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a b s t r a c t 

The electrostatic interaction among a neutral and finite set of point charges is based on the sum of their pairwise charge products, 𝑧 𝑖 𝑧 𝑗 , yet many analyses yield terms 

which simply contain a sum of the squares of the separate charges, corresponding to the ionic strength, 1 
2 
∑

𝑚 𝑖 𝑧 
2 
𝑖 
. 

This submission collects together a number of important instances of this result and explains their equivalence. In effect, the ionic strength-like terms provide 

conveniently calculated coulomb sums for systems with finite collections of charges. 
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. Introduction 

It has often been observed, but seldom noted and perhaps never

ueried that, while the electrostatic interaction among a neutral finite

et of point charges is based on the sum of their pairwise charge prod-

cts, 𝑧 𝑖 𝑧 𝑗 , based on Coulomb’s Law, yet analysis yields terms (such as

he ionic strength, 1 2 
∑

𝑚 𝑖 𝑧 
2 
𝑖 
) which are simply a sum of the squares of

he separate charges. It is the purpose of this brief contribution to collect

ogether a number of important instances of this result and to explain

ts occurrence, independent of the mathematical complexities in which

t may be cloaked in particular instances of its appearance. A general

eview of ionic strength applications was published in 2004. [1-2] 

Perhaps the earliest well-known appearance of such a sum is in

wald’s accelerated convergence method [3] (1921) for calculating lat-

ice energies. Three terms appear in the Ewald sum: one arises as a

moothed sum of the short-range interactions of the contents of the ori-

in unit cell with the direct lattice, a second from a corresponding re-

iprocal lattice sum, while the third arises from the charge interactions

ithin the origin unit cell itself – this has the form 

∑
𝑧 2 
𝑖 
, where the z’s

epresent the charges of the n species within the unit cell. 

Ionic strength, I , was introduced (also in 1921) by Lewis and Randall

4] as a purely empirical quantity which correlated (surprisingly suc-

essfully) the thermodynamic activities of different strong electrolytes

n dilute solution; in their words "In dilute solutions the activity coeffi-

ient of a given strong electrolyte is the same in all solutions of the same

onic strength". They defined ionic strength on a molality basis as: 

 = 1∕2 
∑

𝑚 𝑖 𝑧 
2 
𝑖 

(1)

here m i represents the molality of ions of type i with integer charge, z i .

he factor 1 2 is introduced in order that the ionic strength of a 1:1 elec-

rolyte ( e.g. , NaCl) equals its molality. In practice, it is more common to

se a related term, Γc , also called ional concentration, where concentra-
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ion, c, replaces molality; the two expressions are proportional to one

nother in sufficiently dilute solution: [5] 

𝑐 = 1∕2 
∑
𝑖 

𝑐 𝑖 𝑧 
2 
𝑖 

(2)

Lewis and Randall refer admiringly to earlier work by Ghosh [6] on

trong electrolytes which uses the same charge-squared factor as appears

n their ionic strength term. 

A related term, 
∑

𝑛 𝑖 𝑧 
2 
𝑖 
, appeared independently in Debye and

ückel’s (1923) development of a theory of electrolytes [7] where n i 
epresents the number of ions per cm 

3 . Later, in 1924, Debye [8] ac-

nowledged the prior definition by Lewis and Randall of the ionic

trength, and the afore-mentioned proportionality of these two quan-

ities to one another in dilute solution. He then proceeded to use ionic

trength in his treatment of ionic activity. 

The Madelung energies of ionic solids relate to their geometry and

lectrostatic interactions, [9] with the electrostatic term consisting of

 sum of pairwise ion charge products. In 1955 Templeton [10] intro-

uced a related factor, S ( = 2 I ), as a normalizing factor for Madelung

nergies but this seems to have been applied [11] only occasionally. 

In 1995, Glasser [12] noted the appearance of a similar ionic

trength-like term (now including the factor 1 2 ) in the Kapustinskii equa-

ion, [13] an equation which provides good estimates of the lattice en-

rgies, U , of binary ionic crystalline solids. By detailed calculation, he

stablished that the sum of the pairwise charge interactions was equal to

he sum of the squares of the individual charges in a unit cell. On the ba-

is of this recognition, it proved possible to generalize the Kapustinskii

quation beyonf its purely binary form to predict the lattice energies of

omplex ionic crystals. The generalized equation has the form: 

 = − 

𝐴 

< 𝑟 > 

(
1 − 

𝜌

< 𝑟 > 

)
𝐼 (3a)
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where I = 1 
2 
∑

𝑛 𝑖 𝑧 
2 
𝑖 

n i = number of ions of species i in the formula 

unit 

< r > = weighted mean cation-anion Goldschmidt 

radius sum 

A = conversion factor between charge and 

energy units; 121.4 kJ mol − 1 nm 

𝜌/ < r > = a Born-Mayer correction term for ion 

repulsion, where 𝜌 is commonly assigned 

the value 0.0345 nm. 

