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ABSTRACT

One of the challenges of quantum technologies is realizing the quantum advantage, predicted for ideal systems, in real applications, which have to
cope with decoherence and inefficiencies. In quantum metrology, sub-shot-noise quantum imaging (SSNQI) and sensing methods can provide
genuine quantum enhancement in realistic situations. However, wide-field SSNQI schemes realized so far suffer a trade-off between the resolution
and the sensitivity gain over a classical counterpart: small pixels or integrating area are necessary to achieve high imaging resolution, but larger pix-
els allow a better detection efficiency of quantum correlations, which means a larger quantum advantage. Here, we show how the SSNQI protocol
can be optimized to significantly improve the resolution without giving up the quantum advantage in sensitivity. We show a linear resolution
improvement (up to a factor 3) with respect to the simple protocol used in previous demonstrations.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0009538

Imaging delicate systems using a small number of incident
photons with true and significant quantum enhanced sensitivity is
extraordinarily important for applications, from biology and medicine
to fundamental physics research. The first proof of principle of sub-
shot-noise quantum imaging (SSNQI) of a 2D absorption/
transmission mask was given in 2010,1 and in 2017, some of us
reported the realization of the first wide-field sub-shot noise micro-
scope.2 It is based on spatially multi-mode non-classical photon num-
ber correlations of twin-beam states, produced by spontaneous
parametric downconversion (SPDC) and detected by a high quantum
efficiency CCD camera.3–7 The sample (2D mask) is probed by one
beam with a certain level of quantum fluctuations, so that the detected
image is affected by a noise pattern. However, a second reference
beam, locally correlated in the photon number with the first one, gen-
erates at the detector an identical noise pattern. In this way, one can
simply remove the noise by subtraction. The microscope of Ref. 2 pro-
duces real-time images of several thousand pixels and 5lm of resolu-
tion even though the actual quantum enhancement in sensitivity
compared to the best classical protocol is effective at larger spatial
scales. In fact, in this technique, there is a clear trade-off between the
resolution and the quantum enhancement, due to the fact that pixels

or integrating areas smaller than the characteristic size of the spatial
modes do not intercept all the correlated photons between pairs of
conjugated modes. With the aim of improving the performance of this
technique, in Ref. 8, we studied in deep detail the problem of absorp-
tion estimation by photon counting toward the ultimate quantum
limit, taking into account experimental inefficiencies. In particular, we
analytically showed the advantage of the optimized estimator pro-
posed in Ref. 9, especially in the case of limited detection efficiency.
This estimator does not involve modification of the setup, but only a
slightly different use of the data and a pre-calibration of the system.

Here, we use this estimation protocol to shift the resolution-
sensitivity trade-off of the SSNQI, improving the resolution of a factor
3 in the best case. It turns out that in this way, it is in principle possible
to obtain SSNQI at the Rayleigh resolution limit.

The lower bound to the uncertainty in a loss estimation for classi-
cal probes, i.e., mixture of coherent states, is10

Ucoh’ ð1� aÞ=hnPi½ �1=2; (1)

where hnPi is the mean number of photons of the probe and 0 � a � 1
is the loss induced by the sample. Only for high losses, the uncertainty
can be arbitrarily small, while in the case of a faint loss, one retrieves the
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expression Usnl ¼ hnPi�1=2, usually referred to as the “shot-noise-limit”
(SNL).

In general, excluding adaptive strategies where the limit is still
unknown,10 the ultimate quantum limit (UQL) of sensitivity for a sin-
gle mode probe is Uuql ’

ffiffiffi
a
p

Ucoh,
11,12 which scales much more favor-

ably than the classical bound for small losses. Several quantum states
have been demonstrated to reach, in principle, this ultimate limit: sin-
gle mode squeezed vacuum, with the detection strategy based on pho-
ton counting and Gaussian operations, for small losses and a small
number of photons;11 Fock states jni, with photon counting, uncondi-
tionally for any a but if hnPi � 1;12 and two-mode squeezed vacuum
(TMSV) state with photon counting,13 unconditionally for any loss
and all energy regimes.14 TMSV is the photon number entangled state,

jTMSViR;P ¼
X
n

cnjniRjniP; (2)

where the subscripts “R” and “P” represent two correlated modes, and

the probability amplitude is cn /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnPin=ðhnPi þ 1Þnþ1

q
; with hnPi

being the mean number of photons in each of the two modes.
On the experimental side, a seminal proposal on the absorption

