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Cognitive functions of humans stem from the emergent behavior
of biological neural networks composed of �1014–1015 synaptic

connections in between neurons, whereby
the high connectivity of the system pro-
vides robustness, adaptability, and fault
tolerance.[1] Synaptic connections undergo
rapid changes in synaptic strength in
response to activity and recent history of
the neuron (short-term plasticity) that
shape information processing within the
network.[2] These short-lived changes in
synaptic weights can evolve in long-term
changes that rely on alterations of synaptic
connections, impacting the architecture
and topology of the neural hardware. In
addition to input-specific Hebbian changes
in active synapses (homosynaptic plastic-
ity), plasticity can be induced also at a larger
population of synapses that were not active
during the induction of Hebbian plasticity
(heterosynaptic plasticity) and contributes
to the stability and homeostasis of neural
networks.[3] With the aim of emulating
brain-inspired computing paradigms, neu-
romorphic functionalities have been imple-

mented in artificial neural networks based on memristive device
which functionalities are enclosed in nanoionic processes.[4–6]
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Acting as artificial synapses, two-terminal memristive devices are considered
fundamental building blocks for the realization of artificial neural networks.
Current memristive crossbar architectures demonstrate the implementation of
neuromorphic computing paradigms, although they are unable to emulate typical
features of biological neural networks such as high connectivity, adaptability
through reconnection and rewiring, and long-range spatio-temporal correlation.
Herein, self-organizing memristive random nanowire (NW) networks with
functional connectivity able to display homo- and heterosynaptic plasticity is
reported thanks to the mutual electrochemical interaction among memristive
NWs and NW junctions. In particular, it is shown that rewiring and reweighting
effects observed in single NWs and single NW junctions, respectively, are
responsible for structural plasticity of the network under electrical stimulation.
Such biologically inspired systems allow a low-cost realization of neural networks
that can learn and adapt when subjected to multiple external stimuli, emulating
the experience-dependent synaptic plasticity that shape the connectivity and
functionalities of the nervous system that can be exploited for hardware
implementation of unconventional computing paradigms.
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Organized into large arrays, memristive devices acting as
artificial synapses demonstrated supervised and unsupervised
learning in conventional crossbar architecture.[7] Despite a bright
future prospective for the development of next-generation artifi-
cial intelligence (AI) systems, it is hard for such rigid top-down
architectures to emulate most typical features of biological
neural networks such as high connectivity, adaptability through
reconnection and rewiring, and long-range spatio-temporal
correlation. Alternative ways using unconventional systems con-
sisting of many interacting nano-parts have been proposed for
the realization of biologically plausible architectures where the
emergent behavior arises from a complexity similar to that of bio-
logical neural circuits.[8–19] However, these systems were unable
to demonstrate bio-realistic implementation of structural plastic-
ity including reweighting and rewiring and spatio-temporal
processing of input signals similarly to our brain. Here, we report
on emergent synaptic behavior of biologically inspired nanoarch-
itecture based on self-assembled and highly interconnected nano-
wire (NW) networks realized with a bottom-up approach, focusing
on short-term changes. The operation principle of this is based on
the mutual electrochemical interaction among memristive NWs
and NW junctions composing the network and regulating its con-
nectivity depending on the input stimuli. The functional connec-
tivity of the system was shown to be responsible for heterosynaptic
plasticity that was experimentally demonstrated and modeled in a
multi-terminal configuration, where the formation of a synaptic
pathway between two neuron terminals is responsible for a varia-
tion in synaptic strength also at nonstimulated terminals. These
results highlight the ability of NW memristive architectures for
building brain-inspired intelligent systems based on complex net-
works able to physically compute the information arising from
multi-terminal inputs.

Taking inspiration from the recurrent connectivity of biologi-
cal systems (Figure 1a), memristive devices based on highly
interconnected NWs were realized by drop-casting Ag-NWs in
suspension on a SiO2 insulating substrate. Subsequent pattern-
ing of Au electrodes proceeds (Figure 1b and Figure S1,
Supporting Information) without need of cleanroom facilities
or nanolithographic steps. The high density of NW cross-point
junctions (�106 NW junctionsmm�2) regulates the current/
voltage distribution across the random network and ensures high
connectivity of the system. Although single-crystalline Ag-NWs
are highly conductive, the conductance of each NW junction
is influenced by the mechanical stochasticity of the contact in
between the crossed NWs and by the presence of an insulating
polyvinylpyrrolidone (PVP) shell layer of �1–2 nm surrounding
the Ag-NW core (Figure S2, Supporting Information). The PVP
shell layer increases the NW junction resistance, thus represent-
ing one of the main issues for the realization of highly conduc-
tive electrodes based on Ag NWs.[20,21] However, PVP can be
exploited as a solid electrolyte for exploiting cross-point junctions
as electrochemical metallization memristive cells.[22] In this
framework, the NW random network represents a nonlinear
complex system that can be mapped onto a graph representa-
tion.[23] The NWs (nodes) are connected through memristive
edges as shown in Figure 1c. When a voltage difference is applied
between any couple of nodes in the system, the current flowing
in the network is distributed according to the Kirchhoff ’s current
law and is regulated by the conductance (weight) of each

