prior1) 
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########### 

# MODEL 3 

 

n = 10000000 

mu2 = 7.547 

mu3 = 0.059 

uc2 = 0.073  

uc3 = 0.021 

 

prior2 = rtnorm(n,mu2,uc2,0,100) 

prior3 = rtnorm(n,mu3,uc3,0,100-prior2) 

prior1 = c(rep(100,n)) - prior2 - prior3 

prior = cbind(prior1,prior2,prior3) 

 

# Correlation matrix of the modelled multivariate prior PDF 

cor(prior) 

 

# Joint coverage probability 

Pcov123 = length(prior[(prior1>=lrl1 & prior1<=url1) & (prior2>=lrl2 & prior2<=url2) & 

(prior3>=lrl3 & prior3<=url3)])/(3*n) 

 

# X Marginal coverage probability 

Pcov1 = length(prior1[prior1>=lrl1 & prior1<=url1])/n 

 

# Y Marginal coverage probability 

Pcov2 = length(prior2[prior2>=lrl2 & prior2<=url2])/n 

 

# Z Marginal coverage probability 

Pcov3 = length(prior3[prior3>=lrl3 & prior3<=url3])/n 

 

B.2. Calculation of the total global risks 

 

# Inizializations and setting  

library(mvtnorm) 

library(msm) 

library(tmvtnorm) 

library(compositions) 

library(nortest) 

 

rm(list=ls()) 

 

lrl1 = 92.2  # Lower regulation limit  

url1 = 92.8  # Upper regulation limit 
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lrl2 = 7.3  # Lower regulation limit  

url2 = 7.7  # Upper regulation limit 

lrl3 = 0   # Lower regulation limit  

url3 = 0.18  # Upper regulation limit 

lal1 = lrl1    # Lower acceptance limit  

lal2 = lrl2    # Lower acceptance limit  

lal3 = lrl3   # Lower acceptance limit  

ual1 = url1  # Upper acceptance limit 

ual2 = url2  # Upper acceptance limit 

ual3 = url3  # Upper acceptance limit 

lrl = c(lrl1,lrl2,lrl3) 

url = c(url1,url2,url3) 

lal = c(lal1,lal2,lal3) 

ual = c(ual1,ual2,ual3) 

 

mu1 = 92.483   # Prior mean value of the true results 

mu2 = 7.457    # Prior mean value of the true results 

mu3 = 0.059  # Prior mean value of the true results 

uc1 = 0.081  # Prior sd  

uc2 = 0.073  # Prior sd 

uc3 = 0.021  # Prior sd 

 

rucm2 = 0.04/mu2*100 # RELATIVE (%) measurement uncertainty 

rucm3 = 0.18*100  # RELATIVE (%) measurement uncertainty 

rucm1 = sqrt(0.04^2+0.18^2*mu3^2+2*0.228*0.04*0.18*mu3)/mu1*100  # RELATIVE (%) 

measurement uncertainty 

ucm1 = rucm1*mu1/100  # ABSOLUTE (%) measurement uncertainty 

ucm2 = rucm2*mu2/100  # ABSOLUTE (%) measurement uncertainty 

ucm3 = rucm3*mu3/100  # ABSOLUTE (%) measurement uncertainty 

 

########### 

# Model 1 

mu = c(mu1,mu2,mu3) 

sigma = matrix(c(uc1^2, -0.967*uc1*uc2, -0.467*uc1*uc3, -0.967*uc1*uc2, uc2^2, 

0.228*uc2*uc3, -0.467*uc1*uc3, 0.228*uc2*uc3,uc3^2), nrow = 3) 

sigma_lik = matrix(c(ucm1^2, -0.967*ucm1*ucm2, -0.467*ucm1*ucm3, -0.967*ucm1*ucm2, 

ucm2^2, 0.228*ucm2*ucm3, -0.467*ucm1*ucm3, 0.228*ucm2*ucm3, ucm3^2), nrow = 3) 

 

# PRIOR 

n = 10000000 

lowerT = rep(0,3) 

upperT = rep(100,3) 

prior = rtmvnorm(n,mu,sigma,lowerT,upperT) 

prior = clo(prior, total = 100) 

 

# LIKELIHOOD 
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like = prior + rtmvnorm(n, c(rep(0,3)), sigma_lik, lower = -mu, upper = 100 - mu) 

like = clo(like, total = 100) 

 

# PRODUCER'S RISK 

m = 3 # Number of components 

z=0 

for(i in 1:n) { 

if(all(prior[i,]>=lrl[1:m] & prior[i,]<=url[1:m]) & any(like[i,]>ual[1:m] | like[i,]<lal[1:m])) { 

z=z+1}  

} 

RtotglobP = z/n 

 

# CONSUMER'S RISK 

m = 3 # Number of components 

q=0 

for(i in 1:n) { 

if(all(like[i,]>=lal[1:m] & like[i,]<=ual[1:m]) & any(prior[i,]>url[1:m] | prior[i,]<lrl[1:m])) { 

q=q+1}  

} 

RtotglobC = q/n 

 

 

########### 

# Model 2 

mu = c(mu2,mu3) 

sigma = matrix(c(uc2^2, 0.228*uc2*uc3, 0.228*uc2*uc3, uc3^2), nrow = 2) 

sigma_lik = matrix(c(ucm2^2, 0.228*ucm2*ucm3, 0.228*ucm2*ucm3, ucm3^2), nrow = 2) 

lowerT = rep(0,2) 

upperT = rep(100,2) 

 