measurement with photon pairs produced by SPDC, i.e., using a faint
TMSV state, was given already in 198615 and a sub-shot-noise mea-
surement of modulated absorption using SPDC has been realized few
years later.16 More recently, quantum enhanced absorption measure-
ments have been performed by post-selected heralded single photon
Fock states17 and also through an active feed-forward driven by an
optical shutter.18 In those cases, on/off single photon detectors have
been used. However, the higher genuine quantum enhancement has
been achieved in experiments exploiting the low noise intensity mea-
surement (photon counting), taking advantage of the high quantum
efficiency and small electronic noise of modern CCD cameras.8,9 An
enhancement of the order of 50% with respect to the classical bound
has been achieved for the same number of detected photons and 32%
if perfect detection efficiency is considered only for the classical
scheme.8 With these detectors, which also provide flexible spatial reso-
lution and exploiting the spatially multimode emission of traveling
wave SPDC, it has been possible to devise,6 and realize1,2,19 wide field
SSNQI schemes where a 2D amplitude mask is recovered by parallel
multi-parameter absorption/transmission estimation.

Reference 8 reports a systematic study of the performance
achieved by several possible estimation strategies based on the detected
number of photons jointly measured in the probe, named N 0P in the
presence of the sample, NP in the absence of it, and the reference NR.
In summary, three estimators have been considered there:

• Ratio, as used, for example, in Ref. 15,

Sa ¼ 1� c
N 0P
NR

; (3)

• Subtraction, considered for SSNQI,1,2,6

S00a ¼
NR � cN 0P
hNRi

; (4)

• Optimized subtraction, considered in Refs. 16 and 9,

S0a ¼ 1� N 0P � koptðNR � hNRiÞ
hNPi

: (5)

The factor c ¼ hNRi=hNPi is introduced to account for unbal-
ancing between the mean energy detected in the reference arm and in
the probe arm without the sample. It can be evaluated in a pre-
calibration of the apparatus, which should last long enough to provide
an accurate determination of c. In the third estimator, the factor kopt
must be optimized as a function of the physical parameters of the sys-
tem. In particular, it turns out that kopt is a function of the detection
efficiencies of the channels and the local excess noise. Clearly, each of
the three estimation strategies is based on the idea that the common
photon number fluctuations of the probe and reference beam can be
suppressed or at least mitigated by a direct comparison. However, in
terms of the uncertainty, they behave differently. For the general
expressions, obtained propagating the uncertainty on the photon
numbers N 0P , NP, and NR, the reader should refer to Ref. 8. For sim-
plicity, here we consider the same detection efficiency gd in the two
arms, i.e., c¼ 1. Moreover, we consider a large numberM � 1 of spa-
tiotemporal realizations of TMSV states in Eq. (2) (here collectively
named the twin-beam state), detected by each pixel in the measure-
ment time, where hnPi ¼ hNPi=ðgd �MÞ. In the following, we will
consider the limit of M � hNPi � 1. On one side, this condition
takes into account the typical experimental situation where the detec-
tors have a limited bandwidth, and the source has a low brightness,
hnPi � 1. On the other side, it allows us to consider the statistics of
hNPi, in general, multi-thermal, approaching a Poissonian distribu-
tion, where each pixel can be considered statistically independent of
others in the same arm. In this limit, the expressions of the uncertainty
on a can be written as (see Ref. 8 for more details)

• Uncertainty of the Ratio

D2Sa’
U2
uql

gd
þ 2
ð1� aÞ2

hNPi
ð1� gÞ: (6)

• Uncertainty of the Subtraction

D2S0 0a ¼
U2
uql

gd
þ 2ð1� aÞð1� gÞ þ a2

hNPi
: (7)

• Uncertainty of the Optimized subtraction

D2S0ðTWBÞ
a;g ¼

U2
uql

gd
þ ð1� aÞ2

hNPi
1� g2
� �

: (8)