memristive edge. The change of conductance in a single mem-
ristive edge is responsible for a redistribution of voltage/current
across other nodes/edges of the network, inducing a cascade of
conductance changes in other memristive edges through an ava-
lanche effect that facilitates the emergence of spatially correlated
structures of network activity. In particular, the NW network con-
nectivity can be controlled by means of two different forms of
synaptic plasticity involving different physical phenomena, dif-
ferent in nature:

1) “Reweighting” by manipulating the weight change of con-
nections in between NWs at cross-point junctions; As investi-
gated by considering single NW cross-point junction devices
(Figure 1d), an electrochemical potential difference applied
between two intersection NWs induces anodic dissolution of
Ag to form Agþ ions that migrate in the insulating shell layer
under the action of the electric field and recrystallize to form
a conductive bridge connecting the two NW cores as shown
in Figure 1e. Single NW cross-point junction devices were
observed to exhibit a wide range of pristine state resistances
due to the mechanical stochasticity of the contact between inter-
secting NWs with the presence of the PVP coating layer
(Figure 1f ). However, under voltage sweep stimulation, cross-
point junctions exhibited volatile resistive switching behavior
characterized by an abrupt change of resistance in correspon-
dence of the SET voltage that turns the device to a lower resis-
tance state (Figure 1g). Additional electrical characterizations of
single NW junctions are reported in Figure S3, Supporting
Information, showing also that the SET event can be induced
in both polarities due to the symmetric structure of the junction.
Thus, the formation/rupture of an Ag conductive path at the NW
intersection is responsible for the observed memristive behavior
of NW cross-point junctions.

2) “Rewiring” by rupture/rewiring of NWs; As investigated
in single NW devices (Figure 1h), Joule heating and electromi-
gration-driven electrical breakdown events occurring in single
NWs at high current densities[24,25] are responsible for the crea-
tion of a needle-like nanogap along the Ag-NWs. Interestingly,
the electrical connection can be regenerated by forming a con-
ductive filament within the nanogap assisted by field-driven
electromigration and bipolar electrode effects,[26] as shown in
Figure 1d. Indeed, single NW devices characterized by a low-
pristine state resistance exhibited breakdown events under
proper stimulation (Figure 1j). After breakdown, the induced
nanogaps (see inset of Figure 1j) behave as bipolar resistive
switching elements exhibiting the typical pinched hysteretic loop
in the I–V plane (Figure 1k). Additional electrical characteriza-
tion of single NWs is reported in Figure S4, Supporting
Information. Thus, the nanogap induced by the breakdown of
a single NW starts to behave as a memristive element. As a con-
sequence, it is worth noticing that the structural topology of the
NW network can evolve depending on the network history, as
breakdown events can divide single NW nodes into subnodes
connected by a newly generated memristive edge.

The structural plasticity of the NW network related to the
evolution of connectivity due to reweighting and rewiring effects
of single NW cross-point junctions and single NWs leads to an
emerging memristive response of the network. After initializa-
tion (Figure S5a,b, Supporting Information), the network
measured in two-terminal configuration exhibits typical
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memristive behavior (pinched hysteresis loop) in the I–V plot
(Figure 2a). By applying a positive voltage sweep from 0 to 1 V
(sweep 1), the network changed from an initial high-resistance
state (HRS) to a low-resistance state (LRS) during the SET pro-
cess. Although the LRS is maintained during the voltage sweep
from 1 to 0 V (sweep 2), voltage sweeps in the opposite polarity
from 0 to �0.8 V (sweep 3) results in a RESET process turning
the device to the initial HRS (sweep 4). Note that the switching
polarities are dependent on the first stimulation during initiali-
zation. The endurance characteristics, tested by switching the
device 300 times between HRS and LRS by means of full-sweep
cycles, reveal that the memristive behavior was maintained over
cycling (Figure S5c, Supporting Information). The time-evolu-
tion of the network stimulated by a constant subthreshold bias
voltage over large time scales revealed nonequilibrium dynamics

