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A B S T R A C T   

Geographical detector (GD) is a method to measure spatial associations using a power of determinant (PD) value 
that compares the variance of data within spatial zones and in the whole study area. Recent studies have 
implemented GD in diverse fields, such as environmental and socio-economic issues. Spatial data discretization is 
an essential stage for determining zones using explanatory variables. However, the spatial data discretization 
process has been sensitive to the GD results. To address this issue, this article proposes a Robust Geographical 
Detector (RGD) to overcome the limitations of the sensitivity in spatial data discretization and estimate robust PD 
values of explanatory variables using a B-value. The RGD determines spatial zones with numerical interval breaks 
using an optimization algorithm of variance-based change point detection. In this study, RGD is implemented in a 
nationwide case study exploring potential factors of nitrogen dioxide (NO2) density in industrial regions across 
Australia, where data on both NO2 and potential factors are sourced from satellite images and remote sensing 
products using Google Earth Engine. Results show that RGD can effectively explore the maximum PD values of 
spatial associations between response and explanatory variables due to the optimization algorithm-based spatial 
zones. In addition, RGD-based PD values are generally higher, more robust, and more stable than GD-based PD 
values since RGD can guarantee the increment of PD values with the increase of interval numbers, which is a 
challenge in previous GD models. Finally, RGD could provide a more reliable interpretation of PD as RGD finds 
optimal intervals-based spatial zones determined by potential factors. This study demonstrates that the devel
oped RGD model can provide robust and reliable solutions to explore spatial associations and identify 
geographical factors.   

1. Introduction 

Spatial heterogeneity or spatial disparity is a key characteristic of 
geographical phenomena in environmental and socio-economic studies 
(Fotheringham et al., 1998; Weisent et al., 2012; Fang et al., 2017). 
Spatial heterogeneity refers to a common phenomenon in which a fac
tor’s geographic impacts, or distributions of specific features or events, 
are not consistent across the space (Fotheringham, 2002; Wang et al., 
2010). Spatial stratified heterogeneity (SSH) is a form of spatial het
erogeneity that can be used to explore spatial associations between 
geographical variables through the comparison between variance 
within-strata and variance inter-strata (Wang et al., 2016). Thus, SSH- 
based models have been widely applied in identifying geographical 
factors in multiple fields, such as urbanization (Feng et al., 2021), land 
use and environmental planning (Liu et al., 2019), public health (Li 
et al., 2021), transport infrastructure (Song et al., 2018a), environ
mental justice (Dasgupta et al., 2021), ecological protection (Zuo et al., 

2021) and climate change (Jiang et al., 2018). 
Geographical detector (GD) is a method to measure the SSH by sta

tistical variance (Wang et al., 2016). In GD models, the association be
tween dependent and explanatory variables is quantified using a power 
of determinant (PD) value, comparing variance within strata and across 
the whole study area (Wang et al., 2010). GD has been proposed and 
widely applied in geography for a decade, with solid theories proven. 
Current GD has been well-developed in both diverse applications and 
methodology extensions. From the application perspective, GD is a 
powerful tool for examining spatial differences (Chen et al., 2019), 
identifying driving factors (He et al., 2019), and supporting spatial 
advice (Dong et al., 2021). Practicality regarding the spatial analysis 
advantage of GD has been shown in various studies, from human set
tlement management to human-environment interaction investigation, 
at different spatial scales (Raghavan et al., 2013; Qu et al., 2018; Maus 
et al., 2020; Song et al., 2021). From a methodology extension 
perspective, optimal parameters regarding break interval and spatial 

* Corresponding author. 
E-mail address: Yongze.song@curtin.edu.au (Y. Song).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.102782 
Received 5 March 2022; Received in revised form 5 April 2022; Accepted 6 April 2022   

mailto:Yongze.song@curtin.edu.au
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2022.102782
https://doi.org/10.1016/j.jag.2022.102782
https://doi.org/10.1016/j.jag.2022.102782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2022.102782&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102782

2

scale have been investigated to improve GD performance (Cao et al., 
2013). A spatial association interactive detector based on GD theory is 
proposed to quantify spatial associations between spatial cause and ef
fect (Song and Wu, 2021). Moreover, a geographically optimal zones- 
based heterogeneity model is developed to improve the measure of 
SSH based on GD (Luo et al., 2022). These advanced GD methods have 
been applied in infrastructure management and soil moisture modeling. 

