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Emergence of an Ising critical regime in the clustering of one-dimensional
soft matter revealed through string variables

F. Mambretti ,1 S. Molinelli,1 D. Pini ,1 G. Bertaina ,2,1 and D. E. Galli 1

1Università degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, I-20133 Milano, Italy
2Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy

(Received 31 July 2020; accepted 12 October 2020; published 27 October 2020)

Soft matter systems are renowned for being able to display complex emerging phenomena such as clustering
phases. Recently, a surprising quantum phase transition has been revealed in a one-dimensional (1D) system
composed of bosons interacting via a pairwise soft potential in the continuum. It was shown that the spatial
coordinates undergoing two-particle clustering could be mapped into quantum spin variables of a 1D transverse
Ising model. In this work we investigate the manifestation of an analogous critical phenomenon in 1D classical
fluids of soft particles in the continuum. In particular, we study the low-temperature behavior of three different
classical models of 1D soft matter, whose interparticle interactions allow for clustering. The same string variables
highlight that, at the commensurate density for the two-particle cluster phase, the peculiar pairing of neighboring
soft particles can be nontrivially mapped onto a 1D discrete classical Ising model. We also observe a related
phenomenon, namely the presence of an anomalous peak in the low-temperature specific heat, thus indicating
the emergence of Schottky phenomenology in a nonmagnetic fluid.
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I. INTRODUCTION

Soft matter systems are characterized by an interaction
potential which allows for a finite probability for two or more
particles to overlap. Thanks to this feature, they may show
a tendency to self-organize into mesoscopic structures, and
the properties and the interactions of these structures may
determine the macroscopic behavior of the system. Recently,
the interest in soft potentials has grown: Classically they were
found to describe the behavior of compenetrating polymers,
molecules [1], and liquid crystals [2], while recent applica-
tions in quantum physics were devised in the field of ultracold
gases [3] and in the search for exotic supersolid phases [4,5].
In the last few decades the key features of the phase diagram
of many quantum and classical soft potentials were studied
in three and lower dimensions, mainly with computational
methods [4–10]. It was found that not every soft potential
shows the tendency to form aggregates at high densities—
i.e., “clustering” [11]—and that the key feature to observe
such behavior is a negative global minimum of the Fourier
transform of the potential [8]. For such clustering potentials,
the average number of particles per cluster increases with
density, and homogeneous n-cluster phases (i.e., with n par-
ticles per cluster) appear at specific commensurate densities.
One-dimensional systems, in this respect, are peculiar, be-
cause finite-temperature phase transitions are prevented in
systems with either hard-core interactions or discrete (spin)
degrees of freedom by the van Hove theorem [12] in classi-
cal mechanics and Mermin-Wagner theorem [13] in quantum
mechanics. There has been debate about whether such the-
orems can be extended to soft potentials [14–17]. Recently,
a new zero-temperature quantum phase transition (QPT) has

been discovered in the clustering of a particular quantum soft
matter system in one dimension [6]. By means of quantum
Monte Carlo simulations it has been observed that, at the com-
mensurate density for the two-particle cluster phase, the soft
system has a secondary excitation mode which is gapless only
at the transition point. Further analysis showed that this soft
excitation can be mapped via string variables onto an effec-
tive one-dimensional (1D) quantum transverse Ising model,
finding that the tendency of the soft system to form clusters
is the crucial feature for this mode to appear. This fascinating
fact opens the interesting possibility that these “magneticlike”
excitations could be a common feature of all the clustering
potentials, for both classical and quantum systems.

In this work, our aim is to find evidence of the pres-
ence of the same kind of excitations in classical clustering
fluids in one dimension, using stochastic simulation tech-
niques. By considering three different soft models, we find
that at very low temperatures, at the specific commensurate
densities, critical two-particle cluster regimes appear. Under
these thermodynamic conditions, via the same string variables
introduced for the quantum transition, we observe the emer-
gence of a critical regime related to a one-dimensional Ising
model of pseudospins, consistent with a zero-temperature crit-
ical point. Moreover, the specific heat of the soft system is
characterized by a typical phonon contribution at low tem-
perature, while it shows an anomalous peak at intermediate
temperatures, similarly to the 1D classical Ising model. The
physical properties of the equivalent pseudospin system are
also measurable as a function of the temperature T . We show
here that the values of the susceptibility, energy, specific heat,
and spin-spin correlation functions approach the theoretical
Ising curves in the limit of zero temperature. This leads to a
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behavior which is model independent; moreover, at fixed pair
potential, from all the physical properties a consistent estimate
of the coupling constant J of the Ising Hamiltonian can be
extracted. We suggest here that the J parameters calculated
from the various physical quantities tend towards a unique
T → 0 limit value. Remarkably, a consistent value can be also
deduced from a study of the energy of the “defected” con-
figurations of the system, computed via simulated annealing
(SA) [18]. At relatively higher temperatures, we find that the
anomalous specific heat peak is consistently much higher than
for the nonclustering Gaussian potential and has surprisingly
universal features, similarly to solid-state magnetic systems
displaying a Schottky anomaly.

The structure of the paper is as follows. In Sec. II, the three
pair potentials investigated and the details of their clustering
properties are presented. Section III contains the description
of the thermodynamic physical properties found for the soft
particles, via canonical Monte Carlo simulations. In Sec. IV,
we introduce the nontrivial mapping between the soft-particle
spatial degrees of freedom and a system of Ising pseudospins
on a lattice. We anticipate that this procedure sends many
degrees of freedom onto few ones, whose properties we aim
to characterize. In this regard, we show the Ising-like prop-
erties of the pseudospin system, highlighting the intriguing
agreement between the simulated data and the theoretical
Ising curves in the limit for T → 0. Section V reports the
investigation of the temperature dependence of the coupling
constant J of the Ising Hamiltonian, pursued by a statistical
analysis of the soft configurations and by the SA optimization
method. This is followed by Sec. VI, in which we discuss the
universal scaling of the pseudospin observables and the rela-
tion between the soft-particle and pseudospin specific heats.
We show that the energy fluctuations (i.e., the specific heat)
of the pseudospin variables are intimately and surprisingly
related to the corresponding properties of the original system.
Our conclusions are presented in Sec. VII.

