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Abstract
Parasitism is a pervasive phenomenon in nature with the relationship between spe-
cies driving evolution in both parasite and host. Due to their host-dependent life-
style, parasites may adapt to the abiotic environment in ways that differ from their 
hosts or from free-living relatives; yet rarely has this been assessed. Here, we test 
two competing hypotheses related to whether putatively adaptive genetic variation 
in a specialist mistletoe associates with the same, or different, climatic variables as its 
host species. We sampled 11 populations of the specialist mistletoe Amyema gibber-
ula var. tatei (n = 154) and 10 populations of its associated host Hakea recurva subsp. 
recurva (n = 160). Reduced-representation sequencing was used to obtain genome-
wide markers and putatively adaptive variation detected using genome scan meth-
ods. Climate associations were identified using generalized dissimilarity modelling, 
and these were mapped geographically to visualize the spatial patterns of genetic 
composition. Our results supported the hypothesis of parasites and host species re-
sponding differently to climatic variables. Temperature was relatively more impor-
tant in predicting allelic turnover in the specialist mistletoe while precipitation was 
more important for the host. This suggests that parasitic plants and host species may 
respond differently to selective pressures, potentially as a result of differing nutrient 
acquisition strategies. Specifically, mistletoes acquire water from hosts (rather than 
the abiotic environment), which may provide a buffer to precipitation as a selective 
pressure. This work deepens and complements the physiological and other ecologi-
cal studies of adaptation and provides a window into the evolutionary processes that 
underlie previously observed phenomena. Applying these methods to a comparative 
study in a host–parasite system has also highlighted factors that affect the study of 
selection pressure on nonmodel organisms, such as differing adaptation rates and 
lack of reference genomes.
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1  | INTRODUC TION

Parasitism is ubiquitous across the tree of life (Musselman & Press, 
1995; Poulin, 2011; Poulin & Morand, 2000) with host–parasite in-
teractions driving evolution in both partners. These interactions are 
typically investigated with respect to coevolution (e.g. Laine, 2008; 
Lopez Pascua et al., 2012), and due to their host-dependent lifestyle, 
parasites may adapt to the abiotic environment in similar ways to their 
hosts as they have the same spatial distribution and thus experience 
the same temperature and precipitation regimes (e.g. Gorter et al., 
2016). Alternatively, the host-dependent lifestyle may provide a buffer 
between a parasite and their abiotic environment, resulting in different 
adaptive responses compared to their hosts. These opposing alterna-
tives make host–parasite systems interesting models for studying local 
adaptation (Kaltz & Shykoff, 1998; Kawecki & Ebert, 2004).

Previous studies on host–parasite systems have shown that local 
adaptation can be influenced by heterogeneity of the abiotic environ-
ment (Nuismer & Gandon, 2008; Thompson, 2005; Wolinska & King, 
2009), with evidence for the influence of temperature and nutrient lev-
els emerging across plant pathogens (Laine, 2007, 2008; Mboup et al., 
2012) and other parasitic microorganisms (Gorter et al., 2016; Lopez 
Pascua et al., 2012; Mitchell et al., 2005). An increasing number of local 
adaptation studies integrate the abiotic environment within laboratory 
experiments. However, few have examined the association of adapta-
tion with climatic gradients in field-based settings. Such studies could 
provide crucial understanding of adaptation patterns in natural popula-
tions (Thompson, 2005). Furthermore, while adaptation studies across 
a range of taxonomic groups have recently benefitted from the analysis 
of genome-wide markers (reviewed in Ahrens et al., 2018), these ap-
proaches have rarely been applied to host–parasite systems (but see 
Hartmann et al., 2019; Walters et al., 2020 for recent examples).

Mistletoes are aerial parasites that acquire water and mineral 
nutrients via a specialized haustorium structure, unique to para-
sitic plants (Kuijt, 1969; Musselman & Press, 1995). Mistletoes are 
important for the functioning of ecosystems worldwide (Press & 
Graves, 1995; Press & Phoenix, 2005; Watson, 2001), providing 
food resources for fauna (Press & Phoenix, 2005) and increasing 
nutrient cycling within plant communities (March & Watson, 2010). 
Mistletoe–host systems provide a useful model for local adaptation 
studies as the parasite is sessile, vector-dispersed and entirely reliant 
on a single individual host for survival and persistence (Calder, 1983; 
Press & Graves, 1995). Climatic factors are known to influence the 
distribution, survival (e.g. de Buen & Ornelas, 2002; Scalon & Wright, 
2015) and genetic variation in mistletoes (e.g. Ramírez-Barahona 
et al., 2017). For example, Ramírez-Barahona et al. (2017) found that 
patterns of genetic variation in a mistletoe varied along precipitation 
and seasonality gradients, which are also important drivers of local 
adaptation in autotrophic plants (Shryock et al., 2017; Steane et al., 
2017). However, few studies have examined whether signatures of 
selection in parasitic plants match those of their hosts.

A parasitic lifestyle may enable mistletoes to adapt to climatic 
gradients in different ways from their host species. Mistletoes are 
susceptible to xylem cavitation when water potentials drop too low 

(Ehleringer & Marshall, 1995), and they must have higher transpira-
tion rates than hosts to maintain a positive water gradient (Ehleringer 
et al., 1985; Stewart & Press, 1990). Therefore, climatic factors that 
affect transpiration rates (i.e. temperature) may provide a stronger 
selection pressure for mistletoes than that experienced by their 
hosts. Mistletoes also have their own ecological or climatic niche 
requirements and will only occur where suitable abiotic conditions 
overlap with appropriate host species (e.g. Lira-Noriega & Peterson, 
2014; Ramírez-Barahona et al., 2017).