However, the process of spatial data discretization has been a sen
sitive stage for exploring spatial associations, computation of PD values, 
and identification of geographical variables. This means that the 
changes in the spatial discretization method and the number of spatial 
zones can usually affect the relative importance of variables. In studies 
where explanatory variables are continuous numerical data, spatial data 
discretization is essential before performing GD models (Wang et al., 
2016). In natural and social environment studies, continuous numerical 
data of explanatory variables are common, such as population, eco
nomic conditions, wind speed, precipitation, air pollutant indicator, and 
vegetation coverage. Therefore, developing a practical discretization 
approach for continuous numeric data is essential for practical imple
mentations of GD models. To address this issue, an optimal parameter- 

based geographic detector (OPGD) is developed to improve the GD 
factor detector by providing various discretization strategies based on 
the statistical distribution of explanatory variables (Song et al., 2020). 
However, these discretization strategies do not fully address the limi
tations of deriving reliable strata with robust discretization approaches. 
In detail, PD values derived from OPGD fluctuate with the increase of 
interval breaks when selecting optimal discretization parameters (Song 
et al., 2020; Luo et al., 2021), meaning that the stability and robustness 
of spatial data discretization are limited. This is because most of the 
current spatial discretization strategies, including the system developed 
in OPGD, are performed based on observations of samples instead of in- 
depth characteristics of data. Therefore, more effective and robust 
spatial data discretization strategies are required to improve GD 
modeling. 

To address the above issues, this study proposes a Robust 
Geographical Detector (RGD) to effectively explore more reliable and 
robust spatial associations between dependent and explanatory vari
ables from a spatial heterogeneity perspective. The RGD determines 
discretization interval breaks using an optimization algorithm for 
variance-based change point detection. In this study, RGD is 

Fig. 1. Process of RGD model for determinant exploration.  
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implemented in a nationwide case study of exploring potential factors of 
nitrogen dioxide (NO2) density in industrial regions across Australia, 
where data on both NO2 and potential factors are sourced from satellite 
images and remote sensing products using Google Earth Engine. Sensi
tivity analysis is performed to evaluate the effectiveness of RGD for 
exploring spatial associations. 

The remainder of this article is structured as follows. Section 2 de
scribes the detailed steps of the developed RGD model. Section 3 pre
sents the case study of applying RGD in exploring factors affecting air 
pollutants in the nationwide industrial regions in Australia. Section 4 
shows the results of this study, including PD values of potential variables 
computed using RGD, model evaluation by comparing with GD models, 
and findings in the case study. Section 5 discusses the advantages of RGD 
and the contributions of this study, and Section 6 concludes this article. 

2. Robust Geographical Detector (RGD) 

RGD is an improvement of the geographical detector (GD) with 
optimal spatial zones determined using optimization of spatial data 
discretization of explanatory variables. Fig. 1 shows the process of the 
RGD model for spatial determinant exploration, and the method in
cludes four steps. The first step is the equivalence transformation for 
RGD using a ranking approach, which guarantees the measure of SSH 
and creates opportunities for solving an optimization problem. The 
second step is to redescribe the objective of spatial discretization as an 
almost-solved optimization problem. This means identifying breaks of 
spatial discretization is transformed into a change point detection 
problem, where change points of explanatory variable ranks are speci
fied using a dynamic programming method, and the within the sum of 
squares (SSW) is minimized using a least squared deviation cost func
tion. The third step is to calculate the PD values of explanatory variables. 
In RGD, a B-value is used to quantify the PD of variables with the 
detected robust change points determined spatial zones. Finally, the 
sensitivity of RGD is evaluated by comparing it with previous GD 
models. In this study, RGD is implemented in exploring spatial de
terminants of air pollutants in industrial regions in Australia, which is 
described in Section 3. 

2.1. Equivalence transformation for RGD 

The RGD is a variant of GD with a robust optimization discretization 
strategy for a more effective estimation of spatial stratified heteroge
neity. The PD of explanatory variables is computed as a B-value in RGD, 
as shown in equation (1). 

