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ABSTRACT

Applying non-harmonic driving field waveforms to nanoparticles for magnetic hyperther-

mia has beneficial effects on their ability to generate heating power. The response of su-

perparamagnetic nanoparticles described as double-well systems with randomly distributed

easy axes is studied by means of a rate-equation approach in the typical range of frequencies

adopted in therapeutic applications. Magnetic hysteresis loops obtained at various frequen-

cies and vertex fields show that sawtooth and square field waveforms substantially enhance

the Specific Loss Power (SLP) with respect to a harmonic excitation of same frequency and

amplitude. This improvement is related to the presence of fast, quasi-adiabatic transforma-

tions where the occupancy numbers in the two potential wells are virtually frozen, resulting

in largely off-equilibrium magnetization states and in hysteresis loops with a greater area.

The square driving field waveform is particularly promising for magnetic hyperthermia, the

SLP being not only most effectively enhanced but also independent of particle size over a

large interval of diameters. The special features of the hysteresis loops generated by the

square driving field waveform are studied in detail; a peculiar effect of loop instability is

described, and a condition for having stable hysteresis loops is defined. The considered

driving field waveforms can be made to comply with the physiological restrictions imposed

by magnetic hypertermia treatments in vivo.
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I. INTRODUCTION

Magnetic hyperthermia for therapeutic use1–7 is one of the most promising areas of ap-

plication of magnetic nanoparticles8–17. The task of optimizing the performance of magnetic

nanoparticles introduced in a living body poses a number of problems attaining physics,

chemistry, biology, medicine6,18–20 so that practical applications in vivo are still relatively

limited in number and objectives21. On the other hand, growing interest is devoted to

understanding how heat release from magnetic nanoparticles can be enhanced22–27 .

In principle, magnetic hyperthermia of malignant tissues can be achieved exploiting both

Brown’s and Néel’s relaxation processes28; however, in most cases (e.g., sufficiently small

nanoparticles in a fluid, or immobilized particles) it is Néel’s relaxation connected to intra-

particle magnetization switching which dominates29. Therefore, adequately describing the

dynamics of magnetization in nanoparticles submitted to an alternating field is a particularly

important issue.

The most fundamental way to study the evolution of magnetic structures implies numer-

ically solving the Landau-Lifshitz (LL)30 or the Landau-Lifshitz-Gilbert (LLG)31 equations.

The approximations and shortcuts one needs to introduce can imply the cost of partly losing

the grasp on the underlying physics, which can be an obstacle in practical applications.

In a simple yet effective approach the effect of thermal fluctuations on the magnetic state

of a nanoparticle can be described in the context of the Néel model for thermally assisted

(Arrhenius) magnetization reversal32. Uniaxial nanoparticles can be viewed as double-well

systems33,34 (DWS) where the particle’s magnetic moment switches between the energy min-

ima. In this context, rate equations are a most natural way to picture the effects stemming

from the redistribution of moments in the energy wells by effect of temperature and/or mag-

netic field. These equations can be rigorously derived35 from the Fokker−Planck equation

proposed by Brown36,37 for magnetization dynamics under the condition that the DWS bar-

rier be high enough at all temperatures of interest (anisotropy energy > thermal energy),

as is often the case. Rate equations have the advantage of giving a sufficiently accurate

picture of the system’s evolution without requiring much computational power and time.

This approach has been successfully applied to study the response of magnetic nanoparticle

submitted either to static33 or time-dependent30,38 magnetic fields.

In this paper, rate equations are exploited to study the effect of applying unconventional
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driving-field waveforms on shape and area of the magnetic hysteresis loops generated by an

assembly of nanoparticles with randomly directed easy-axis directions. In fact, in the large

majority of papers on magnetic hyperthermia the driving field is assumed to be harmonic

(AC excitation field)4. Only a few exceptions to this prevailing pattern exist39,40; however,

these works, based on micromagnetic simulations, are mainly concerned with nanoparticle

anisotropy and are not particularly useful to get insight in how the applied waveform can be

modified in order to optimize the energy released by the nanoparticle to the environment.

Using rate equations naturally puts an upper limit to the range of driving-field frequencies.

The highest escape frequency in the Arrhenius formalism is of the order of 109 − 1010 Hz41,

so the DWS assembly becomes increasingly non-responding as f approaches this limit; as

a consequence, the highest frequency studied in this work is f = 5× 105 Hz, which is fully

compatible with the state of the art of magnetic hyperthermia applications4,21,29.

Although the role of interaction among nanoparticles is clearly not to be disregarded in

magnetic hyperthermia42–48, the present work is limited to the study of noninteracting par-

ticles, the emphasis being on the practical consequences of choosing a specific driving-field

waveform on the actual performance of standard nanoparticles eligible for magnetic hyper-

thermia. It will be shown that even when nanoparticles do not interact a proper choice of

the driving-field waveform is able to substantially enhance their heating ability. Interac-

tions connect the heating performance of a system of nanoparticles to their concentration

and spatial/orientational arrangement and can either increase42,44,46 or decrease43,44,46,48 the

loss power of magnetic nanoparticles depending on nature and type of resulting particle

aggregates and/or magnetic-moment orientations. The effect of interactions is usually not

simulated in the rate equations framework43,45–48.

