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Abstract

Due to deteriorating infrastructure and declining infrastructure funding in African

countries, There is a resurgence of cholera and typhoid fever. Poor waste disposal

systems, poor hygiene and seasonal rains have been the main drivers of these two

infections. Recently in Zimbabwe, an outbreak of the two infections was ob-

served. Given that both infections are water-borne, a logical question is: was the

outbreak of these two diseases a coincidence, or is there more structural mecha-

nism to explain the observed coinfection? In this work, we attempt to answer such

a question. We develop a system of ordinary differential equations to model the

transmission dynamics of both diseases. We further add time dependant infection

rates to model the dynamics of diseases in fluctuating environments. The model

steady states are determined and analysed, and the role of fear is incorporated into

the models. Impact analysis - how the diseases impact each other - is carried out.

Numerical simulations and sensitivity analysis are used to verify the analytic re-

sults. We discover that for the greatest impact of disease control, the management

of the diseases should be carried out in tandem. The public health implications of

these results are articulated.

Keywords: Fear, Seasonality, Stability analysis, Basic reproduction number, Cholera,

Typhoid, Coinfection, Impact analysis.
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Chapter 1

Introduction

1.1 Background

Cholera is a bacterial infection with two modes of transmission: direct transmis-

sion, which is human to human transmission; and indirect transmission, which

results from ingesting contaminated food. The latter form of transmission is more

common in cholera endemic areas. Cholera infects a maximum of 4 million peo-

ple annually, and of those that are infected, 21,000 to 143,000 people die from the

disease [92]. Known estimates for the incubation period for cholera range between

one and five days. Cholera is associated with watery diarrhoea, vomiting, and se-

vere dehydration. At its worst form, the disease can cause a previously healthy

person: to lose as much as one liter per hour of fluids, to become hypertensive in

under four hours, and to die in within a day [40]. Death is usually preceded by

renal failure, shock, pulmonary oedema and hypokalaemia due to dehydration.

Typhoid Fever is a life-threatening bacterial infection caused by Salmonella Typhi

[84]. The transmission modes of typhoid are identical to those of cholera: direct

transmission and indirect transmission. This disease adversely affects the recticu-

loendothelical system, the gall bladder and the intestinal lymphoid [52]. Known

1



2 Chapter 1. Introduction

estimates of the incubation period for the typhoid fever disease range from ten to

fourteen days [52]. The case fatality rate of typhoid fever was 10 − 20% before

the advent of treatment, whilst, with prompt treatment, the case fatality rate was

reduced to less than 1% [29]. It was observed that the total number of deaths,

throughout the world, caused by typhoid fever in the year 1990 was 181 000 [1];

in the year 2000, it was 217 000 [21]; and in the year 2013, it was 161 000 [1].

In the Democratic Republic of Congo, more than 42 000 people contracted the

typhoid fever disease during the years 2004 and 2005 [94]; whilst in Zimbabwe,

Harare, there were 3187 suspected cases of typhoid and 191 confirmed cases of

typhoid in the year 2018 [61].

1.2 Cholera

1.2.1 Classification of Cholera Strains

Several strains of the cholera bacteria have been discovered recently. The V.

cholerae serogroup is divided into three subclasses, namely: V. cholerae 01, V.

cholerae 0139, and others [40] (see Figure 1.1). The V. cholerae 01 serogroup has

two biotypes: the El Tor biotype and the classical biotype. Each of the biotypes

contain three Serotypes, and they are: Ogawa, Inaba, Hikojima [47]. Serotypes

further divide into antigens. The known antigens are A,B; A,C; and A,B,C. Fig-

ure 1.1 summarizes the classification. It has been shown that the V. cholerae 01

Serogroup, El Tor biotype is the most common strain of V. cholerae, and the V.

cholerae 0139 is the least common strain of cholera. Both of these strains are

resistant to drugs, and the V. cholerae, El Tor biotype strain was responsible for

the most recent cholera pandemic [49].



1.2. Cholera 3

Figure 1.1: Source: [47]. The classification of V. cholerae strains.

1.2.2 History of Cholera

Records from the World Health Organisation show that, in the past two centuries,

cholera has been responsible for seven pandemics [92]. The first six pandemics

were caused by a strain of the bacteria emanating from the serogroup V. cholerae

01 and the classical biotype, whilst the last strain of the bacteria came from the

serogroup V. cholerae 01 and the El Tor biotype [49]. Figure 1.2 shows the dif-

ferent pandemics [43]. Figure 1.3 attests to how the African continent has been

disproportionately affected by the cholera disease [4]. The African continent ac-

counted for 90% of the global cholera cases in 1990 [25]. We note that the re-

ported cases, reporting countries, and the number of deaths were on an upward

trend, whilst the case fatality ratio showed the opposite trend. A possible ex-

planation for such observations is that improvements in reporting could have led

to better management of the disease. Indeed, it can be noted that after the year
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1990, the number of reporting countries increased, suggesting that there was bet-

ter data collection. Better data collection inevitably leads to more reported cases

and more reported deaths. The downward trend of the case fatality ratio suggests

an improvement in the management of the disease despite the overall increase in

deaths.

Figure 1.2: Soure: [43]. The seven cholera pandemics and their durations in years.
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Figure 1.3: Soure: [4]. Annual number of cholera cases in endemic countries.

1.3 Typhoid Fever

1.3.1 Classification of Typhoid Fever Strains

Salmonella comes from the Kingdom and phylum Eubacteria and Proteobacteria

[42] (See Figure 1.4). The bacteria’s class, order and family, respectively, are

Gammaproteobacteria, Enterobacteriales and Enterobacteriaceae. Salmonella has

two species and six subspecies. The subspecies are bongori and enterica, whilst

the subspecies are enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb),

houtenae (IV), indica (VI). All six subspecies come from the species enterica.

The enterica (I) subspecies has two Serovars, namely nontyphoidal and typhoidal.

The nontyphoidal salmonella is characterized by gastroenteritis and food poison-

ing, whilst typhoidal Salmonella is characterized by typhoid fever and paratyphoid
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fever [93].

Figure 1.4: Source: [42]. The classification of Salmonella strains.

1.3.2 History of Typhoid Fever

The African continent has been disproportionately affected by typhoid fever. Al-

though the total duration of the outbreaks in the African continent was the second

shortest, the continent still managed to record the highest number of cases of

the disease [5] (see Table 1.1). More than half (54%) of cases were recorded in

the African continent, and the highest number of reporting countries were also

under resourced African countries. Countries such as Uganda, Zimbabwe, Demo-

cratic Republic of Congo, Ethiopia, Kenya, The Malawi-Mozambique border and

Zambia represented 32% of all countries reporting the outbreaks. Southeast Asia

recorded highest number of outbreaks globally (13 outbreaks) within a period

of 27 years, whereas the African continent recorded 12 outbreaks in nearly half

that time (14 years) [5]. This underscores the severity of the infection within the
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African continent, and it suggests that the African continent is key to the global

management of typhoid fever.

Characteristic WHO region* Total
Eastern Region of Southeast Western

African Mediterranean European the Americas Asia Pacific
Outbreak years 2004–2018 1992–2017 1996–2008 1989–2015 1989–2016 1990–2014 1989–2018

Number of countries

reporting outbreaks 8 3 4 1 4 5 25

Number of outbreaks 12 5 5 7 13 6 48

Number multidrug

resistant 6 3 2 0 4 1 16

Number fluoroquinolone

non-susceptible 6 1 0 0 2 2 11

Total number of cases 24,513 1,081 11,603 154 7,390 474 45,215

Median cases (range) 1,101 (98–10,230) 185 (27–486) 332 (6–10,677) 12 (3–68) 91 (11–5,963) 48 (7–253) 101 (3–10,677)

Number of

confirmed cases 848 630 3,370 110 607 212 5,777

Median duration

days (range) 140 (13–989) 60 (11–390) 23 (6–539) 50 (23–139) 36 (11–304) 101 (15–219) 57 (6–989)

Median incidence

proportion (range) 0.2% (0–0.3%) 60% (60–60%) 16% (14–40%) 8% (8–8%) 3% (0.7–14%) 3% (1–5%) 5% (0–60%)

Median proportion

hospitalized (range)∗∗ 27% (17–50%) 20% (20–20%) 34% (12–78%) 62% (31–82%) 63% (6–71%) 58% (3–64%) 50% (3–82%)

Median case

fatality ratio (range) 1% (0.1–44%) 0% (0–1%) 0% (0–1%) 0% (0–4%) 0% (0–9%) 0% (0–0%) 0% (0–44%)

Table 1.1: Source: [5]. CFR indicates proportion of all cases that died.

*Twenty-five countries [number of outbreaks] reviewed by WHO region: African

(Uganda [3], Zimbabwe [3], Democratic Republic of Congo [2], Ethiopia, Kenya,

Malawi–Mozambique border, and Zambia), Eastern Mediterranean (Pakistan [2],

Saudi Arabia [2], and Jordan), European (France [2], Turkey, Tajikistan, and Ger-

many), region of the Americas (the United States [7]), Southeast Asia (India [8],

Thailand [2], Thai–Myanmar border, Myanmar, and Nepal), and Western Pacific

(China [2], Japan, Malaysia, Nauru, and Singapore).

∗∗ Incidence proportion, or attack rate, is the number of ill persons in the exposed

population.
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1.4 Significance of the Study

The significance of the study lies in understanding the transmission dynamics and

intervention strategies for cholera and typhoid. Most specifically, the importance

is captured in the following aspects of the work. First, the models discussed in

this investigation add to the mathematical modelling of cholera and typhoid. Fac-

tors such as seasonality and the coinfection of the diseases are discussed in detail.

Second, this investigation shows the interplay between the two infections. This

is achieved through answering the following question: Are the two infections in

conflict with one another, or are they symbiotic? Third, the work shows how the

multiple transmission routes affect the disease prevalence, and how they affect

the prevalence of coinfected individuals. Four, the results obtained in this inves-

tigation can be used to guide policy. Five, our work adds to the repository of

mathematical techniques for modelling cholera and typhoid,

To this end, no effort is insignificant in modelling aspects of the diseases that are

not well documented. Transmission of the diseases is driven by factors such as

human movement, lifestyle, socio-economic status, climate, the presence of other

infections and policies. Indeed, models that incorporate such factors can greatly

enhance our understanding of these diseases. Future projections would have been

possible had data been available. However due to this limitation, the models dis-

cussed in this work are not an alternative to the data, instead they should be viewed

as a tool to make sense of the transmission of these diseases,

1.5 Aims and Objectives

In a broad sense, this study is themed around the construction and the analysis of

mathematical models of typhoid and cholera. Poorly understood aspects of the

transmission dynamics of cholera and typhoid are investigated. More specifically,
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some of the objectives that are found in the various chapters in the thesis are:

I) To give an outline of the epidemiology of cholera, typhoid and their coin-

fection.

II) To uncover sufficient conditions that are required for the management of the

diseases.

III) To justify, through software implementation and graphs, all analytic results

produced by the study.

IV) To investigate the impact of seasonality on the prevalence of typhoid fever,

and on the speed with which the disease propagates.

V) To design mathematical models on the coinfection of typhoid and cholera.

1.6 Motivation

Despite several models being dedicated to the study of cholera and typhoid fever

in the literature, a number of open problems still persist. Aspects such as peri-

odicity, human behaviour, age structure, vaccination, hyper-infectivity and lack

thereof, and multiple transmission pathways have been modelled in order to un-

derstand and quantify their correlation with the prevalence of cholera [14, 22,

38, 39, 83, 90]. Factors such as treatments, carriers, and protected classes have

also been modelled to understand how they affect typhoid prevalence [17, 58, 88].

Seasonality has been modelled for diseases such as cholera and schistosomiasis

[11, 41, 71]. coinfection models have been developed for HIV and HCV, HIV

and malaria, malaria and cholera, and listeriosis and anthrax [15, 63, 65, 68].

Although our work sits within the span of the factors mentioned above, it also

differs in some respects. To the best of our knowledge, the following aspects of

the two infections have not been considered in the literature: first, seasonality in

typhoid; second, coinfection between typhoid and cholera; and last, seasonality
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arising from the cholera-typhoid coinfection. Hence, these differences form the

basis for our research.