A recent study by Walters et al. (2020) found associations be-
tween genome-wide variation and climatic variables to be differ-
ent between a parasitic plant and a sympatric autotrophic species. 
However, the study species (Nuytsia floribunda) was a generalist 
parasite that has numerous host species (Calladine et al., 2000), 
compared to specialist parasites that utilize a single, or few, often re-
lated, host species. Due to their greater host specialization, patterns 
of genome-wide variation in specialist parasites may be more similar 
to patterns of their host, compared to generalist parasites that may 
have patterns of variation not associated with that of their hosts due 
to environmental buffering afforded by multiple host relationships.

We sought to test two competing hypotheses in our study of a 
specialist mistletoe and its specific host species. Our null hypothesis 
was that putatively adaptive genetic variation in the mistletoe would 
associate with the same climatic variables as its host species. Due to 
the semi-arid climate of the study landscape, precipitation may be 
relatively more important than temperature in predicting allelic turn-
over for both species. Our alternative hypothesis was that putatively 
adaptive variation in the specialist mistletoe would associate with 
different climatic variables than its host species, due to environmen-
tal buffering provided by the host species. Specifically, as mistletoes 
rely on higher transpiration rates to create a positive water gradi-
ent with the host (Ehleringer et al., 1985; Stewart & Press, 1990), 
temperature may be relatively more important than precipitation in 
predicting allelic turnover for the mistletoe.

Here, we applied a genotyping-by-sequencing approach to test 
these hypotheses by examining the patterns of genome-wide varia-
tion between a mistletoe Amyema gibberula var. tatei (Blakely) Barlow 
(family Loranthaceae) and its host species, Hakea recurva Meisn. subsp. 
recurva (family Proteaceae). We aimed to develop our understanding 
of the association of putatively adaptive genetic variation along cli-
matic gradients between parasites and their associated host species. 
Specifically, we examined (a) the association of putatively adaptive 
variation with climatic variables and the relative importance of tem-
perature, precipitation and geographic distance with allelic turnover 
and (b) the predicted spatial pattern of putatively adaptive variation.

2  | MATERIAL S AND METHODS

2.1 | Study species and sample collection

The specialist mistletoe Amyema gibberula var. tatei and its host 
Hakea recurva subsp. recurva have a widespread distribution in 
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south-western Australia, spanning c.  500  km north-south and 
c. 300 km east-west (Figure 1). Temperature and precipitation vary 
across the species’ distribution with a semi-arid climate in the north-
east and dry Mediterranean climate in the south-west. The host 

occurs as a tree or shrub to 6 m in height, is pollinated by insects 
and has gravity/wind dispersed seed. In contrast, the mistletoe is 
a hemiparasitic aerial shrub that occurs only on Hakea species and 
almost entirely on H. recurva subsp. recurva (Start, 2015). Like other 

F I G U R E  1   Sampling sites and principal coordinate analysis (PCoA) of putatively neutral and putatively adaptive genetic variation for 
(a) Hakea recurva subsp. recurva and (b) Amyema gibberula var. tatei. Neutral data sets (14,848 and 1631 SNPs for each species, respectively) 
contained putatively neutral SNPs not identified as outliers, or with significant environment association, in any genome scan method. 
Adaptive data sets (35 and 36 SNPs for each species, respectively) contained putatively adaptive SNPs identified by two or more genome 
scan methods. Maps show the geographic location of sample sites across five bioregions (Avon Wheatbelt, AVW; Coolgardie, COO; 
Geraldton Sandplains, GES; Murchison, MUR; Yalgoo, YAL). Samples within the PCoAs are colour-coded by site, and the percentage on each 
axis indicates how much genome-wide variation between individuals was explained by the axis
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Amyema species in Australia, flowers are bird-pollinated and the 
fleshy fruit is dispersed by the mistletoe bird, Dicaeum hirundinaceum 
(Liddy, 1983).

Sampling locations were distributed throughout the entire range 
of the mistletoe to capture the full geographic space, as well as the 
spatial envelope of precipitation and temperature that the species 
occupies. To allow comparison between species, host populations 
were sampled to cover a similar geographic and climatic range. Host 
populations were generally found on granite outcrops, rocky ridges 
and rocky sandstone slopes while the distribution of mistletoe pop-
ulations was dependent on the availability of host plants. Leaf tissue 
was collected from 160 host and 154 mistletoe plants with 10 – 16 
individuals per species sequenced from 10 and 11 populations, re-
spectively (Tables S1 and S2). Only one mistletoe was collected from 
each host plant, and we aimed for a minimum sampling distance 
of 20  m between individuals to avoid sampling related individuals 
(achieved for 93% of host and 85% of mistletoe individuals). Host 
plants and attached mistletoes were sampled together when pos-
sible, with approximately 61% of host individuals collected with 
a respective mistletoe. Samples were stored on silica gel, and the 
location of each individual sampled was recorded using a GARMIN 
eTrex® 10 GPS.

2.2 | Climatic data assemblage

Climatic data for fifteen variables covering annual and quarterly 
temperature averages, annual and quarterly precipitation totals, and 
seasonality, were downloaded in raster format at 1 km cell resolu-
tion from the Worldclim2.0 database (Fick & Hijmans, 2017; Hijmans 
et al., 2005). Point information was extracted using the coordinates of 
each sampled individual using the Spatial Analyst toolbox in ArcMap 
(ESRI, 2019). Variables were split into temperature and precipitation 
groups, and Spearman rank correlation tests were performed using 
the stats package in R (R Core Team, 2019) to assess pairwise collin-
earity between variables within each group. To minimize inclusion of 
highly correlated factors (Rellstab et al., 2015), we selected variables 
that had within-group pairwise correlations of |r| < 0.8 and that var-
ied across the study area. This data set comprised four temperature 
variables (isothermality, temperature seasonality, mean temperature 
of the wettest quarter and mean temperature of the driest quarter) 
and three precipitation variables (annual precipitation, precipita-
tion seasonality and precipitation of the warmest quarter). Variables 
in the final data set were plotted in the R package raster v3.0-12 
(Figure S1; Hijmans, 2020), and population-level means are provided 
in Tables S1 and S2.