After a brief overview of the model, Section III is devoted to study how non-harmonic

driving field waveforms can produce hysteresis loops af greater area with respect to a har-

monic excitation of same frequency and amplitude. In Section IV the effect of the Specific

Loss Power arising from the studied waveforms is discussed considering the role of parti-

cle size, magnetic field amplitude and frequency. The special features of hysteresis loops

produced by a square-wave field are studied in Section V, and a characteristic instability is

pointed out and explained. Finally, in Section VI it will be shown how unconventional driv-

ing field waveforms can be made to comply with the requirement of keeping an acceptable

level of living tissue heating.
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II. DWS AND RATE EQUATIONS

Describing magnetic nanoparticles with predominant uniaxial anisotropy in terms of

double-well systems (DWS) has notable advantages, as discussed elsewhere33. Rate equations

are a most natural way to get an adequate picture of the behavior of a magnetic DWS sub-

mitted to a static or dynamical magnetic field, both at equilibrium and off-equilibrium33,38.

In this paper, magnetic nanoparticles of size D and volume V = (π/6)D3 are assumed to

carry a magnetic moment µ = MsV where Ms is the saturation magnetization of the mate-

rial; when no magnetic field is applied the magnetic moment is aligned to the easy axis by

uniaxial anisotropy of magnitude Keff . In this work, the quasi-static blocking temperature

TB = KeffV/LkB is assumed to be below room temperature TR = 300 K, so that the TR/TB

ratio is always larger than unity. The quantity L is defined as ln(τ0/τmeas) where τ0 ≈ 10−9s

is the pre-exponential factor of the standard Arrhenius formula32 and τmeas ' 100 s is the

measurement time in quasi-static conditions41, so that L ' 25.33. In this paper, the fol-

lowing values of magnetic parameters, appropriate to magnetite nanoparticles around room

temperature, will be used throughout: Ms = 350 emu/g (= 350 Am2/kg); Keff = 2 × 105

erg/cm3 (= 2× 104 J/m3).

The investigated magnetic DWS assemblies are made of monodisperse particles of size

D whose easy directions are evenly distributed in space. For noninteracting nanoparticles,

effects related to the presence of a continuous size distribution p(D) can be quite naturally

derived from our results.

Rate equations applied to an assemby of noninteracting magnetic DWS allow one to

study the behavior of the occupancy numbers of the two energy wells as well as the global

magnetization at all finite temperatures and under an arbitrary magnetic field33.

The rate-equation approach is to be viewed as a simplifying approximation to the Fokker-

Planck equation for the double-well problem36,49. The question arises where and when is

this approximation viable. For magnetic nanoparticles, rate equations were shown36 to

naturally emerge from the Fokker-Planck equation when the ratioKeffV/kBT is significantly

larger than unity; therefore the validity of the approach at a given temperature depends on

both magnetic anisotropy and nanoparticle size. With our Keff value the condition is

fulfilled (at and around room temperature) when D & 15 nm; an increasingly less accurate

approximation to the Fokker-Planck equation is expected with reducing the nanoparticle size
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below about 15 nm. As a matter of fact, rate equations were successfully applied to study

hysteretic effects in magnetic nanoparticles with values of the KeffV/kBT ratio comparable

to the ones we get when D & 15 nm30.

In the rate-equation approach, the redistribution of particles in the two wells of an as-

sembly of DWS whose easy axes make an angle φ with the field direction is ruled by the

equations:

dn1φ

dt
= − 1

τ1(t)
n1φ +

1

τ2(t)
n2φ =

1

τ2(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
n1φ

(1)
dn2φ

dt
=

1

τ1(t)
n1φ −

1

τ2(t)
n2φ =

1

τ1(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
n2φ.

The absolute occupancy numbers in the two wells are N1φ and N2φ; their sum equals Nφ,

the total number of DWS characterized by the angle φ. Here, the reduced quantities n1φ =

N1φ/Nφ and n2φ = N2φ/Nφ are used (n1φ + n2φ = 1).

In the standard Arrhenius picture the escape frequencies appearing in Equations (1) are

defined as τ−1
i = τ−1

0 exp
[
−(EM−Ei)/kBT

]
(i = 1, 2) where Ei(t) are the energies of the two

energy minima, EM(t) is the energy at the top of the barrier. The energies depend on time

when H = H(t). The problem’s symmetry dictates the general relationship τ1(−H) = τ2(H)

that holds at all angles φ.

In rate equations containing time-dependent escape frequencies, detailed balancing is

achieved only when ωτc << 1 where τc is the characteristic relaxation time of the system50.

In magnetic nanoparticles, the free diffusion time of magnetization is49: τc = MsV (1 +

α2)/2γαkBT where γ is the electron gyromagnetic ratio and α is the Gilbert’s damping

constant appropriate to describe intermediate-to-high damping (α ≈ 1)30. Using α = 0.5

one gets τc = 1.06× 10−9 s for D = 15 nm. In this case, the driving-field frequency should

be much lower than 1.50× 108 Hz to guarantee detailed balancing. In fact, the driving-field

frequencies used in this paper ensure that rate equations can be confidently applied for all

studied nanoparticle sizes and all studied driving-field waveforms, as discussed in more detail

in the Supplemental Material.

The double-well configuration depicted here is valid for |H| values not larger than a max-

imum value |Hmax| that depends on angle φ (for φ = 0 and φ = π/2, |Hmax| = 2Keff/Ms).
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Actually, when |H| > |Hmax| the DWS collapses and only one energy well is left.

When the system is submitted to a cyclic magnetization process under a harmonic mag-

netic field H(t) = Hvcos(2πft), where the maximum applied field Hv is referred to as the

vertex field, the dimensionless rate equations (1) can be easily rewritten in terms of the

dimensionless field h = HMs/2Keff .:

dn1,φ

dh
= ∓ 1

r(t)

[ 1

τ2(h)
−
( 1

τ1(h)
+

1

τ2(h)

)
n1,φ

]
(2)

dn2,φ

dh
= ∓ 1

r(t)

[ 1

τ1(h)
−
( 1

τ1(h)
+

1

τ2(h)

)
n2,φ

]
.

where the ∓ sign refers to the upper/lower loop branch, and the time-dependent sweep

rate r(t) = dh/dt = 2πhvsin(2πft) has been introduced. The dimensionless magnetic field

h = MsH/2Keff is the independent variable, n1φ and n2φ are the reduced occupancy num-

bers in the two wells (n1φ + n2φ = 1), the suffix φ indicating the angle between easy axis

and magnetic field.