II. PHYSICAL MODELS AND SIMULATION METHOD

In this work, the results for three distinct soft-core pair
potentials are reported. We restrict our investigation to 1D
systems of particles characterized by limited, positive, purely
repulsive, and short-range interactions. In particular, we con-
sider the Generalized Exponential Model of order four (also
known as GEM-4 and extensively studied in [19,20]) pair
interaction, which has the following functional form:

v(r) = U e−( r
σ

)4
, (1)

and the Shoulder-4 (SH–4) and Shoulder–6 (SH–6) potentials,
where a Shoulder-m pair interaction is described by

v(r) = U

1 + (
r
σ

)m . (2)

In the previous equations, r is the interparticle distance,
σ is the characteristic length scale, and U represents the
interaction intensity. All these potentials satisfy Likos cri-
terion concerning the presence of a negative part of their
Fourier transform [8,11,21] and, therefore, admit high-density
n-particle clustering phenomena at low temperatures. These
pair interactions are said to belong to the Q± class. In the

FIG. 1. Interparticle interaction potentials v(x). In the inset their
Fourier transforms ṽ(k) are drawn. They all display a negative mini-
mum, thus satisfying Likos criterion for clustering. See also Table I.

following, energy is naturally measured in units of U and
the distances are measured in units of σ . Therefore, Eqs. (1)
and (2) become, respectively,

v(x) = e−x4
, (3)

and

v(x) = 1

1 + xm
, (4)

where we have set x = r/σ . As a consequence, physical wave
vectors q will be measured in units of σ−1, i.e., k = q σ . The
same applies to number densities ρ = N σ/L, in a system with
N particles in a box of length L, always in periodic boundary
conditions (PBC). Reduced temperatures t = kB T/U are also
used throughout the article. In Fig. 1 we display the three
considered potentials and their Fourier transforms.

Table I displays the values of the wave number kmin cor-
responding to the minimum value of the Fourier transform of
our potentials and the corresponding optimal reduced densi-
ties for the formation of two-particle clusters, where

ρ(n) = n kmin

2π
, (5)

and, therefore, ρ(2) = kmin/π .
In our calculations, each of the three systems is stud-

ied at its own commensurate numerical density ρ(2), for the
two-particle cluster phase. The study of this system at non-
commensurate densities is clearly a very interesting topic,
which has already been explored [20,22], and is outside
the scope of this work. Low-temperature thermodynamic
properties are computed via canonical Monte Carlo (MC)
simulations by using the Metropolis algorithm to sample equi-
librium configuration of the N particles.

TABLE I. kmin and ρ(2) for the three pair potentials studied.

Pair potential kmin ρ(2)

GEM-4 4.59180 1.46165
SH-4 4.44289 1.41422
SH-6 4.29952 1.36857
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FIG. 2. Temperature dependence of the pair distribution func-
tions g(x) for the SH-6 potential. Error bars are smaller than the line
width.

III. RESULTS FOR THE SOFT-PARTICLE SYSTEM

In this section, we show the results of the MC simulations
for the thermodynamic quantities calculated from the low-
temperature equilibrium configurations of the 1D soft-particle
system. This first part of the paper is similar to the analysis
performed by Speranza et al. [17] on the Gaussian core model.
They investigated the properties of the 1D GEM-2 soft fluid,
finding anomalies in the specific heat and determining the
structural properties of the system via pair correlation func-
tions and static structure factors. In particular, they suggested
the presence of traces of the ordered arrangements found in
clustered crystals, despite the absence of a true solid-liquid
phase transition. The results reported in the following are
analogous, but are referred to genuine clustering potentials,
at variance with the GEM-2. Van Hove’s theorem does not
hold, due to the lack of any hard-core interaction in our model,
as discussed, e.g., in [14], despite being in one dimension.
Previous studies gave strong evidence that the penetrable
spheres and the penetrable square well models do not display
a thermal phase transition in one dimension [15]; conversely,
Acedo et al. [16] identified the appearance of a crystalline one-
dimensional phase for a step (discontinuous) potential, which
is not our case. As a consequence, it is not known a priori if
a critical finite-temperature phase transition does exist for our
models. Our results, in agreement with previous studies [17],
show that a phase transition is eventually expected only in the
limit t → 0. This is immediately apparent in the features of
the two-particle distribution function g(x) upon decreasing t ,
where g(x) = ρ (2) (x1,...,xN )∏N

i=1 ρ (1) (xi )
and the p-particle density is equal to

ρ (p) = N!
(N−p)!

∫
ρ(x1, . . . , xN )dxp+1 . . . dxN . The temperature

dependence of g(x) for the SH-6 potential is shown in Fig. 2
for some relevant t values. Results for the other potentials
are essentially equivalent. This fluid was simulated at density
ρ(2) = 1.36857; in these conditions, a perfect single-particle
crystal would host a particle about every �x = 0.73069. A
key observation is that g(x), by lowering the temperature,
shows the formation of oscillations, damped with increas-
ing distance x, at a spatial separation 2�x. Moreover, the
formation of a peak in the origin can be observed, whose
height grows while approaching t = 0. These features clearly

FIG. 3. Comparison between the g(x) of GEM-2 and GEM-4
potentials at various temperatures, computed at reduced density
1.46165. Error bars are smaller than the line width.

highlight the tendency of the system to form clusters com-
posed of two particles. The growing height of the peaks of
the oscillations in g(x) indicates the emergence of a quasi-
long-range order, due to the increasing regularity of the spatial
arrangement of the clustering particles. For much higher tem-
peratures, this order is lost and g(x) displays some structure
only at small distances.