2.3 | SNP generation and bioinformatics

DNA for each species was extracted from c. 40 mg of silica-dried 
leaf tissue using the CTAB method of Doyle and Doyle (1990) 
with the addition of 2% PVP (polyvinylpyrrolidone) and 0.2% 

β-mercaptoethanol to the extraction buffer. DNA was visualized 
on a 1% agarose gel and quantified using a Qubit 2.0. Samples with 
DNA concentration above 80 ng/µl were diluted to 70 ng/µl, and ap-
proximately 20 µl of purified DNA in TE buffer was sent for individ-
ual genotyping at Diversity Arrays Technology Pty Ltd. DNA from a 
subset of individuals (4.4% for the host and 14.3% for the mistletoe) 
was replicated across multiple plates, but processed independently, 
to ensure between-plate genotyping consistency.

Samples were genotyped using DArTseq, which combines double 
digest complexity reduction methods and next-generation sequenc-
ing to assay millions of markers for genome-wide single nucleotide 
polymorphisms (SNPs; Kilian et al., 2012; Sansaloni et al., 2011). 
Genome reduction was undertaken using a combination of two 
methylation-sensitive restriction enzymes, PstI/Msel for the host 
and PstI/HpaII for the mistletoe, with the digestion and adaptor liga-
tion process described by Kilian et al. (2012). High-density sequenc-
ing was run on the Illumina HiSeq 2500 platform and sequence 
alignment performed de novo using Diversity Array Technology's 
propriety analytical pipeline as prior genomic information was not 
available for either species (or related species). Sequences were fil-
tered to remove those with a Phred score <30, and the remainder 
were collapsed into identical sequences. SNP marker calling was 
performed with Diversity Array Technology's propriety DArTsoft14 
pipeline. Approximately 25% of samples were regenotyped as tech-
nical replicates to allow a measure of DArTseq reproducibility at 
each locus to be calculated. NCBI BLAST (Camacho et al., 2009) of 
bacteria and fungi databases was used to remove microbial DNA 
from barcoded sequences. Remaining sequences were trimmed and 
split into individual organism data.

Further quality control filtering was performed using the pack-
age dartR v1.1.11 (Gruber et al., 2018) in R (R Core Team, 2019) to 
ensure only high-quality data were used for downstream analysis. 
Specifically, we removed replicates of individuals from the SNP data 
sets and then filtered the data set to retain: (1) SNPs with less than 
5% missing data, (2) SNPs with DArTseq reproducibility score >0.98, 
(3) SNPs with minor allele frequency greater than 5% and (4) individ-
uals with <20% missing data. Downstream genetic analyses typically 
assume loci are not closely linked (see Hoban et al., 2016). Therefore, 
as a final filtering step, we randomly selected only one SNP per frag-
ment to be retained in the data set.

2.4 | Landscape and population genetic analyses

To separate putatively adaptive and putatively neutral genetic varia-
tion, we used a combination of one population differentiation (PD) test 
and two environment association (EA) analyses to detect loci under 
selection. Specifically, we used pcadapt v4.1.0 (Luu et al., 2017) in R for 
PD testing, which uses principal component analysis to identify SNPs 
with excessive association to population structure, but not to specific 
environmental variables. In comparison, EA approaches account for 
neutral population structure to detect SNPs with significant associa-
tions to environmental variables (e.g. temperature and precipitation; 
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Hoban et al., 2016), although, unlike PD tests, they can lose discrimi-
natory power under certain demographic scenarios (Forester et al., 
2018; Lotterhos & Whitlock, 2015). The two EA approaches used in 
this study each have a different statistical approach in correcting for 
population structure: latent factor mixed models (LFMM; Caye et al., 
2019; Frichot et al., 2013) use a least-squares estimation approach and 
BayPass (Gautier, 2015) uses Bayesian hierarchical modelling.

pcadapt uses a robust Mahalanobis test statistic to identify SNPs 
in which ɀ-scores do not follow the same distribution as those of the 
larger data set, and these are considered as outliers (Luu et al., 2017). 
We set the false discovery rate (FDR) set to 5%, and the optimum 
number of principal components (PCs) was identified by running pc-
adapt with K = 10 and interpreting the scree plot using Cattell's rule 
(Cattell, 1966). Secondly, pcadapt was run with the optimum number 
of PCs and a MAF threshold of 0.05 to calculate the test statistic and 
p-values for each locus. For FDR control, p-values were transformed 
into q-values using the R package qvalue v2.18.0 (Storey et al., 2019) 
and SNPs with q < 0.05 were identified as outliers.

LFMM 2.0 uses allele frequency data and an imputed number of 
latent factors to calculate an exact solution for latent factor regression 
models, while controlling for confounding variables (Caye et al., 2019). 
The analysis was implemented in the R package lfmm v1.0 (Caye et al., 
2020). We estimated the number of latent factors (K) following the 
package vignette, performing principal component analysis (PCA) on 
the data set using the R function prcomp (R Core Team, 2019). Results 
of the PCA were plotted as screeplots and interpreted using Cattell's 
rule (Cattell, 1966). Missing genetic data were imputed in the R pack-
age LEA v2.8 (Frichot & François, 2015) using K latent factors, and each 
climatic variable was scaled to a standard deviation of one. LFMM anal-
ysis was run for each climatic variable through ridge estimates using K 
latent factors. For each climatic variable, ɀ-scores were used to derive 
a genomic inflation factor (λ) that was used to adjust p-values based 
on a chi-squared (χ2) distribution (François et al., 2016). For FDR con-
trol, a Benjamini–Hochberg p-value correction was applied according 
to Frichot and François (2015) and SNPs with q < 0.05 were considered 
to have a significant SNP–environment association.