Equations 2 can be numerically solved using the time-dependent rate r(t); in the existing

literature however38,51, these are usually further simplified at all driving-field frequencies by

introducing a constant (r.m.s.) sweep rate, defined as rRMS = (π/
√

2)hvf where hv is the

dimensionless vertex field, so that h is assumed to change from the upper vertex (hv) to the

lower vertex (−hv) and viceversa according to the linear law h(t) = ∓hv ± rRMSt. Basi-

cally, this corresponds to assimilate a harmonic driving field at frequency f to a Symmetric

Triangular (ST) waveform. In the following, the same approximation (i.e., r(t) → rRMS in

Equation 2) will be used for all studied waveforms.

In magnetic hyperthermia, the efficiency of heat generation from a nanoparticle is related

to the Specific Loss Power (SLP); considering magnetic losses only, SLP = ALf where AL

is the hysteresis loop’s area per unit mass and f the driving field frequency; an obvious

way to increase the SLP is to increase f (within the safety limits imposed by physiological

restrictions52,53) . The question arises whether it is possible to substantially increase the SLP

of a nanoparticle treated as a DWS by modifying the shape of the driving-field waveform.
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III. DRIVING-FIELD WAVEFORMS: A STRATEGY TO ENHANCE THE SLP

The shape of a harmonic waveform (treated as a ST wave) ca be made to naturally evolve

into an Asymmetric Triangular (AT) waveform, or into a Square Wave (SQ). A detailed

analysis of the effects of both driving-field waveforms on a magnetic DWS on the SLP is

reported below. Magnetic nanoparticles are assumed to be made of magnetite (Fe3O4)

with size in the interval 11-22 nm and to have no translational nor rotational degrees of

freedom so that the only heat generation mechanism is by Néel’s relaxation28; all effects

are studied at room temperature (TR). Our assumptions are substantiated by the following

arguments: a) nanoparticle composition and size range comply with the prescriptions by

U.S. Drug and Food Administration54 and correspond to superparamagnetic nanomaterials

actually investigated in vivo7,21; b) in real cases, nanoparticles injected in suspension in a

living body often anchor to target tissues so that their ability to rotate their crystallographic

axes in space is greatly reduced (this happens, e.g., to particles subjected to immobilization

in a cellular environment55,56).

It should be noted that a small change in D entails a much larger change in the TR/TB

ratio, so that particles of different size in a polydisperse system may give largely dissimilar

contributions to the SLP because of their different magnetic state. This is clearly true for

nanoparticles submitted to a harmonic driving field. We shall show, however, that strict

size monodispersity is not mandatory when other driving field waveforms are exploited.

III.1. Asymmetric Triangular Waveform

The AT wave parameters are shown in Figure 1 (left panel). The asymmetry is defined by

the dimensionless quantity x (0 < x ≤ 0.5, the upper limit corresponding to the ST wave).

When x→ 0 the AT wave becomes an ideal sawtooth wave. In this case, the absolute value

of the sweep rate is very different between lower (−hv → +hv) and upper (+hv → −hv)

hysteresis loop’s branches, with rLO < rUP . The resulting effect on the loop’s shape is shown

in Figure 1 (right panel) for a 15-nm particle with φ = π/4, f = 100 kHz and hv = 0.2625

(corresponding to a vertex field of 300 Oe ' 23.9 kA/m). A qualitatively similar behavior

is observed for all φ angles.

With decreasing x the upper branch of the loop becomes much larger than the lower
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FIG. 1. Left panel: parameters defining the Asymmetric Triangular Waveform. Right panel:

hysteresis loops of collinear (φ = π/4) monodisperse nanoparticles (D = 15 nm) for three values

of the asymmetry parameter x. Inset: detail of the region around the negative vertex field for a

sawtooth wave, x = 0.01.

one and the coercive field becomes highly asymmetric with an apparent increase of the

loop’s area. In the nearly vertical portion of the loop observed around −hv for x = 0.01

the occupancey numbers suddenly change (n1,φ → 0, n2,φ → 1). This effect occurs when

the absolute value of the sweep rate switches from very high to low, i.e., exactly at the

beginning of the lower loop’s branch. In fact, for a true sawtooth waveform, the occupancy

numbers n1,φ, n2,φ virtually do not change when the field decreases from +hv to −hv because

of the very high sweep rate (the upper branch therefore corresponds to a nearly-adiabatic

transformation for the DWS). In such a way, a highly off-equilibrium condition of both

occupancy numbers around −hv is achieved; in particular, n1,φ(−hv) >> n2,φ(−hv) whilst

at equilibrium the relationship would be reversed. When the sweep rate is abruptly reduced,

the system has enough time to relax towards equilibrium. The inset of Figure 1 (right panel)

shows in detail how the system reaches the new steady-state condition on the lower loop’s

branch.
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FIG. 2. Left panel: parameters defining the Trapezoidal/Square Waveform. Right panel: hysteresis

loops of collinear (φ = π/4) monodisperse nanoparticles (D = 15 nm) for three values of the

parameter y.

