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Abstract

We propose a simple algorithm to locate the ‘corner’ of an L-curve, a function often used to select the
regularisation parameter for the solution of ill-posed inverse problems. The algorithm involves the
Menger curvature of a circumcircle and the golden section search method. It efficiently finds the
regularisation parameter value corresponding to the maximum positive curvature region of the
L-curve. The algorithm is applied to some commonly available test problems and compared to the
typical way of locating the 1-curve corner by means of its analytical curvature. The application of the
algorithm to the data processing of an electrical resistance tomography experiment on thin conductive
films is also reported.

1. Introduction

The solution £ of an ill-posed inverse problem is often searched by means of a regularized least squares
functional of the type

% = argmin{||Ax — b|]> + MAR(x)}, A ER, A >0 )

where Ax — b is the vector of residuals between the experimental data vector b and the reconstructed data Ax
foragiven x. The regularisation term R (x) renders the problem less sensitive to the noise of b and find a stable
solution. R(x) represents a cost function, which usually includes prior information about the solution. The
scalar factor A is the regularisation parameter, is a weighing factor of R (x). The choice of A is crucial for a
meaningful solution. As an example, we consider the regularisation method of Tikhonov [1], in which

R(x) = ||x||>. Several methods (see [2, section 7]) have been developed in order to find an optimal tuning of A
for a given problem. Of particular interest is the L-curve method [2, section 7.5] [3], which is one of the best-
known heuristic methods for the selection of A. The L-curve is two-dimensional, parametric in A, defined by
points with cartesian coordinates

£\ = logllAx — blP
PN = (€N, n(N) — 2
(N = (€O nOV) {U(A)Zlogllxllz @

The point of maximum positive curvature P(),,), the ‘corner’, can be associated to the optimal reconstruction
parameter, say Aop.. The underlying concept is that the ‘corner’ represents a compromise between the fitting to
the data and the amount of regularisation applied to the problem [4]. Numerical search algorithms have been
proposed for the estimation of \,p,;; among them, we mention the splines method [3, 5], the triangle method [6]
and the L-ribbon method [7]. The adoption of the L-curve approach to deal with diverse ill-posed inverse
problems is an ongoing research topic [8, 9]. Here we propose an alternative method, and its very simple
implementation, to locate the L-curve corner. It is based on an iterative estimation of the local curvature of the
L-curve from three sampled points with an update rule based on the golden section search. The method hasa
small computational effort since it reduces the number points of the L-curve explicitly computed. The following
gives a description of the algorithm and its application on both typical test problems, and a reconstruction
problem of electrical resistance tomography.

© 2020 The Author(s). Published by IOP Publishing Ltd
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2. Algorithm

The algorithm 1 is written in pseudo-code. Algorithm 1 calls two functions. Function P=1_curve_P () is
based on the the specific regularisation problem being solved; it is assumed that at each call, given as input the
regularisation parameter A it solves the system (1) and provides as output the point P()), i.e. the coordinates &(\)
and n(}) of the L-curve. The function G, = menger(P;, Py, F;)is defined below in section 2.1. The algorithm is
iterative and identifies the estimate A, in the following Ay, by means of the definition of curvature given in
section 2.1 and the golden section search method, described in section 2.2. ‘MC’ stays for ‘Menger Curvature’.

2.1. Curvature

The function Cy = menger (P, Py, F)isbased on the definition of the curvature of a circle by three points
given by Menger [10, 11]. In our case three values \; < A\ < A, ofthe regularisation parameter identify three
points P(\)), P(A) and P()\,) on the L-curve. We follow the notation of (2) for the coordinates of a generic point
P(}). For notational simplicity we make the substitution:

g()\1) - gi)

77(/\1) - 7’];’)

P(\j) — P;. (&)
We define a signed curvature Cy of the circumcircle as

_ 2 (e + &kne + &emy — §me — &k — &)

C
¢ (PP; - P - BoP))/?

b (4)

where
PPy = (& — gj)z + (e — 77]')2,
Pb = (ff - fk)z + (77f - 77k)2»
?Pj = (5] - 5/)2 + (nj - 77f)2: (5)

are the euclidean distances between the sampled L-curve points. Note that we choose to index the curvature with
the intermediate index (k) of the three points.