BayPass tests for covariance between population-level allele 
frequencies and environmental variables while correcting for de-
mographic effects (Gautier, 2015). The core model in BayPass was 
run four times with default settings in addition to nval of 100,000, 
burnin of 50,000, npilot of 30 and pilotlength of 5000, with results 
averaged over runs. The XtX statistic was calibrated using the sim-
ulate.baypass function according to the manual to create a pseudo-
observed data set that was run in BayPass using the same settings as 
the core model. The results were used to identify SNPs with an XtX 
statistic below 3% (representing balancing selection) or above 97% 
(representing directional selection), which were considered outliers. 
To identify association with environmental variables, outlier SNPs 
(both balancing and directional) were removed to create a neutral 
data set that was run in BayPass with the same settings as the core 
model. The average of four runs was used to create a neutral cova-
riance matrix. Finally, the auxiliary model was run in BayPass using 
the neutral covariance matrix and the seven climatic variables with 

the same settings as the core model. Bayes factors were obtained 
from the mean of four runs and were transformed into deciban units 
(dB) using the 10log10(BF) transformation. Values of 20 deciban units 
or more were considered as strong evidence for significant SNP–
environment associations (Kass & Raftery, 1995).

We plotted the total number of significant SNPs for each method 
using the R package VennDiagram v1.6.20 (Chen, 2018) and split 
the SNPs into putatively neutral and putatively adaptive data sets. 
Putatively neutral SNPs were considered to be those not identified 
as outliers, or with significant environment association, by any ge-
nome scan method, and putatively adaptive SNPs were considered 
to be those identified by two or more methods (Forester et al., 2018). 
To minimize the inclusion of false positives in the putatively adap-
tive data set, we used a consensus approach as recommended by De 
Mita et al. (2013). We then estimated global and pairwise FST (Weir 
& Cockerham, 1984) between populations for putatively neutral and 
putatively adaptive data sets using the R package hierfstat v0.04-22 
(Goudet, 2005), with the latter used as input for the spatial model-
ling. Additionally, we used principal coordinate analysis (PCoA) in the 
R package dartR v1.1.11 (Gruber et al., 2018) to examine differences 
in genetic structure for putatively neutral and putatively adaptive 
data sets and plotted the first three PCoA axes using R package gg-
plot2 v3.2.1 (Wickham, 2016).

2.5 | Landscape genetic modelling

Generalized dissimilarity modelling (GDM; Ferrier, 2002; Ferrier 
et al., 2002) was used to examine and compare the association of 
genome-wide variation with climatic gradients between the mis-
tletoe and host. Specifically, we compared (i) the association of 
putatively adaptive and putatively neutral genetic variation with 
climatic variables, using the method described by Fitzpatrick and 
Keller (2015) on applying GDMs to genome-wide markers and (ii) the 
relative importance of temperature, precipitation and geographic 
distance in predicting allelic turnover, using variation partitioning 
(Borcard et al., 1992). Pairwise FST matrices (scaled to between zero 
and one) were used as the biological response variable, and predic-
tor data sets were assembled with geographic coordinates of each 
population along with the seven climatic variables.

GDM analysis was implemented in the R package gdm v1.3.11 
(Manion et al., 2018) to assess the relative importance of each cli-
matic variable against allelic turnover. For each data set, we used a 
backward elimination procedure with 500 permutations and three 
splines to measure significance (α = 0.05) of each climatic variable 
(Ferrier et al., 2007; Fitzpatrick et al., 2013). Only significant climatic 
variables were retained in the final GDM models. We summed the 
spline coefficients to quantify the relative importance of each pre-
dictor variable (Fitzpatrick et al., 2013; Yates et al., 2019).

Monotonic I-spline turnover functions were calculated for pre-
dictor variables in the final GDM models, and these were mapped 
using ggplot2 to visualize the relationship between allelic turnover 
and climatic variables. Spline height represented the amount of 
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explained genetic variation, when holding all other variables con-
stant, and spline slope indicated the rate of genetic differentia-
tion across the range of the predictor (Fitzpatrick & Keller, 2015; 
Fitzpatrick et al., 2013). Next, we partitioned the deviance result-
ing from the GDM models into geographic distance, temperature 
and/or precipitation variables to evaluate the contributions of each 
in explaining allelic turnover (Borcard et al., 1992; Yates et al., 2019). 
Partitioned deviance was plotted in Venn diagrams using the R pack-
age eulerr v6.0.0 (Larsson, 2019).

To examine the predicted spatial patterns of putatively adap-
tive and putatively neutral genetic variation, we visualized the 
GDM models using the spatial interpolation method of Fitzpatrick 
and Keller (2015). Briefly, we used fitted GDMs to transform sig-
nificant climatic variables into genetic importance values and then 
used PCA to reduce the transformed variables into three PCs, which 
were composited into an RGB raster image (R = PC1, G = PC2 and 
B = PC3). Similar colours correspond to similar predicted patterns 
of genetic composition. To compare mapped genetic patterns be-
tween the two data sets (putatively neutral SNPs; putatively adap-
tive SNPs) for each species, we used Procrustes analysis (Peres-Neto 
& Jackson, 2001) to measure and map the similarity of multivariate 
configuration following the approach of Fitzpatrick and Keller (2015). 
Procrustes residuals measure the absolute difference in patterns of 
predicted genetic compositions between putatively neutral and pu-
tatively adaptive data sets for each species. Further, to allow direct 
comparison between species, we scaled residuals by the largest and 
smallest value observed across both species following the method of 
Walters et al. (2020). Finally, residuals were mapped geographically 
to identify areas with the largest differences in genetic composition 
patterns between SNP data sets.