III.2. Trapezoidal / Square Waveforms

The trapezoidal waveform’s parameters are shown in Figure 2 (left panel). The dimen-

sionless quantity y (0 ≤ y < 1) defines the time interval yT/2 during which the field remains

fixed at the positive/negative vertex value; the ST wave corresponds to the case y = 0. The

ideal square wave (SQ) is a limiting case of the trapezoidal waveform (y → 1).

In a trapezoidal wave, the field sweep rate is the same (in absolute value) for the two

loop’s branches; on the contrary, the vertex field is applied to the DWS during the time

yT/2. In the SQ-wave limit, this time approaches T/2 and the sweep rate becomes very

high. The resulting effect on the loop’s shape is shown in Figure 2 (right panel) for a 15-nm

particle using the same parameters as in the AT case. With increasing y, the loop becomes

increasingly larger with symmetric coercive fields; the loop’s area is strongly enhanced. For

a nearly-ideal SQ wave (y = 0.99), the hysteresis loop becomes a rectanguloid composed

of two branches (from +hv to −hv and viceversa) corresponding to the paths followed by

the system by effect of the high sweep rate (nearly-adiabatic in nature according to our

previous considerations) and of two vertical segments corresponding to the relaxation of the

magnetization towards equilibrium at constant field (h = ±hv). It should be noted that a

SQ-wave driving field is inherently different from the standard case of a continuous-wave
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FIG. 3. Left panel: hysteresis loops of collinear monodisperse nanoparticles (D = 15 nm) submitted

to an AT wave (x = 0.01) for three values of angle φ; the loop of an assembly of nanoparticles with

random easy axis directions is shown as a red line. Right panel: the same as in the left panel for

15 nm nanoparticles submitted to a SQ wave with y = 0.99.

driving field, because the DWS is submitted to a constant field for a time very close to

T = 1/f . In spite of this, a large amount of energy is transferred from the DWS to the

environment during each full cycle. A detailed analysis of this special case is done in Section

V.

The effect of changing the angle φ on the shape of both sawtooth-wave and SQ-wave

driving fields is shown in Figure 3 for 15-nm nanoparticles at the frequency f = 100

kHz. The loop area steadily decreases with increasing φ, and disappears for φ = π/2,

as expected57. The average over a random distribution of easy axes directions in 3D is

also reported in Figure 3. In three dimensions, the average of a φ-dependent quantity

g(φ) is
∑N

1 g(φi)sin(φi)/
∑N

1 sin(φi) where the sum extends over N angles in the interval

−π/2 ≤ φi ≤ π/2. Computationally stable results are obtained putting N = 181. The gen-

eral features of both loops appear to be preserved by the averaging procedure; in particular,

the SQ wave still gives rise to a loop with rectanguloid shape (labeled as ABCD in Figure

3).

In the following Sections, all results will refer to properties of a DWS assembly with

randomly distributed easy axes.
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IV. INFLUENCE OF DRIVING-FIELD WAVEFORM ON THE SLP

Rate equations allow one to study the effect of the driving-field waveform on the SLP of

an assembly of monodisperse nanoparticles. The SLP, defined as the product ALf (where AL

is the loop’s area per gram of magnetic material) is studied at room temperature considering

nanoparticle diameters in the range 11-22 nm, vertex fields up to 23.9 kA/m (correspond-

ing to |hv| ≤ 0.2625) and frequencies in the range 10 − 500 kHz. These intervals closely

match the operating conditions for present-day systems for magnetic hyperthermia58. It

should be reminded that the SLP is not an intrinsic property of a nanoparticle system be-

cause it is strongly dependent on specific treatment conditions (frequency and magnetic field

amplitude).

IV.1. Effect of Nanoparticle Size

The behavior of the SLP as a function of particle size D is reported in the left panel of

Figure 4 for all studied driving-field waveforms at fixed frequency and hv = 0.2625. The

curve for the ST wave also represents the effect of a harmonic driving field when the r.m.s.

sweep rate is used. The common feature of the three curves is the presence of a maximum

of SLP at intermediate D values. The driving-field frequency being constant, the SLP

behavior reflects changes in the loop’s area. For small D values the SLP is low because

the operating temperature is much above the blocking temperature of these particles, whose

hysteresis loops merely correspond to a slight broadening of the equilibrium curve sustained

by the high-frequency driving field; on the other hand, in large nanoparticles the vertex

field becomes smaller than the coercive field and the loop’s area decreases again (see the

Supplemental Material). It is worth noting that the rate Equations 2 become increasingly

less accurate when D . 15 nm, as discussed previously; this is indicated by the dotted lines

in Figure 4

In the ST case, the SLP maximum is particularly narrow. Such a circumstance has already

been noted48 and is quite detrimental to the practical use of real nanoparticle suspensions

where some size polydispersity is present. In the AT case, the SLP maximum becomes

broader towards the low-D region, an effect which can be understood in the following way:

on the nearly-adiabatic branch of the loop the magnetic moments of small nanoparticles have
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FIG. 4. Left panel: effect of particle size D on the SLP released by a random assembly of monodis-

perse magnetite nanoparticles for three applied-field waveforms (triangular symmetric, triangular

asymmetric, square) of same frequency and amplitude. Right panel: SLP vs. D curves for a SQ

wave at three excitation frequencies. Dotted lines indicate the region where rate equations become

gradually less accurate.

not enough time to redistribute between wells, so that they behave as virtually blocked; the

magnetization is far from equilibrium and the loop’s area large; on the contrary, on the

slower branch of the loop - as well as on both branches of a loop generated by the ST wave

- the occupancy numbers and the magnetization are close to equilibrium, which implies a

narrow hysteresis loop.