2.2. Golden section search

The algorithm is initialized by assigning the search interval [ A}, A;]. Two other values A, and A; are calculated
following the golden section method; the calculation is done on the exponents of A (given A; = 10%) to maintain
auniform spacing along the many orders of magnitude covered,

x=(xs+ ¢ x)/(1+p)

X=x+ (X4 — %), (6)
where ¢ = (1 + +/5)/2is the golden section [12]. Four values of \ define four points on the L-curve and allow
to calculate two curvatures, C, from {P(\,), P()\,), P(A\3)} and C; from {P()\,), P(\3), P(\4)}. The curvatures C,
and C; are compared; consistent reassignment and recalculation are done in order to work at each iteration with
four points P(}\) ... P(Ay). The algorithm terminates when the search interval [A;, A;] is smaller than a
specified threshold € and returns Aysc.

It may happen that the curvature C; associated to the right-hand circle is negative at the initial stage of the
search, since Cy is defined with sign in (4). By definition, the corner corresponds to a positive curvature and it
lays on the left-side of the plot. Hence, the algorithm performs a check, and while C; < 0 the search extreme A,
is kept fixed, A\, is shifted toward smaller values and A, and \; are recalculated. The condition on Cs is strong
enough that even in case of both negative curvatures it guarantees the convergence towards the corner.

Some considerations: (a) according to the golden section search method, the algorithm needs to recalculate
only one P()) at each iteration (except for the first iteration), the other can be simply reassigned; this limits
the calculation effort; (b) as P(\;) and P()\,) are distant at the first iterations, C, and C; are just rough
approximations of the curvature of the L-curve in different regions, but become more accurate as the distance
between the search extremes decreases.

Algorithm 1. L-curve corner search

1: Initialize A\, and \,; {search extremes}
2: Assign €; {termination threshold}

3: ¢ « (1 + /5)/2; {golden section}
4: )\, — 100Gt/ A+e),
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(Continued.)

50 A3 — 10%1H(xa—x2),

6: for i = 1to4 do

7:  P«—1_curve_P(\); {1_curve_Preturns (2)}
8: end for

9: repeat

10: C, «menger(P,,P,,P;); {mengercalls (4)}
11:  C; «—menger(P,,Ps,P,);

12:  repeat

13: Ay A Py — Py

14: A3 «— Ay Py — Py

15: A — 10Gatex)/A+¢),
16: P, —1_curve_P(\);
17: C; «—menger(P,,Ps,P,);

18: until C; > 0
19: if C, > C; then
20: A« Ay {store \}

21: Ay — N33 By — Py

22: A «— Ay Py — Py

23: A — 10Gatex)/A+e),

24: P, «—1_curve_P(\y); {only P, is recalculated }
25:  else

26: Ae— A3

27: Al N3 P — Py

28: A — N33 Py — Py

29: Ay 10%1F(xamx2);

30: Py «—1_curve_P(As); {only P;is recalculated }
31: end if

32:until (A — N)/ Ny < €
33: return \yc «— A

3. Application to test problems

We tested the algorithm on small demonstrative problems, some (baart,blur, shawand spike)chosen
from the function libraryRegularisation Tools (RT), implemented in MATLAB [13]. This library is also
employed to implement a function of the algorithm (I_curve_P () ) which evaluates a single point of the
L-curve for a given \. Algorithm 1 is implemented in MATLAB as well.