To further remark this behavior of the clustering potentials,
in Fig. 3 we compare g(x) for two systems of particles inter-
acting via either the GEM-2 (i.e., Gaussian) or the GEM-4
potential, both simulated at reduced density 1.46165. We con-
sidered two simulations at different t for each system, so as to
be able to compare the properties at low and at high temper-
ature of a clustering and a nonclustering system. The GEM-2
tends to show ordering at much lower temperatures [23]; for
this reason, in Fig. 3 we compared a GEM-2 g(x) at t = 0.01
to the g(x) for the GEM-4 simulated at t = 0.06.

The GEM-2 system displays a minimum for the occupa-
tion probability in x = 0 (even at low temperature), while
the GEM-4 clearly always presents a maximum in the pair
distribution function at the origin. At low temperatures, the
oscillations of g(x) for the GEM-2 case display a periodic
spacing which is one-half that of the GEM-4. Therefore, also
the particles interacting via the GEM-2 potential have some
tendency to solid ordering, but they do not show any clustering
tendency. We observe a striking feature: The g(x) peaks of the
GEM-2 corresponding to the clustering peaks of the GEM–4
are slightly higher than the other peaks of the GEM-2. Inter-
estingly, as already observed in [17] a nonclustering potential
such as the GEM-2 displays, nonetheless, a slightly prevalent
spatial ordering in correspondence of the peak positions char-
acteristic of clustering phases. This is remarkable since the
GEM-2 does not have any negative component in its Fourier
transform. By comparing the g(x) for the two potentials at
t = 0.15 (dashed lines in the figure), we note that the particles
interacting via the GEM-4 already present a partial order and
a finite occupation in x = 0, while the GEM-2 is still mostly
disordered.

Analogous physical information about the soft-particle
behavior can be extracted from the static structure factor
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FIG. 4. Temperature dependence of the static structure factor
S(k) for the SH-6 potential. Note the logarithmic scale for S(k). Error
bars are smaller than the line width.

S(k), where S(k) = 1
N 〈ρkρ−k〉 with ρk = ∑N

l=1 eikxl , in Figs. 4
and 5. The wave vector of the first peak in the S(k) (Fig. 4)
is given by the value of kmin for the SH-6 potential, thus
underlining that the forming structure is closely related to the
two-particle clusters. Moreover, when temperature decreases,
the appearance of the second peak at k = 2 kmin highlights
the tendency to the crystalline ordering among the clustering
particles.

We also compare, in analogy with the observations re-
ported for the pair distribution functions, the static structure
factors for the GEM-2 and GEM-4 systems at the same tem-
peratures. The peak of S(k) located at kmin shown in the
picture is again a clear sign of the tendency to clustering; the
behavior of the GEM-4 system displayed here (green points
in Fig. 5) is then similar to the one suggested by the S(k)
of the SH-6 potential. Concerning the small-k peak of S(k),
at low temperature the GEM-2 also presents some structure
which can be interpreted as a signal of the aborted clustering.
Both models show the formation of a peak at k = 2kmin which
represents the tendency to solidification of clustering pairs of
particles for the GEM-4 and of particles for the GEM-2.

FIG. 5. Comparison between the GEM-2 and GEM-4 static
structure factors S(k) at various temperatures, computed at reduced
density 1.46165. Note the logarithmic scale on S(k). Error bars are
smaller than the line width.

FIG. 6. The specific heat at fixed volume Cv for GEM-4, SH-4,
and SH-6 over a wide range of temperatures is reported. Also data of
Cv for the GEM-2 (nonclustering) potential are reported. Solid lines
are a guide for the eye.

We also calculate the specific heat for these systems. In
particular, Fig. 6 contains the simulated values of the specific
heat Cv = C/N in units of kB, for the three aforementioned
potentials, where C is the heat capacity:

C = kB(〈V 2〉 − 〈V 〉2)

t2
+ 1

2
N kB. (6)

In this equation, V is the potential energy of the soft-particle
system and the second term is the analytical constant kinetic
energy contribution to C, which is included for the sake of
completeness. The most striking feature in Fig. 6 is that, at
low temperatures, all the clustering potentials present a well-
defined peak in the specific heat curves as a function of t . This
behavior is akin to the Schottky anomaly of solid-state spin
systems [24], which prompts the investigation of the emer-
gence of spin degrees of freedom in the next sections. The
temperature range relative to the appearance of this peak is po-
tential dependent. The maximum heights of these curves have
similar values for the three models investigated. On the con-
trary, the nonclustering GEM-2 system shows a much smaller
peak at temperatures about one order of magnitude lower than
the clustering potentials. A tendency to spatial ordering in the
GEM-2 thus occurs at lower temperatures, via single-particle
occupation of effective lattice sites. Conversely, the high and
broad peaks present in the other three systems are a sign of
the tendency towards the formation of two-particle clusters
already at higher temperatures. This emergent phenomenon
is more fragile in the SH-4 model, as shown by the Cv peak,
whose range is shifted towards lower temperatures. Note also
that this peak, as well as the ones of the SH-6 and GEM-
4 potentials, is much higher than that of the nonclustering
potential, because of the larger energy fluctuations occurring
in the clustering phenomena. Approaching the limit of t = 0,
Cv/kB approximates the unit value, which corresponds to the
value for an ideal harmonic solid; at high t , the simulated data
display a convergence towards 1/2, the typical value for the
1D ideal gas with only kinetic contribution.
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IV. MAPPING AND PSEUDOSPIN OBSERVABLES

Recently, the study of the SH-6 potential was tackled for
a fluid of indistinguishable bosons in the continuum at zero
temperature [6,25–27]. The system was investigated upon
changing the density and the interaction constant U . In the
quantum regime, in fact, properties of the system do not de-
pend only on the reduced temperature t = kB T/U , but also on
the dimensionless coupling constant u = Umσ 2/h̄2, where m
is the particle mass. The constant u accounts for the relative
role of interaction versus quantum delocalization effects. In
particular, by fixing the density at the commensurate value
ρ = ρ(2) = 1.36857, a QPT corresponding to the formation of
two-particle clusters was detected at u = uc � 18 [6]. Below
this value, a liquid regime was found, where ground-state and
excited state properties are typical of a Luttinger liquid of
single particles, whereas for values above uc the behavior was
the one of a two-boson cluster Luttinger liquid. The transition
between these two regimes, at u = uc, is highlighted by a
pair distribution function g(x) which develops a peak at zero
distance for u > uc, but also by a marked anomaly in the
Luttinger parameter, which characterizes the hydrodynamic
properties of the fluid, across the transition. Interestingly,
across the transition, an analysis of the excited states via
extraction of the dynamical structure factor using analytic
continuation [28–31] demonstrates a gapped secondary mode
connected to the incipient cluster formation. The gap of the
secondary mode is found to vanish at the transition; this is
the crucial clue for a further investigation of the possible
mapping between this system and the quantum Ising model in
the transverse field, which has a similar behavior in the excited
states’ spectrum across its QPT [32].