B = 1 −
SSWR

SST
= 1 −

∑k
z=1Nzσ2

z

Nσ2 (1)  

where SSWR is the Sum of Squares Within spatial zones identified using 
the robust optimization strategy of spatial data discretization for 
explanatory variables; SST is the Sum of Squares Total of observations in 
the whole study area; z is an RGD spatial zone; Nz and σ2

z are the number 
and variance of observations within zone z by discretizing an explana
tory variable, and N and σ2 are the number and variance of data in the 
whole study area. Similar to the Q-value in GD, B-value measures the 
spatial association between dependent and explanatory variables, and 
the value ranges from 0 to 1. 

The basic idea for equation (1) in the previous OPGD quantile 
method is how much of the dependent variable’s spatial heterogeneity 
can be explained by dividing the sorted explanatory factor value (Song 
et al., 2020), identical to dividing the rank of an explanatory factor 
value. RGD is a function to quantify to what extent spatial heterogeneity 
of a dependent variable can be explained by ranks of explanatory vari
ables instead of values of explanatory variables in GD. Spatial zone z 
across the space in equation (1) is determined by discretizing a nu
merical continuous explanatory variable, which means a division of the 

study area to show the dependent variable’s spatial heterogeneity is 
based on the segmented sorted and ranked explanatory variable series 
from the observed minimum to maximum. Suppose dependent and 
explanatory variables are spatially associated. There should be a 
consistent mathematical relationship between the sorted dependent 
variable value (A) and the sorted rank of this explanatory variable (B), 
meaning that the mapping from A to B is a bijection with simultaneous 
increase. Namely, explanatory variable discretization for RGD is 
equivalent to categorizing the sorted rank of explanatory variables. 
Thus, determining spatial zones using explanatory variables can be 
converted to deciding spatial zones using the ranks of explanatory var
iables, which is a robust approach without impacts of outliers and 
extreme values, to calculate the PD values based on spatial stratified 
heterogeneity. 

Therefore, a rank transformation has two advantages, which could 
guarantee the measure of the SSH value based on equation (1) and work 
as an input for the optimization algorithm at the same time. Considering 
these advantages, RGD accepts the equivalence transformation and in
vestigates how much of the dependent variable’s spatial heterogeneity 
can be explained by the rank of the explanatory variable. This trans
formation switches the original distribution of explanatory variables 
into a sequence of natural numbers, starting from value one to the 
number of total observations. Even with no direct computing advantage, 
transformed relationships (i.e., the relationship between dependent 
variable and rank of explanatory variable) can be treated as a simulated 
signal recorded within a time series, which can be further transferred 
into an optimization problem. 

2.2. Research target redescription 

In previous studies, significant efforts have been made to improve 
GD through various spatial discretization methods. However, it is still a 
challenge to derive an explicit mathematical approach for reliable and 
robust modeling. RGD provides a robust solution for addressing this 
issue. In RGD, the research target can be stated more clearly after the 
equivalence transformation since explanatory variables are continuous 
sequences of natural numbers. The relationship between the dependent 
variable and the rank of the explanatory variable is equivalent to a 
simulated offline signal series, where the dependent variable acts as a 
signal pulse and the explanatory variable rank are the time series. Pre
vious GD discretization strategies do not fully explore the relationship 
between variables when determining the segmentation point and 
generating spatial zones z. The RGD treats minimizing SSW as an 
optimal target to segment the transformed signal series. Now, deter
mining a better discretization for GD can be rephrased by a clear opti
mization problem. Given a simulated signal series, is it possible to find a 
specified number of segmentation points that could have the least SSW 
for a dependent variable? The answer to this question is ‘yes’, and the 
solution is change point detection (Page, 1955; Truong et al., 2020), 
introduced in the following section. 