The application of algorithm 1 to the problem baart is shown explicitly in the following. This problem
represents the discretization of a Fredholm integral equation of first kind of order #. The matrix A in (1) is
thereforen x n.The chosen size of the problem is n = 32. In this example we added random noise of relative
standard deviation of 10 to the exact data. The corner of the L-curve generated by this problem is located with
both algorithm 1 and the I,_corner routine from RT. Figure 1 shows the first three iterations of the algorithm,
and displays also a full L-curve obtained by dense samplingof L_curve_P () asareference. Empty circles
represent points visited at previous iterations, while filled circles represent the four points P; ... P, of the given
iteration. The algorithm runs by choosing as initial search extremes the default choice of the I,_corner routine
(A = 10~ "*and Ay = 10™"). Running the algorithm on the other three mentioned problems gives similar
results in term of accuracy compared to the native L_corner routine of the RT library. The optimal
regularisation parameter obtained with this routine is called Azt in the following. Table 1 summarizes the results
of solving the four test problems with algorithm 1 and with RT’s function L_corner. \ycis the optimal
regularisation parameter returned by our algorithm while Arr is the one returned by the RT routine. The
MATLAB profiler was used to get the corresponding net timing” of algorithm 1 (fy;c), and the L_corner
routine (tg). figure 2 shows the evolution of the algorithm towards convergence.

As aside note, a similar implementation of the presented algorithm could be made also using a Fibonacci
search to pick the x;in (6). In fact the Fibonacci search interval reduction ratio converges to the golden section
very quickly [12].

1 . . . . L. . — —
We tested our algorithm with noise relative standard deviation levels over a wide range, from 10~ '°to 10", Our results always matched
with negligible deviation the algorithm of Regularisation Tools, taken as reference.

2 . . .
Eventual plotting time not considered.
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Figure 1. The algorithm at the first three iterations. The reference L-curve is reported as a solid line. Solid circles represent the points
P()\) being evaluated at the labeled iteration. Empty circles represent the points evaluated at past iterations.
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Figure 2. Behaviour of the algorithm versus iteration number for the baart problem with a threshold € = 1%. The last point
(iteration 18) corresponds to Ayc.

Table 1. Comparison between algorithm 1 and the analytic curvature approach on test problems.

Problem AMc ART tvc (ms) trr (Ms) iterations
baart (32) 3.92 x 107° 4.02 x 107° 73 469 18
blur(16,4,5) 3.18 x 10°* 320 x 107* 82 459 15
shaw (32) 8.65 x 107* 8.28 x 107* 69 473 17
spike (32,5) 1.65 x 107* 1.60 x 107* 61 461 17

4. Application to electrical resistance tomography

The following shows the application of algorithm 1 to electrical resistance tomography (ERT) [14]. In this
experiment we used a patterned tin-oxide conductive sample of circular geometry, with electrical contacts on its
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Figure 3. Schematic of the conductive sample (a) and ERT conductivity map obtained with A\yc from our algorithm (b).
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Figure 4. L-curve obtained from experimental data and the points corresponding to the last iteration of the algorithm (a). Detail of the
corner (b).

boundary (see figure 3(a)). Four-terminal resistance measurements are performed with a scanning setup; the
measurements are the elements of the data vector b. A detailed description of the experiment is givenin [15, 16].
The ERT problem solution is obtained by solving a discretized Laplace equation with Tikhonov regularisation, a
formulation compatible with the calculation of a continuous L-curve. EIDORS [17] routines are used to
generate a two-dimensional circular mesh (2304 elements) with 16 contact points at the boundary
(corresponding to a b of size 208), to discretize the Laplace equation and obtain matrix A. The reconstructed
image shown in figure 3(b). Figure 4 reports the main results of the application of algorithm I to ERT
experimental data. Figure 4(a) shows the L-curve and the last iteration of algorithm 1; figure 4(b) the detail of the
corner. The optimal regularisation parameter returned by the algorithm with ¢ = 1%1is Ayic = 1.8 - 107° The
relative difference between Ay and Agr is negligible (1 partin 10'%).
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5. Conclusions

The proposed algorithm allows, given an inverse problem having the form (1), the determination of the
regularisation parameter Ayic corresponding to the maximum positive curvature of the L-curve. The algorithm
is designed for maximum simplicity of implementation on already existing solvers. On both test problems orina
real electrical resistance tomography problem, convergence is achieved in less than 20 iterations. Compared to a
common routine for the location of the L-curve corner suchasRegularisation Tools the present
algorithm returns strongly compatible results with a reduced calculation effort.
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