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Abstract
Wepropose a simple algorithm to locate the ‘corner’ of an L-curve, a function often used to select the
regularisation parameter for the solution of ill-posed inverse problems. The algorithm involves the
Menger curvature of a circumcircle and the golden section searchmethod. It efficientlyfinds the
regularisation parameter value corresponding to themaximumpositive curvature region of the
L-curve. The algorithm is applied to some commonly available test problems and compared to the
typical way of locating the l-curve corner bymeans of its analytical curvature. The application of the
algorithm to the data processing of an electrical resistance tomography experiment on thin conductive
films is also reported.

1. Introduction

The solution x̂ of an ill-posed inverse problem is often searched bymeans of a regularized least squares
functional of the type

l l l= - + Îl  x Ax b R xarg min , , 0 1
x

2ˆ {∣∣ ∣∣ ( )} ( )

where -Ax b is the vector of residuals between the experimental data vector b and the reconstructed data Ax
for a given x. The regularisation term R x( ) renders the problem less sensitive to the noise of b andfind a stable
solution. R x( ) represents a cost function, which usually includes prior information about the solution. The
scalar factorλ is the regularisation parameter, is a weighing factor of R x( ). The choice ofλ is crucial for a
meaningful solution. As an example, we consider the regularisationmethod of Tikhonov [1], inwhich

=R x x 2( ) ∣∣ ∣∣ . Severalmethods(see [2, section 7]) have been developed in order tofind an optimal tuning ofλ
for a given problem.Of particular interest is the L-curvemethod [2, section 7.5] [3], which is one of the best-
knownheuristicmethods for the selection ofλ. The L-curve is two-dimensional, parametric inλ, defined by
points with cartesian coordinates
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The point ofmaximumpositive curvature P(λopt), the ‘corner’, can be associated to the optimal reconstruction
parameter, sayλopt. The underlying concept is that the ‘corner’ represents a compromise between the fitting to
the data and the amount of regularisation applied to the problem [4]. Numerical search algorithms have been
proposed for the estimation of l ;opt among them,wemention the splinesmethod [3, 5], the trianglemethod [6]
and the L-ribbonmethod [7]. The adoption of the L-curve approach to deal with diverse ill-posed inverse
problems is an ongoing research topic [8, 9]. Herewe propose an alternativemethod, and its very simple
implementation, to locate the L-curve corner. It is based on an iterative estimation of the local curvature of the
L-curve from three sampled points with an update rule based on the golden section search. Themethod has a
small computational effort since it reduces the number points of the L-curve explicitly computed. The following
gives a description of the algorithm and its application on both typical test problems, and a reconstruction
problemof electrical resistance tomography.
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2. Algorithm

The algorithm1 is written in pseudo-code. Algorithm1 calls two functions. Function P=l_curve_P(λ) is
based on the the specific regularisation problembeing solved; it is assumed that at each call, given as input the
regularisation parameterλ it solves the system (1) and provides as output the pointP(λ), i.e. the coordinates ξ(λ)
and η(λ) of the L-curve. The function =C P P P, ,k j kmenger( )ℓ is defined below in section 2.1. The algorithm is
iterative and identifies the estimateλopt, in the followingλMC, bymeans of the definition of curvature given in
section 2.1 and the golden section searchmethod, described in section 2.2. ‘MC’ stays for ‘Menger Curvature’.

2.1. Curvature
The function =C P P P, ,k j kmenger( )ℓ is based on the definition of the curvature of a circle by three points
given byMenger [10, 11]. In our case three valuesλj<λk<λℓ of the regularisation parameter identify three
pointsP(λj),P(λk) andP(λℓ) on the L-curve.We follow the notation of(2) for the coordinates of a generic point
P(λ). For notational simplicity wemake the substitution:
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Wedefine a signed curvatureCk of the circumcircle as
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are the euclidean distances between the sampled L-curve points. Note that we choose to index the curvature with
the intermediate index (k) of the three points.