However, the best performance of the DWS assembly is when a SQ-wave driving field is

applied: the SLP maximum becomes not only higher but also considerably broader, with a

plateau extending from 15 to 20 nm. This is an important improvement because the need of

using a perfectly monodisperse nanoparticle suspension is largely reduced. As an example,
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supposing that the nanoparticle are distributed according to a gaussian centered at D = 17.5

nm with standard deviation σ = 2 nm, the average SLP amounts to 198.5 W/g in the ST

case, 227.1 W/g in the AT case, 371.4 W/g for a SQ driving field.

The broadening of the SLP maximum has two different origins: the plateau extends

towards the low-D region for the same reasons as in the AT case, with even higher efficiency

because now each loop hosts two nearly-adiabatic branches; on the contrary, the broadening

towards the high-D region arises from the specific features of the SQ-wave hysteresis loops,

which will be discussed in detail in Section V.

The SLP plateau is observed at all significant driving-field frequencies, as shown in Figure

4 (right panel) where it is observed to slightly drift towards left and to become slightly

narrower with increasing f . With the considered magnetic parameters, the optimum SLP

condition occurs when D is in the 15-18 nm range at all frequencies.

IV.2. Effect of Vertex Field

The behavior of the SLP as a function of vertex field is shown in Figure 5 for a random

DWS assembly with D = 15 nm and f = 100 kHz; the value of D has been selected to

enhance the difference between the three waveforms. The SLP monotonically increases with

vertex field, as expected; the slope is significantly higher in the SQ-wave case. With the

maximum field amplitude of Figure 5, the Hvf product is between the two typical limits

proposed in the literature52,53 at this working frequency. Most of the in vivo experiments are

done using Hvf products precisely in this range. The behavior of SLP vs. Hv is basically

independent of particle size.

IV.3. Effect of Frequency

The effect of frequency on the energy loss per cycle (≡ AL) and the SLP is shown in

the left panels of Figure 6 for all studied waveforms. The considered D values are in the

range 12-21 nm and the vertex field is fixed at Hv = 300 Oe (23.9 kA/m). Results for

D = 12 nm are pictured by dotted lines to remark that rate equation are less accurate for

this nanoparticle size.

For a ST-wave driving field (first row), the frequency behavior of the energy loss is strongly
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FIG. 5. SLP released by a random assembly of monodisperse magnetite nanoparticles (D = 15

nm) as a function of vertex field for three applied-field waveforms (triangular symmetric, triangular

asymmetric, square).

influenced by D, ranging from a linear increase (AL ∼ f ) when D = 12 nm to a hyperbolic

decrease (AL ∼ 1/f) when D = 21 nm; for intermediate diameters a maximum (D = 18

nm) or a tendency towards a maximum (D = 15 nm) are observed. Linear response theory59

predicts a dependence of AL as f in small nanoparticles and as 1/f in large nanoparticles

with an intermediate maximum, exactly as observed here. Actually, linear response theory

cannot be directly applied to our curves because the condition of direct proportionality

between m and h is not fulfilled; however, the observed behavior is somewhat reminiscent

of that result.

For AT-wave and SQ-wave driving fields (second and third row in Figure 6, respectively)

a similar general behavior of AL(f) for different D values is observed; the curves reflect the

complex interplay between particle size, frequency and applied waveform (represented, e.g.,

by the behavior reported in Figure 4); in particular, no linear dependence of AL on f is
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FIG. 6. Energy loss and associated SLP (left and right panels, respectively) as functions of frequency

for different nanoparticle sizes and different driving field waveforms.
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observed, even for the smallest particles.

The corresponding SLP curves (right panels) show that the driving-field waveform has

notable practical effects on this quantity. When a ST-wave driving field is used (first row),

only particles with D ≤ 15 nm give a SLP which increases with increasing frequency; the

SLP of larger particles is or becomes saturated in the studied frequency range (D = 21 and

D = 28 nm, respectively).

The situation is basically the same in the case of the AT-wave driving field (second row)

but for an increase of the SLP at all frequencies, the effect being particularly marked in

D = 12 nm particles. On the other hand, the SQ-wave driving field (third row) is able

to inhibit the saturating trend of AL(f) for D = 18 nm and to strongly increase the SLP

associated to the D = 21 nm particles (even if the saturating behavior is not suppressed

at high frequency). Moreover, the SLP of all particles below 18 nm become of the order of

2× 103 W/g at the upper limit of the investigated frequencies.

The present results clearly show how important is a correct choice of parameters (both

intrinsic such as particle composition, diameter, shape and extrinsic such as driving field

frequency, intensity, shape) in order to optimize the SLP for hyperthermia applications.

V. SPECIAL FEATURES OF LOOPS DRIVEN BY A SQUARE-WAVE FIELD

Hysteresis loops of an assembly of magnetic DWS submitted to a SQ-wave driving field

radically differ from the ones driven by continuous-wave fields because of the presence of

two segments where the magnetization is allowed to naturally relax towards the equlibrium

condition at constant field and temperature. In this case the time spent by the system at

constant field dominates over the time taken by the field to reverse from positive to negative

vertex and viceversa.

The SQ-wave loop of Figure 2 (D = 15 nm, φ = π/4, y = 0.99) is reported in Figure 7

as an example. The magnetization loop in the (h,m) plane is comprised of two nearly-

adiabatic branches (Aφ → Bφ, Cφ → Dφ) connected by two vertical segments (Bφ → Cφ,

Dφ → Aφ). On each nearly-adiabatic branch (e.g., Aφ → Bφ) the DWS go off equilibrium

because the magnetic-field change is so fast that the occupancy numbers in each of the two

wells have almost no time to rearrange in response to the evolution of magnetic field h(t); as

a consequence, there is almost no release of energy from each DWS to the surroundings and
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FIG. 7. Typical hysteresis loop under SQ-wave applied field for collinear particles with φ = π/4.