In the above equations, the parameter g (0 < g � 1) is related to
the noise reduction factor NRF ¼ D2ðNP � NRÞ=hNP þ NRi20–22 by
the relation NRF ¼ 1� g. The NRF represents the level of correlation
of the joint detected photon number distributions and can be esti-
mated experimentally. For 0 � NRF < 1, the correlations are non-
classical. Here, g can be interpreted as the efficiency in detecting corre-
lated photons, i.e., the probability that for a photon detected in a cer-
tain pixel in the probe arm, its twin photon is detected in the
correlated pixel in the reference arm. Thus, it can be written as the
product of the channel detection efficiency and a collection efficiency
term, g ¼ gd � gc. The collection efficiency gc takes into account for
the fact that in real systems, correlated modes cannot be always per-
fectly detected. In the ideal situation, assuming g ¼ 1, both the Ratio
in Eq. (3) and the Optimized estimator in Eq. (5) reach the UQL, while
the Subtraction estimator in Eq. (4) approaches the UQL only asymp-
totically for a small value of the loss a. However, another significant
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difference appears in the non-ideal detection case, because of the dif-
ferent dependence of Eqs. (6)–(8) from g. In particular, for the Ratio
and the Subtraction estimators, the positive additive term exceeding
the UQL is/ 2ð1� gÞ, which is larger than the one for the Optimized
case / ð1� g2Þ, for any value of g. This means that the Optimized
estimator works always better than the others and that this advantage
is larger for low efficiency g. For example, rewriting Eqs. (6)–(8) in
terms of the classical bound Ucoh of Eq. (1), it is easy to see that the
quantum advantage for the Ratio or the Subtraction estimators starts
from g � 0:5. In contrast, the twin beam state together with the
Optimized subtraction protocol performs always better than the classi-
cal bound. In the following, we will show how this feature of the
Optimized estimator is particularly suited for the SSNQI improvement
also in terms of resolution.

In wide-field imaging realizations with SPDC,1,2 the spatial pat-
tern in the far field of the emission, where the transmitting mask is
placed, is a continuous distribution of independent spatial modes with
a certain coherence area given by the Fourier transform of the pump
beam profile. This plane is then projected at the pixel’s matrix of the
detector chip, where probe and reference beams are detected in two
different regions. Figure 1 describes the details of our experimental
setup.

The pixel size, or, more in general, the elementary integration
area in one arm, should be large enough to collect a certain number of
modes. It is straightforward that if a photon is detected in a certain

pixel in the probe arm, the corresponding pixel in the reference arm
should be at least as large as the correlation area; otherwise, correlated
photons would fall outside the pixel, representing an effective loss
when pixel to pixel correlations are considered. Moreover, a photon
detected close to the edge between a pixel and its neighbors has its
twin photon detected with only 50% average probability in the sym-
metric pixel in the reference arm. Both these contributions to losses
are taken into account by gc, enclosed in g in Eqs. (6)–(8). In the con-
ditions of our experiment, and assuming a perfect alignment, gc is
solely related to the ratio X ¼ d=2r, with d being the pixel size and r
the radius of the correlation area. The details of this model can be
found in previous literature studies.2,23,24

In Fig. 2, we report the experimental NRF as a function of the
spatial resolution, i.e., the minimum dimensions of a detail to be
appreciated, which corresponds to the size of the integration area d.
The NRF decreases with increasing d (or X), as long as the collection
efficiency gc increases and saturates the value 1� gd for d> 50 (where
gc 	 1). In the same figure, the quantum enhancement in the sensitiv-
ity is also reported, as a function of the resolution. Of course, in gen-
eral, a suitable trade-off between the resolution d and the sensitivity
should be found. The dashed red curve represents the quantum advan-
tage of the twin beam using the Subtraction estimator. It is evaluated

as Ucoh=
ffiffiffiffiffiffiffiffiffiffi
D2S00a

q
, replacing in Eqs. (1) and (7) the values of NRF

¼ 1� g and a with their experimentally estimated values. The solid
red line represents the corresponding quantum enhancement for the

Optimized estimation, e.g., Ucoh=
ffiffiffiffiffiffiffiffiffiffi
D2S0a

q
. The data-points represent,

for each case, the quantum advantage estimated by the experimental
frame-to-frame fluctuation in the absorption a determination, accord-
ing to Eqs. (4) and (5), respectively. 300 shots and region where a

 1% are used. The experimental classical uncertainty to compare
with is obtained by the fluctuation of the estimate in Eq. (3), where the
reference NR is substituted by the mean value of the probe in the

FIG. 1. A multi-mode twin-beam state is produced through the SPDC, pumping a
non-linear crystal (Type-II-Beta-Barium-Borate, BBO) with a CW laser-beam (100
mW at kpump ¼ 405 nm). The down-converted photons around the degeneracy
wavelength, kd ¼ 810 nm, are spectrally selected using an interferential filter [IF,
ð8006 20 nm)]. The resulting state can be approximated as a tensor product of
independent TMSV states as jWi ¼ �q;kjTMSVi, where q and k are the trans-
verse momentum and the wavelength of one of the two photons produced, while
momentum and wavelength of the other photon are fixed by energy and momentum
conservation. The far field is obtained at the focal plane of a lens with fFF¼ 1 cm
focal length, where the correlation in momentum is converted into correlation
between symmetric positions. A coated glass-slide with a 2D absorbing mask, real-
ized as a thin titanium deposition of absorption a 
 1%, is placed in this plane.
This is then imaged (magnification of 7.8) to the chip of a charge-coupled-device
(CCD) camera with a nominal quantum efficiency of 95% at 810 nm and a pixel
size of 13lm. We perform a 3� 3 pixel binning, to set the resolution to 5lm at
the object plane, which matches the measured cross correlation length. The acqui-
sition time of a single frame is 
100ms, the number of temporal modes per pixel
per frame is 
1011, and the number of photo-counts is hNi ¼ 103. The estimated
detection efficiency is gd ¼ 0:81.