1.7 Outline

This thesis consists of six chapters. Three of these chapters resulted in publica-

tions. The first chapter gives the background of the two infections. We outline the

aims and the objectives of the study here, as well as to motivate why this study

was carried out. The epidemiology of both diseases is also discussed in this chap-

ter.

We carry out a review of the literature in the second chapter. The mathematical

modelling techniques used by other modellers to study cholera, typhoid, seasonal-

ity and coinfection are documented. These techniques are then applied to our own

models containing cholera, typhoid, seasonality and coinfection in the subsequent

chapters.

A coinfection model for cholera and typhoid is developed and analysed in the

third chapter. Numerical simulations are conducted to verify the analytic results

obtained in this chapter.

The effects of seasonality and fear on typhoid fever are investigated in chapter

4. We compare a seasonal model and a non seasonal model, and changes to the

basic reproduction number are documented. The work from this chapter yielded

a publication.

A summary and conclusion for this investigation is provided in chapter 5. We

make recommendations for the management of the diseases, and we discuss the

limitations of this thesis in this chapter.

In the next chapter, a brief literature review of work that is closely related to our

topic is provided.



Chapter 2

Literature Review

Since the emergence of the first cholera pandemic and the emergence of the first

typhoid epidemic, numerous mathematical models have been created to gain in-

sights into how these diseases propagate. The rationale behind the modelling was

that knowledge of these diseases’ transmission patterns would unravel clues on

how to break the transmission routes. In this chapter, we discuss the mathematical

methods employed in the study of cholera, typhoid, seasonality, and coinfections.

2.1 Mathematical Models on Cholera

Tian and Wang [83] proposed a few models to study the global stability for cholera.
One such model is the following,

dS

dt
= bN − Sf(B)− bS,

dI

dt
= Sf(B)− (γ + b)I,

dB

dt
= eI −mB.

All variables and parameters are as defined in [83]. The cholera models that are

analysed in this paper derive their uniqueness from the incorporation of environ-

11
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mental factors and multiple transmission routes. Using three methods, new global

stability results were obtained for the cholera models. The method of monotone

dynamical systems converts a three-dimensional autonomous dynamical system

into a two-dimensional one. The application of this method is easier than the

geometric method. However, most high dimensional systems do not meet the

conditions required for the applications of the method of monotone dynamical

systems. The geometric approach imposes fewer constraints on a model, however

its implementation is significantly more cumbersome than the implementation of

the method of monotone dynamical systems. The Lyapunov functions method has

been widely used to study global stability, despite its weakness of relying heavily

on trial and error for the construction of the Lyapunov function. Using Volterra

Lyapunov matrix analysis, the authors extended the Lyapunov function framework

for analysing global stability.

A cholera model with vaccination was formulated by Cui et al.[22]. The model
proposed was the following,

dS

dt
= µ1 −

β1SB

1 + α1B
− β2SI

1 + α2I
− ϕS − µ1S + θV,

dV

dt
= ϕS − θV − µ1V,

dI

dt
=

β1SB

1 + α1B
+

β2SI

1 + α2I
− (d+ α+ µ1)I,

dR

dt
= αI − µ1R,

dB

dt
= ηI − µ2B.

All variables and parameters are as defined in [22]. In this work, a SV IR − B

cholera model was developed and analysed. This model justifies the use of an im-

perfect vaccine. It also considers environmental components and multiple trans-

mission routes. Under certain conditions, the control reproduction number has to

be less than unity for global asymptotic stability at the disease free equilibrium.

The control reproduction number has to be greater than one for global stability at

the endemic equilibrium. It is observed that in the absence of vaccination (perfect

or otherwise), the model showed that disease transmission was high. Parameters

that are most sensitive to change to the control reproduction number are the vac-



2.1. Mathematical Models on Cholera 13

cination rate and the immunity waning rate. A necessary and sufficient condition

for the eradication of cholera is that the vaccination rate and the waning rate must

exceed a certain threshold, whilst the control reproduction number must be less

than unity.

Kokomo and Emvudu [38] developed an age structured model for cholera with
vaccination. The model they introduced was a coupled system of PDEs and ODEs,
such as

∂S

∂t
(a, t) + α

∂S

∂a
(a, t) = Λ(a, t)− [λi(a, t) + λd(a, t) + ψ(a) + µ(a)]S(a, t),

∂I

∂t
(a, t) + α

∂I

∂a
(a, t) = (λi(a, t) + λd(a, t))(S(a, t) + σV (a, t))− [γ(a) + µ(a)]I(a, t),

∂V

∂t
(a, t) + α

∂V

∂a
(a, t) = ψ(a)S(a, t)− (λi(a, t) + λd(a, t))σV (a, t)− µ(a)V (a, t), (2.1)

∂R

∂t
(a, t) + α

∂R

∂a
(a, t) = γ(a)I(a, t)− µ(a)R(a, t),

dBH(t)

dt
=

∫ A

0

ξ(a)ηI(a, t) da− χBH(t),

dBH(t)

dt
= χBH(t)− δLBL(t).

All variables and parameters are as defined in [38]. In model (2.1), work by Cai

et al. [14] was extended. The extension was carried out through the inclusion

of a hyper-infective class and a less-hyper infective class. The model consists of

four PDEs and two ODEs. Semigroup theory was used to show that the model

has a unique positively bounded solution. The existence of a unique equilibrium

was established. The model showed that the disease free equilibrium was locally

asymptotically stable whenever the reproduction number was less than one and

it was unstable whenever it was greater than one. Whenever the endemic equi-

librium was unstable, the disease was alleviated under certain conditions. These

conditions include the basic reproduction number being greater than one and the

threshold parameter R∗ being less than one. On the other hand, vaccinations were

ineffective whenever the reproduction number and R∗ were greater than one.

The influence of human behaviour on the dynamics of cholera was modelled by
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Wang et al. [90]. The model formulated has the following structure,

dS

dt
= µN − β1(I)SI − β2(I)

SB

B +K
− µS + σR,

dI

dt
= β1(I)SI + β2(I)

SB

B +K
− (γ + µ)I,

dR

dt
= γI − (µ+ σ)R,

dB

dt
= β3(I)I − δB.

All variables and parameters are as defined in [90]. Human behaviour and how

it affects the dynamics of cholera are documented in this article. These models

give a mathematical justification for reducing the prevalence levels of cholera,

reducing the speed of spreading the disease, and reducing infection risk factors

for heterogeneous and homogeneously mixing individuals. An assumption made

for these models was that human behaviour can be influenced by media coverage,

and by extension, media coverage also influences cholera dynamics. The force of

infection and the shedding rate are also assumed to be decreasing functions of the

infection size. The homogeneously mixing individuals and bacteria are modelled

through a set of ODEs, whilst the heterogeneous mixing hosts and bacteria are

modelled through PDEs. A consistent finding in both models was that when the

basic reproduction number was greater than one, the disease would persist and

the endemic equilibrium was asymptotically stable. A comparison between the

reproduction numbers of the PDE model and the ODE model was carried out, and

the major finding was that the different models predict different risk structures.

The models’ limitations include: the failure to incorporate fake news, the failure

to incorporate non-random movement and the failure to factor in seasonality.

A mathematical model of cholera in a periodic environment with control actions
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was studied by Kolaye et al. [39]. The following model was presented,

dS

dt
= λ−

(
β

BH + ϵBL

Kc +BH +BL
+ µ

)
S + γR.

dI

dt
=

(
β

BH + ϵBL

Kc +BH +BL

)
S − (µ+ d+ α)I,

dR

dt
= αI − (µ+ γ)R,

dBH

dt
= rBL

(
1− BH

K + C

)
− (µH + v)BH + δI,

dBL

dt
= vBH − µLBL.

All variables and parameters are as defined in [39]. The controls are introduced

for this model, and they include sensitization and sanitation. To model these con-

trols, impulsive differential equations are utilised. An effective control strategy

would be the implementation of campaigns for both sensitization and sanitation.

The model showed that when the basic reproduction number was greater than

one, the disease persisted, and the endemic equilibrium was globally asymptoti-

cally stable. It is observed that sensitisation alone was insufficient for the control

of cholera. Kolaye et al. concluded that the fight against cholera should consider

both controls, that is sensitisation and sanitation.

2.2 Mathematical Models on Typhoid

Analytic solutions to a typhoid fever model (2.2) were calculated by Peter et al.
[66] using the Variational Iteration Method (VIM). The model presented in [66]
is given by,

dS

dt
= θ − µ1S − λS,

dIc
dt

= ρλS − (µ2 + ϵ1)Ic,

dI

dt
= (1− ρ)λS − (µ3 + δ + ϵ)I, (2.2)

dR

dt
= δI − µ4R,

dW

dt
= ϵ1Ic + ϵ2I − µbW.
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All variables and parameters are as defined in [66]. In this model, a direct and

indirect transmission pathway was considered for typhoid fever. A series solution

was presented for the model using the Variational Iteration Method (VIM). The

VIM produced series solution was then compared to the fourth order Runge Kutta

method to determine the accuracy of the VIM. The major result was that the VIM

was just as accurate as the fourth order Runge Kutta method in calculating the

trajectories of the typhoid fever model.

The modelling of typhoid fever with a protected class was carried out by Nthiiri

et al. [58]. The model they developed and analysed was the following,

dP

dt
= αΛ− (γ + µ)P,

dS

dt
= (1− α)Λ + γP − (λ+ µ)S,

dI

dt
= γS − (δ + β + µ)I,

dT

dt
= βI − µT.

All variables and parameters are as defined in [58]. The model shows that effective

control prevents infection especially in resource scarce areas. For example, vac-

cination lowers the disease induced mortality; the improvement of life standards,

through better health care and sanitation, leads to a reduction in the infection rate;

and controls applied to susceptible individuals, through prevention strategies, keep

the susceptible individuals from getting infected. Indeed, the evidence seems to

suggest that controls are vital for the prevention of the disease.

Chamuchi et al. [17] formulated a typhoid fever model with carriers. The model

they formulated was as follows,

dS

dt
= b− d1S − (βIc + γI)S − θS,

dIc
dt

= p(βIc + γI)S − (d2 + α)Ic,

dI

dt
= (1− p)(βIc + γI)S − (d3 + π)I + αIc,

dR

dt
= πI − θS − d4.
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All variables and parameters are as defined in [17]. In this model, the effects of

carriers on the transmission dynamics of typhoid fever are analysed. It was dis-

covered that when the reproduction number was less than one, the disease free

equilibrium was stable. The basic reproduction number was most sensitive to the

following parameters: the human recruitment rate; and the typhoid transmission

by non-symptomatic individuals, symptomatic individuals, and the proportion of

individuals who become non symptomatic upon infection. The cumulative ty-

phoid cases are most sensitive to treatment. High prevalence of typhoid can be

observed whenever the carriers outnumber the treated individuals. Some of the

limitations of the model include: firstly, all recruited individuals are assumed to

be susceptible; secondly, treatment is less effective whenever there is a high num-

ber of carriers.

The optimal control mathematical model (2.3) for the transmission dynamics of

typhoid fever with treatment was analyzed by Wameko et al. [88].

dE

dt
= pπ − (φ+ µ)E,

dS

dt
= (1− p)π = φE + αR− (λ+ µ)S,

dC

dt
= pλS − (γ + θ + d1 + µ)C, (2.3)

dI

dt
= (1− p)λS + γC − (β + d2 + µ)I,

dR

dt
= θC + βI − (α + µ)R,

dB

dt
= r

(
1− B

M

)
B.

All variables and parameters are as defined in [88]. This model was developed to

investigate how carriers, immune individuals and infectious individuals affect the

transmission dynamics of typhoid. The model stabilizes to the disease-free equi-

librium whenever the basic reproduction number is less than one, and it stabilizes

to the endemic equilibrium whenever the basic reproduction number is greater

than one. Changes to the basic reproduction number were found to be highly

sensitive to the salmonella ingestion rate. Hence, sanitation was key for the man-
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agement of the disease. Optimal control was introduced through several control

strategies. Prevention, treatment and screening of careers significantly diminished

the prevalence of the disease. The most optimal control strategy was found to be

a combination of all three controls, and this optimal control strategy led to the

disease dying out within two months.