Loop vertexes are labelled according to the text. Particle redistribution between wells at negative

and positive vertex field is schematically represented.

a large potential energy is accumulated in the magnetic system; on the contrary, on each

vertical segment (such as Bφ → Cφ) the DWS relax towards equilibrium and the accumulated

energy is released to the environment.

Let us call t0 the time at which the system reaches vertex Bφ after describing the upper

nearly-adiabatic loop branch Aφ → Bφ. As already pointed out, in Bφ the occupancy

numbers n1φ and n2φ are far from equilibrium, being close to the equilibrium values at

vertex Aφ instead. Therefore, the well higher in energy (n. 1 in the left-side sketch of Figure

7) is still almost completely full, and well 2 almost completely empty; during relaxation

(t > t0) well 1 is emptied in favor of well 2 according to the time-dependent rate equation

(see the Supplemental Material):

dn1φ

dt
=

1

τ2(t)
−
( 1

τ1(t)
+

1

τ2(t)

)
n1φ ' −

1

τ1(t)
n1φ, (3)
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where τi = τ0e
(EM−Ei)/kBT and T = 300 K. Here, EM(t) is the energy at the top of the

barrier and Ei(t) are the energies of the DWS minima. For h = −hv, E1 > E2 (see Figure

7 for an explanation of symbols). The simplifying approximation in Equation 3 is possible

because the term 1/τ2 can be easily shown to be negligible in this case. As a consequence,

n1φ exponentially relaxes towards equilibrium according to the law:

n1φ(t) = [n1φ(t0)− n1φ(∞)]e−(t−t0)/τ1 + n1φ(∞) ' n1φ(t0)e−(t−t0)/τ1 (t ≥ t0)

because at equilibrium n1φ(∞) ' 0 at h = −hv. The time constant is:

τ1 = τ0e
(EM−E1)/kBT (4)

and depends on angle φ through EM(φ), E1(φ). The problem’s simmetry implies that:

a) the time constants for relaxation are the same at both positive and negative vertex field

with the trivial interchange 1↔ 2; b) the minimum of τ1(φ), τ2(φ) occurs for φ = π/4.

Let us call τ1,2(φ = π/4) = τrel. Such a quantity should be compared with the time

yT/2 during which the magnetic field remains fixed at the vertex value (see Figure 2).

If τrel << yT/2, the system has enough time to reach equilibrium; otherwise relaxation

towards equilibrium is incomplete. A threshold condition for the SQ-wave frequency is easily

obtained by requiring that yT/2 = y/2f be larger than 5 τrel. Note that if this condition is

fulfilled for φ = π/4 it is automatically fulfilled for all φ angles. The threshold frequency is:

fthr =
y

10

1

τrel
=

y

10τ0

e−(EM−Em)(π/4)/kBT (5)

where for a SQ wave y ' 0.99 and Em is the common value of E1(−hv) and E2(+hv). The

system reaches equilibrium on both vertical segments only if f < fthr.

The behavior of fthr as a function of hv is shown in the left panel of Figure 8 for four values

of D. Horizontal full symbols indicate loops with different vertex fields done at fixed fre-

quency (f = 500 kHz). Considering, for example, 15-nm nanoparticles, three representative

points (Hv ≤ 150 Oe) are above the corresponding threshold line, the remaining three being

below. The validity of Equation 5 is verified in the middle panel, where all four vertexes of

the three inner loops are not on the equilibrium curve (dashed sigmoidal line), indicating
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FIG. 8. Left panel: frequency threshold lines for the relaxation of magnetization towards equilibrium

at constant field for different particle sizes. Full relaxation occurs for all representative points lying

below each line. Middle panel: hysteresis loops of 15 nm nanoparticles as functions of vertex

field at fixed frequency; line colors correspond to the representative points shown in the left panel

(horizontal set). Right panel: hysteresis loops of 21 nm nanoparticles as functions of frequency at

fixed vertex field; line colors correspond to the representative points shown in the left panel (vertical

set).

incomplete relaxation along the vertical segments, whereas two vertexes of the larger loops

are on the equilibrium magnetization curve, indicating full relaxation.

On the other hand, vertical open symbols in Figure 8 correspond to loops done at different

frequencies and same vertex field, Hv = 300 Oe (23.8 kA/m). Considering, for example, 21-

nm nanoparticles, only two representative symbols at low magnetizing frequencies are below

the threshold line; therefore, only these loops are predicted to have two vertexes on the

equilibrium magnetization curve, as actually verified in the right panel. With increasing

f , 21-nm nanoparticles become increasingly unable to reach equilibrium on the vertical

segments, and the loop area becomes increasingly smaller.

The behavior highlighted in Figure 8 explains the behavior of the SLP plateau of Figure

4 for large D values. The area starts reducing when the threshold frequency (which is a

decresing function of D) shifts below the driving-field frequency; the lower fthr is, the smaller

the area. Therefore in practical applications of SQ-wave excitation it is important that the

driving-field frequency be adjusted according to the dominant D value of the exploited
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nanoparticle system, or viceversa that the nanoparticles be chosen to match the available

driving field frequency.