2.3. Mathematical model of RGD 

The mathematical model of RGD is composed of change point 
detection for simulated signal series generated from equivalence trans
formation for variables and B-value derived from change-point seg
mentation. Change point detection (CPD) is a method to detect time 
points of a signal series where significantly specified types of changes 
occur. CPD is composed of the cost function, searching method, and 
constraints. The cost function defines types of change to detect, and this 
function is also the optimization target. To minimize the SSW, a least 
squared deviation cost function is selected for RGD. The searching 
method is a computing strategy to find required change points, and RGD 
selects a suitable searching method to overcome past limitations. The 
previous GD discretization method generates fluctuating spatial strati
fied heterogeneity value in equation (1) with the increase of interval 
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number. From a computer science perspective, the lack of learning 
experience from the relationship between response and explanatory 
variables and previous segmentation outcomes leads to the unexpected 
phenomenon. Dynamic programming is based on the view that an 
optimal solution to the original problem comprises several optimal so
lutions toward overlapping sub-problems. In CPD, dynamic program
ming divides a specified number of change points into multiple functions 
of finding fewer numbers of required points. To determine the K number 
of break intervals, the dynamic programming-based CPD algorithm 
would execute (K-1) times and find a change point that meets the 
optimization goal once. Each K interval determination task sub-process 
starts from the last executed optimized results. With minimizing SSW as 
the primary optimization target in each searching sub-task, this bottom- 
up computing strategy guarantees the increment of spatial stratified 
heterogeneity value with the increase of specified interval number. 
Therefore, a dynamic programming searching method is selected to find 
the required segmentation points. There is no CPD constraint because 
the number of intervals can be specified by users based on needs. 
Fundamental ideas of RGD have been translated into the following 
pseudocodes. 

Algorithm: Change point detection for RGD – dynamic program
ming & least squared deviation.   

Input: simulated signal series noted {yx}
N
x=1; cost function c(yI) =

∑
x∈I ||yx − y||22; specified number of spatial zone K (no less than 2); lists to 

record costs within each interval given interval number from 1 to K-1, noted as 
C1, C2, …, Ck− 1; an empty list noted L, with a length of K (the top (K-1) elements 
are to store segmentation points for generating spatial zones, and the last 
element is the number of observations). 

1 for all rank series pairs (p, q), 1 ≤ p < q ≤ N (number of observations) do 
2  C1(p, q) ← c({yx}

q
x=p) 

3 end for 
4 for all j from 2 to K-1 do 
5  for all rank series pairs (p, q), 1 ≤ p < q ≤ N, q – p ≥ j do 
6  Cj(p, q) ← minp+j− 1≤x<q (Cj− 1(p, x) + C1(x + 1, q)) 
7  end for 
8 end for 
9 L[K] ← N; j ← K 
10 while j > 1 do 
11  m ← L(j) 
12  x* ← argminj− 1≤x<m (Cj− 1(1, x) + C1(x + 1, m)) 
13  L[j − 1] ← x* 
14  j ← j − 1 
15 end while 
16 return list L  

Note: Transformed rank observation series and simulated signal series as 
the algorithm input refer to the same processed data sequence. 

The above algorithm tells how RGD intervals are determined using 
CPD with minimizing SSW as the optimization target. The algorithm 
from lines 1 to 8 is the preparation for dynamic programming searching, 
composed of two key steps. The algorithm from lines 1 to 3 is to prepare 
storage memory for all possible lengths of sub-series. With the least 
squared deviation as the cost function, Algorithm from lines 4 to 8 is to 
compute the cost for all sub-series. The rest of the algorithm demon
strates the dynamic programming searching process. This algorithm 
returns a vector of segmentation points using dynamic programming 
searching. K-1 change points divide the explanatory variable value 
range into K groups. It is worth mentioning that Algorithm line 12 is the 
process of finding the optimal combination of sub-series which mini
mizes the cost function by searching all possible lengths of sub-series. 
Where there is an outlier, to minimize the cost function, change point 
detection will detect the extreme value or outliers and categorize out
liers into a new group if it can minimize the cost. Then, explanatory 
variables are discretized and categorized based on segment value range. 
The spatial stratified heterogeneity value for RGD is calculated using 
equation (1) , and we note it as B-value. To distinguish with terms for 
OPGD, we regard break intervals determined by RGD as robust 
geographic zones. 