2.3 Mathematical Models on Seasonality

Posny and Wang [71] presented a cholera model for periodic environments. They
formulated the following model,

dS

dt
= bN − Sf(t, I, B)− bS,

dI

dt
= Sf(t, I, B)− (γ + b)I,

dR

dt
= γI − bR,

dB

dt
= h(t, I, B).

All variables and parameters are as defined in [71]. Two major challenges arise in
the mathematical modeling of cholera. Firstly, the disease has multiple transmis-
sion routes, and model accuracy is enhanced by considering the human-to-human
transmission and the environment-to-human transmission pathways. Secondly,
the disease has a strong seasonal component. The major drivers of seasonality are
usually societal, environmental, climatic and ecological. In this paper, a general
mathematical framework for developing and analyzing non-autonomous periodic
cholera models was presented. Ordinarily, seasonal fluctuations are added in the
incidence function and the pathogen function. However, these fluctuations could
also be added to other functions and model parameters, depending on the question
that is being modeled. The major finding of this investigation is that the cholera
model stabilizes to the disease free equilibrium when the basic reproduction num-
ber is less than one, and the model shows uniform persistence whenever the basic
reproduction number is greater than one. These findings were then verified on
three specific cholera models.

A seasonal model on positive periodic solutions of an general epidemic model
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was proposed by Sun et al. [80]. The model that they proposed was the following,

dS

dt
= rN

(
1− N

k

)
− β(t)SI

N
−mS,

dE

dt
=
β(t)SI

N
− σE −mE,

dI

dt
= σE −mI − µI.

All variables and parameters are as defined in [80]. The seasonal model that was

developed in this paper contains logistic growth and density dependent transmis-

sion. Including these two factors improves the accuracy of the model. The global

stability analysis for the disease-free-equilibrium was carried out, and the attrac-

tive regions for the fixed points were determined. Two thresholds were found to

be key in deciding the dynamical behaviour of the model. The first threshold was

the basic demographic reproduction number Rd, and the second threshold was the

basic reproduction number R0. A sufficient condition for the model to stabilise

at the endemic equilibrium was R0 > 1 and Rd > R0, and a sufficient condi-

tion for the model to stabilise to the disease free equilibrium was R0 > 1and

Rd < R0. Several numerical methods have been developed to compute the basic

reproduction number of mathematical models with seasonality in the literature.

These methods were used to compare the basic reproduction number and the av-

erage basic reproduction number in his paper. The investigation showed that the

average basic reproduction number consistently overestimates the risk of disease.

The model would be greatly improved by the inclusion of spatial effects.

Li et al. [41] studied a Schistosomiasis model with seasonality, such as

dSH

dt
= ΛH − λHSHP − µHSH + γHIH ,

dIH
dt

= λHSHP − (µH + λM )IH ,

dM

dt
= λMIH − µMM,

dSV

dt
= ΛV − λV SVM − αV IV ,

dP

dt
= λP IV − µPP.

All variables and parameters are as defined in [41]. In this model, the seasonal
fluctuations are incorporated in the forces of infection. The basic reproduction
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number is calculated, and the stability of the dynamical system is analyzed. The
model was fitted to data to justify its applicability to this study. It is observed
that the main drivers of seasonality are rainfall, temperature and the area of snails.
Control of the disease can be achieved through educational campaigns, where
these campaigns focus on educating the public about the transmission routes of
the disease, and the prevention of contact with contaminated water. Treatment is
also an important factor to consider in the management of the disease. The model
shows that migration is the primary driver of resurgence of the disease in China.
This is due to migrants importing different strains of the infection into the coun-
try. Contact tracing is one method that can be used to mitigate this resurgence. A
limitation of the model is that it does not consider how the different strains of the
infection interact with various animal hosts.
Bilal and Michael [11] studied the effects of complexity and seasonality on back-
ward bifurcation in vector-host models by analysing the following model,

dS1

dt
= ΠH1 − λH1S1 − µH1S1 + αH1R1,

dE1

dt
= λH1S1 − (µH1 + σH1)E1,

dI1
dt

= σH1E1 − (τH1 + dH1 + µH1)I1,

dR1

dt
= τH1I1 − µH1R1 − αH1R1,

dS2

dt
= ΠH2 − λH2S2 − µH2S2 + αH2R2,

dE2

dt
= λH2S2 − (µH2 + σH2)E2,

dI2
dt

= σH2E2 − (τH2 + dH2 + µH2)I2,

dR2

dt
= τH2I2 − µH2R2 − αH2R2,

dMS

dt
= ΠM − λMMS − µMMS,

dME

dt
= λMMS − (µM + σM)ME,

dMl

dt
= σMME − (dM + µM)Ml.

All variables and parameters are as defined in [11]. Most vector host models ex-
hibit backward bifurcations. The effects of complexity, including seasonality, on
backward bifurcations have not been investigated. In these models, delay classes
are added and the effects on Rc are then documented. The models show that Rc

is increased whenever the complexity of the model is increased through the addi-
tion of an exposed compartment or immune compartment. The results show how
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complexity affects the bifurcation region of diseases. Culling of the host is the
most effective control strategy for WNV since an increase in the natural death rate
of hosts results in an increase in Rc. Host vaccination is the most effective con-
trol strategy for malaria and dengue fever. This follows from the observation that
increased immunity decreases the bifurcation regions. In cases where complexity
is introduced through seasonality, it was discovered that highly seasonal vector
host diseases are much easier to manage than weakly seasonal ones. This results
follows from the observation that seasonality increases Rc whilst also decreasing
R0. Nonlinear transmission rates and variable parameters are factors that also
contribute to model complexity, yet these models have not accounted for these
two factors. This could be considered to be the models’ weaknesses.
A stochastic seasonal cholera model was formulated by Baracchini et al. [8]. The
novelty of the model lies in the following two compartments: the water volume
compartment and the pathogen concentration compartment. The model they for-
mulated is as follows,

dS

dt
= κϵR3 +H +

dH

dt
− (λ(t) + µ)S,

dI

dt
= λ(t)S − (γ +m+ µ)I,

dR1

dt
= γI − (κϵ+ µ)R1,

dR2

dt
= κϵR1 − (κϵ+ µ)R2,

dR3

dt
= κϵR2 − (κϵ+ µ)R3,

dV

dt
= J(t)− ET (T, V )− f(V )V,

dB

dt
= −µB(T )B + p(t)[1 + ϕJ(t)]Iξ(t)− f(V )B.

All variables and parameters are as defined in [8]. Mass migration and climate

change remain a huge problem for policy makers. This model shows the strong

link between the problem of mass migration and climate change, and the resur-

gence of cholera. In particular, it shows that water levels of a region are the main

drivers of seasonality for the cholera disease. In dry regions, rainfall increases the

prevalence of cholera; whilst, in wet regions, rainfall decreases the prevalence of

cholera due to the dilution effect. For this reasons, understanding how water levels

affect the transmission of cholera is vital to the management of this disease. Since

migration and climate change have a direct impact on the water levels of a region,

it follows that migration and climate change have a bearing on the resurgence of
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a disease like cholera.

2.4 Mathematical Models on Coinfections

A coinfection model for Human Immunodeficiency Virus (HIV) and Hepatitis
C Virus (HCV) was analyzed by Carvalho and Pinto [15]. The model that they
presented in the paper was the following:

dS

dt
= Λ− λHS − λCS + r1Ic − µS,

dIa
dt

= λHS − (ρ+ σλC + µ)Ia + (1− ϵ)θIa + r2IaIc + υ1Aa,

dAa

dt
= ρIa − (υ1 + da + µ)Aa + r3AaIc + σλCAa,

dIc
dt

= λCS − (r1 + δλH + ρ1σC + µ)Ic,

dCc

dt
= ρ1σCIc − (δλH + dc + µ)IC ,

dIaIc
dt

= δλHIc + σλCIa + υ2AaIc − (r2 + ρ+ ρ2σC + µ)IaIc,

dIaCc

dt
= ρ2σCIaIc + δλHCc + υ3AaCc − (ρ+ dc + µ)IaCc,

dAaIc
dt

= σλCAa + ρIaIc − (r3 + υ2 + ρ3σC + µ+ da)AaIc,

dAaCc

dt
= ρ3σCAaIc + ρIaCc − (υ3 + dc + µ+ da)AaAc.

All the variables and parameters are as defined in [15]. The model shows that
treatment and educational campaigns are vital for the management of the HIV-
HCV coinfection in humans. Campaigns aimed at reducing the number of sexual
partners per person, and those that highlight the benefits of treatment amongst
pregnant women, reduce the prevalence of HIV; whilst, campaigns aimed at ed-
ucating people about the transmission routes of HCV, and those that highlight
the benefits of treatment of HCV, reduce the number of carriers and infections by
HCV. Additionally, HIV can be further controlled through the distribution of more
condoms and enhancing research into AIDS.
Pinto and Carvalho [68] explained how treatment, awareness and condom use
amongst homosexual men affects the HIV-HCV coinfection dynamics. The model
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that they presented was the following:

dSs̄

dt
= Λ1 + υIc̄ − λhSs̄ − λcSs̄ − kSs̄ − µSs̄,

dSs

dt
= Λ2 + υIc − (1− ψ)λhSs − λcSs + kSs̄ − µSs,

dIā
dt

= (1− p)(1− ψ)λhSs + λhSs̄ − (ρ1 + σλc + µ+ k)Iā + υ1IāIc,

dIa
dt

= p(1− ψ)λhSs − (ρ2 + σλc + µ)Ia + kIā + υ1IaIc,

dAā

dt
= ρ1Iā − (δ2 + µ)Aā,

dAa

dt
= ρ2Ia − (δ2 + σλc + µ)Aa + υ2AIc,

dIc̄
dt

= λcSs̄ − (k + υ + σ1 + δλh + δ1 + µ)Ic̄,

dIc
dt

= λcSs + kIc̄ − (υ + σ1 + (1− ψ)δλh + δ1 + µ)Ic,

dCs̄

dt
= σ1Ic̄ − (k + δλh + δ1 + µ)Cs̄,

dCs

dt
= σ1Ic + kCs̄ − ((1− ψ)δλh + δ1 + µ)Cs,

dIāIc
dt

= (1− p)(1− ψ)δλhIc + δλhIc̄ + σλcIā − (k + υ1 + ρ2 + σ2 + δ1 + µ)IāIc,

dCIā
dt

= (1− p)(1− ψ)δλhCs + δλhCs̄ + σ2IcIā − (k + ρ2 + δ1 + µ)CIā,

dCIa
dt

= p(1− ψ)δλhCs + σ2IcIa + kCIā − (ρ2 + δ1 + µ)CIa,

dAIc
dt

= σλcAa + ρ2IāIc + ρ2IaIc − (υ2 + σ2 + δ1 + δ2 + µ)AIc,

dAC

dt
= ρ2CIā + ρ2CIa + σ2IcA− (µ+ δ1 + δ2)CA.

All the variables and parameters are as defined in [68]. The model incorporates

classes for treatment, individuals that are aware and unaware of their diagnosis of

HIV and condom use. The model is analyzed for stability, and bifurcation dia-

grams are drawn to determine the probability of a contact resulting in a successful

transmission of HIV. The model shows that condom availability and educational

awareness campaigns are crucial in reducing the prevalence of HIV. Educational

campaigns should be focused on highlighting the importance of condom use dur-

ing anal sex and the reduction of the number of sexual partners. HIV reduction

is heavily dependent on the treatment of AIDS and the prevalence of new drugs

to combat the infection. Treatment and information campaigns are also necessary

to reduce the prevalence of HCV. The limitations of the model include the lack
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of data to fit the model, as well as its failure to incorporate the effects of sharing

needles on the dynamics of the coinfection.