Another important point is about loop’s stability. Let us suppose that the cyclic mag-

netization process is turned on starting from the ideally demagnetized state (an example is

given in the left panel of Figure 9): the initial point in the (h,m) plane is (0, 0); the DWS

assembly reaches point F on the first magnetization curve; then, the system freely relaxes

towards point A; thereafter, the loop proper begins (A → B → C → D → A). Now, it is

observed that when point A is on the equilibrium magnetization curve, as in the left panel,

all ensuing loops are perfectly stable in time. This means that the (A→ B → C → D → A)

path is always the same. In particular, the upper and lower remanences mRUP and mRLO

have the same absolute value, so that their arithmetic mean is zero. However, when point

A is not on the equilibrium magnetization curve, the ensuing loops are instable, as shown

in the right panel of Figure 9. Initially, the trajectories of instable loops do not close on

themselves and magnetization keeps spiralling in the (h,m) plane; the arithmetic mean of

the two remanences starts from a positive value and becomes zero only after an ideally in-

finite number of iterations; in other words, the system is self-adjusting and the spiral path

initially followed by the magnetization in the (h,m) plane finally transforms into a closed

loop. The ability to reach the steady state depends on driving-field frequency. The effect

occurs for all values of angle φ; however, it can be more easily explained when φ = 0, as

shown in the Appendix.

Therefore, SQ-wave loops characterized by incomplete relaxation on the vertical segments

should be avoided not only because the associated area is definitely smaller but also because

of the inherent instability of the response of the system. Increasing the driving-field fre-

quency in order to enhance the SLP can lead one to break the threshold fthr with detrimental

consequences on the efficiency of a nanoparticle system for hyperthermia applications.

VI. DETRIMENTAL EFFECTS ON LIVING TISSUES

Trapezoidal/square and triangular asymmetric magnetic field waveforms allow higher SLP

values to be attained in comparison to harmonic or triangular symmetric waveforms of same

frequency and amplitude. Although the present results are primarily intended as a guidance

to build laboratory demonstrators and devise in vitro experiments, some details will require
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FIG. 9. Left panel: stable hysteresis loop for collinear monodisperse nanoparticles with φ = π/6;

vertex A is on the equilibrium magnetization curve (shown as a dotted-dashed line). Right panel:

unstable loop for collinear monodisperse nanoparticles with φ = π/3; vertex A is far away from the

equilibrium magnetization curve (shown as a dotted line).

particular attention when in vivo experiments and applications will be envisaged.

As known, the applied field exploited to generate localized heat by Néel relaxation in

nanoparticles also has undesired effects on the whole of the body crossed by the magnetic flux

lines. In the high-frequency region considered in this paper, two detrimental effects related

to the eddy-current density j(r, t) should be considered: stimulation of cardiac muscle and

nerve fibers60 and healthy tissue heating. Both effects need to be kept under control52,53,61.

A detailed calculation of the eddy-current density flowing in a body submitted to a pe-

riodic waveform is reported in the Supplemental Material, where it is shown that using

non-harmonic waveforms still complies with the requirement of not introducing damage to

living bodies or major discomfort to patients.
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Here, the eddy-current effect of a generic trapezoidal wave (0 < y < 1) is compared to

the one of a triangular symmetric wave (y = 0). The space- and time-averaged electrical

power (per unit mass) released by the eddy currents induced by a periodic magnetic field

in the cylindric body of radius rmax is SLPSYMM = σ̄Ē2/ρ, where Ē is the mean induced

electrical field, σ̄ is the conductivity and ρ the mass density of living tissues at the frequency

f ; for a harmonic waveform (H(t) = HV cos(2πft)) an elementary calculation52 shows that

SLPHAR = σ̄µ2
0H

2
V f

2r2
max/ρ. For a triangular symmetric waveform it can be easily shown

that this quantity becomes SLPTS = 2σ̄µ2
0H

2
V f

2r2
max/ρ.

On the other hand, for a trapezoidal waveform the magnetic field is constant during

most of time, reversing its sign once per half period. As a consequence, in a dielectric

body the absolute value of the induced emf on a circumference of radius r is |dBΦ/dt| '

πr2µ0dH/dt during reversal and is equal to zero for the remaining time. In this case,

dH/dt = 2Hv/[(1 − y)T/2] = 4Hvf/(1 − y); such a quantity can become very large when

y → 1. The electrical field on the same circumference is E(r) = 2µ0rHvf/(1 − y), and the

expression for the space- and time averaged power for a trapezoidal waveform with y < 1

becomes:

SLPTRAP =
2σ

ρ(1− y)
µ2

0H
2
V f

2r2
max

In this case the power is relased in bursts, the time-averaged power being equal to the peak

power multiplied by the duty cicle (1−y). The condition for dealing with a trapezoidal wave

which generates in the living tissues the same eddy-current SLP as a triangular symmetric

or harmonic wave (of same frequency and amplitude) does, is:

(
Hvfrmax

)
TRAP

=
√

1− y
(
Hvfrmax

)
TS

=

√
1− y

2

(
HvfrMax

)
HAR

As a consequence, it appears possible to exploit a high-performance trapezoidal/square

waveform whilst maintaining the same safety level of a harmonic waveform by suitably

acting on the four variables y,HV , f, rmax.
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CONCLUDING REMARKS

Rate equations applied to magnetic nanoparticles help study their hysteretic proper-

ties under a cyclic driving field at frequencies suitable for magnetic hyperthermia treat-

ments. Although rate equations are just an approximation to real magnetization dynamics

in nanoparticles, the resulting picture is sufficiently accurate and can be gained without

much computational effort. The present results, limited to noninteracting particles, are

intended to serve as a starting point for future studies where the effect of interactions is

switched on.

We have shown that changing the waveform of the driving field has considerable effects

on the Specific Loss Power arising from Néel relaxation of an assembly of nanoparticles

with randomly distributed easy-axes directions. In particular, using a sawtooth or a trape-

zoidal/square driving field waveform provides substantial advantages with respect to dealing

with a harmonic or triangular symmetric waveform of same frequency and amplitude.