2.2. Golden section search
The algorithm is initialized by assigning the search interval [λ1,λ4]. Two other valuesλ2 andλ3 are calculated
following the golden sectionmethod; the calculation is done on the exponents ofλ (given l = 10i

xi) tomaintain
a uniform spacing along themany orders ofmagnitude covered,
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wherej = +1 5 2( ) is the golden section [12]. Four values ofλ define four points on the L-curve and allow
to calculate two curvatures,C2 from {P(λ1),P(λ2), P(λ3)} andC3 from {P(λ2),P(λ3), P(λ4)}. The curvaturesC2

andC3 are compared; consistent reassignment and recalculation are done in order towork at each iterationwith
four points l l¼P P1 4( ) ( ). The algorithm terminates when the search interval [λ1,λ4] is smaller than a
specified threshold ò and returnsλMC.

Itmay happen that the curvatureC3 associated to the right-hand circle is negative at the initial stage of the
search, sinceCk is definedwith sign in(4). By definition, the corner corresponds to a positive curvature and it
lays on the left-side of the plot.Hence, the algorithmperforms a check, andwhileC3<0 the search extremeλ1
is keptfixed,λ4 is shifted toward smaller values andλ2 andλ3 are recalculated. The condition onC3 is strong
enough that even in case of both negative curvatures it guarantees the convergence towards the corner.

Some considerations: (a) according to the golden section searchmethod, the algorithmneeds to recalculate
only oneP(λ) at each iteration (except for the first iteration), the other can be simply reassigned; this limits
the calculation effort; (b) as P(λ1) andP(λ4) are distant at the first iterations,C2 andC3 are just rough
approximations of the curvature of the L-curve in different regions, but becomemore accurate as the distance
between the search extremes decreases.

Algorithm1. L-curve corner search

1:Initializeλ1 andλ4; {search extremes}
2:Assign ò; {termination threshold}
3:j ¬ +1 5 2;( ) {golden section}
4:l ¬ j j+ +10 ;x x

2
14 1( · ) ( )

2
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(Continued.)
5:l ¬ + -10 ;x x x

3
1 4 2( )

6:fori=1 to 4do
7: ¬Pi l_curve_P(λi); {l_curve_Preturns(2)}
8:endfor
9:repeat
10: ¬C2 menger(P1,P2,P3); {mengercalls(4)}
11: ¬C3 menger(P2,P3,P4);
12:repeat
13:l l¬ ;4 3 ¬P P ;4 3

14:l l¬ ;3 2 ¬P P ;3 2

15:l ¬ j j+ +10 ;x x
2

14 1( · ) ( )

16: ¬P2 l_curve_P(λ2);
17: ¬C3 menger(P2,P3,P4);
18:untilC3>0
19:ifC2>C3then
20:l l¬ ;2 {storeλ}
21:l l¬ ;4 3 ¬P P ;4 3

22:l l¬ ;3 2 ¬P P ;3 2

23:l ¬ j j+ +10 ;x x
2

14 1( · ) ( )

24: ¬P2 l_curve_P(λ2); {onlyP2 is recalculated}
25:else
26:l l¬ 3

27:l l¬ ;1 2 ¬P P ;1 2

28:l l¬ ;2 3 ¬P P ;2 3

29:l ¬ + -10 ;x x x
3

1 4 2( )

30: ¬P3 l_curve_P(λ3); {onlyP3 is recalculated}
31:endif
32:until l l l- < 4 1 4( )
33:return l l¬MC

3. Application to test problems

We tested the algorithmon small demonstrative problems, some (baart,blur,shaw andspike) chosen
from the function libraryRegularisationTools (RT), implemented inMATLAB [13]. This library is also
employed to implement a function of the algorithm (L_curve_P(λ))which evaluates a single point of the
L-curve for a givenλ. Algorithm1 is implemented inMATLAB aswell.