This mapping can be made quantitative by introducing a
set of string variables similar to the one discussed in Ref. [33]:
First, particles are ordered by their increasing position, x1 <

x2 < · · · < xN and even positions are assigned a lattice index
j = 1, . . . , N/2. Second, a pseudospin σ j = 1 is assigned if
|xk − xk−1| < |xk − xk+1|, or σ j = −1 in the opposite case,
with k = 2 j; note that when these operations involve particle
1 and particle N , these are first neighbors in PBC. The last
step of the mapping consists of placing these spins onto evenly
spaced lattice sites, thus neglecting the fluctuations of the par-
ticle coordinates in the original soft system. A fully equivalent
mapping can be done by using only the odd-indexed particles
as starting points. The whole procedure is sketched in Fig. 7.
As a consequence, it is possible to directly associate these
Ns = N/2 discrete spin variables to the N soft continuous
configurational degrees of freedom. This mapping is a surjec-
tive function of the spatial coordinates and performs a coarse
graining of the configurations, leaving only the relevant “mag-
netic” degrees of freedom. Note that a completely disordered
configuration of soft particles, being the distance between
a particle and its two neighbors a random value, would be
mapped onto a randomly oriented pseudospin configuration.
Conversely, an almost perfectly two-particle clustered config-
uration would be mapped onto a spin configuration with all the
spins aligned in the same direction. The order parameter is es-
sentially the thermal average of these pseudospins. Moreover,
as it is exemplified in Fig. 7, it could happen that a pseudospin
with a given orientation is followed by a pseudospin with the

FIG. 7. Schematic representation of the mapping between the
soft-particle degrees of freedom and the corresponding pseudospins.
The assignment of a left or right closest neighbor (lower curved ar-
rows) is done for the particles with even indexes (labeled in blue), and
determines the value of the pseudospin (upper arrows). Considering
the odd particles leads to an equivalent result.

opposite orientation. Remarkably, in the 1D quantum soft sys-
tem, the pseudospin correlation function 〈σ z

j σ
z
j+i〉 (averaged

over j) behaves as expected for the transverse Ising model.
In the paramagnetic phase, which corresponds to a Luttinger
liquid of soft particles, it decays exponentially; conversely,
in the ferromagnetic phase, which corresponds a two-particle
cluster Luttinger liquid, it manifests true long-range order.
This procedure allows one then to observe the order emerged
in this QPT, which is a nonlocal form of ordering evidenced
by the procedure employed for mapping the soft system onto
a system of pseudospins hosted on a regular 1D lattice. All
the positions of the soft particles are involved, indeed, in the
construction of the string variables: The particles must, in
fact, be labeled in increasing order, to be able to define each
pseudospin via the mapping algorithm.

Concerning the classical 1D soft systems under investiga-
tion in this work, a phase transition at finite temperature is not
expected, as discussed above; however, at very low temper-
atures, our systems enter a critical regime corresponding to a
tendency to clustering which becomes effective only for t = 0.
Moreover, the appearance of a Schottky-like anomaly in the
specific heat suggests that a discrete number of well-defined
metastable states contributes in the low-temperature dynamics
of clustering systems. An intriguing possibility is that these
soft systems could as well be partially mapped onto the 1D
Ising model, but in this case a classical one. This would imply
that the part of the dynamics of a generic soft 1D system on the
continuum, pertaining to clustering effects, could be mapped
onto a system of discrete variables on a lattice. We notice
that there are many instances in statistical physics where a
continuous system has the same critical behavior as a discrete
model, for example the three-dimensional (3D) liquid-gas
transition is in the 3D Ising class. Moreover, discrete variables
are customarily introduced in the study of clustering systems,
describing the number of particles per cluster. Here, the role of
magnetic discrete degrees of freedom can be directly tested by
using the mapping of the soft-particle degrees of freedom onto
the pseudospin variables already exploited in the quantum
case. To this aim, via the mapping procedure just introduced, it

042134-5



F. MAMBRETTI et al. PHYSICAL REVIEW E 102, 042134 (2020)

FIG. 8. (a) Ising correlation functions for pseudospins gσ are
shown in the case of the GEM-4 interaction. Solid lines represent,
at each temperature, independent fits with the exact Ising formula
up to half the size of the effective lattice. (b) Same data in linear-
logarithmic scale with error bars.

is possible to calculate the Ising-like thermodynamic proper-
ties of the pseudospins. A major advantage of this approach
is that it is well defined for all potentials and temperature
regimes that we are considering, without any approximation.
We are interested not so much in the characterization of
the thermodynamic limit, as in the comparison between the
pseudospin observables computed in the simulations and the
analytical calculations for an analogous Ising system with
the same number of spins.