with persistent conductance fluctuations and metastability. The
power-law dependence of the intrinsic noise fluctuations in these
nonequilibrium dynamic systems of highly interconnected
nonlinear elements suggests distributed connectivity and self-
organized criticality characterized by the spontaneous emergence
of complexity from simple local interactions[27,28] (Figure S6,
Supporting Information). Similar power-law scaling behavior
was observed in spontaneous neural oscillations generated in
the human brain.[29] More importantly, network dynamics can
be exploited for the emulation of short-term synaptic plasticity
(STP) that regulates the information exchange and processing
within biological neural networks.[30–32] By applying an over-
threshold constant voltage bias, the network conductance (synaptic
weight) between two pads (neuron terminals) can be gradually
increased (facilitation), as shown in Figure 2b (details in S7,

Figure 1. Bio-inspired nanoarchitecture based on NW networks. a) Biological neural networks in which the emergent behavior results from the
collective behavior of the multitude of synaptic connections. The image shows primary mouse hippocampal neurons grown for 15 days in vitro and
immunostained with antibodies against the synaptic vesicle protein synapsin I (green); the bright fluorescent boutons at the contact points between
neuronal processes represent synaptic contacts between individual neurons. b) A biologically inspired memristive NW network characterized by recurrent
connectivity of Ag-NWs (scale bar, 500 nm). c) NW network graph–theoretic abstraction in which NW nodes (red dots) are connected throughmemristive
edges (black lines). The enlarged view shows detail of a memristive edge where the conductance G depends on the voltage difference between the
connecting nodes and on time, whereas the current flow is regulated by the Kirchhoff ’s current law. d) SEM image of a single NW cross-point junction
device (scale bar, 10 μm). Detail of a NW junction is reported as inset (scale bar, 100 nm). e) Schematic representation of the memristive mechanism
of reweighting in a single NW junction. f ) Pristine state resistance of various single NW cross-point junction devices showing high variability due to
the mechanical stochasticity of the contact and g) resistive switching behavior of a single NW cross-point device. h) SEM image of a single NW device
(scale bar, 10 μm). Detail of a single NW is reported as inset (scale bar, 100 nm). i) Schematic representation of the memristive mechanism of rewiring in
the nanogap formed after NW breakdown. j) Electrical breakdown of a single Ag-NW showing a sudden drop in current. The SEM image of a breakdown-
induced nanogap is reported as inset (scale bar, 200 nm). k) Resistive switching behavior of the breakdown-induced nanogap.
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Supporting Information). The gradual enhancement of network
connectivity is related to cascade switching events of memristive
elements constituting the network that self-selects the lowest-
energy path for electronic conduction.[9] After facilitation, the
synaptic weight gradually relaxes back toward the initial state,
exhibiting a volatile behavior due to the spontaneous dissolution
of Ag conductive filaments previously formed in memristive
elements of the network.[33] Note that an increase in the voltage
bias stimulation results in a more intense potentiation of network
conductivity, as well as in a longer relaxation time. An important
aspect is that the network can be programmed by pulses down
to the μs timescale (S8, Supporting Information). The above-
described network response to electrical stimuli allows the
implementation of synaptic functionalities such as paired-pulse
facilitation (PPF).[34,35] Indeed, the network stimulation by means
of short voltage pulses (mimicking action potentials) repetitively
applied to the presynaptic pad with short interpulse time intervals

results in a gradual increase in the network conductivity as a func-
tion of the number of applied pulses. The emergence of PPF
during voltage pulse stimulation and the subsequent spontaneous
relaxation of the network conductance are reported in Figure 2c.
The change in synaptic weight (Δw) and relaxation time can be
modulated by changing the voltage pulse amplitude, with higher
voltage pulses resulting in larger changes of Δw and longer relax-
ation times. Notably, PPF can be cyclically induced after device
relaxation (S9, Supporting Information).