Osman and Makinde [65] developed model (2.4) to study the transmission dy-
namics of a listeriosis and anthrax coinfection.

dS

dt
= Ωh + kRa + ωRf + ψRal − βhIvSh − πSh − µhSh,

dIa
dt

= βhIvSh − πIa − (α+ µh + ϕ)Ia,

dIt
dt

= πSh − βlIvIt − (δ + µh +m+ ρ)Il,

dIal
dt

= βhIvIl + πIa + (σ + µh + η + θ)Ial,

dRa

dt
= αIa − (k + µh)Ra + (1− τ)γσIal, (2.4)

dRl

dt
= δIl − (ω + µh)Rl + (1− τ)(1− γ)σIal,

dRal

dt
= τσIal − (ψ + µh)Ral,

dCp

dt
= ρIl + θIal − µbCp,

dSv

dt
= θv − βv(Ia + Ial)Sv − µvSv,

dIv
dt

= βv(Ia + cIal)Sv − µvIv.

All variables and parameters are as defined in [65]. The sub-models (anthrax only

and listeriosis only models) show that a unique and endemic equilibrium exists

whenever the basic reproduction number is greater than one, and they show that

the model stabilizes to a disease free equilibrium whenever the basic reproduction

number is less than one. For the coinfection model, the model exhibits backward

bifurcation, and it follows from the backward bifurcation that the disease free

equilibrium and the endemic equilibrium coexist whenever the basic reproduction

number is less than one. Sensitivity analysis was carried out for both sub-models.

For the anthrax sub-model, the basic reproduction number was most sensitive to

the human transmission rate, vector transmission rate, human recruitment rate and

the vector recruitment rate; for the listeriosis sub-model, the basic reproduction

number was most sensitive to the bacteria ingestion rate, listeriosis related death

rate, human recruitment rate and the listeriosis shedding rate. For the coinfection

model, increases in the infected classes of anthrax listeriosis are caused by an
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increase in the human contact rate.

The implications of HIV treatment on the HIV-malaria coinfection dynamics were
studied from a modelling perspective by Nyabadza et al. [59]. The model they
used to study the coinfection was the following,

dS

dt
= ΛH + ϕEM + γIM − (λM + λH + µ)S,

dEM

dt
= ΛMS − (ϕ+ p+ µ)EM ,

dIM
dt

= pEM − (γ + ωλH + µδM )IM ,

dIH
dt

= λHS + ϵ1γIHM − (η1λM + ρ1 + α1 + µ+ δH)IH ,

dTH
dt

= ρ1IH + qTHM − (α3 + η3λM + µ+ φδH)TH ,

dAH

dt
= α1IH + ϵ2γAHM − (η2λM + ρ2 + µ+ δA)AH ,

dTA
dt

= ρ2AH + α3TH + σqTAM − (η4δM + µ+ φδA)TA,

dIHM

dt
= η1λMIH + ωλMIM − (ϵ1γ + α2 + µ+ τδM )IHM ,

dAHM

dt
= α2IHM + η2λMAH − (ϵ2γ + µ+ τδA)AHM ,

dTHM

dt
= η3λMTH − (q + α4 + µ+ τδH)THM ,

dTAM

dt
= η4λMTA + α4THM − (σq + µτδA)TAM ,

dSV

dt
= ΛV − (λV + µV )SV ,

dEV

dt
= λV SV − (θV + µV )EV ,

dIV
dt

= θV EV − µV IV .

All variables and parameters are as defined in [59]. The model showed that
understanding the dynamics of HIV in malaria endemic settings is vital to un-
derstanding the overall disease burden within Sub Saharan Africa. The model
demonstrated that malaria exacerbates HIV prevalence, and it also showed that
treatment remains one of the most crucial aspects of control for this disease. The
authors advocate for a control strategy that is centered around treatment. How-
ever, the model displayed two major limitations: firstly, the number of parameters
that were obtained from the literature was very low — only five of the forty three
parameters were not estimated; secondly, the dynamics of those who are initially
infected with malaria and subsequently infected with HIV are not shown by the
model. This shows that only a partial understanding of the dynamics of the coin-
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fection of HIV and malaria can be obtained through this model.
The following coinfection model of malaria and cholera diseases with optimal
control was developed by Okosun and Makinde [63],

dSh

dt
= Λh + kRm + ωRc + ψRmc − βhIvSh − λSh − µhSh,

dIm
dt

= βhIvSh − λIm − (α+ µh + ϕ)Im,

dIc
dt

= λSh − βhIvIc − (δ + µh +m)Ic,

dGmc

dt
= βhIvIc + λIm − (σ + µh + η + q)Gmc,

dRm

dt
= αIm − (κ+ µh)Rm + ϵ(1− σ)Gmc,

dRc

dt
= δIc − (ω + µh)Rc + (1− ϵ)(1− σ)Gmc,

dRmc

dt
= σGmc − (ψ + µh)Rmc,

dBc

dt
= ρ(Ic + θGmc)− µbBc,

dSv

dt
= Λv − βv(Im +Gmc)Sv − µvSv,

dIv
dt

= βvSv(Im +Gmc)− µvIv.

All variables and parameters are as defined in [63]. The analysis of the confection

model showed that the model attained local stability at the disease free equilibrium

on condition the basic reproduction number was less than one. However, global

asymptotic stability at the disease free equilibrium is not guaranteed if the basic

reproduction number is less than one. This follows from the observation that

the model exhibits backwards bifurcation, so the endemic equilibrium and the

disease free equilibrium could coexist whenever the basically production number

is less than one. Impact analysis revealed the malaria infection increases the risk

of cholera, and that the converse was not true. It was discovered that a control

strategy that exclusively targets each of the diseases yielded sub optimal results.

Hence, optimal intervention was achieved when control of these two diseases was

conducted in tandem.

Common limitations in the models mentioned above are the following. First, we

observed that most of the models do not account for disease induced mortality.

This implies that their populations are assumed to be constant. This is a restric-
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tive assumption given that few societies meet this criterion. Models that factor

in changes to population levels tend to be more realistic. Second, behavioural

change induced by fear of infection and improvement of hygiene levels is seldom

modelled for these two infections. It is reasonable to assume that when lethal in-

fections like cholera and typhoid break out, people often change their behaviour to

avoid getting infected. Third, models often disproportionately focus on one of the

two transmission routes for these diseases. This is usually guided by the question

that is being answered in that investigation. We seldom find investigations that

quantify the impact of breaking the transmission in one of the routes has on the

transmission of the other route.

The subsequent chapter includes the analysis of a cholera and typhoid coinfection

mathematical model.



Chapter 3

Mathematical Analysis of Cholera
Typhoid Coinfection Transmission
Dynamics

3.1 Introduction

Cholera, an acute gastro-intestinal water-borne infection, is caused by the bac-

terium Vibrio Cholerae, V. cholerae O1 or O139. Some of the symptoms are

vomiting and diarrhoea. If treatment is delayed, it can lead to severe dehydration

and death within a few hours. The disease has two modes of transmission: direct

and indirect transmission. Direct transmission (human-human) is very uncom-

mon, whilst indirect transmission (environment-human), which occurs through

the ingestion of contaminated food or water [13], is more frequent. A known es-

timate for the incubation period of cholera is 1.4 days [7]. On the other hand,

the Salmonella Typhi bacteria is responsible for causing the life threatening ty-

phoid fever disease. Cholera and typhoid fever have the same transmission modes.

The recticuloendothelical system, the intestinal lymphoid, and the gall bladder are

severely damaged by the typhoid fever disease. Once a susceptible individuals is

28
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infected with typhoid fever, roughly 19 days are required for the disease to incu-

bate within the host [81].

Mathematical models have been used for the past decades to give insights into

the transmission dynamics of coinfections within the human population. Akinyi

et al. [3], showed that whenever the basic reproduction number is lowered to be-

low one, then the malaria and the pneumonia cases will be reduced in a model of

malaria-pneumonia coinfection. Onyinge et al. [64] modelled the co-dynamics of

pneumonia and HIV, and they showed that the model was mathematically and epi-

demiologically sound; Mushayabasa et al. [54] modelled malaria-typhoid coin-

fection and demonstrated that a typhoid outbreak will inevitably lead to a spike

in the malaria cases. A number of mathematical models on typhoid have been

proposed by a number of researchers. Mushayabasa [55], modelled how vaccines

can help mitigate the spread of typhoid in Ghana. Pitzer et al. [69], extended the

work in [55] by applying the model to South Asia. Khan et al. [36], studied the

typhoid disease with a saturated incidence rate.

To the best of our knowledge, the coinfection dynamics of typhoid and cholera

have not been investigated in the literature. A recent outbreak of these two in-

fections in Zimbabwe prompted this theoretical inquiry into how these infections

interact. Due to the complicated nature of the coinfection model, we begin our

analysis by studying the underlying sub-models; namely, the cholera only and the

typhoid only sub-models. For each of the models, a number of pertinent questions

are investigated. The questions explored include: Which factors in the models are

key to decreasing the prevalence of each disease and the coinfection? Within the

population, are the infections in competition with each other, or are they symbi-

otic? The implications of the results to the public health are discussed.

The paper is arranged as follows; the development of the model and the properties

of the basic reproduction number are established in Section 2. Section 3 contains

the stability analysis of the model at the fixed points. Numerical simulations and

parameter estimations are done in section 4. Section 5 concludes the chapter.
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3.2 Methodology

3.2.1 Model Development

Our typhoid cholera coinfection model partitions the human population N(t), at

time t, into a susceptible class S(t), a cholera infection class Ic(t), a typhoid

infection class It(t), a coinfection class Ict(t), a cholera recovery class Rc(t), a

typhoid recovery class Rc(t), and a coinfection recovery class Rct(t). Thus,

N(t) =S(t) + Ic(t) +Rc(t) + It(t) +Rt(t) + Ict(t) +Rct(t).

The bacterial concentration of Salmonella Typhi, Bt(t), and Vibrio Cholerae,

Bc(t), in the environment are incorporated into the model as well. The formu-

lation of this model is an extension to the work carried out by Matsebula et al.

[45].

Since the incubation periods of the two infections are different, we assume that

dually infected individuals can only transmit either cholera or typhoid but not both

infections simultaneously. Transmission of cholera to susceptible individuals oc-

curs in one of two routes—the direct transmission route (human-to-human) and

the indirect transmission route (envirnment-to-human). The rates of the transmis-

sion routes, respectively, are given by

λc1 =
βc1(Ic + ηcIct)

N
, λc2 =

βc2Bc

Bc + κc

.

The parameter βc1 denotes the person-to-person cholera transmission. The effec-

tive contact rate for cholera multiplied by the probability of cholera transmission

per contact gives the person to person cholera transmission. The modification pa-

rameter ηc, accounts for the relative infectiousness of individuals in class Ic rela-

tive to individuals in class Ict. Since the contact rate of dually infected individuals

is lower than the contact rate of individuals infected with a single disease (cholera

or typhoid), it follows that ηc ∈ (0, 1). The decreasing growth rate of bacteria and

the saturation of bacteria are best modelled by a type II functional response. The



3.2. Methodology 31

parameter βc2 denotes the environment-to-humans per capita contact rate and the

Vibrio Cholerae in the contaminated environment, whilst the parameter κc denotes

the half saturation constant of the Vibrio Cholerae. The half saturation constant

is the bacterial concentration that is required to support half of the maximum rate,

βc2 .

Similarly, the transmission of typhoid to susceptible individuals occurs in one

of two routes—the direct transmission route (human-to-human) and the indirect

transmission route (envirnment-to-human). The rates of the transmission routes,

respectively, are given by

λt1 =
βt1(It + ηtIct)

N
, λt2 =

βt2Bt

Bt + κt

.

The parameter βt1 denotes the effective person-to-person typhoid transmission

rate. The effective contact rate for typhoid multiplied by the probability of typhoid

transmission per contact gives the person to person typhoid transmission. The

modification parameter ηt, accounts for the relative infectiousness of individuals

in class It relative to individuals in class Ict. Analogously, the force of infection,

λt2 , is modelled using a type II functional response, and it is assumed that

ηt ∈ (0, 1). The per capita contact rate between the susceptibles and Salmonela

typhi is represented by βt2 , and the half saturation constant for λt2 is κt.

Transmission of cholera to typhoid infected individuals occurs in one of two

routes—the direct transmission route (human-to-human) and the indirect trans-

mission route (environment-to-human). The rates of the transmission routes, re-

spectively, are given by

λc3 =
βc3(Ic + ηcIct)

N
, λc4 =

βc4Bc

Bc + κc

.