In parallel to the approach adopted in the study of the
1D quantum system, the first step consists of applying the
mapping procedure for the computation of the pseudospin
correlation functions averaged over the starting index, gσ

i =∑
j〈σ jσ j+i〉/Ns. As an example, in Fig. 8 we report a rele-

vant subset of those computed for the GEM-4. The following
considerations hold, however, for all the three interaction po-
tentials studied in this work. Remarkably, the shape of all
these curves closely resembles the behavior expected for a
classical Ising model with short range interactions, but with a
coupling constant J dependent on temperature. Note, in fact,
that we necessarily have to associate the temperature t of the
soft system to the one of the pseudospin model. This implies
that we let the Ising coupling J (assumed to be in U units) as
a free parameter to be fitted at each temperature. Clearly, as
evidenced by the lin-log scale of Fig. 8(b) the fit turns out to
be very accurate at low t ; in particular, at t = 0.16 and below
the simulated data are fitted quite closely by the theoretical
curve, while at higher temperatures the mapping procedure

FIG. 9. Ising energy per spin in units of J , obtained from soft-
particle configurations via mapping. Solid lines are a guide for the
eye. The lower panel shows a closer view of the temperature range
between 0.025 and 0.06, only for SH-4, and the black dashed line is
the Ising result with J = JS4.

does not generate pseudospin variables effectively associable
with Ising spins. In fact, the simulated data points deviate
from the model, at large i values, for t = 0.18 and t = 0.20.
Noticeably, as it will be shown in the following (see Fig. 12),
a further temperature lowering is required for pseudospin be-
havior to closely manifest Ising physical properties. As in the
Ising model, the pseudospins appear to be strongly correlated
at very low temperatures, where gσ is almost flat and slowly
decaying; conversely, the pseudospins start to assume random
relative orientation, as the temperature grows and gσ rapidly
decreases towards zero.

The study of the gσ functions suggests that the hypothesis
of a mapping between the soft system and the Ising model
can be quantitative. As a further step in this direction, we also
compute other relevant thermodynamical observables of the
mapped pseudospin system. In Figs. 9, 10, and 11, we show,
for all the three interaction models, the pseudospin prop-
erties of energy, heat capacity, and susceptibility, obtained
by mapping the configurations of N = 100 soft particles
onto Ns = 50 pseudospins. We define the Ising total energy
as EI = −J

∑Ns
i=1 σiσi+1 (with PBC) and the magnetization

as M = ∑Ns
i=1 σi. Since J is an unknown parameter, in our

simulations we evaluate the pseudospin thermodynamic quan-
tities by suitably factoring out the trivial J dependence, and
thus using the following formulas: The energy per spin, in
units of J , εI = EI/NsJ; the specific heat in kB J2 units cI =
Ns(〈ε2

I 〉 − 〈εI〉2)/t2; and the magnetic susceptibility, χI =
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FIG. 10. Ising specific heat in units of kBJ2, obtained via map-
ping from soft-particle configurations. Solid lines are a guide for the
eye. The lower panel shows a closer view of the temperature range
between 0.025 and 0.06, only for SH-4, and the black dashed line is
the Ising result with J = JS4.

〈M2〉/Ns t , where we use 〈M〉 = 0 since we are in the para-
magnetic phase.

As an example of the critical Ising regime unveiled via
mapping with the string variables, in the insets of Figs. 9, 10,
and 11 we also show a curve (black dashed line) obtained
by simultaneously fitting εI , cI , and χI for the SH-4 potential
to the corresponding theoretical expressions for the 1D Ising
model with nearest-neighbor interaction and PBC (recalled
in the Appendix). The fit is done in the t range 0.025–0.06
and yields a value J = JS4 = 0.099235. The results highlight
a fairly good agreement between the quantities obtained via
mapping and the analytical expressions, by using the same JS4

for all the observables. However, this only holds at very low
temperatures; upon increasing temperature, in fact, the data
points start to deviate from the fitted curve. This is indeed
what one should expect, given that the critical regime (marked
by the peak in the specific heat) is approached for t → 0.
The simple first-neighbor Ising model should not be able to
adequately fit a whole range of finite temperatures with a
single parameter (JS4, in this case). Therefore, we could expect
that the mapping onto the Ising model only becomes exact in
the limit t → 0 and that an effective mapping at finite temper-
ature has the spin-spin coupling constants (even beyond first
neighbors) significantly dependent on temperature.

The Ising-like energy of the pseudospins system reaches
−1 in the t → 0 limit, while it increases for higher tem-
peratures, as expected. Also cI and χI behave like the
corresponding observables of an Ising spin system with

FIG. 11. Ising magnetic susceptibility, obtained via mapping
from soft-particle configurations. Solid lines are a guide for the
eye. The lower panel shows a closer view of the temperature range
between 0.025 and 0.06, only for SH-4, and the black dashed line is
the Ising result with J = JS4.

first-neighbor interactions, but the quantitative agreement
with this model only holds at very low temperatures [see
Figs. 9(b), 10(b), and 11(b)], thus highlighting that the soft
system at high temperatures departs from the critical regime.
The specific heat tends to 0 as t → 0, and then it grows up
to a maximum value located between t = 0.1 and t = 0.15,
depending on the soft interaction considered; then, it starts
to decrease. For t → 0, the susceptibility experiences a con-
siderable growth (note the y-log scale), revealing a magnetic
ordering of the pseudospin system.

V. SEARCH FOR THE HAMILTONIAN
COUPLING CONSTANT

We have shown that the critical low-temperature regime
(identified by the specific heat behavior) of the soft systems
under investigation can be approximately mapped onto an
Ising model with first-neighbor interactions via a temperature-
dependent coupling constant. This procedure effectively
traces out the continuous phononic degrees of freedom, and
the result is very interesting, because it shows that also in
the 1D classical case, on approaching the zero-temperature
clustering regime, a mapping onto a discrete Ising model
can be found, starting from a continuous fluid. It is therefore
possible to compare the data in Figs. 8–11 to the theoretical
curves for the Ising model with Ns = 50. This way, the value
of J as a function of t can be determined for each observable as
follows. Concerning specific heat, energy, and susceptibility,
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FIG. 12. For the GEM-4 potential, estimates of coupling con-
stant J as a function of t extracted from the pseudospin thermody-
namic properties, from the defects’ occurrence analysis, and from
SA. Solid lines are a guide for the eye.

we determine the value of J for which the theoretical curve ex-
actly coincides with the simulated data at each t . On the other
hand, pseudospin correlation functions directly provide a J
value for each t via the fit with the exact Ising formula for gσ ,
as detailed in the previous section. This procedure provides a
set of discrete data points which are drawn in Figs. 12, 13,
and 14 for the three interaction models. At high tempera-
tures, the estimates of J extracted from different physical
observables are different from each other. Quite remarkably,
by lowering t , the four curves collapse onto a unique curve
that still displays a dependence on temperature. In light of the
exponential decay of the spin-spin correlation function, it is
not surprising that it can be fitted by its Ising form with a
suitable value of J . However, it is noticeable that this precise
value is almost identical to the three J values estimated from
the specific heat, energy, and susceptibility. This holds for all
the potentials studied and this remarkable collapse marks the
entry in the critical regime.