3. Case study: Exploring determinants of air pollutants 

3.1. Case study background and study area 

Industrial regions supporting mining, manufacturing, utility supply, 
and waste services (hereinafter referred to as key industries) are 
important to urban expansion and economic development (Ottaviano 
and Puga, 1998; Delgado et al., 2014). However, economic profits from 
these industry activities are at the expense of air pollutant emissions, 
and NO2 is one of the common pollutants. According to Australian Na
tional Pollutant Inventory (NPI) records, key industry activities pro
duced over 98% of NO2 among all nationwide economic activities in 
2020 (Australian Government, 2020). The NO2 emissions are generated 
from recorded factories or relevant facilities located in industrial re
gions. Hence, it is necessary to investigate these industrial regions when 
monitoring air pollutant emissions. Human activity factors, including 
nighttime light (Kong et al., 2019), meteorological factors, including 
wind speed (Davis et al., 2019), and vegetation (Cui et al., 2019), can be 
influential in airing pollutant emissions in industrial regions. The RGD is 
utilized to explore spatial stratified heterogeneity in the relationship 
between satellite measured NO2 density and selected explanatory vari
ables. B-values are compared with Q-values calculated from optimal 
parameter geographical detector (OPGD) using a quantile categorization 
strategy. 

The study area contains nationwide Australian industrial regions, 
mainly designed and built for key industry activities. These industrial 
regions were identified based on the point of interest (POI) and Open
StreetMap (OSM) land use polygons using kernel density estimation and 
GIS methods. The practical feasibility of the POIs-based region of in
terest spatial identification method has been proven in previous 
research. Selected POIs are spatial points representing locations of fa
cilities or infrastructures supporting key industry activities. These 
spatial points are collected from multiple sources, including Australian 
National Pollutant Inventory (NPI) (Australian Government, 2020) and 
OSM (Geofabrik and OpenStreetMap contributors, 2020). Our POIs- 
based spatial identification method follows Song’s (2018b) methodol
ogy framework and makes adjustments for scale parameters by referring 
to the Australian Statistical Geography Standards (ASGS) (Australian 
Bureau of Statistics, 2021). Dense POIs regions are identified using 
kernel density estimations (KDE) using the Epanechnikov kernel. These 
regions supporting key industry activities are also redefined as areas 
large enough to be functional areas, which are equivalent to Statistical 
Area Level 2 (SA2). Therefore, 1000 m, the squared root value of the 
bottom 99% level of SA2 size, was selected to be the searching radius of 
the KDE function. The pixel size of our KDE was set to be 194 m, which 
was equivalent to the median size level of the mesh block (the most 
acceptable spatial granularity level defined by the Australian Bureau of 
Statistics). Then, 0.5% of the cumulative distribution function (CDF) is 
the threshold value for industrial boundary determination. As a result, 
regions with a POIs density value greater than 1.95, equivalent to 97.5% 
CDF level, are selected as potential industrial regions. The top 2.5% 
dense POIs regions, covering an area of 326 square kilometers across 
Australia, were a part of industrial regions for our study. These dense 
POIs regions were further processed with the OSM land use polygons to 
generate results. 

According to ABS definition of industry, OSM industrial land use 
polygons contain factories, warehouses, and workshops mainly for key 
industries. This spatial data is utilized as supplementary information for 
dense POIs regions. Raw OSM polygons in 2020 are required to be pre- 
processed for three reasons. First, raw polygons are coarse in size and 
contain tiny areas with sizes even less than 5 square meters. Second, 
entire industrial regions are segmented at a block level, which does not 
fit our redefinition that industrial regions are areas large enough to 
preserve functionalities. Third, some industrial polygons are over
lapped, which is not consistent with reality. Therefore, a series of GIS 
preprocessing methods are applied. Firstly, industrial regions wa ith 
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sizes of less than 5000 square meters are converted to points, merged 
into POIs for KDE identification, and removed. This spatial magnitude is 
at the minimal level of a meaningful region that could hold at least one 
functional facility, according to the ASGS definition. This spatial size is 
also at the same scale as a single basic facility or infrastructure sup
porting daily lives in Japan and Canada (Hadjisophocleous & Chen, 
2010; Yamaguchi et al., 2012). Then, filtered industrial blocks are added 
with a 50-meter buffer to contain surrounding roads within industrial 
regions. Next, buffered blocks are dissolved to form pre-processed 
regions. 

In the last step, identified industrial regions from dense POIs and pre- 
processed polygons are merged. Merged regions with the size of area less 
than 0.46 square kilometers (the smallest recorded size of SA2 region 
representing functional areas according to ASGS definition) are filtered. 
The final identified industrial regions are areas with a size no less than 
the minimal level of SA2. As a result, 775 industrial regions sparsely 
distributed across the nation were identified. Fig. 2 (a) shows Australia’s 
spatial distribution and areas of identified industrial regions. The 
following analysis is performed within the identified 775 industrial re
gions in Australia. 