Among the explored cases, the trapezoidal/square waveform seems to be particularly

promising for two orders of reasons: a stronger enhancement of the SLP is achieved and

the range of nanoparticle sizes useful to produce an optimal SLP becomes much wider,

allowing one to take advantage of both features in magnetic hyperthermia applications.

Actually, some requirements should be addressed when using this driving-field waveform: a

suitable feed circuit is needed to generate trapezoidal/square waves of electrical current in

the magnetizing coil(s) at the right frequencies and amplitudes; hysteresis loop instability

(Section V) is to be avoided, so that field amplitude and/or frequency need to be tuned

taking into account nanoparticle size; finally, physiological restrictions to therapeutic use

need to be properly considered, as discussed in Section VI. Nevertheless, these requirements

can be technically fulfilled.

In conclusion, the choice of a specific waveform may result in a substantial enhancement of

the heating power of magnetic nanoparticles. Generally speaking, the shape of the driving-

field waveform should be viewed as an additional tunable parameter for achieving an optimal

SLP, and should be considered not of lesser importance than nanoparticle composition and

size, or frequency and amplitude of the excitation.
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FIG. 10. Left panel: rectangular unstable loop for φ = 0. Labels indicate successive vertex

points (see text for details). Right upper panel: two unstable rectangular loops characterized by

incomplete relaxation towards equilibrium (the equilibrium curve is shown as a dotted line). Right

bottom panel: resulting positive and negative remanences as functions of index k (full symbols:

approximate model, Equations (A.1) and (A.2); open symbols: exact numerical solution of rate

equations).

APPENDIX: UNSTABLE HYSTERESIS LOOPS GENERATED BY A SQ WAVE

For the sake of simplicity, the calculation is limited to a system of collinear monodisperse

nanoparticles with φ = 0. It is assumed that when the magnetic field switches from posi-

tive to negative and viceversa the occupancy numbers n10 and n20 do not change (ideally

adiabatic loop branches). As a consequence, in this approximation the hysteresis loop is a

perfect rectangle with horizontal and vertical sides in the (h,m) plane; the ordinates of the

adiabatic branches are equal to the upper and lower remanence.

With reference to the left panel of Figure 10, the first magnetization curve (O → F ) lies

on the horizontal axis. On the vertical segments the system relaxes towards the equilibrium

magnetization meq ≡ meq(hv). The first relaxation process (n = 1, F → A) brings the
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magnetization from zero to the value m1f = meq(1− z) where

z = e−y/2fτ
0
rel .

Here yT/2 ≡ y/2f is the time allowed to the system to relax at constant field and τ 0
rel is

the relaxation time (see Equation 4) when φ = 0. The second relaxation (n = 2; B → C)

brings the magnetization from m2i ≡ m1f to m2f = −meq(1−2z+ z2). The third relaxation

(n = 3; D → A′) brings the magnetization from m3i ≡ m2f to m3f = meq(1−2z+2z2−z3)

and so on. Odd/even numbers indicate upward/downward relaxation paths. By induction

it is easy to show that after a relaxation process labelled by the generic odd number n =

2k − 1 (k = 1, 2, 3...) one has:

m2k−1 f (k) = meq (1− 2z + 2z2 − ...+ 2z2k−2 − z2k−1) =

= meq
1− z
1 + z

(1 + z2k−1) (A.1)

The last expression of Equation (A.1) is also the magnetic remanence on the upper branch

of the loop, mRUP (k). After a relaxation process labelled by the generic even number

n = 2k (k = 1, 2, 3...) one has instead:

m2k f (k) = −meq (1− 2z + 2z2 − ...− 2z2k−1 + z2k) =

= −meq
1− z
1 + z

(1− z2k) (A.2)

the last expression in Equation (A.2) being the lower-branch remanence mRLO(k).

The arithmetic sum S(k) of the two remanence values is:

S(k) = meqz
2k−1(1− z)

Generally speaking, upper and lower remanence are different in absolute value. In par-

ticular, when k = 1 one has:
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mRUP (1) = meq(1− z)

mRLO(1) = −meq(1− z)2

while for k →∞ the two remanences become equal in absolute value, and S → 0:

limk→∞mRUP (k) = meq
1− z
1 + z

limk→∞mRLO(k) = −meq
1− z
1 + z

limk→∞ S(k) = 0

When z → 0, i.e., when the time yT/2 = y/2f allowed to the system to relax at constant

field is much longer than the relaxation time τ 0
rel, the two remanences are equal since the first

loop (no loop instability). On the contrary, when z is appreciably greater than zero an initial

instability of the loop appears: the trajectories of instable loops do not close on themselves

(the first complete loop having vertexes A,B,C,D,A′, the second one A′, B′, C ′, D′, A′′ and

so on (see left panel of Figure 10)); the steady state corresponding to closed magnetization

loops is reached after a sequence of iterations.

In the former case, the system has enough time to reach the equilibrium magnetization

at the field hv; else, relaxation stops with the system being still away from the equilibrium

value. Therefore, the more far away from equilibrium is vertex A, the more instable the

loop. This can be checked in the upper right panel of Figure 10 where two instable loops

are shown, the one drawn with red lines having the vertex A much closer to the correspond-

ing equilibrium magnetization (dashed line). In the lower panel, the different evolution of

mRUP (k) and mRLO(k) with k is shown for both cases. The full symbols are the values

predicted by Equations (A.1) and (A.2); the open symbols are the remanences taken on

the loops calculated solving the full rate equations. The perfect agreement between the two
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datasets means that the starting approximations are suitable to describe the effect.
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