Due to the network connectivity, synaptic plasticity can be
induced in each pair of nodes connected at least by one pathway
of memristive edges. This means that a complex neural network
composed of multiple synaptic pathways can be reproduced by a
multi-terminal memristive network, in which each pad repre-
sents a “neuron terminal” (Figure 3a,b). In this configuration,
the synaptic weight between any given pair of “neuron terminals”
is regulated by the collective response of the network to external

Figure 2. Memristive and neuromorphic functionalities of NW networks. a) Resistive switching behavior of the NW network measured in a two-terminal
configuration as schematized in the inset. b) Gradual increase in conductance (synaptic facilitation) observed by applying a 10 s voltage pulse and
subsequent conductance relaxation due to volatile resistive switching behavior read with a voltage of 50 mV. c) Experimental demonstration of PPF
in NW networks with gradual increase in conductance by stimulating the network with a train of 500 μs voltage pulses separated by 500 μs interpulse
intervals (left panel) and relaxation process after stimulation (right panel) recorded by applying a constant voltage of 50 mV. The change in the synaptic
weight (Δw) after 100 pulses is reported in the inset as a function of the applied pulse amplitude.
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stimuli, endowing the system with intrinsic heterosynaptic plas-
ticity. Note also that the behavior of each synaptic pathway is
the result of the functional high connectivity of the system that
averages the behavior of the multitude of all NW junctions. In
biological systems, heterosynaptic plasticity is related to synaptic
interactions that are responsible for a change in the strength
of synapses that are not directly stimulated in addition to the
specifically stimulated ones, providing distinct computational
and learning properties to the network.[3,36] Previous attempts
showed that such synaptic interactions can be emulated in
top-down fabricated devices based on Ag nanoclusters[37] or
2D materials.[38,39] Also, modulation of synaptic activity was
reported by pulse shape engineering[40,41] or light stimulation.[42]

Here, Ag-NW network shows that the stimulation of a synaptic
pathway (S10, Supporting Information) results in synaptic
weight changes not only in the directly stimulated synapse but
also in other nonstimulated synaptic pathways (Figure 3c), thus
mimicking heterosynaptic facilitation. To explain the intrinsic
heterosynaptic behavior related to the functional connectivity
of the NW-based system, we have developed a model that illus-
trates the network response to external electrical stimuli (S11 and
S12, Supporting Information). The NW network is mapped into
a grid graph of resistances and the experimentally observed
potentiation of a directly stimulated synaptic pathway was

modeled through the formation of a lower resistance path
between the stimulated nodes (Figure 3d). Modeling shows that
the direct stimulation of a synapse results in a redistribution of
voltage/current across the whole network and brings about a
change in the effective conductance of other synaptic pathways
(S12, Supporting Information). In this framework, the synaptic
network activity can be mapped onto a correlation map where
each pixel represents the resistance (synaptic strength) between
a specific couple of pads (neurons). Figure 4a reports the corre-
lation map of resistance variations (ΔR) across the network
after direct stimulation of the synapse connecting neuron
terminals I and II. In addition to a potentiation of the directly
stimulated synaptic connection that exhibited the highest varia-
tion of resistance, the stimulation resulted also in changes in the
strength of synaptic connections between nonstimulated neuron
terminals. Note that experimental results are in qualitative accor-
dance with model predictions (Figure 4b). Interestingly, the
change in synaptic strength in nonstimulated synapses depends
on the spatial location of the corresponding terminals. Larger
changes in the synaptic weight can be observed in synaptic path-
ways directly connected to previously stimulated terminals I or II
(synapse I–III, I–IV, I–V, II–III, II–IV, II–V), whereas almost no
changes are observed in other spatially distant synaptic pathways
(synapse III–IV, III–V, IV–V). This is because the synaptic

Figure 3. Implementation of heterosynaptic plasticity in multiterminal memristive networks. a) Schematization of the multi-terminal memristive NW
network device with highlighted pads used during heterosynaptic experimental demonstration and b) corresponding biological representation of the
device, where synaptic interactions lead to heterosynaptic plasticity characterized by a change in the synaptic weight of synapses that are not directly
stimulated. c) Direct stimulation of synapse I–III in the NW network results in synaptic weight changes not only in the directly stimulated synapse but
also in other nonstimulated conductive pathways. d) Modeling of the system through a grid graph of resistances, with the blue path representing the
stimulated synaptic pathway.
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pathway resistance is not strongly influenced by a peripheral
change in network connectivity. Instead, the stimulation of a
more central synaptic pathway, such as synapse I–III
(Figure 4c,d), results in more generalized changes in synaptic
weights in the system. These results, corroborated by consider-
ing also other pad configurations (Figure S10a–d, Supporting
Information), reveal a strong dependence of heterosynaptic
changes on the spatial location of the primary plasticity effect.
In addition, the short-term behavior of heterosynaptic facilitation
was investigated by monitoring the evolution over time of synap-
tic weights after stimulation. Experimental data and modeling of
the evolution of ΔR over time in synaptic pathways connecting
terminal I to other terminals after direct stimulation of either
synapse I–II or synapse I–III are reported in Figure 4e–h, respec-
tively. Time course of synaptic weights after different stimuli are
reported in Figure S10e–h, Supporting Information. Results
demonstrated that the device exhibits short-term heterosy-
naptic plasticity, with the strength of all synaptic pathways that
tends to restore to the initial conditions over time due to the pre-
viously discussed memristive network relaxation (details of het-
erosynaptic relaxation modeling are reported in S13, Supporting
Information). Apart from experimental fluctuations, experiment
and model clearly show a similar spatio-temporal correlation. In
this framework, the collective state of the network that depends
on the physical location and time correlation of electrical stimuli