FIG. 2. Experimental NRF and quantum enhancement (as defined in the text) as a
function of the spatial resolution in the object plane, d. The NRF (black data-series)
is evaluated as NRF ¼ D2ðNP � NRÞ=hNP þ NRi for photons numbers detected
in an area of size d2. Red data-series show the quantum enhancement provided by
twin-beam (multimode TMSV states), both using the Subtraction estimation strat-
egy, in Eq. (4) (dots, dashed line), or the Optimized one, in Eq. (5) (squares, solid
line). The green data represent the quantity D2NP=hNPi and confirm that the statis-
tics of photon counts is Poissonian.
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absence of the sample, hNPi. This estimator, using only the probe
beam, reaches the lower classical bound Ucoh of Eq. (1), substituting nP
with NP, e.g., considering the same probe mean energy and detection
efficiency as in the quantum strategy.8

As we have anticipated, the quantum advantage when using
the subtraction estimator, as done in previous demonstration,2 is pre-
sent for g > 0:5 (red dashed line in Fig. 2). It corresponds to a resolu-
tion of 3 times the correlation length, namely, 15lm. We can
conclude that, with this estimator, it is not possible, even in principle,
to have quantum enhancement and a resolution close to a single
coherence length, at the same time.

In this context, using the Optimized estimator is a big opportu-
nity because the quantum advantage of the twin-beam state can also
be found for smaller values of the efficiency g or equivalently whenever
NRF � 1. In fact, the solid line in Fig. 2 shows that the quantum
advantage is present also for d ¼ 5lm, which is exactly the coherence
length. Moreover, this estimator performs better than the other one
for any resolution, always representing the best choice for SSNQI in
wide-field modality.

As mentioned, the only point that deserves attention when using
the Optimized estimator is that it requires a careful characterization of
the experimental setup, in order to provide a reliable value of the
parameter kopt to insert in Eq. (5). This kopt is a simple function of the
excess noise and the detection efficiencies in both channels. We esti-
mated the absolute quantum efficiency using a method that can be
applied with an identical setup configuration.24 We found that the per-
formance of the Optimized estimator is not dramatically affected by
the accuracy in the parameter’s determination: few percent of uncer-
tainty is enough to recover the advantage predicted by the theory.

Finally, in Fig. 3, we present a single frame experimental image of
a specific absorbing mask for different spatial resolutions. The mask is
realized by a thin “U-shaped” metallic deposition on a coated glass-
slide with a 
 1%. The resolution is set by the application of a median
filter, which substitutes in each pixel (corresponding to 5 lm in the
object plane) the mean photon counts over a square of side d, centered
in the pixel. As expected, the images obtained using the quantum pro-
tocol, i.e., using the twin-beam state, are visually better than the ones
obtained by the single beam classical approach. Moreover, one can
appreciate an improvement of the Optimized estimation protocol with
respect to the Subtraction protocol in the residual noise level.

In this Letter, we have shown a substantial improvement of the
performance of the SSNQI technique with respect to previous realiza-
tion.1,2,25 By studying different pure loss estimation strategies with
quantum states of light in the presence of imperfections, we demon-
strate that the robustness of an Optimized estimator with respect to
detection losses and the link between spatial resolution and inefficien-
cies in detecting correlated photons imply that such an estimator pro-
duces a significant advantage also in terms of resolution. We have
demonstrated that, different from the Subtraction protocol used in
previous realizations, the limit to the resolution is given by the coher-
ence area of the correlation in the far field of the SPDC process, which
can be in principle reduced down to the Rayleigh limit determined by
the numerical aperture of the optical system. This result represents a
further step toward practical applications of quantum correlations in
imaging and of using optimization techniques in this field.26–33

This work was supported by EMPIR 17FUN01 “BeCOME”;
the EMPIR initiative is co-funded by the EU H2020 and the EMPIR

FIG. 3. Comparison between single shot images for different ratios X between the pixel dimension and the correlation diameter. For each X, the direct (DIR) image is compared
with the image obtained using the quantum Subtraction protocol(SUB) and the one obtained using the Optimized protocol (OPT SUB). In the upper-right panel, the direct image
of the object averaged over 300 shots is reported.
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