The application of algorithm 1 to the problembaart is shown explicitly in the following. This problem
represents the discretization of a Fredholm integral equation offirst kind of order n. Thematrix A in (1) is
therefore n×n. The chosen size of the problem is n=32. In this example we added randomnoise of relative
standard deviation of 10−3 to the exact data. The corner of the L-curve generated by this problem is locatedwith
both algorithm1 and theL_corner routine fromRT1. Figure 1 shows thefirst three iterations of the algorithm,
and displays also a full L-curve obtained by dense sampling ofL_curve_P(λ) as a reference. Empty circles
represent points visited at previous iterations, whilefilled circles represent the four points P1KP4 of the given
iteration. The algorithm runs by choosing as initial search extremes the default choice of theL_corner routine
(λ1=10−14 andλ4=10−1). Running the algorithmon the other threementioned problems gives similar
results in termof accuracy compared to the nativeL_corner routine of theRT library. The optimal
regularisation parameter obtainedwith this routine is calledλRT in the following. Table 1 summarizes the results
of solving the four test problemswith algorithm1 andwithRTʼs functionL_corner.λMC is the optimal
regularisation parameter returned by our algorithmwhileλRT is the one returned by theRT routine. The
MATLAB profiler was used to get the corresponding net timing2 of algorithm1 (tMC), and theL_corner
routine (tRT).figure 2 shows the evolution of the algorithm towards convergence.

As a side note, a similar implementation of the presented algorithm could bemade also using a Fibonacci
search to pick the xi in (6). In fact the Fibonacci search interval reduction ratio converges to the golden section
very quickly [12].

1
We tested our algorithmwith noise relative standard deviation levels over awide range, from10−10 to 10−1. Our results alwaysmatched

with negligible deviation the algorithmofRegularisationTools, taken as reference.
2
Eventual plotting time not considered.
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4. Application to electrical resistance tomography

The following shows the application of algorithm 1 to electrical resistance tomography (ERT) [14]. In this
experiment we used a patterned tin-oxide conductive sample of circular geometry, with electrical contacts on its

Figure 1.The algorithm at thefirst three iterations. The reference L-curve is reported as a solid line. Solid circles represent the points
P(λ) being evaluated at the labeled iteration. Empty circles represent the points evaluated at past iterations.

Table 1.Comparison between algorithm1 and the analytic curvature approach on test problems.

Problem λMC λRT tMC (ms) tRT (ms) iterations

baart(32) 3.92×10−3 4.02×10−3 73 469 18

blur(16,4,5) 3.18×10−4 3.20×10−4 82 459 15

shaw(32) 8.65×10−4 8.28×10−4 69 473 17

spike(32,5) 1.65×10−4 1.60×10−4 61 461 17

Figure 2.Behaviour of the algorithm versus iteration number for thebaart problemwith a threshold ò=1%. The last point
(iteration 18) corresponds toλMC.

4

IOP SciNotes 1 (2020) 025004 ACultrera and LCallegaro



boundary (see figure 3(a)). Four-terminal resistancemeasurements are performedwith a scanning setup; the
measurements are the elements of the data vector b. A detailed description of the experiment is given in [15, 16].
The ERTproblem solution is obtained by solving a discretized Laplace equationwith Tikhonov regularisation, a
formulation compatible with the calculation of a continuous L-curve.EIDORS [17] routines are used to
generate a two-dimensional circularmesh (2304 elements)with 16 contact points at the boundary
(corresponding to a b of size 208), to discretize the Laplace equation and obtainmatrix A. The reconstructed
image shown infigure 3(b). Figure 4 reports themain results of the application of algorithm1 to ERT
experimental data. Figure 4(a) shows the L-curve and the last iteration of algorithm1;figure 4(b) the detail of the
corner. The optimal regularisation parameter returned by the algorithmwith ò=1% isλMC=1.8·10−6. The
relative difference betweenλMC andλRT is negligible (1 part in 10

13).

Figure 3. Schematic of the conductive sample (a) and ERT conductivitymap obtainedwithλMC fromour algorithm (b).

Figure 4. L-curve obtained from experimental data and the points corresponding to the last iteration of the algorithm (a). Detail of the
corner (b).
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5. Conclusions

The proposed algorithm allows, given an inverse problemhaving the form (1), the determination of the
regularisation parameterλMC corresponding to themaximumpositive curvature of the L-curve. The algorithm
is designed formaximum simplicity of implementation on already existing solvers. On both test problems or in a
real electrical resistance tomography problem, convergence is achieved in less than 20 iterations. Compared to a
common routine for the location of the L-curve corner such asRegularisationTools the present
algorithm returns strongly compatible results with a reduced calculation effort.
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