3.2. Datasets 

In this case study, NO2 and potential variables that affect NO2 dis
tributions in the identified industrial regions are collected from satellite 
images and remote sensing products using Google Earth Engine (GEE) 
platform (Google Developers and the European Space Agency, 2020). 
Table 1 shows a brief summary of the data used in this case study. The air 
pollutant NO2 density is the dependent variable of this case study. 
Sentinel-5P products from the European Space Agency (ESA) provide 
satellite measurement for NO2 column density. The NO2 column density 
data in this case study is collected and processed using GEE. 

In addition, a series of potential variable data is collected to explain 
the spatial pattern of NO2 in industrial regions. Vegetation is repre
sented by normalized difference vegetation index (NDVI), leaf area 
index (LAI), and enhanced vegetation index (EVI). High spatial resolu
tion NDVI information is accessed from the Landsat8 collection provided 
by Google (Google, 2020a). LAI information is derived from GCOM-C/ 
SGLI Level 3 spatially and temporally averaged products from Global 
Change Observation Mission-Climate, and provided by Google (Google 
Developers and Global Change Observation Mission, 2020). MODIS 
Combined 16-Day EVI information is accessed from GEE (Google, 

2020b). Wind speed is a meteorological factor that could influence NO2 
density. Wind speed information is generated from TerraClimate data
sets accessed from the GEE platform (Google Developers and University 
of California Merced, 2020). TerraClimate is a high spatial resolution 
monitoring global climates since 1958, which has been utilized in spatial 
research. Nighttime light (NTL) is an explanatory variable representing 
human activity in industrial regions. NTL data is remotely sensed by 
Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band and 
provided by Earth Observation Group and Colorado School of Mines 
(Google Developers and Earth Observation Group, 2020). VIIRS pro
vides monthly updated NTL data and is accessed from the GEE platform. 

4. Results 

4.1. B-values 

In RGD, B-values of variables are used to quantify spatial associations 
between dependent and explanatory variables. Fig. 3 shows the B-values 
of variables affecting NO2 density in industrial regions in Australia. B- 
values of variables are generally increased with the growth of the 
number of intervals for spatial data discretization and determining 
spatial zones. However, the increase rates of B-values gradually decrease 
with the growth of the number of intervals. Thus, the optimal numbers 
of intervals for discretization are selected when the change rates are 
lower than 0.05, which has been used in a series of previous studies 
about spatial discretization (Song et al., 2020; Song and Wu, 2021; Luo 
et al., 2021, 2022). Results show that the numbers of intervals of the 

Fig. 2. Study area and data summary. Size and spatial distribution of Australian industrial regions (a), the statistical distribution of dependent variable NO2 column 
density in the industrial regions (b), and statistical distributions of explanatory variables leaf area index (LAI) (c), enhanced vegetation index (EVI) (d), normalized 
difference vegetation index (NDVI) (e), wind speed (f), and nighttime light (NTL) (g). 

Table 1 
Summary of remote sensing datasets and factors.  

Data Variable Spatial 
resolution 

Temporal 
resolution 

Unit 

Sentinel-5P 
Nitrogen 
Dioxide 

NO2 

density 
1113 m Daily mol/m2 

GCOM-C/SGLI L3 
product 

LAI 4638 m 8-day m2/m2 

MODIS Combined 
EVI 

EVI 463 m 16-day – 

Landsat8 NDVI 30 m 18-day – 
TerraClimate 

climate data 
Wind speed 4638 m Monthly m/s 

VIIRS Day/Night 
Band 

Nighttime 
light 

464 m Monthly nanoWatts/ 
cm2/sr  
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optimal discretization for variables LAI, EVI, NDVI, wind speed, and NTL 
are 9, 9, 10, 9, and 5, respectively. Fig. 3 (f) shows the B-values of 
variables with the optimal discretization. NTL has the highest contri
bution to spatial patterns of NO2 density in the industrial regions with a 
contribution of 0.260 (p less than 0.01). The contributions of wind 
speed, LAI, EVI, and NDVI are 0.161 (p less than 0.01), 0.161 (p less 
than 0.01), 0.149 (p less than 0.01), and 0.097 (p less than 0.01), 
respectively. This means that industrial and human activities have 
higher contributions to the spatial pattern of air pollutants than climate 
and vegetation variables in industrial regions. 