represents a physical “reservoir” characterized by high nonlinear
dynamics that can be exploited for reservoir computing (a feasi-
ble route for implementation of reservoir computing is proposed
in S15, Supporting Information).[43]

In conclusion, the electrochemically controlled connectivity of
the memristive random NW network exhibits functional and
structural plasticity that mimics the behavior of biological neural
circuits by displaying homo- and heterosynaptic plasticity and
activity-dependent changes in the connectivity map due to
reweighting and rewiring effects. In contrast to conventional
neural networks realized with a top-down approach based on
memristive devices or transistors, these biologically inspired
systems allow a low-cost realization of neural networks fabri-
cated through a bottom-up approach that can learn and adapt
when subjected to external stimuli, strictly mimicking the pro-
cesses of experience-dependent synaptic plasticity that shape
the connectivity and functionalities of the nervous system.
These results represent a radically new approach toward the
development of biologically inspired intelligent systems able to
physically compute data from multiple inputs through the
Kirchhoff ’s laws. Furthermore, they highlight the way for the
hardware implementation of unconventional computing para-
digms where an input signal has to be mapped into a higher
dimensional output. In this framework, there are several poten-
tial applications where the properties of the NW networks could

Figure 4. Experimental demonstration and modeling of heterosynaptic plasticity. Experimental and simulated correlation maps of resistance variation
(ΔR) in synaptic pathways after a,b) stimulation of synapse I–II and c,d) stimulation of synapse I–III. Experimental data of the relaxation process over time
of synaptic pathways connecting synapse I after stimulation of e) synapse I–II and f ) synapse I–III with g,h) corresponding simulated data, respectively. In
all panels, directly stimulated synaptic pathways are highlighted in blue.
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provide a denser, more biorealistic hardware implementation.
For instance, the randomness of the pristine NW connections
may enable the realization of extreme learning machines and
physical unclonable functions. The dynamic behavior of the
memristive NW paves the way for efficient reservoir computing
and spatio-temporal recognition. These properties, combined
with the extremely low cost and scalability of the bottom-up
approach, makes our memristive NW networks a breakthrough
enabling technology for neuromorphic computing.

Experimental Section

NW Characterization: Ag-NWs with diameter of 115 nm and length of
20–50 μm in isopropyl alcohol suspension were purchased from Sigma-
Aldrich. Chemical and structural characterization of NWs are reported
in Figure S2, Supporting Information. Transmission electron microscopy
(TEM) was performed by means of a FEI Tecnai F20ST equipped with a
field emission gun (FEG) operating at 200 kV. X-ray photoelectron spec-
troscopy (XPS) was performed using a Kα source with energy of 1486.6 eV
and using the C 1s peak position (284.8 eV) as calibration, dispersing
Ag NWs on a SiO2 substrate.

Fabrication of NWMemristive Networks: NW random networks were fab-
ricated by drop-casting and spontaneous solvent evaporation of Ag-NWs
in isopropyl alcohol suspension (�0.13%) on a SiO2 (1 μm)/Si commer-
cial substrate. The network structural topology was characterized using
field emission scanning electron microscopy (FE-SEM; Zeiss Merlin).
The density of NW junctions was quantified through a rough estimation
by counting the number of NW interconnections in random portions of
SEM images. Metallic Au pads were realized on the NW network by sput-
tering and shadow mask (details in S1, Supporting Information). A sputter
etching process was performed to remove the PVP layer surrounding the
Ag NWs in correspondence of the electrode before Au deposition, thus
allowing direct contact of the Au electrode with the Ag NW core.