The parameter βc3 denotes the effective person-to-person cholera transmission

rate of individuals in class It. The parameter βc4 denotes the environment-to-

humans per capita contact rate for individuals in class It and the Vibrio Cholerae

in the contaminated environment. Transmission of typhoid to cholera infected

individuals occurs in one of two routes—the direct transmission route (human-to-

human) and the indirect transmission route (environment-to-human). The rates of
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the transmission routes, respectively, are given by

λt3 =
βt3(It + ηtIct)

N
, λt4 =

βt4Bt

Bt + κt

.

The parameter βt3 denotes the person-to-person typhoid transmission rate of in-

dividuals in class Ic. The parameter βt4 denotes the environment-to-humans per

capita contact rate for individuals in class Ic and the Salmonella Typhi in the con-

taminated environment.

Infected individuals in classes Ic, It and Ict experience disease related death at

rates given respectively by δc, δt and δct. Individuals in the infectious states Ic

and It respectively excrete Vibrio Cholerae bacteria and Salmonella Typhi bacte-

ria into the environment at rates αc and αt. Coinfected individuals shed Vibrio

Cholerae and Salmonella Typhi into the environments at rates θc and θt, respec-

tively. Infection is assume to confer temporary immunity. The cholera and typhoid

immunity wanes at rates ρc, ρt and ρct.

The generation rate of Vibrio Cholerae is gcBc

(
1− Bc

kc

)
, and its growth is en-

hanced by cholera infected individuals and the coinfected individuals that are

shedding into the environment. The generation rate of Salmonella Typhi is

gtBt

(
1− Bt

kt

)
and its growth is enhanced by typhoid infected individuals and the

coinfected individuals that are shedding into the environment. We assume that

the Vibrio Cholerae and the Salmonella Typhi bacteria in the environment are re-

spectively removed by interventions such as improved sanitation and treatment

of contaminated environments at rates µc and µt. The parameter Λ represents

the recruitment into the susceptibles, while the parameter µ represents the natural

death rate. It is assumes that individuals mix homogeneously and that they are

indistinguishable in each of the classes. The model diagram is shown in Figure

3.1.

The dynamical system associated with the schematic diagram in Figure 3.1 is the

following,
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Ic

IctS

It

Bc

Bt

Rc

Rt

Rct

λcS

λtS

λ1Ic

λ2It

ϵcIc

ϵctIct

ϵtIt

ρtRt

ρcRc

ρctRct

αcIc

αtIt

χ1

χ2

Λ

µBc (µ+ δc)Ic µRc

µS (µ+ δct)Ict µRct

µBt (µ+ δt)It µRt

Figure 3.1: The cholera typhoid coinfection compartmental model. For the concise presentation

of our model flow diagram, we make use of the following expressions:

χ1 = gcBc

(
1− Bc

kc

)
+ θcIct, χ2 = gtBt

(
1− Bt

kt

)
+ θtIct, λc = λc1 + λc2 ,

λt = λt1 + λt2 , λ1 = λt3 + λt4 , λ2 = λc3 + λc4 .
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dS

dt
=Λ− (λc1 + λc2 + λt1 + λt2)S − µS + ρcRc + ρtRt + ρctRct,

dIc
dt

=(λc1 + λc2)S − (λt3 + λt4)Ic − (µ+ δc + ϵc)Ic,

dIt
dt

=(λt1 + λt2)S − (λc3 + λc4)It − (µ+ δt + ϵt)It,

dIct
dt

=(λt3 + λt4)Ic + (λc3 + λc4)It − (µ+ δct + ϵct)Ict,

dRc

dt
=ϵcIc − (µ+ ρc)Rc, (3.1)

dRt

dt
=ϵtIt − (µ+ ρt)Rt,

dRct

dt
=ϵctIct − (µ+ ρct)Rct,

dBc

dt
=gcBc

(
1− Bc

kc

)
+ αcIc + θcIct − µcBc,

dBt

dt
=gtBt

(
1− Bt

kt

)
+ αtIt + θtIct − µtBt,

with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Bt(0) = Bt0 ≥ 0, Ic(0) = Ic0 ≥ 0,

It(0) =It0 ≥ 0, Ict(0) = Ict0 ≥ 0, Rc(0) = Rc0 ≥ 0, Rt(0) = Rt0 ≥ 0,

Rct(0) =Rct0 ≥ 0.

3.2.2 Cholera-only Model

We define the cholera only model as the model obtained from setting all the ty-

phoid classes and its associated parameters to zero. We thus have the following

dS

dt
= Λ− (λ̃c1 + λc2)S − µS + ρcRc,

dIc
dt

= (λ̃c1 + λc2)S − qcIc,

dRc

dt
= ϵcIc − (µ+ ρc)Rc, (3.2)

dBc

dt
= gcBc

(
1− Bc

kc

)
+ αcIc − µcBc,



3.2. Methodology 35

where

λ̃c1 =
βc1Ic
Nc

, qc = µ+ δc + ϵc, Nc = S + Ic +Rc,

with initial conditions

S(0) = S0 > 0, Bc(0) = Bc0 ≥ 0, Ic(0) = Ic0 ≥ 0, Rc(0) = Rc0 ≥ 0.

3.2.2.1 Boundedness and Non-negative Trajectories

We argue that model (3.2) yields non negative trajectories in this section. Within

the feasible region, Ω ⊆ Ωc, we summarize the results on the boundedness and

positivity of the solutions to the cholera model, where

Ωc =

{
(S, Ic, Rc, Bc)

∣∣∣∣0 ≤ Nc ≤
Λ

µ

]
, Bc ∈

[
0,max

{
kc(gc − µc + 1)

gc
, αc

Λ

µ

}]}
.

Theorem 1. The set Ωc is a positively invariant domain for dynamical system

(3.2).

Proof. Since Ic ≤ Nc and Bc ≤ Bc + κc, it follows that

dS

dt
≥ −(λ̃c1 + λc2 + µ)S ≥ − (βc1 + βc2 + µ)S. (3.3)

If we integrate the separable differential inequality (3.3), we get a lower bound

S ≥ S0 exp(− (βc1 + βc2 + µ) t). Integrating the inequality

dIc
dt

≥ −qcIc

produces a lower bound Ic ≥ Ic0 exp (−qct) . Similarly,

Rc ≥ Rc0 exp(−(µ + ρc)t). The bacterial class, Bc, gives us the differential in-

equality

dBc

dt
≥ gcBc

(
1− Bc

kc

)
− µcBc.
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This is a Bernoulli type differential inequality. The substitution, y = B−1
c , pro-

duces a separable differential inequality

dy

dt
+ Φcy ≤ ηc, (3.4)

where Φc = gc − µc, ηc = gc/kc. Integrating (3.4) and substituting Bc back gives

the lower bounds

Bc ≥
Φc

ηc −M exp(−Φct)
≥ −Φc

M exp(−Φct)
,

for some positive constant M . Note that Bc ≥ 0 whenever µc ≥ gc.

Theorem 2. All solutions of the cholera only sub-model (3.2) are bounded within

Ω whenever µc ≥ gc.

Proof. The time derivative of the population for the cholera model (3.2) is bounded

above by

dNc

dt
= Λ− µNc − δcIc ≤ Λ− µNc,

Upper bounds for the human population, Nc(t), are obtained by integrating the

separable differential inequality as follows,

Nc ≤
Λ−M exp(−µt)

µ
≤ Λ

µ
.

By extension, Λ/µ is also the upper bound for each of the human classes. Whereas,

owing to Ic ≤ Nc ≤ Λ/µ, an upper bound for the bacterial classes can be obtained

as follows,

dBc

dt
= gcBc

(
1− Bc

kc

)
+ αcIc − µcBc ≤ gcBc

(
1− Bc

kc

)
+ αc

Λ

µ
− µcBc.

(3.5)

From inequality (3.5), if

Bc ≥ αc
Λ

µ
, (3.6)
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then
dBc

dt
≤ (gc − µc)Bc − gc

kc
B2

c +Bc = (gc − µc + 1)Bc

(
1− gcBc

kc(gc − µc + 1)

)
,

(3.7)

The constant
kc(gc − µc + 1)

gc
, (3.8)

is the upper bound for the differential inequality (3.7) since (3.7) is the logistic

growth model with carrying capacity (3.8). For some t ≥ 0, (αc + θc)Λ/µ is an

upper bound for Bc whenever (3.6) is false, whilst Bc is bounded above by (3.8)

for the rest of the time points in the domain of Bc if (3.6) is true. Thus, in both

cases, Bc ≤ max

{
kc(gc − µc + 1)

gc
, αc

Λ

µ

}
.

3.2.2.2 The Stability of the Disease Free Equilibrium and the Reproduction
Number, RC .

The disease free equilibrium of system (3.2) is given by

x0 = (S, Ic, Rc, Bc) =

(
Λ

µ
, 0, 0, 0

)
.

The Jacobian of dynamical system (3.2) is given by

J =


−µ −βc1 ρc −Λβc2

µκc

0 βc1 − qc 0
Λβc2

µκc

0 ϵ −(µ+ ρc) 0

0 αc 0 gc − µc

 .

The dynamical system (3.2) is locally asymptotically stable if all four of its eigen-

values have negative real parts. Two of the eigenvalues for the Jacobian, J , are

λ1 = −µ and λ2 = −(µ+ρc). The other two eigenvalues for J are the eigenvalues

from the sub-matrix

J̄ =

 βc1 − qc
Λβc2

µκc

αc gc − µc

 .
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The characteristic equation for matrix J̄ is λ2 + ν1λ+ ν2, where

ν1 =−
(
(gc − µc) + (βc1 − qc)

)
,

ν2 =(βc1 − qc)(gc − µc)

(
1− αcβc2Λ

(βc1 − qc)(gc − µc)κcµ

)
=(βc1 − qc)(gc − µc) (1−RC) ,

and

RC =
αcβc2Λ

κcµµcqc(1−Rh)(1−Rb)
, Rh =

βc1

qc
Rb =

gc
µc

.

The constants Rb and Rh are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively. The constant RC is the so-called

basic reproduction number for the system (3.2). Clearly, Rh,Rb < 1 or Rh,Rb >

1 if and only if RC > 0.

It follows from the Routh Hurwitz criterion that the two eigenvalues of J̄ have

negative real parts if ν1, ν2 > 0. It is easy to see that ν1, ν2 > 0 if Rh < 1, Rh < 1

and RC < 1. Hence, a positive basic reproduction number for system (3.2) that

is less than unity implies that the system is locally asymptotically stable at the

disease free equilibrium.

3.2.2.3 Endemic Equilibrium

Setting the derivatives of the classes to zero gives the endemic equilibrium for the

cholera only sub-model (3.2). Let λ = λ̃c1 + λc2 .

dS

dt
= Λ− (λ+ µ)S + ρcRc, (3.9)

dIc
dt

= λS − qcIc, (3.10)

dRc

dt
= ϵcIc − (µ+ ρc)Rc, (3.11)

dBc

dt
= gcBc

(
1− Bc

kc

)
+ αcIc − µcBc. (3.12)

From (3.10),

S∗ =
qc
λ∗ I

∗
c .
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From (3.9),

R∗
c =

1

ρc

[
AqcI

∗
c

λ∗ − Λ

]
.

Consider (3.11),

ϵI∗c −
(µ+ ρc)

ρc

[
AqcI

∗
c

λ∗ − Λ

]
= 0,

therefore

I∗c =
λ∗Λ (µ+ ρc)

qcA (µ+ ρc)− ϵcρcλ∗ .

Given that

λ∗ =
βc1I

∗
c

S + Ic +Rc

+
βc2Bc

Bc + κc

.

Using (3.12), we have a quadratic equation in Bc of the form

ν2B
2
c + ν1Bc + ν0 = 0,

where

ν2 = gc
[
qcA (µ+ ρc)− ϵcρcλ

∗] , ν1 = −µcκc(Rb − 1)ν2,

ν0 = −λ∗Λκcαc (µ+ ρc) ,

with

Rb =
gc
µc

.