The mean radius is a rather nebulous quantity but can be substituted

y the cube-root of the formula unit volume, V m 

1/3 , having the neces-

ary dimension of length. Actual use of the revised equation [14] is most

onveniently in terms of a linear fit to data sets, with fitted constants 𝛼

nd 𝛽

 = 2 𝐼( 𝛼

𝑉 1∕3 
+ 𝛽) (3b)

Such a relation between the continuum approximation of the Debye-

ückel theory and the necessarily discrete ion treatment of the Kapustin-

kii equation was earlier foreshadowed by Fuoss and Accascina [15] in

heir remarks on the likely form of the radial distribution function as one

roceeds from dilute electrolyte solutions to fused salts to ionic crystals.

Appearing in these various situations, ionic strength (in its various

uises) seems simply to be a correlation factor of somewhat obscure

rigin. This does not mean, however, that the ionic strength concept

s underplayed; it is of importance in all electrolyte experimentation

here, for example, in order to reduce extraneous electrolyte concen-

ration effects, solutions are generally made up to constant ionic strength

y adding inactive strong electrolyte to the active ion constituents, and

t remains as an essential term in the important Debye-Hückel theory of

lectrolytes. 

We here provide a more fundamental interpretation of this quantity.

.1. Analysis 

For an arbitrary but finite neutral system of n charges: 

𝑛 

𝑖 =1 
𝑧 𝑖 = 0 (4) 

hen: 

𝑛 

𝑖 =1 
𝑧 𝑖 ⋅

𝑛 ∑
𝑗=1 

𝑧 𝑗 = 0 (5)

Expanding this product, and separating it into diagonal and off-

iagonal elements: 

𝑛 

𝑖 

𝑧 𝑖 ⋅
𝑛 ∑
𝑗 

𝑧 𝑗 = 

𝑛 ∑
𝑖 =1 

𝑧 2 
𝑖 
+ 

𝑛 ∑
𝑖 

𝑛 ∑
𝑗≠𝑖 

𝑧 𝑖 𝑧 𝑗 = 0 (6)

hus, rearranging: 

𝑛 

𝑖 

𝑛 ∑
𝑗≠𝑖 

𝑧 𝑖 𝑧 𝑗 = − 

𝑛 ∑
𝑖 

𝑧 2 
𝑖 

(7)

By symmetry, since z i z j = z j z i , the above equation becomes: 

𝑛 

𝑖 

𝑛 ∑
𝑗>𝑖 

𝑧 𝑖 𝑧 𝑗 = 1∕2 
𝑛 ∑
𝑖 

𝑛 ∑
𝑗≠𝑖 

𝑧 𝑖 𝑧 𝑗 = −1∕2 
𝑛 ∑
𝑖 

𝑧 2 
𝑖 

(8)

We may now classify the ions into t types, with n k ions of each type,

, such that: 

 = 

𝑡 ∑
𝑘 =1 

𝑛 𝑘 (9)
2 
hen: 

𝑛 

𝑖 

𝑛 ∑
𝑗>𝑖 

𝑧 𝑖 𝑧 𝑗 = −1∕2 
𝑡 ∑
𝑘 

𝑛 𝑘 𝑧 
2 
𝑘 

(10)

r, briefly: 

𝑗>𝑖 

𝑧 𝑖 𝑧 𝑗 = −1∕2 
𝑡 ∑
𝑘 

𝑛 𝑘 𝑧 
2 
𝑘 

(11)

The system of n charges considered here might consist of: the charges

ontained in a kilogram of solvent (so that the last term corresponds to

he ionic strength, I ); or the charges in a liter of solution (leading to

he ional concentration, Γc ); or the charges in a formula unit of a solid

leading to the generalised Kapustinskii term, I ). 

Thus, the ionic strength, and its related terms, simply provide

onveniently-calculated sums of systems of charges. This accords with

he only specific comment, [16] rather than “hand-waving ” generalisa-

ions, that I have found on the nature of ionic strength. 
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