3  | RESULTS

3.1 | SNP generation

DArTseq technologies produced SNP data sets that comprised 
118,880 SNPs across 80,296 loci for host Hakea recurva subsp. 

recurva (n = 160) and 15,187 SNPs across 10,415 loci for specialist 
mistletoe Amyema gibberula var. tatei (n  =  154). All replicates had 
greater than 97% genetic similarity. Following further quality control 
filtering, the working data sets comprised 15,422 SNPs for the host 
and 2055 SNPs for the mistletoe (Walters et al., 2021), with global 
missing data of 1.20% and 1.12%, respectively. All individuals were 
retained in the data sets for both species.

3.2 | Landscape and population genetic analyses

pcadapt identified 488 SNPs as outliers for the host (mean χ2 = 6.32, 
df = 5) and 225 SNPs as outliers for the mistletoe (mean χ2 = 5.79, 
df = 2). LFMM identified 59 significant SNP–environment associa-
tions for the host involving 47 SNPs. In contrast, LFMM identified 272 
significant SNP–environment associations for the mistletoe involv-
ing 135 SNPs. Similarly, BayPass identified 88 SNP–environment as-
sociations involving 81 SNPs for the host and 107 SNP–environment 
associations for the mistletoe involving 105 SNPs. For both EA ap-
proaches, the number of significant SNP–environment associations 
varied between climatic variables and no SNPs for either species 
were significantly associated across all variables (Table 1).

Overall, 574 SNPs were identified by at least one analytical 
method for the host (Figure 2a) and those same methods identified 
424 SNPs for the mistletoe (Figure 2b). To minimize the inclusion 
of false positives due to biases of individual methods, only SNPs 
identified by more than one genome scan method were included 
in putatively adaptive data sets (35 and 36 SNPs for the host and 
mistletoe, respectively). All these SNPs showed either higher than 
expected differentiation between populations or significant asso-
ciation with climatic variables in multiple methods, although they 
may not all be directly affected by selection but could be physically 
linked to loci under selection. By contrast, putatively neutral data 
sets (14,848 and 1631 SNPs for the host and mistletoe, respectively) 
comprised SNPs not identified as outliers, or with significant envi-
ronment association, in any genome scan method. Overall, global FST 
was greater in the mistletoe than the host. Specifically, FST values for 
the putatively neutral data sets were 0.079 and 0.330 for the host 

Climatic variable

Hakea recurva subsp. recurva Amyema gibberula var. tatei

LFMM BayPass Total LFMM BayPass Total

IT (BIO3) 3 0 3 102 1 103

TS (BIO4) 7 5 12 15 0 15

MTWQ (BIO8) 2 36 38 18 54 66

MTDQ (BIO9) 1 1 2 0 13 13

AP (BIO12) 15 20 27 48 19 60

PS (BIO15) 4 13 15 79 0 79

PWQ (BIO18) 27 13 35 10 20 29

Abbreviations: AP, annual precipitation; IT, isothermality; MTDQ, mean temperature of the driest 
quarter; MTWQ, mean temperature of the wettest quarter; PS, precipitation seasonality; PWQ, 
precipitation of the warmest quarter; TS, temperature seasonality.

TA B L E  1   Number of SNPs with 
significant environment association for 
Hakea recurva subsp. recurva (n = 15,422 
SNPs) and Amyema gibberula var. tatei 
(n = 2,055 SNPs). Environment association 
analyses (LFMM and BayPass) were run 
on each species across seven climatic 
variables. The total number of unique 
SNPs identified by the two approaches is 
shown for each variable
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and mistletoe, respectively, while values for the putatively adaptive 
data sets were 0.370 and 0.734 (host and mistletoe, respectively).

PCoA identified differing genetic structure between species 
and data sets (Figure 1). For the putatively neutral data sets, the 
first PCoA axis separated out the most south-eastern population 
of the host while the remaining populations were separated along 
the second and third axes, collectively explaining 10.7% of genetic 
variation (Figure 1a). By contrast, the first PCoA axis separated the 

northern and southern populations of mistletoe while the second 
and third axes distinguished between southern populations, col-
lectively explaining 29.4% of genetic variation (Figure 1b). For the 
putatively adaptive data sets, the first PCoA axis separated out the 
north-eastern populations, with host individuals separated along the 
second axis, and the first three axes explained 58.4% of the genetic 
variation (Figure 1a). In the mistletoe, the first PCoA axis separated 
the northern and southern populations but the second axis sepa-
rated out the most south-eastern population, and the first three axes 
explained 73.9% of genetic variation (Figure 1b).

3.3 | Landscape genetics modelling

Following the GDM backward elimination procedure, no predictor 
variables were significant (α = 0.05) for the putatively neutral data 
set of the host, although we opted to use mean temperature of the 
wettest quarter (p  =  0.06) in the final GDM model (Table 2). Two 
significant variables—geographic distance and annual precipitation—
were retained in the GDM model of the putatively adaptive data 
set for the host. Similarly, the only significant predictor variable 
retained in the GDM model of the putatively neutral data set for 
the mistletoe was mean temperature of the wettest quarter while 
three variables—geographic distance, temperature seasonality and 
mean temperature of the wettest quarter—were retained in the 
GDM model for the putatively adaptive data set. Overall, predictor 
variables explained a similar percentage of model deviance for both 
species (Table 2).