Clearly, ν0 < 0, ν1 < 0 if Rb > 1. Since

Bc =
−ν1 ±

√
ν2
1 − 4ν2ν0

2ν2
, (3.13)

it follows that if ν2 < 0, Rb > 1, then Bc has negative roots, and if ν2 > 0,

Rb > 1, then Bc has only one positive root. We shall call the positive root B+
c .

Let

B =
B+

c

B+
c + κc

.

Then

λ∗
c2
=

βc2B
+
c

B+
c + κc

= βc2B.
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We have an expression for λ∗ such that

a2λ
∗2 + a1λ

∗ + a0 = 0 (3.14)

where,

a2 =µ+ ϵc + ρc > 0, a1 = qc (µ+ ρc)− (βc1 (µ+ ρc) +Bβc2(µ+ ϵc + ρc)),

a0 =−Bqcβc2 (µ+ ρc) < 0.

Since

λ =
−a1 ±

√
a21 − 4a2a0
2a2

,

it follows that if a1 > 0, then the polynomial (3.14) has a positive root, and if

a1 < 0, then the polynomial (3.14) has a positive root. So the polynomial (3.14)

will always have one positive root.

So system (3.2) has a unique endemic equilibrium if Rb > 1.

Remark 1. Due to the symmetric structure of the cholera only and typhoid only

sub-models, the typhoid only sub-model has similar structural results to those

obtained for the cholera only sub-model. To avoid repetition, we have not shown

the analysis of the typhoid only sub-model.

3.2.3 Cholera-Typhoid Coinfection Model

We study the full coinfection model (3.1) in this section.

3.2.3.1 Non-negative Trajectories and Boundedness

We prove in this subsection that model (3.1) has non-negative trajectories. Within
the feasible region, Ω ⊆ Ωco, we summarize the results on the boundedness and
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positivity of the solutions to the coinfection model (3.1).

Ωco =

{
(S, Ic, It, Ict, Rc, Rt, Rct, Bc, Bt)

∣∣∣∣0 ≤ N ≤ Λ

µ
,

Bc ∈
[
0,max

{
kc(gc − µc + 1)

gc
, (αc + θc)

Λ

µ

}]
,

Bt ∈
[
0,max

{
kt(gt − µt + 1)

gt
, (αt + θt)

Λ

µ

}]}
.

Theorem 3. All solutions of the coinfection model (3.1) are positively invariant

within Ω whenever µc ≥ gc and µt ≥ gt.

Proof. Since Λ + ρcRc + ρtRt + ρctRct ≥ 0, it follows that

dS

dt
≥− (λc1 + λc2 + λt1 + λt2 + µ)S

=−
(
βc1(Ic + ηcIct)

N
+

βc2Bc

Bc + kc
+

βt1(It + ηtIct)

N
+

βt2Bt

Bt + kt
+ µ

)
S.

(3.15)

From inequality (3.15), and since max{1, ηc} ≥ ηc, max{1, ηc} ≥ 1,
max{1, ηt} ≥ ηt, max{1, ηt} ≥ 1, we have

dS

dt

≥−
(
βc1(Ic +max{1, ηc}Ict)

N
+

βc2Bc

Bc + kc
+
βt1(It +max{1, ηt}Ict)

N
+

βt2Bt

Bt + kt
+ µ

)
S,

≥−
(
max{1, ηc}βc1(Ic + Ict)

N
+

βc2Bc

Bc + kc
+

max{1, ηt}βt1(It + Ict)

N
+

βt2Bt

Bt + kt
+ µ

)
S,

≥−
(
max{1, ηc}βc1 + βc2 +max{1, ηt}βt1 + βt2 + µ

)
S.

The last inequality follows from Ic + Ict ≤ N , It + Ict ≤ N , Bc ≤ Bc + κc and

Bt ≤ Bt + κt. If we integrate the separable differential inequality above, we get

S ≥ S0 exp
(
−t
(
max{1, ηc}βc1 + βc2 +max{1, ηt}βt1 + βt2 + µ

))
. Similarly,

Ic ≥ Ic0 exp
(
−
(
max{1, ηt}βt3 + βt4 + qc

)
t
)

,

It ≥ It0 exp
(
−
(
max{1, ηc}βc3 + βc4 + qt

)
t
)

,

Ict ≥ Ict0 exp(−qctt), Rct ≥ Rct0 exp(−(µ+ ρct)t), where qct = µ+ δct + ϵct.

Note that for both models — the cholera only model (3.2) and the coinfection

model (3.1) — each of the trajectories above are bounded below by the product
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of a non-negative constant and a non-negative function of t. This implies that

all these products are also non-negative for all values of t. Hence, each of these

trajectories are bounded below by zero.

The bacterial classes give us the differential inequality

dBc

dt
≥ gcBc

(
1− Bc

kc

)
− µcBc.

This is a Bernoulli type differential inequality. The substitution, y = B−1
c , pro-

duces a separable differential inequality

dy

dt
+ Φcy ≤ ηc, (3.16)

where Φc = gc−µc, ηc = gc/kc. Integrating (3.16) and substituting Bc back gives

the lower bounds

Bc ≥
Φc

ηc −M exp(−Φct)
≥ −Φc

M exp(−Φct)
,

for some positive constant M . Note that Bc ≥ 0 whenever µc ≥ gc. Similarly,

Bt ≥ 0 whenever µt ≥ gt.

Theorem 4. All solutions of the coinfection model (3.1) are bounded within Ω

whenever µc ≥ gc and µt ≥ gt.

Proof. Since δct(Ic+ Ict) ≥ 0, it follows that the upper bound for the time deriva-

tive of the total human population, N(t), is

dN

dt
= Λ− µN − δct(Ic + Ict) ≤ Λ− µN.

Using separation of variables, we obtain the following upper bound for the human

population,

N ≤ Λ−M exp(−µt)

µ
≤ Λ

µ
.

This upper bound for the population implies that each of the classes are also

bounded above by the same constant Λ/µ. Since Ic, Ict ≤ Λ/µ, it follows that
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the upper bound for the bacterial concentration of Vibros Cholerae is bounded

above by

dBc

dt
=gcBc

(
1− Bc

kc

)
+ αcIc + θcIct − µcBc,

≤gcBc

(
1− Bc

kc

)
+ (αc + θc)

Λ

µ
− µcBc. (3.17)

From inequality (3.17), if

Bc ≥ (αc + θc)
Λ

µ
, (3.18)

then,
dBc

dt
≤ (gc − µc)Bc −

gc
kc
B2

c +Bc,

= (gc − µc + 1)Bc

(
1− gcBc

kc(gc − µc + 1)

)
. (3.19)

The constant

kc(gc − µc + 1)

gc
, (3.20)

is the upper bound for the differential inequality (3.19) since (3.19) is the logistic

growth model with carrying capacity (3.20). For some t ≥ 0, (αc + θc)Λ/µ is

an upper bound for Bc whenever (3.18) is false, whilst Bc is bounded above by

(3.20) for the rest of the time points in the domain of Bc if (3.18) is true. Thus, in

both cases,

Bc ≤ max

{
kc(gc − µc + 1)

gc
, (αc + θc)

Λ

µ

}
.

3.2.3.2 Stability Analysis of the Disease Free Equilibrium and Reproduc-
tion Number, R0

We find the conditions required for the disease free equilibrium for dynamical

system (3.1) to be locally asymptotically stable in this section. The disease free
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equilibrium of dynamical system (3.1) is

(S, Ic, It, Ict, Rc, Rt, Rct, Bc, Bt) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
=: X0.

The Jacobian of the full system is

J = (3.21)

−µ −βc1 −βt1 −(βc1ηc + βt1ηt) ρc ρt ρct −Λβc2

µκc
−Λβt2

µκt

0 βc1 − qc 0 ηcβc1 0 0 0
Λβc2

µκc
0

0 0 βt1 − qt ηtβt1 0 0 0 0
Λβt2

µκt

0 0 0 −(µ+ δct + ϵct) 0 0 0 0 0

0 ϵc 0 0 −(µ+ ρc) 0 0 0 0

0 0 ϵt 0 0 −(µ+ ρt) 0 0 0

0 0 0 ϵct 0 0 −(µ+ ρct) 0 0

0 αc 0 θc 0 0 0 gc − µc 0

0 0 αt θt 0 0 0 0 gt − µt


,

(3.22)

The dynamical system (3.1) is locally asymptotically stable if all nine of its eigen-

values have negative real parts. Five of the eigenvalues for the Jacobian, J , are

λ1 = −µ, λ2 = −(µ+ ρc), λ3 = −(µ+ ρt), λ4 = −(µ+ ρct) and

λ5 = −(µ+ δct + ϵct). The other four eigenvalues for J are the eigenvalues from

the sub-matrix

J̄ =


βc1 − qc 0

Λβc2

µκc
0

0 βt1 − qt 0
Λβt2

µκt

αc 0 gc − µc 0

0 αt 0 gt − µt

 .

The characteristic equation for matrix J̄ is (λ2 + ν1λ+ ν2)(λ
2 + ν3λ+ ν4), where

ν1 = −
(
(gc − µc) + (βc1 − qc)

)
, ν2 = (βc1 − qc)(gc − µc) (1−RC) ,

ν3 = −
(
(gt − µt) + (βt1 − qt)

)
, ν4 = (βt1 − qt)(gt − µt) (1−RT ) ,

and

RC =
αcβc2Λ

κcµµcqc(1−Rc
h)(1−Rc

b)
, RT =

αtβt2Λ

κtµµtqt(1−Rt
h)(1−Rt

b)
,

Rc
h =

βc1

qc
Rc

b =
gc
µc

, Rt
h =

βt1

qt
Rt

b =
gt
µt

.
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The constants Rc
b and Rc

h are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the cholera only sub-model.

The constants Rt
b and Rt

h are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the typhoid only sub-model.

The constants RC and RT are the so-called basic reproduction numbers for the

cholera only sub-model and the typhoid only sub-model, respectively. Clearly,

Rc
h,Rc

b < 1 or Rc
h,Rc

b > 1 if and only if RC > 0; Similarly, Rt
h,Rt

b < 1 or

Rt
h,Rt

b > 1 if and only if RT > 0.

We note that

ν2 >(βc1 − qc)(gc − µc)
(
1−max {RC ,RT}

)
,

ν4 >(βt1 − qt)(gt − µt)
(
1−max {RC ,RT}

)
.

Thus

R0 = max {RC ,RT} .

The constant R0 is the basic reproduction number for the systems (3.1). It follows

from the Routh Hurwitz criterion that the four eigenvalues of J̄ have negative real

parts if ν1, ν2, ν3, ν4 > 0. It is easy to see that ν1, ν2, ν3, ν4 > 0 if Rt
h < 1,Rt

b < 1,

Rt
h < 1,Rt

b < 1 and R0 < 1. Hence, a positive basic reproduction number for

system (3.1) that is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

3.2.3.3 Global Stability Analysis of the Disease Free Equilibrium

If we define the M = (S,Rc, Rt, Rct) and N = (Ic, It, Ict, Bc, Bt), then we can

cast the system (3.1) into the following form,

dM

dt
= F(M,N),

dN

dt
= G(M,N), G(M,0) = 0,

whereas,

U0 = (M∗,0), M∗ =

(
Λ

µ
,0

)
,
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represents the disease free equilibrium. For global stability to be established, the

following conditions must be met by any system.

(C1)
dM

dt
= F(M,0), M∗ is globally asymptotically stable,

(C2) G(M,N) = AN− Ĝ(M,N), Ĝ(M,N) = 0 for (M,N) ∈ Ω,

where the region of biological significance is ω and the matrix A = DYG(M∗,0)

is a Metzler matrix.

Theorem 5. The fixed point U0 = (M∗,0) is a globally asymptotically stable

equilibrium of the system provided that R0 < 1, and conditions (C1) and (C2)

are satisfied.

Applying condition (C1) to the system gives

dM

dt
= F(M∗,0) =


Λ− µS + ρcRc + ρtRt + ρctRct

−(µ+ ρc)Rc

−(µ+ ρt)Rt

−(µ+ ρct)Rct

 . (3.23)

The Jacobian of equation (3.23) is

DXF(M
∗,0) =


−µ ρc ρt ρct

0 −(µ+ ρc) 0 0

0 0 −(µ+ ρt) 0

0 0 0 −(µ+ ρct)

 .