4.2. Sensitivity analysis 

The robustness and reliability of RGD for exploring spatial associa
tions and potential variables are evaluated by comparing it with OPGD, 
an improved, effective, and commonly used GD model. The sensitivity of 
RGD and OPGD is assessed with different numbers of intervals ranging 
from 3 to 12, which are used to determine spatial zones. Fig. 4 compares 
PD values of five explanatory variables explored by RGD and OPGD, 
which are computed as B-values and Q-values, respectively. Results 
show that the RGD is more effective and reliable in exploring spatial 

Fig. 3. Process of selecting optimal numbers of intervals for the robust spatial discretization for variables LAI (a), EVI (b), NDVI (c), wind speed (d), and NTL (e) in 
RGD, and B-values of variables in affecting NO2 density in industrial regions. 

Fig. 4. Comparisons of power of determinant (PD) values, including B-values from RGD and Q-values from OPGD, of variables LAI (a), EVI and NDVI (b), wind speed 
(c), and NTL (d). Note: All PD values shown in this figure have a statistical significance level with p-values lower than 0.01. 
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determinants than OPGD models. The advantages of RGD include the 
following aspects. 

First, the comparison between B-values and corresponding Q-values 
with identical numbers of intervals shows that RGD can determine better 
spatial zones enabling stronger spatial association between the depen
dent variable and explanatory variables. Second, RGD guarantees the 
increment of the B-value with the increase of interval break for 
explanatory factors, while Q-value from OPGD fluctuates. This phe
nomenon also confirms the robustness of RGD in assessing spatial as
sociations. B-values based on a higher number of intervals would have 
more dynamic programming searching processes for finding required 
breakpoints. The performance of RGD is consistent with the model 
expectation. In detail, OPGD quantifies the PD value for wind speed from 
0.07 with 3 intervals to 0.12 with 12 intervals, and RGD calculates the 
PD value from 0.09 to 0.18 for 10 intervals. RGD-based B-value of NTL 
rises from 0.22 to 0.28 with the increase of interval number, which is 
generally higher than corresponding Q-values from OPGD. It is worth 
mentioning that the PD value of LAI is at least 200% improved by RGD 
by comparing B-values and corresponding Q-values. This additional 
finding is discussed in detail in the next section. For EVI and NDVI, RGD 
improves no less than 100% of the PD value compared with OPGD re
sults. In summary, NTL is the factor with the highest spatial association 
with NO2 density in the Australian industrial region, followed by wind 
speed and LAI. 

4.3. Analysis of RGD-based robust spatial zones 

In addition to the robustness of RGD shown in the last section, RGD 
also provides robust spatial zones in terms of comparing PD ranks of 
variables between RGD and OPGD. A discretization method is essential 
for numerical variables before presenting PD values from RGD or OPGD, 
and how the explanatory factor is discretized would have ‘significant 
impacts’ on PD values and result interpretation. We give an example of 
the ‘significant impact’ issue in Fig. 5. When assessing OPGD-derived Q- 
values only, wind speed seems to have the second strongest PD with the 
dependent variable, while LAI’s PD ranked bottom. From Fig. 3 and 
Fig. 4, OPGD regards LAI as a factor with relatively low association with 
NO2 density in industrial regions. However, analysis results from RGD 
indicate that spatial association between LAI and NO2 density is far 
underestimated using previous methods. According to Fig. 3 and Fig. 4, 
the spatial association between NO2 density and LAI is as strong as wind 
speed when using robust geographic zones determined by RGD. PD 
values of LAI and wind speed are 0.12 with 5 intervals and 0.18 with 12 
intervals, respectively. The RGD method does not make a special treat
ment for LAI but manages to find suitable intervals with minimized SSW 
for driving factors to be tested. 