GDM analysis examined the relationship between genetic dis-
tance and environmental distance (i.e. geographic distance and 
climatic variables), with patterns varying by both predictor vari-
able and species (Figure 3). Geographic distance showed a near 
linear relationship with genetic distance with the geographic 
spline predicting a gradual change in allelic turnover across the 
range (Table 3; Figure 3a). Additionally, geographic distance had 
the greatest spline height for both putatively adaptive data sets 
(1.54–1.67; Table 3), indicating that this was the most important 
predictor of allelic turnover. In contrast, all three climatic variables 

F I G U R E  2   Venn diagrams of SNPs identified by three genome 
scan methods for (a) Hakea recurva subsp. recurva and (b) Amyema 
gibberula var. tatei. The diagrams show a comparison between 
SNPs obtained from pcadapt, LFMM and BayPass methods. For the 
environment association methods (LFMM and BayPass), SNPs that 
were significant for multiple environmental variables were only 
included once in the Venn diagram
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TA B L E  2   Model fit of generalized dissimilarity modelling for Hakea recurva subsp. recurva and Amyema gibberula var. tatei data sets. 
Putatively neutral data sets contained SNPs that were not identified as outliers, or with significant environment association, in any genome 
scan method (14,848 and 1,631 SNPs for each species, respectively). Putatively adaptive data sets contained only SNPs identified by two or 
more genome scan methods (35 and 36 SNPs for each species, respectively). Models contain only significant predictor variables (p < 0.05), 
except for the H. recurva subsp. recurva neutral data set (p = 0.06)

Model

Hakea recurva subsp. recurva Amyema gibberula var. tatei

Neutral data set Adaptive data set Neutral data set Adaptive data set

Predictor variables MTWQ Geo + AP MTWQ Geo + TS + MTWQ

Model deviance 7.79 4.56 8.36 3.58

Percentage explained 35.34 69.55 32.83 75.92

p-value 0.109 0.000 0.023 0.000

Abbreviations: AP, annual precipitation (BIO12); Geo, geographic distance; MTWQ, mean temperature of the wettest quarter (BIO8); TS, temperature 
seasonality (BIO4).
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in the final GDM models had a nonlinear relationship with genetic 
variation (Figure 3b-d). Temperature seasonality was a significant 
predictor of the putatively adaptive data set for the mistletoe, 
with the largest change in allelic turnover predicted to occur below 
580% (Figure 3b). Mean temperature of the wettest quarter was 
the only predictor variable for the putatively neutral data sets in 

both species and was also an important predictor for the putatively 
adaptive data set in the mistletoe, with the largest change in allelic 
turnover predicted to occur below 13°C (Figure 3c). Finally, annual 
precipitation was a significant predictor of the putatively adap-
tive data set in the host, with the largest change in allelic turnover 
below 280 mm (Figure 3d).

F I G U R E  3   Generalized dissimilarity 
model-fitted I-splines showing allelic 
turnover across predictor variables for 
Hakea recurva subsp. recurva and Amyema 
gibberula var. tatei. Neutral data sets 
(14,848 and 1631 SNPs for each species, 
respectively) contained putatively neutral 
SNPs not identified as outliers, or with 
significant environment association, in 
any genome scan method. Adaptive data 
sets (35 and 36 SNPs for each species, 
respectively) contained putatively 
adaptive SNPs identified by two or more 
genome scan methods. Allelic turnover 
was only plotted if the data set had a 
significant relationship with the predictor 
variables: (a) geographic distance, (b) 
temperature seasonality (BIO4), (c) mean 
temperature of the wettest quarter (BIO8) 
and (d) annual precipitation (BIO12). 
Height of the curve indicates the total 
amount of allelic turnover associated with 
that predictor variable, when holding all 
other variables constant, and the shape 
indicates the rate of allelic turnover along 
the gradient
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TA B L E  3   Relative importance of predictor variables in generalized dissimilarity models for Hakea recurva subsp. recurva and Amyema 
gibberula var. tatei. Putatively neutral data sets contained SNPs that were not identified as outliers, or with significant environment 
association, in any genome scan method (14,848 and 1631 SNPs for each species, respectively). Putatively adaptive data sets contained only 
SNPs identified by two or more genome scan methods (35 and 36 SNPs for each species, respectively). Relative importance values were 
obtained from the summations of the three spline coefficients for each significant predictor variables. Cells with no value indicate that the 
variable was not a significant predictor of that model

Relative importance

Hakea recurva subsp. recurva Amyema gibberula var. tatei

Neutral data set Adaptive data set Neutral data set Adaptive data set

Geo - 1.54 - 1.67

IT (BIO3) - - - -

TS (BIO4) - - - 0.92

MTWQ (BIO8) 0.77 - 1.02 1.16

MTDQ (BIO9) - - - -

AP (BIO12) - 1.36 - -

PS (BIO15) - - - -

PWQ(BIO18) - - - -

Abbreviations: AP, annual precipitation; Geo, geographic distance; IT, isothermality; MTDQ, mean temperature of the driest quarter; MTWQ, mean 
temperature of the wettest quarter; PS, precipitation seasonality; PWQ, precipitation of the warmest quarter; TS, temperature seasonality.
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Geographic distance explained approximately 43% of the GDM 
model deviance of putatively adaptive data sets for both species 
(Figure 4). Precipitation explained a similar proportion of GDM 
model deviance as geographic distance for the host, and no variation 
was explained by temperature for this species (Figure 4a). In con-
trast, precipitation did not explain any of the GDM model deviance 
for the mistletoe while temperature explained over 65%, although 
a large proportion of allelic turnover was jointly explained by geo-
graphic distance (Figure 4b). Unexplained variation in GDM model 
deviance was similar between species.