# PRIOR 

n = 10000000 

prior = rtmvnorm(n,mu,sigma,lowerT,upperT)   

prior2 = prior[,1] 

prior3 = prior[,2] 

prior1 = c(rep(100,n)) - prior2 - prior3 

prior123 = cbind(prior1,prior2,prior3) 

prior = prior123[prior123[,1]>=0,]   # Only generated vectors in which X values are non-negative 

are retained 

 

# LIKELIHOOD 

like23 = prior[,2:3] + rtmvnorm(n, c(rep(0,2)), sigma_lik, lower = -mu, upper = 100 - mu) 

like2 = like23[,1] 

like3 = like23[,2] 

like1 = 100 - like2 - like3 

like123 = cbind(like1,like2,like3) 
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like = like123[like123[,1]>=0,] 

prior = prior[like123[,1]>=0,]  # Updated prior, disregarding values corresponding to 

negative likelihood values for the first quantity 

 

# PRODUCER'S RISK 

m = 3 # Number of components 

z=0 

for(i in 1:dim(prior)[1]) { 

if(all(prior[i,]>=lrl[1:m] & prior[i,]<=url[1:m]) & any(like[i,]>ual[1:m] | like[i,]<lal[1:m])) { 

z=z+1}  

} 

RtotglobP = z/n 

 

# CONSUMER'S RISK 

m = 3 # Number of components 

q=0 

for(i in 1:dim(prior)[1]) { 

if(all(like[i,]>=lal[1:m] & like[i,]<=ual[1:m]) & any(prior[i,]>url[1:m] | prior[i,]<lrl[1:m])) { 

q=q+1}  

} 

RtotglobC = q/n 

 

 

########### 

# Model 3 

n = 10000000 

prior2 = rtnorm(n,mu2,uc2,0,100) 

like2 = prior2 + rtnorm(n, 0, ucm2, lower = -prior2, upper = 100 - prior2)  

prior3 = rtnorm(n,mu3,uc3,0,100-prior2) 

like3 = prior3 + rtnorm(n, 0, ucm3, lower = -prior3, upper = 100 - like2 - prior3)  

prior1 = c(rep(100,n)) - prior2 - prior3 

like1 = 100 - like2 - like3 

joint123 = cbind(prior1,prior2,prior3,like1,like2,like3) 

 

# PRODUCER'S RISK 

RtotglobP = length(joint123[(prior1>=lrl1 & prior1<=url1) & (prior2>=lrl2 & prior2<=url2) & 

(prior3>=lrl3 & prior3<=url3) & (like1<lal1 | like1>ual1 | like2<lal2 | like2>ual2 | like3<lal3 | 

like3>ual3)])/(6*n) 

 

# CONSUMER'S RISK 

RtotglobC = length(joint123[(like1>=lal1 & like1<=ual1) & (like2>=lal2 & like2<=ual2) & 

(like3>=lal3 & like3<=ual3) & (prior1<lrl1 | prior1>url1 | prior2<lrl2 | prior2>url2 | prior3<lrl3 | 

prior3>url3)])/(6*n) 
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Figure captions 

 

Fig. 1. Metrologically-related correlation arising in a multicomponent chemical analysis - the 

Swiss-cheese model. 

 

Fig. 2. Orthogonal coordinates (Euclidian space) and simplex. The variables ci are contents of 

material components i = 1, 2, 3 and 4, %; each simplex vertex is ci = 100 %; D is dimension. In 

each case mass balance constraint reduces the number of dimensions by one. 

 

Fig. 3. Boxplots of the marginal prior pdfs of the components’ contents. Boxplot 1 is before 

closure operation, and boxplot 2 after it; for a) Pt content, c1; b) Rh content, c2; and c) content of 

the eight impurities, c3. The band near the middle of each box is the 50 % percentile (the median, 

equal to the mean when the distribution is symmetrical); the bottom and top of the box corresponds 

to 25 % and 75 % percentiles, respectively; the distance between upper and/or lower whiskers and 

the box is equal to the 1.5 box length [54].    

 

Fig. 4. Histogram of the marginal pdf of the Pt content, c1. Pink bars show frequencies of the 

Pt content (fractions of 1×107 MC simulations) before the closure operation, while blue bars 

present the frequencies after this operation (i.e. after taking into account the mass balance 

constraint).   

    

Fig. 5. Surfaces of the total global consumer’s risk 𝑹𝐜 and producer’s risk 𝑹𝐩  vs. acceptance 

intervals for measured Rh content (A2) and measured content of the eight impurities (A3). 

The arrows show the acceptance intervals from A2 = T2 and A3 = T3 at the axes beginning, to the 

acceptance intervals with limits differing from the tolerance limits by three times the relevant 

measurement uncertainties at the axes end, when for Pt content A1 = T1. The color column bar in 

plot 5a gives indication of the 𝑅c values between the minimum and the maximum on the surface, 

i.e. from 3×10–6 to 4.7×10–3; in plot 5b the bar is for the 𝑅p values between 4.9×10–3 and 2.4×10–

2.  
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Table 1. Parameters of the prior distribution and measurement uncertainties for a PtRh 

alloy [14].  

 

 

component i 𝜇𝑖 , % 𝑖, % ij rij 

Pt 1 92.483 0.081 12 -0.967 

Rh 2   7.457 0.073 13 -0.467 

8 impurities 3   0.059 0.021 23  0.228 

 

 

 

 

 

 

Table 2. Correlation coefficients and coverage probabilities calculated from 107 Monte 

Carlo simulations for the PtRh alloy system 

 

Parameters Model 

1 2 3 

r12 -0.968 -0.968 -0.962 

r13 -0.464 -0.464 -0.274 

r23 0.226 0.226 0.000 

p 0.985 0.981 0.981 

 

 

 

Tables 1 and 2
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