The solution for system (3.23) is

X =c1 exp(−ut)e1 + c2 exp(−(u+ ρc)t)(e1 − e2) + c3 exp(−(u+ ρt)t)(e1 − e3)

+ c4 exp(−(u+ ρct)t)(e1 − e4) +
Λ

µ
e1,

where {e1, e2, e3, e4} is the standard basis in E4. Thus, limt→∞ M = M∗.
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Applying condition (C2) to the system yields

A =



βc1 − qc 0 ηcβc1
βc2Λ

κcµ
0

0 βt1 − qt ηtβt1 0
βt2Λ

κtµ

0 0 −qct 0 0

αc 0 θc gc − µc 0

0 αt θt 0 gt − µt


and

Ĝ =



βc1 (Ic + ηcIct)
(
1− S

N

)
+ (λt3 + λt4) Ic + βc2Bc

(
Λ
κcµ

− S
Bc+κc

)
βt1 (It + ηtIct)

(
1− S

N

)
+ (λc3 + λc4) It + βt2Bt

(
Λ
κtµ

− S
Bt+κt

)
− (λt3 + λt4) Ic − (λc3 + λc4) It

gc
κc
B2

c

gt
κt
B2

t


.

Notably, − (λt3 + λt4) Ic − (λc3 + λc4) It ≱ 0 for (M,N) ∈ Ω, hence condition

(C2) is not satisfied. This implies that the disease free equilibrium U0 may not be

globally asymptotically stable.

3.2.3.4 Impact Analysis

In this section, we show how cholera affects typhoid, and through symmetry, we

show how typhoid affects cholera.

The reproduction numbers for cholera and typhoid are

RC =
αcβc2Λ

κcµµcqc(1−Rc
h)(1−Rc

b)
, RT =

αtβt2Λ

κtµµtqt(1−Rt
h)(1−Rt

b)
, (3.24)

respectively. These two reproduction numbers are dependent on each other. The

constant, Λ/µ, allows for the expression of one reproduction number in terms of

the other. From the second equation above, (3.24), isolating, Λ/µ, yields

RC = RT
αcβc2κtµtqt(1−Rt

h)(1−Rt
b)

αtβt2κcµcqc(1−Rc
h)(1−Rc

b)
. (3.25)
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Differentiating RC with respect to RT gives

∂RC

∂RT

=
αcβc2κtµtqt(1−Rt

h)(1−Rt
b)

αtβt2κcµcqc(1−Rc
h)(1−Rc

b)
. (3.26)

We conclude that an increase in cholera cases may be associated with an increase

in typhoid cases, and an increase in typhoid cases may be associated with an

increase in cholera cases. This conclusion is subject to the following conditions:

firstly, the the bacterial regeneration threshold for both cholera and typhoid must

be less than unity; secondly, the human-to-human sub reproduction number for

both cholera and typhoid must also be less than unity. This result proves the

symbiotic nature of the relationship between the typhoid disease and the Cholera

disease.

3.3 Numerical Simulations

In this section, we give a brief outline of the numerical results obtained in the

investigation. Table 3.1 shows the parameters of the cholera typhoid coinfection

model (3.1). The basic reproduction number, R0, obtained from the Table 3.1

is 1.4. The initial conditions used to produce the figures in this section were:

S(0) = 99980, Ic(0) = 20, It(0) = 20, Ict(0) = 20, Rc(0) = 0,

Rt(0) = 0, Rct(0) = 0, Bc(0) = 40000, Bt(0) = 40000. Note that all figures in

this section are presented in the logarithmic scale since the range of some of the

plots spanned several orders of magnitude.
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Par. Range Point Value Source

βc1 1 Assumed
βt1 1 [55]
βc2 (0.1—1) 1.97× 10−11 [19, 9, 44, 57]
βt2 1.97× 10−11 [52]
βc3 0.5 Assumed
βt3 1 Assumed
βc4 10−1 Assumed
βt4 10−1 Assumed
kc (106—109) 5× 106 [19]
kt 5× 106 Assumed
δc 6.58× 10−1 [57, 75, 77]
δt 0.6 [52]
ρc 8.12× 10−3 [37, 74]
ρt 1.3× 10−3 [62]
ρct 1.3× 10−3 Assumed
gc 0.014 Assumed

Par. Range Point Value Source

gt 0.014 [56]
αc 10 Assumed
αt 10 [56]
µ (0.017—0.123) 0.02 [27, 50, 57]
µt 0.0345 [56]
Λ (100—467) 449.32 [12]
µc 0.0345 Assumed
ϵc (0.07—0.245) 0.07 [74, 57, 75, 28]
ϵt 0.1 [2, 53]
ϵct 0.1 Assumed
κc 0.62 Assumed
κt 0.62 Assumed
θc 0.8 Assumed
θt 0.8 Assumed
ηc 7× 10−4 Assumed
ηc 7× 10−2 Assumed

Table 3.1: Parameter values and their sources.

Coupled with the parameters from Table 3.1, the sensitivity indices of the vari-

ables above are shown on Figure 3.2. Latin Hypercube sampling was utilized to

generate the plot above (Figure 3.2). This method returns the correlation between

the state variable Ict and each of the model parameters, and it also returns the

ranks of all these correlations (PRCC). The simulation was carried out over 1000

runs. A parameter with a negative PRCC value means that parameter is negatively

correlated with Ict, whilst a parameter with a positive PRCC value represents a

positive correlation between that parameter and Ict. Relative to the current model

parameters, we note that the coinfection class is most sensitive to changes to the

person-to-person typhoid transmission rate, βt1 , and the correlation is positive be-

tween this parameter and the state variable. The typhoid induced death rate is that

second most sensitive parameter to the coinfection class, and it is negatively cor-

related to the coinfection class. Due to the large number of parameters in model

3.1, we have opted to split the PRCC values into 4 equal sets, see Figure 3.2.
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(a) (b)

(c) (d)

Figure 3.2: The correlation between the coinfected class and each of the model’s parameter are

shown in this bar graph (PRCC). (a) Shows the PRCC values for {Λ, βc1 , βt1 , βc2 , βt2 , κc, κt, µ}.

(b) Shows the PRCC values for {ρc, ρt, ρct, δc, δt, ϵc, ϵt, ϵct}. (c) Shows the PRCC values for

{gc, gt, kc, kt, αc, αt, µc, µt}. (d) Shows the PRCC values for {βt3 , βt4 , βc3 , βc4 , θc, θt, ηc, ηt}.

The contour map of R0 as a function of the typhoid recovery rate, ϵt, and the

cholera recovery rate, ϵc is shown in Figure 3.3. Using the parameters from Table

3.1, the base case as well as the contour levels are also shown in Figure 3.3. The

basic reproduction number R0 attains its global minimum if both the typhoid and

cholera recovery rate are maximised. It is be observed that, locally, a reduction in

the reproduction number, R0, is only achieved by increasing the cholera recovery
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rate. Since the reproduction number, R0, is the maximum of the reproduction

numbers of the individual diseases, it follows that a reduction in the reproduction

number, R0, means a reduction in the reproduction numbers of each of the dis-

eases. Hence, locally, an increase in the cholera recovery rate will not only reduce

the cholera reproduction number, Rc, but it has the added benefit of indirectly re-

ducing the reproduction number for typhoid, Rt, as well. It is also observed that

increasing the typhoid recovery rate exclusively will have no immediate benefits

locally. This finding is consistent with the previous findings of an optimal treat-

ment plan being centred around the recovery rate of cholera.

Figure 3.3: The contour map of the basic reproduction number, R0, as a function of the typhoid

recovery rate, ϵt, and the cholera recovery rate, ϵc.

We show the trajectories of the three infectious classes of model (3.1). An initial

surge in infections followed closely by an immediate recovery is shown in Figure

3.4. The phenomenon of waning immunity results in the smaller second wave of

infections. The coinfected class is the only exception to this observation. We see
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the coinfected class reach a local minimum before the first surge in cholera only

or typhoid only infections is reached. A possible reason for this is that, unlike

the cholera and typhoid classes, the coinfected class does not recruit directly from

the susceptible class. This is due to the fact that the cholera disease has a shorter

incubation period than the typhoid disease. The incubation periods are 1.4 days for

cholera [7] and 19 days for typhoid [81]. What is then observed in the coinfected

class is a case of people leaving the class either through death or recovery coupled

with the delayed recruitment into the class. All the diseases reach stability after

the second waves of infection.

Figure 3.4: The trajectories of the infectious classes.

In order to understand how the diseases interact with each other, we vary the dif-

ferent recovery rates and observe how the prevalence of each of the infections

change. In Figure 3.5, plot (a) and (b) show the impact of varying the recovery

rate of the coinfected on the cholera and typhoid prevalence, whilst plot (c) and

(d) show the impact of varying the recovery rates of cholera and typhoid on the

prevalence of the coinfected individuals. Figure (c) shows a significant reduction
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in the coinfected class’ prevalence when the cholera recovery rate is increased,

whilst Figure (d) shows that this reduction is negligible when the typhoid recov-

ery rate was increased. Figures (a) and (b) show that an increase in the coinfected

class’ recovery rate reduces the typhoid prevalence more than the cholera preva-

lence. The net effect is that an increased cholera recovery rate may be associated

with a decreased prevalence of the coinfected individuals and a higher coinfected

recovery rate. This in turn, produces a reduced typhoid prevalence. Given the

current model parameters, this finding suggests that an optimal treatment plan for

the two infections should primarily focus on increasing the cholera recovery rate

as opposed to the typhoid recovery rate. This also underscores the point made

earlier about the symbiotic nature of the two diseases.
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(a) (b)

(c) (d)

Figure 3.5: Plots (a) and (b) show the cholera and typhoid prevalence, respectively, as the coin-

fection recovery rate, ϵct, runs through {0.1, 0.6, 1.1, 1.6}. Plots (c) and (d) show the preva-

lence of the coinfected as the cholera and typhoid recovery rates are varied through the sets

{0.07, 0.075, 0.08, 0.085} and {0.1, 0.2, 0.3, 0.4}, respectively.

3.4 Discussion and Conclusion

In this article, we formulated and analysed a theoretical model for the transmission

dynamics of a cholera typhoid coinfection model. Through numerical simulations,

we were able to verify a number of the results obtained analytically.
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The birth and death rates of the bacteria are central to proving the boundedness and

positivity of all three models—cholera only sub-model, typhoid only sub-model,

and the full cholera typhoid coinfection model. For the cholera-only model, if

the birth rate of the Vibrio Cholerae bacteria exceeds its death rate, then the

cholera only model has non-negative and bounded trajectories. For the typhoid

only model, if the birth rate of the Salmonella Typhi bacteria exceeds its death

rate, then the typhoid only model has non-negative and bounded trajectories. For

the full cholera typhoid coinfection model, if the birth rates of the Vibrio Cholerae

bacteria and the Salmonella Typhi bacteria exceed their death rates, simultane-

ously, then the cholera-typhoid coinfection model has non-negative and bounded

trajectories.

In analysing the equilibria of the coinfection models, several key sights were dis-

covered. We showed the existence of the disease free equilibria, by finding them,

for all three models. Sufficient conditions for the existence of the endemic equi-

libria for the cholera only sub-model and the typhoid only sub-model were doc-

umented. We showed that if the reproduction number is less than one for the all

the models, then the disease free equilibria are locally asymptotically stable, oth-

erwise they are unstable. Global stability could not be guaranteed, both at the

disease free equilibria and the endemic equilibria, in any of the models. Sensitiv-

ity analysis revealed the parameters in the model were at the heart of the spread of

the cholera typhoid coinfection. The prevalence of cholera is decreased whenever

ηt, βt3 , βt4 are increased and/or βc1 , βc2 , ϵct, ηc and θc are decreased. The preva-

lence of typhoid is decreased whenever ηc, βc3 , βc4 are increased and/or βt1 , βt2 ,

ϵct, ηt and θt are decreased.