Spatial patterns of predicted genetic composition were similar 
for putatively neutral data sets of both species, but not for puta-
tively adaptive data sets (Figure 5). Specifically, rapid turnover in 
genetic composition of putatively neutral data sets was similarly 
predicted in the south-eastern region for both species (Figure 5a,d). 
In contrast, the turnover of genetic composition for putatively adap-
tive data sets was predicted to occur more rapidly in the eastern 
region for the host (Figure 5b) but the western and southern regions 
for the mistletoe (Figure 5e). Procrustes residuals, which compared 
multivariate configuration between putatively neutral and puta-
tively adaptive data sets, varied spatially across the distribution of 
both species. In general, residuals were higher in the southern half of 
the range for each species, indicating less congruence between SNP 
data sets (Figure 5c,f).

4  | DISCUSSION

Our investigation of genome-wide variation along climatic gradients 
in a specialist mistletoe and its host found that putatively adaptive 
genetic variation was associated with different climatic variables for 
each species. These differences between host and parasite in the 
turnover of putatively adaptive SNPs contrasted with the similar-
ity in turnover of putatively neutral SNPs and support our alterna-
tive hypothesis that these species respond differently to climatic 
variables. Specifically, temperature was relatively more important in 
predicting allelic turnover for the mistletoe, while precipitation was 
more important for the host. This could reflect a parasitic life history 

as parasitic plants have different water acquisition strategies and 
transpiration rates to their hosts. While genome-wide markers have 
been used to examine climate adaptation in numerous taxa, applying 
these methods to a comparative study of nonmodel organisms in a 
host–parasite system has presented some distinct challenges, which 
we discuss below.

4.1 | Associations with climatic variables in a 
mistletoe-host system

Mistletoes and their hosts have been previously recorded as having 
similar relationships between physiological parameters and climate 
(Scalon & Wright, 2015). However, this is the first study to compare 
the associations of genome-wide variation along climatic gradi-
ents in mistletoe–host systems, which deepens our understanding 
of adaptation and provides insight into the evolutionary processes 
that underlie previously observed phenomena. Despite similar as-
sociations of putatively neutral genetic variation between the mis-
tletoe and its host, associations of putatively adaptive variation 
with climatic variables were different. Specifically, GDM analysis 
indicated putatively adaptive variation in the mistletoe to be asso-
ciated with temperature. Seasonality and mean temperature of the 
wettest quarter were particularly associated with the mistletoe, as 
also correlated with population differentiation in another mistletoe 
(Ramírez-Barahona et al., 2017). One explanation for the importance 
of temperature is that mistletoes (and other parasitic plants) must 
maintain a hydrostatic gradient to draw water from hosts, which 
is achieved through increased transpiration rates relative to host 
plants (Ehleringer & Marshall, 1995; Stewart & Press, 1990). As tem-
perature influences transpiration rates, temperature may provide 
a greater selective pressure for the mistletoe in comparison to the 
host. While these patterns of genome-wide variation are consistent 
with local adaptation, further validation of the role of temperature 
is needed. Experimental work in other host–parasite systems have 
found temperature to influence local adaptation (Laine, 2007, 2008) 
and the performance of mistletoe populations (Sangüesa-Barreda 
et al., 2018).

F I G U R E  4   Partitioning of generalized 
dissimilarity model deviance by predictor 
variables for (a) Hakea recurva subsp. 
recurva and (b) Amyema gibberula var. tatei. 
Three sets of predictor variables were 
used (geographic distance, temperature 
and precipitation variables) for putatively 
adaptive data sets (35 and 36 SNPs for 
each species, respectively) that contained 
SNPs identified by two or more genome 
scan methods
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GDM analysis showed putatively adaptive variation in the 
host to be associated with precipitation, which is consistent with 
findings of other studies on autotrophic plants (e.g. Manel et al., 
2012; Shryock et al., 2017; Steane et al., 2017; Walters et al., 2020). 
However, precipitation was not found to associate with putatively 
adaptive variation in the mistletoe. This was despite recent ex-
perimental evidence suggesting that population differentiation in 
mistletoes can vary along gradients of water availability and precip-
itation seasonality (Ramírez-Barahona et al., 2017). One explana-
tion for the difference in relative importance of precipitation in this 
study could be the different water acquisition strategies between 
the mistletoe and its host, which may respond differently to abi-
otic selective pressures. Specifically, acquisition of water from host 
plants (rather than the abiotic environment) may provide a buffer 
between the mistletoe and climatic conditions. This could provide 

a more uniform environment in terms of water availability and, 
therefore, reduced selection pressures due to seasonal variability 
in precipitation.

Similar observations on associations of genome-wide variation 
with climatic variables have also been found for a generalist para-
site and sympatric autotroph (Walters et al., 2020), although asso-
ciation with climatic variables does not necessarily imply that these 
variables directly shape adaptive genetic variation. For instance, 
the variables assessed here may correlate with other environmental 
gradients (e.g. solar radiation, altitude; Garnier-Géré & Ades, 2001; 
Gauli et al., 2015) that may be true drivers of adaptation in these spe-
cies. Covariation between climatic variables and geographic distance 
can also make it difficult to determine which variable shapes adap-
tive genetic variation, or whether patterns are jointly influenced by 
multiple variables. Despite this study providing evidence consistent 

F I G U R E  5   Spatial patterns of 
predicted genetic composition and 
differences in multivariate configuration 
(Procrustes residuals) for (a–c) Hakea 
recurva subsp. recurva and (d–f) Amyema 
gibberula var. tatei. Genetic compositions 
were derived using fitted generalized 
dissimilarity models to perform 
biologically informed transformations of 
significant climatic variables for putatively 
neutral data sets (a, d) and putatively 
adaptive data sets (b, e). Neutral data sets 
(14,848 and 1631 SNPs for each species, 
respectively) contained putatively neutral 
SNPs not identified as outliers, or with 
significant environment association, in 
any genome scan method. Adaptive data 
sets (35 and 36 SNPs for each species, 
respectively) contained putatively 
adaptive SNPs identified by two or 
more genome scan methods. Principal 
component analysis was used to reduce 
the transformed climatic variables into 
three principal components that were 
each assigned an RGB colour. The RGB 
maps do not have a scale bar but similarity 
of colours within each frame indicates 
similarity in predicted patterns of genetic 
composition. Differences in multivariate 
configuration between putatively neutral 
and putatively adaptive data sets were 
measured by Procrustes analysis (c, f). 
Procrustes residuals were scaled to allow 
direct comparisons between species
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with local adaptation, additional sampling and experimental work is 
needed to explicitly confirm the effect of climate adaptation in these 
species.