At this point, it is fundamental to assess whether the
mapping of the soft system onto the Ising model is trivial,
i.e., if only low-energy soft configurations are sent onto the
pseudospin ground state, while only high-energy soft con-
figurations are mapped onto the Ising states with defects.

FIG. 13. Estimates of J for potential SH-4, analog to Fig. 12.

FIG. 14. Estimates of J for potential SH-6, analog to Fig. 12.

Figure 15 shows, as an example, two histograms of the soft-
particle energies from a t = 0.05 simulation of the SH-6
interaction model. These distributions collect all the poten-
tial energy values of the soft configurations sent onto the
Ising ground state (yellow) or onto an Ising first excited state
(blue), i.e., a pseudospin configuration with two domain walls.
In this analysis, the soft configurations mapped onto more
defected Ising states have not been considered. Evidently,
there is a substantial overlap between the yellow and the
blue histograms and not two neatly distinguishable distribu-
tions, which means that the mapping is highly nontrivial.
This strongly indicates that the mapping procedure via the
string variables establishes a complex relation between the
physical system of soft particles and the equivalent system
of pseudospins. We, however, expect that such distributions
become less and less overlapping as temperature decreases to
regimes which are not accessible to our simulations.

Thus, the characterization of the t → 0 limit of the map-
ping, and then of the coupling constant J , becomes an
interesting further step. At such low temperatures, the ki-
netic energy contribution to the Hamiltonian is negligible and
the potential energy term dominates. In these conditions, an

FIG. 15. Histogram of the soft potential energy per particle, V/N
for SH-6 at t = 0.05. The energies of the soft configurations belong
either to the group of those mapped onto an Ising ground state
(yellow) or to the group of those with two domain walls in the
corresponding Ising system (blue).
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energy variation in the soft system is directly associable to
an energy variation in the pseudospin mapped system. This
provides us with an indirect method for the determination of
J . In fact, let us recall that the energy cost for a single domain
wall in the Ising model with nearest-neighbor coupling is
equal to 2J . Considering PBC, the first excited Ising state
has two domain walls in our simulations. This means that
the minimum cost of a defect in the pseudospin model is
equal to 4J . The integral of the occurrence distribution of
soft configurations that map to this lowest energy defected
pseudospin configurations, at a given temperature, can thus
be matched to a Boltzmann weight with potential energy
equal to exactly 4J . This means that the relative probability
of the first exited Ising state with respect to the Ising ground
state, written as e−4J/twdef/wgs, can be identified as the ratio
between the number of fluid configurations that are sent into
the first state and into the Ising ground state. In particular, this
last fraction reads as 〈e−(Vdef−Vgs )/t 〉, where the energies Vgs and
Vdef are the total potential energies (i.e.,

∑N
i< j v(|xi − x j |)) of

the soft configurations which are mapped, respectively, onto
the Ising ground state and onto the first excited Ising state,
i.e., the one with two domain walls, while wdef = Ns(Ns − 1)
and wgs = 2 are the degeneracies of, respectively, the defected
and ground states in the 1D Ising model with PBC. The right
member can be determined by assuming that—for a long MC
simulation—〈e−Vgs/t 〉 is proportional to the total number of
configurations sent onto the Ising ground state ngs, namely the
sum of a histogram like the one in Fig. 15, and the same holds
for the lowest-energy defected state (with the corresponding
ndef). The previous considerations allow us to introduce the
definition of an effective coupling constant Jeff as

Jeff = t

4
ln

(
ngs

ndef

wdef

wgs

)
, (7)

where Jeff depends on t . Therefore, this method not only
provides the numerical value of J in the t → 0 limit, but
also gives a physical insight into the coupling constant re-
lation with the soft-particle properties. Jeff as a function of
temperature in the range of interest is shown in purple color in
Figs. 12–14. These curves differ from the ones computed from
the soft system observables at high t , but noticeably, at low
temperatures, they collapse onto the other ones, despite being
computed in a completely different way. Remarkably, the two
different approaches yield almost indistinguishable results for
the estimation of J (t ). This establishes a link between the
thermodynamic properties of the pseudospins and those of the
soft particles.

We have also extracted the t → 0 limit value for J using
SA [18]. The SA method allows one to identify the soft-
particle configurations corresponding to the lowest energy
excitation of the system, which are mapped onto an Ising
state with a single defect (namely two domain walls, in PBC).
Starting at low temperature from a nonperfectly clustered
soft-particle configuration, the system is annealed towards the
t = 0 limit, storing the positions of the particles and their
potential energy. From this analysis, we have obtained that
the lowest energy defect corresponds to an arrangement of
two single particles and (Ns − 1) two-particle clusters. We
observe that the defect is highly localized: The particles im-

TABLE II. J0 values calculated via simulated annealing
for Ns = 50.