Fabrication of Single Cross-Point NW Junctions and Single NW Devices: To
fabricate devices based on single cross-point NW junctions and on single
NWs (Figure 1d,h, respectively), Ag-NWs were distributed by drop-casting
on an insulating SiO2 substrate prepatterned with a submillimeter probe
circuit realized by direct laser writing lithography and Ti/Au deposition.
Then, selected single cross-point NW junctions or single NWs were con-
nected to the probe circuit by Pt deposition through an ion beam-induced
deposition (IBID) with a gas injection system (GIS) in a FEI Quanta 3D
Microscope. Note that the realization of contacts by this technique 1)
ensures direct contact between the deposited Pt and the Ag-NW core
as the few-nanometer thick PVP coating shell-layer is easily removed in
the Pt/Ag contact area during IBID of Pt and 2) avoid any interaction
of NWs with solvents and polymers necessarily used during conventional
electron beam lithography (EBL) that can interact with the PVP coating
layer and alter the original structure of the NW.

Two-Terminal Electrical Measurements: Electrical characterizations of
single cross-point NW junctions, single NW devices, and NW networks
in two-terminal configuration were performed using a Keithley 4200 semi-
conductor device analyzer equipped with pulse measuring units (PMUs)
and coupled with a SemiProbe probe station. Electrical characterization of
NW networks in two-terminal configuration (Figure 2) was performed by
considering Au electrodes separated by �7 mm. I–V cycles shown in
Figure 2a were performed by applying a voltage sweep of 0.27 V s�1

and by externally imposing a compliance current (CC) of 20 mA. The
change in the synaptic weight (Δw) reported in Figure 2c was calculated
as Δw¼ [G(n)�G(1)]/G(1), where G(n) is the conductance of the synap-
tic pathway during the last pulse of the applied pulse train (n¼ 100).
During measurements of the network relaxation process, a stress voltage
of 50 mV was used for monitoring the network resistance to minimize the
influence of the stress voltage on the relaxation process while ensuring at
the same time a high signal-to-noise ratio to monitor the current time
trace. All measurements were performed in air at room temperature.

Multi-Terminal Characterization: For multi-terminal characterization,
the device was arranged in a conventional probe station equipped with
multiple electrical probe tips controlled by micromanipulators.
A Keithley 707 switch matrix was connected to the probes and the
instruments to correct routing the measurements, allowing a sequential
selection of each combination of pad pairs, while keeping other
pads floating. The electrical characterization was conducted by using a
TTI-TGA 1202 arbitrary waveform generator with a 100Mhz bandwidth
able to deliver rectangular voltage pulses of various duration and
amplitude, whereas the current flowing into the sample was collected
by a Lecroy WaveSurfer 3024 oscilloscope with 200MHz bandwidth
and 4 GSample s�1 sampling rate. All measurements were controlled with
general purpose interface bus (GPIB) connection by a remote desktop PC.
Heteroplasticity was investigated by monitoring the resistance evolution
in between all the considered synaptic pathways after direct stimulation
of a selected synapse. Direct stimulation of a selected synapse was per-
formed by applying a 1 s voltage pulse of 8 V at its terminals (Figure S8,
Supporting Information), whereas electrical resistance between each
couple of pads was sequentially read by applying a 100 μs voltage pulse
with amplitude of 0.1 V. Correlation maps of resistance variation (ΔR)
reported in Figure 4a–d and Figure S10a–d, Supporting Information were
obtained by comparing resistance maps before and after the direct
stimulation of a selected synapse. The resistance variation was calculated
as ΔR¼�(Rpost_stimulus� Rpre_stimulus) and the variation of ΔR has to be
intended as a decrease in resistance of the synaptic pathway after stimu-
lation. The heterosynaptic relaxation process shown in Figure 4e–h and
Figure S10e–h, Supporting Information was recorded by monitoring the
evolution of ΔR over time of the selected synaptic pathways. Note that
color maps limits were restricted to positiveΔR values for better data visu-
alization, experimental data with ΔR< 0 arising from experimental data
fluctuations were considered as tail values.

Modeling the Multi-Terminal NW Network Device: Simulation of the net-
work response was performed in Python using the NetworkX package.
Details of model implementation and the schematic flow used for model-
ing are shown in S11 and S12, Supporting Information, respectively, while
modeling of heterosynaptic relaxation is reported in S13, Supporting
Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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