Further, a map demonstrating robust spatial zones for LAI deter
mined by RGD is generated in Fig. 6. We give an illustrated case with an 
interval number of five. Five spatial zones are noted from ‘A’ to ‘E’, 
corresponding to the lowest to highest LAI intervals. According to the 
Australian Remoteness Structure, the ‘A’ group is distributed in non- 
urban regions. Group ‘B’ has the least group elements in Sydney, 

Melbourne, and Adelaide. ‘C’ category industrial regions are sparsely 
distributed across the nation. ‘D’ and ‘E’ groups cluster in urban and 
inner regional areas. As shown in Fig. 6 (f), statistical summaries indi
cate that urban industrial regions have NO2 density at multiple levels, 
and rural industrial regions categorized in the ‘A’ group maintain a low 
NO2 density level. 

5. Discussion 

5.1. Contributions 

This study proposed an RGD model for identifying spatial de
terminants by optimizing spatial data discretization, deriving robust 
spatial zones, and exploring robust spatial associations. GD and its im
provements, such as OPGD, are widely used approaches for measuring 
the PD values of explanatory variables in spatial stratified heterogeneity. 
The spatial data discretization strategy selection can critically affect the 
measurement of PD values and result interpretation. However, it is still a 
challenge to discretize continuous numeric variables effectively, robust, 
and reliable. This study demonstrates that the developed RGD model can 
provide a robust solution to estimate spatial associations between 
dependent and explanatory variables. RGD has the following advantages 
in exploring spatial associations. First, using the robust optimization 
algorithm, RGD can explore the maximum spatial associations, which 
are much higher than the PD values explored by OPGD models. Second, 
RGD guarantees the increment of PD values with the increase of interval 
numbers as the optimization processes also be extended with the in
terval increase, which is hardly ensured in previous GD models. Third, 
RGD is robust for explanatory variables with different statistical distri
butions. In most previous spatial heterogeneity models, assumptions of 
statistical distributions of data are required, such as normal distribution 
in geographically weighted regression, and modeling is affected by 
outliers. Compared with the OPGD method that uses sorted information 
only, RGD further utilizes and explores the functionality of rank infor
mation. Due to advantages provided by the rank function and change 
point detection algorithm, RGD can effectively overcome the impacts of 
outliers and extreme values in explanatory variables, and assumptions of 
statistical distributions of data are not required. Finally, RGD can pro
vide robust spatial zones for more reliable and practical interpretations 
of results. 

5.2. Future recommendations 

This research demonstrates the advantages of RGD in the robust 
estimation of PD measurement compared with OPGD due to the optimal 
interval determination using change point detection. The original 
change point detection method allows researchers to adjust the minimal 
segmentation length and control size of intervals. In this article, we 
presented RGD results with a minimal interval length. Future GD-based 
spatial heterogeneity research could set the minimal segment length 
parameter based on the case’s requirements or specific research targets. 
The setting of the minimal segment length parameter is related to the 

Fig. 5. Ranks of PD values, including RGD-based B-values (a) and OPGD-based Q-values (b).  
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scale of spatial analysis (Song et al., 2020). Small minimal segment 
length could enlarge SSW values, and large minimal segment length 
could provide better spatial visualization and interpretations for large- 
scale spatial analysis. In addition, the associations between RGD and 
other GD-based models could be compared in terms of PD values and 
characteristics of spatial zones. For instance, it is interesting that the 
quantile OPGD method is a particular case of RGD. When the minimal 
segment length is equivalent to the number of elements in an equal-sized 
interval determined by a given number of breakpoints, RGD becomes a 
quantile OPGD. 

6. Conclusion 

This study proposes a Robust Geographical detector (RGD) model for 
exploring robust spatial associations between dependent and explana
tory variables. The RGD-based analysis of the case study indicates that 
RGD can effectively identify the robust PD values of explanatory vari
ables using a rank function and change point detection-based optimi
zation approach for robust spatial data discretization. The analysis and 
visualization of results and sensitivity analysis for model evaluation 
demonstrate that RGD can explore the maximum spatial associations 
and guarantees the stable increase of PD values with the number of in
tervals. RGD is robust in dealing with variables with different statistical 
distributions, outliers, and extreme values and provides robust spatial 
zones for spatial analysis. In summary, RGD delivers a solution for an in- 
depth understanding of spatial stratified heterogeneity and spatial as
sociations. RGD can be implemented in diverse fields for robust and 
optimal spatial zones identification, spatial determinant or factor 
exploration, and assessing spatial disparities. 
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