Pair potential J0

GEM-4 0.130975
SH-4 0.110975
SH-6 0.114025

mediately near the two single particles experience a huge
displacement with respect to their position in a perfect lat-
tice, due to the local depletion of the density. In turn, a few
lattice steps away from the defect, the displacement is very
small, and consistent with a slightly higher uniform cluster
density. Where the single particles are found, the relative
pseudospin is flipped; the pseudospin is reverted again when
the other defect is encountered. Consistently, starting from the
first single particle, one of the two particles of each cluster
is moved into the next cluster. The energy of the defect as
a function of the distance between the two single particles
rapidly tends to a constant value which characterizes the en-
ergy gap with respect to the ground state. The defect energy
thus corresponds to a well-defined local minimum of the po-
tential energy landscape, which is relevant at low temperatures
since it provides metastability. With this energy gap, we com-
puted a temperature-independent J = J0 value via the relation
J0 = (Vdef − Vgs)/4, for each model. These t → 0 limit values
of J are included in Figs. 12–14 as horizontal gray dashed
lines, and are also listed in Table II, for Ns = 50. Ideally,
all the J values estimated from the soft physical observables
and Jeff should approximately tend, at low temperatures, to
J0. Reasonable extrapolations for t → 0 of the previously
discussed J and Jeff curves seem to be in good agreement with
this hypothesis.

As with all the other observables involved in the mapping,
J0 naturally depends on the system size. A good final point
consists of investigating the J0 limit as the number of con-
stituents of the 1D system increases. Simulations via SA of
the soft system with a growing number of particles N yield the
results reported in Fig. 16. The figure highlights how, for all
the interaction potentials, J0 as a function of N tends to a finite
asymptotic value typical of each model; this evidences that,

FIG. 16. Results for J0 as a function of the inverse number of soft
particles, 1/N .
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FIG. 17. Specific heat in units of kB of the pseudospins for the
considered model potentials, as a function of the scaling variable t/J ,
where J is fitted from Fig. 10 at the maxima of the specific heat. We
also show the analytic results for the Ising model with Ns = 50 spins
in PBC and in the thermodynamic limit.

for large N , the energy of the defect converges to a finite value
(which corresponds to a classical metastable state) and J0

becomes almost independent of the number of soft particles.

VI. UNIVERSALITY OF PSEUDOSPIN
DYNAMICS IN 1D CLUSTERING

In the previous sections we have established the emer-
gence of effective Ising degrees of freedom via a nontrivial
correspondence with a set of string variables in the soft par-
ticle systems under consideration. We observed that, for each
model potential, a consistent t-dependent J can be extracted
for t � 0.06, which seems to converge to a t → 0 value. We
now show that the ratio t/J is an approximate scaling variable
for the pseudospin specific heat at temperatures t � 0.08J ,
provided a suitable J is employed, which is not the low-
temperature converged one.

In Fig. 17 we show the specific heat of the pseudospins
in units of kB, namely the data of Fig. 10 multiplied by J2,
as a function of t/J . The used values of J are 0.15, 0.0865,
and 0.136 for the GEM-4, SH-4, and SH-6 potentials, respec-
tively, and correspond to the values fitted from the pseudospin
specific heat at its maximum. We also plot the Ising specific
heat in the thermodynamic limit and for Ns = 50 in PBC (see
Appendix). With the selected values of J , by construction the
three sets of data cross the Ising curve at their peak: What
is not obvious is that the Schottky-like anomaly appears at a
common t/J � 1, which is slightly above the value for the
Ising model t/J � 0.83, and therefore display the same peak
magnitude CI � 0.44kB, akin to the Ising model. The scaling
is apparently valid for t/J � 0.08. At higher temperatures, the
results from the considered model potentials scale perfectly,
independently of J , as can be appreciated in Fig. 10 where
no multiplication by J2 was performed. The reason is a high-
temperature power-law decay of the specific heat with 1/t2.
The coefficient in front of the (J/t )2 behavior is however
smaller than 1, which would hold for the Ising model. We
speculate this scaling and its departure from the Ising model
might be due to some coupling to the underlying phononic

FIG. 18. Specific heat in units of kB of the soft particles for the
considered model potentials, as a function of the scaling variable
t/J , where J is fitted from Fig. 10 at the maxima of the pseudospin
specific heat. We also show the Ising model specific heat in the
thermodynamic limit, shifted by 1.

degrees of freedom. Conversely, discrepancies between the
three sets of data can be seen at small temperature, which can
be explained by both finite-size effects, which are known to be
particularly large for the Ising model in PBC [34], and by the
fact that we used values of J fitted in a different temperature
range.

We also investigate whether there is a quantitative relation
between the specific heat of the original soft systems, and the
specific heat of the pseudospins. In fact, there is a striking
similarity between Figs. 6 and 10. In particular, the maxima
of the specific heat appear at similar temperatures. In Fig. 18,
we thus plot again the data of Fig. 6 as a function of the
scaling variable t/J , with the same values of J as reported
in the previous paragraph. In the same figure, as a reference,
we plot the Ising specific heat in the thermodynamic limit,
CI/kB = (J/t )2/ cosh2(J/t ), shifted by 1, which, in the t → 0
limit, accounts for the harmonic and kinetic contributions.

We observe that also for the clustering soft systems under
consideration, the parameter t/J ∼ 1, with the above specified
values of J , marks the position of a peak in the specific
heat. This is then a peculiar case of appearance of a Schottky
anomaly in a classical nonmagnetic system in the continuum.
The magnitude of the anomaly varies and is in the range 0.5–
0.7 above 1. Interestingly, the high-temperature tails manifest
a good scaling in t/J for t/J � 3. This scaling depends on the
chosen J , since it is missing in Fig. 6. In fact, at variance with
the pseudospin specific heats, the behavior in this temperature
range is not consistent with a t−2 power law.