In this study, we found putatively adaptive variation to positively 
correlate with geographic distance, similar to that in other plant spe-
cies (e.g. Shryock et al., 2017). This could be the result of correlation 
between clines in abiotic variables that drive adaptation and geo-
graphic distance across the study area. Another explanation could 
be that mistletoes may adapt to populations of specific hosts and 
specialist seed dispersal vectors within a specific geographic area. 
Indeed, geographic distance has been previously found to influ-
ence neutral genetic structure between populations of mistletoes 
(Nyagumbo et al., 2017; Yule et al., 2016) and other parasitic spe-
cies (Feurtey et al., 2016), although not always for specialist mistle-
toes (Jerome & Ford, 2002). For both species in our study, the most 
south-eastern population was notably different from other popula-
tions, which is likely due to the isolated occurrence of this population 
on the edge of the species’ range.

4.2 | Factors affecting the study of selection 
pressure in nonmodel organisms using genome-
wide markers

Genome-wide markers have been used to identify signals of selec-
tion across many taxonomic groups (reviewed in Ahrens et al., 2018); 
yet applying these methods to a comparative study in a host–parasite 
system has posed some distinct challenges. Firstly, demographic and 
life histories can differ widely between species; for instance, para-
sites generally have much shorter generation times (Huyse et al., 
2005). Faster generation times lead to more frequent genome repli-
cation that collects more DNA mutations per unit of time, and there-
fore, adaptation can proceed more rapidly (Bromham et al., 2013; 
Smith & Donoghue, 2008). Mutation rates can also vary between 
parasites (Nieberding & Olivieri, 2007); therefore, the detection of 
genome-wide variation in other host–parasite systems may differ to 
that observed here. Population sizes were also observed to differ 
between our species, which would influence the genetic variability 
within populations (Charlesworth, 2009).

Another complicating factor for our study is that both nonmodel 
species lack reference genomes or transcriptomes, and conse-
quently, we have not been able to verify the gene function of puta-
tively adaptive SNPs. While signals of selection can still be obtained 
for species that lack prior genomic knowledge (Savolainen et al., 
2013), it is likely that most SNPs identified as outliers, or those with 
significant environment association, are not under direct selection, 
but rather are physically linked to loci under selection (i.e. genetic 
hitchhiking; reviewed by Barton, 2000). The exact effect of genetic 
hitchhiking on genome scans depends upon a number of evolution-
ary parameters (Lotterhos & Whitlock, 2015), the majority of which 
are unknown for our study species. Future work could expand upon 
these findings by using reference genomes to map the gene func-
tion of both SNPs identified as outliers and those with significant 

environment association (Bragg et al., 2015; Breed et al., 2019; Tiffin 
& Ross-Ibarra, 2014).

Lastly, while our study has enabled association of putatively 
adaptive variation with different climatic gradients, it does not pro-
vide insight into the genetic architecture of climate adaptation in 
these species per se. For instance, polygenic adaptation of many loci 
with small effect that result in phenotypic changes may be difficult 
to detect with genome scans in comparison to loci with a single, large 
effect (Le Corre & Kremer, 2012; Pritchard & Di Rienzo, 2010). This 
could influence the number of SNPs identified as putatively adaptive 
as the ratios of loci with small and large effects may differ between 
these species, although this information was not available a priori. 
Furthermore, we also found stronger population differentiation in 
the mistletoe and this is known to influence the detection of loci 
under selection (Flanagan et al., 2018; de Villemereuil et al., 2014). 
High population differentiation in mistletoes could be due to their 
complex requirements for specialist seed dispersal vectors, spe-
cific hosts and the availability of abiotic niches (e.g. Lira-Noriega & 
Peterson, 2014; Ramírez-Barahona et al., 2017) that may ultimately 
limit the dispersal of mistletoes across the landscape. Although 
population differentiation was accounted for in our EA analyses, 
combining these results with phenotypic data could further our 
understanding of local climatic adaptation between mistletoes and 
their hosts.

4.3 | Comparison with other host–parasite systems

Our findings on the association of putatively adaptive variation with 
climatic variables in a mistletoe–host system were similar to those of 
a previous study on a generalist parasite and co-occurring autotroph 
(Walters et al., 2020). For both parasitic plants, there was a stronger 
association of putatively adaptive variation to temperature variables, 
in comparison to precipitation variables for host species. While these 
results could be indicative of the parasitic life history and suggest that 
adaptive responses may vary between species with different water 
acquisition strategies, further examination is needed to confirm this 
pattern in other parasitic plants. Furthermore, patterns on the asso-
ciation of putatively adaptive variation with climatic variables may 
differ in other host–parasite systems that often have fewer differ-
ences in gene flow and population structure between parasites and 
hosts (e.g. Dybdahl & Lively, 1996; Feurtey et al., 2016; McCoy et al., 
2005). Examining the association of genome-wide variation could be 
crucial to understanding climate adaptation, particularly as parasite 
evolution depends upon the physical environment (Laine, 2008). 
Therefore, extending this work to other host–parasite systems would 
further increase our understanding of the association of putatively 
adaptive variation to climatic variables in natural populations.
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