VII. CONCLUSIONS

In this paper we have studied via Monte Carlo simulations
the thermodynamic and structural properties of 1D fluids of
particles interacting by soft-core, repulsive pair potentials of
the Q± class [8], which allow spontaneous cluster forma-
tion. Three different functional forms of the interaction were
considered, and for each of them the number density was
fixed at a value commensurate with that of a dimer crys-
tal. This investigation was prompted by a former study of a
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one-dimensional quantum boson fluid at zero temperature [6]
where, on increasing the strength of the interparticle repul-
sion, a transition from a single-particle to a dimer Luttinger
liquid was observed. Remarkably, mapping this fluid into a
magnetic system of pseudospins by the introduction of pseu-
dospin string variables revealed that the spin-spin correlation
function across the transition behaves like that of the quantum
transverse Ising model. It then comes as a natural question,
whether a similar situation may occur in the corresponding
classical system. Importantly, in the latter case, the nature
of the fluctuations is deeply different from the ones of the
bosonic system; nonetheless, we have observed a rich phe-
nomenology which is surprisingly similar to the one of the
quantum fluid. In the classical case one expects that, on low-
ering the temperature, the fluid will eventually freeze into an
ordered cluster crystal [21]. Unlike in the quantum fluid, the
transition takes place for any value of the repulsion strength,
although in the one-dimensional system considered here, true
long-range order is still expected to develop only at vanishing
temperature [20].

Similarly to the quantum case, we then introduced a map-
ping procedure onto string variables whereby the continuum,
configurational degrees of freedom of the original system are
replaced by Ising-like spins. By construction, this mapping is
such that a perfect or almost perfect dimer phase is turned into
a ferromagnetic state, whereas a disordered configuration with
no dimers corresponds to a paramagnetic state with random
spin orientations. The remarkable point is that, in the low-
temperature limit, the pseudospins thus introduced, whose
dynamics is dictated by that of the underlying fluid of soft
particles, do obey classical Ising statistics. Evidence of this
was provided in several different ways.

(1) The spin-spin correlation function is perfectly de-
scribed by the corresponding expression of the classical
one-dimensional Ising model. As the temperature is lowered,
the correlations decay more and more slowly, pointing to
the establishment of long-range order at zero temperature.
Other thermodynamic quantities of the pseudospins, such as
the internal energy, specific heat, and magnetic susceptibility,
can also be described by their Ising expressions. In all cases,
the spin-spin coupling constant J obtained by fitting those
expressions to the simulation results is found to depend on
temperature. This is not surprising, in light of the fact that
the introduction of the string variables implies some kind
of average over the configurational degrees of freedom (e.g.,
phonons), which may then result in a state-dependent effective
J . Nevertheless, at low temperature the values of J obtained
by this procedure become independent of the specific quantity
under consideration, and approach a finite common limit as
the temperature tends to zero.

(2) At a given temperature, the probability of occurrence
of the first excited pseudospin state with respect to the ground
state can be determined from the ratio of the soft-particle
configurations which are mapped into either state. If the pseu-
dospins obey Ising statistics, the coupling constant J can
be extracted by relating this ratio to that of the Boltzmann
weights of the Ising Hamiltonian. At low temperature, the
values of J thus obtained fully agree with those determined
from direct fit of the thermodynamic properties according to
the procedure of point 1.

(3) The value of J at zero temperature was estimated by
comparing the energy of the ground state of the soft-particle
system to that of its metastable state of lowest energy, deter-
mined via simulated annealing. The result is consistent with
the extrapolation to zero temperature of the curves obtained
by the procedures of points 1 and 2 above.

Since the mapping of the configurations of the original
soft-particle fluid into an assembly of Ising pseudospins is
not trivial and necessarily implies a significant loss of degrees
of freedom, there is not an obvious relationship between the
thermodynamic observables of the fluid and their magnetic
counterparts. Nevertheless, we think that the latter capture the
role played by the discrete degrees of freedom of the system.
In particular, the peak in the fluid specific heat as a function
of temperature is mirrored by that in the specific heat of the
pseudospins (the Schottky anomaly), and its position turns out
to be nearly independent of the potential considered, provided
the temperature is rescaled by the effective magnetic coupling
constant J at the temperature of the peak. In the future, it
would be interesting to study the temperature dependence of J
beyond the phenomenological level considered here in order
to clarify how this quantity is affected by the configurational
degrees of freedom of the fluid.

Another potentially interesting development would consist
of extending the present analysis to clustering involving more
than two particles, or to systems in dimensions larger than one.
The latter development would allow one to study the phase
transition to cluster crystals at finite temperature, thereby
making it more easily accessible to numerical simulation.
While it is by no means obvious to us how the mapping con-
sidered here could be generalized to higher dimensions, since
its present formulation clearly hinges on cluster formation in
a 1D system, it is quite likely that the extension to larger
clusters in one dimension involves considering Potts models
with higher spin.
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APPENDIX: ISING FORMULAS FOR FINITE
NUMBER OF SPINS

We report here the exact formulas for the Ising thermo-
dynamical properties discussed in the main text, analytically
calculated for a finite number of spins Ns in PBC. In this
Appendix we again normalize energy and temperature to the
coupling parameter U .

Starting from the simple expression for the first-neighbor
Ising energy EI = −J

∑Ns
i=1 σiσi+1 (where the Bohr magneton

μB is set equal to 1, and PBC are assumed), the partition
function of the system can be easily derived, and the transfer
matrix as well. Calling the eigenvalues of the transfer matrix
λ+ and λ−, the free energy reads F = −t log(λNs+ + λ

Ns− ). Set-
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ting ζ = J/t , all the thermodynamic properties can then be
derived, such as the internal energy per spin in units of J:

〈EI〉
JNs

= − tanh ζ

(
1 + tanhNs−2 ζ

1 + tanhNs ζ

)
, (A1)

the specific heat CI in units of kBJ2:

CI

kBJ2
= 1

t2 cosh2 ζ

[
1 + tanhNs ζcsch2ζ

(1 + tanhNs ζ )2

× (Ns − (1 + tanhNs ζ ) cosh(2ζ ))

]
, (A2)

the spin-spin correlation function:

gσ
i =

∑
j〈σ jσ j+i〉

Ns
= tanhi ζ

(
1 + tanhNs−2i ζ

1 + tanhNs ζ

)
, (A3)

and finally the magnetic susceptibility:

χI = e2ζ

t

(
1 − tanhNs ζ

1 + tanhNs ζ

)
. (A4)
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