From the impact analysis section, we found that an increase in cholera cases may

be associated with an increased risk of typhoid and that an increase in typhoid

cases may be associated with an increased risk of cholera. This result proves the

symbiotic nature of the relationship between the typhoid disease and the cholera

disease.

The findings in this investigation come with some limitations. The most glaring
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of all is the lack of data to fit the model to. Our model also fails to take into ac-

count the highly seasonal nature of each of the diseases. For the two infections,

fear has a significant impact on the transmission dynamics. Future work should

also be able to account for the effects of fear in the transmission dynamics of both

infections. Notwithstanding these limitations, we believe that the findings of this

investigation can still be useful to policy makers in containing an outbreak of these

two diseases.

The following chapter includes the analysis of a typhoid fever mathematical model

with a seasonal factor and a fear factor.



Chapter 4

Mathematical Analysis of Typhoid
Fever Transmission Dynamics with
Seasonality and Fear

4.1 Introduction

Typhoid fever is a life-threatening bacterial infection caused by Salmonella Ty-

phi [84]. The transmission mode of typhoid is identical to that of cholera—that

is, direct transmission (human-human) and indirect transmission (environment-

human). This disease adversely affects the Recticuloendothelical system, the gall

bladder and the intestinal lymphoid [52]. Known estimates of the incubation pe-

riod for the typhoid fever disease range from ten to fourteen days [52]. The case

fatality rate of typhoid fever was 10− 20% before the advent of treatment, whilst,

with prompt treatment, the case fatality rate was reduced to less than 1% [29]. It

was observed that the number of deaths caused by typhoid fever in the year 1990

was 181 000 [1]; in the year 2000, it was 217 000 [21]; and in the year 2013, it

was 161 000 [1]. In the Democratic Republic of Congo, more than 42 000 people

contracted the typhoid fever disease during the years 2004 and 2005 [94].

57
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For a number of incurable communicable diseases, modellers typically make the

assumption of homogeneous mixing of susceptible and infected individuals in a

given population [24]. This assumption is reasonable for most non-lethal infec-

tions, such as influenza and chickenpox. However, for lethal infections such as

COVID-19, typhoid, cholera and HIV/AIDS this assumption is debatable. In the

case of HIV/AIDS, examples of partner preferences can be seen when individu-

als reduce the number of sexual partners they have, and through stigmatization of

those who are already infected [76, 86]. During a cholera, typhoid or COVID-

19 outbreak, fear drives individuals to self-isolate and improve personal hygiene

in order to reduce the contact rate of these diseases [26, 72, 90]. Indeed, a re-

duced contact rate, due to fear, has a huge bearing on the dynamics of a lethal

infection. The role of fear has been considered in mathematical models with in-

teracting species, see [23, 24, 91]. Recently, the role of fear has been modelled

for Ebola virus disease [34]. Very few mathematical models have considered fear

as an essential component in human response to infection.

Mathematical models with seasonality have been considered by a number of au-

thors. In [18], a malaria model with seasonality is considered in which a system of

differential equations is analysed. A model for malaria was also considered in [85]

in with climatic factors where considered to influence the biting rate. Other in-

fections in which seasonality was considered include brucellosis [60], clostridium

difficile [46], schistosomiasis [41], respiratory syncytial virus [48], buruli ulcer

[6] and cholera [67]. In these models, seasonality is modelled by incorporating a

trigonometric function in the force of infection. It is also common to come across

mathematical models for diarrhoeal diseases such as cholera, typhoid and many

others that assume a constant rate of infection. The primary reason of making

such an assumption is that it makes for relatively easy analysis, in that, it pro-

duces models that contain systems of autonomous ordinary differential equations

[71]. To this end, there are numerous tools for analysing systems of autonomous

ordinary differential equations in the literature [31, 82]. The major drawback of

assuming a constant infection rate for a seasonal disease is that the accuracy of

the model might be compromised, thus compromising model predictions. Empir-
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ically, it has been shown that typhoid fever is highly seasonal and it peaks during

the rainy seasons [73], hence a seasonal mathematical model is befitting to study

such a disease.

To the best of our knowledge, the dynamics of typhoid fever’s seasonality coupled

with a behavioural change in the population due to the fear of infection has not

been investigated. A comparison of a seasonal mathematical model of typhoid

fever and one where the assumption of seasonality is relaxed is carried out. We

seek to understand the effects of seasonality on the basic reproduction number,

the number of steady states, the stability of these steady states and to carry out the

stability analysis of the steady states.

The paper is arranged as follows; in Section 2, we formulate and establish the

basic properties of the model. The model is analysed for stability in Section 3.

In Section 4, we carry out some numerical simulations. Parameter estimation and

numerical results are also presented in this section. The paper is concluded in

Section 5.

4.2 Methodology

4.2.1 Model Formulation

The typhoid infection model classifies the total human population at time t, de-

noted by N(t), into susceptible individuals S(t), typhoid infected individuals I(t),

individuals who recovered from typhoid R(t). Thus, N(t) = S(t) + I(t) +R(t).

The model has an additional compartment B(t) which represents the Salmonella

Typhi concentration in the environment. The dynamics of the model developed in

this paper follows from the model developed by Mushanyu et al. [51].

We assume that susceptible individuals acquire typhoid fever either through person-

to-person transmission or by ingesting Salmonella Typhi from contaminated aquatic
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reservoirs at the rates

λ1 =
βt1I

1 + kI
, λ2 =

βt2B

κt +B

(
1 + θ sin

(
2πt

365

))
,

respectively. The parameter βt1 denotes the person-to-person typhoid transmis-

sion rate of susceptibles, and is defined as the product of the probability of typhoid

transmission per contact and the effective contact rate for typhoid transmission to

occur. The force of infection, λ2, is modelled by a type II functional response and

a trigonometric function. The type II functional response captures the decreasing

growth rate of the bacteria and the saturation of the bacteria, whilst the trigono-

metric function introduces seasonality with a period of 365 days into the force

of infection. The parameter βt2 denotes the environment-to-humans per capita

contact rate for susceptibles and the Salmonella Typhi in the contaminated en-

vironment and κt denotes the half saturation constant relative to the Salmonella

Typhi. Here, we assume that individuals under treatment are infectious but can-

not infect susceptible individuals since they will be confined to a certain place and

separated from the general population where they will be released upon successful

treatment or due to mortality (natural or disease related).

Infected individuals in class I experience disease related death at a rate given by

δ. Individuals in the infectious state I excrete Salmonella Typhi bacteria into the

environment at rate α. Individuals in the recovered class R are temporarily im-

mune to typhoid infection, and immunity wanes at a rate given by ρ, leading to

the individuals being susceptible again.

The Salmonella Typhi bacteria population is generated at a rate gbB and its growth

is enhanced by individuals in the infectious state I . We assume that the Salmonella

Typhi bacteria in the environment becomes non-infectious at a rate µb. The con-

stant recruitment into the susceptible population is represented by Λ, while the

natural death rate for the general population is represented by µh. We assume that

individuals in each compartment are indistinguishable and there is homogeneous

mixing. The schematic diagram for the typhoid model to be analysed in this work

is given below.
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I

B

S R
(λ1 + λ2)S ϵIΛ

ρR

g µbB

µhS (µh + δ)I µhR

Figure 4.1: The model, with g = gbB
(
1− B

kt

)(
1 + ξ sin

(
2πt
365

))
+ αI .

Given the schematic diagram in Fig 4.1 and the given model assumptions, we

formulate the typhoid fever model as follows

dS

dt
= Λ− (λ1 + λ2)S − µhS + ρR,

dI

dt
= (λ1 + λ2)S − qI,

dR

dt
= ϵI − (µh + ρ)R, (4.1)

dB

dt
= gbB

(
1− B

kt

)(
1 + ξ sin

(
2πt

365

))
+ αI − µbB,

where q = µh + δ + ϵ, with initial conditions

S(0) = S0 > 0, B(0) = B0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

4.2.2 Non-seasonal Typhoid Model

Applying the time-average function, [f(t)] =
1

ω

∫ ω

0

f(t) dt, to each component

of the typhoid model (4.1) gives the following auxiliary system
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dS

dt
= Λ− (λ1 + [λ2])S − µhS + ρR,

dI

dt
= (λ1 + [λ2])S − qI,

dR

dt
= ϵI − (µh + ρ)R, (4.2)

dB

dt
= gbB

(
1− B

kt

)
+ αI − µbB,

with initial conditions

S(0) = S0 > 0, B(0) = B0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

Here [λ2] =
βt2B

κt+B
.

4.2.2.1 Non-negative Trajectories and Boundedness

We show that all the trajectories of the dynamical system are non-negative. The

approach outlined in Yang et al. [95] to show that all the solutions are bounded

below by zeros is used in this case.

It is clear that

dS

dt

∣∣∣∣∣
S=0

= Λ+ ρR > 0,
dI

dt

∣∣∣∣∣
I=0

= [λ2]S ≥ 0,
dR

dt

∣∣∣∣∣
R=0

= ϵI ≥ 0,

dB

dt

∣∣∣∣∣
B=0

= αI ≥ 0.

Using Lemma 2 of Yang et al. [95], it follows that the trajectories of model (4.2)

are all non-negative. The time derivative of the human population is given by

dN

dt
= Λ− µhN − δI ≤ Λ− µhN,

This separable differential inequality can be integrated to get the following upper

bound for N(t)

N ≤ Λ−M exp(−µht)

µh

≤ Λ

µh

.
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This implies that each class containing humans is also bounded above by Λ/µh.

Since I ≤ N ≤ Λ/µh, the bacterial class produces the following differential

inequality

dB

dt
= gbB

(
1− B

kt

)
+ αI − µbB ≤ gbB

(
1− B

kt

)
+ α

Λ

µh

− µbB. (4.3)

From inequality (4.3), if

B ≥ α
Λ

µh

, (4.4)

then

dB

dt
≤ (gb − µb)B − gb

kt
B2 +B = (gb − µb + 1)B

(
1− gbB

kt(gb − µb + 1)

)
.

(4.5)

Note that the differential inequality (4.5) is a derivative of the logistic growth

model with carrying capacity

kt(gb − µb + 1)

gb
. (4.6)

On the other hand, if condition (4.4) is false, then B is bounded above by the

constant αΛ/µh for some t ≥ 0. For the rest of the time points in the domain of

B, condition (4.4) is true, and hence the upper bound for B is (4.6). Thus, in both

cases,

B ≤ max

{
kt(gb − µb + 1)

gb
, α

Λ

µh

}
.

The results on positivity and boundedness of the solutions to the typhoid model
(4.2) can be summarized within the feasible region Ω ⊆ Ωc, where

Ωc =

{
(S, I,R,B) ∈ R4

∣∣∣∣ 0 ≤ S, I,R ≤ Λ

µh
, 0 ≤ B ≤ max

{
kt(gb − µb + 1)

gb
, α

Λ

µh

}}
.

Theorem 6. All solutions of the typhoid model (4.2) are positively invariant and

bounded within Ω.
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4.2.2.2 Disease Free Equilibrium and Time Average Reproduction Number,
([R]0)

The disease free equilibrium for system (4.2) is

x0 = (S, I, R,B) =

(
Λ

µh

, 0, 0, 0

)
. (4.7)

The basic reproduction number, [R0], is defined as the spectral radius of the next

generation matrix [87] or given a completely susceptible population, an alternative

definition of the basic reproduction number is the average number of secondary

infections that arise out of an average primary case [35].

The new infections vector [F ], transmission vector [V ], and their respective Jaco-
bians [F ] and [V ] are

[F ] =

 (λ1 + λ2)S

0

 , [V] =

 qI

µbB − gbB
(
1− B

kt

)
− αI

 , [F ] =

 Λβt1

µh

Λβt2

µhκt

0 0

 ,

[V ] =

 q 0

−α µb − gb

 ,

since the time average of

(
1 + θ sin

(
2πt

365

))
is one. Thus the spectral radius of

the matrix

[F ][V ]−1 =

 Λβt1

qµh

+
βt2αΛ

qκtµh(µb − gb)

βt2Λ

κtµh(µb − gb)

0 0


is

[R0] =
Λβt1

qµh

+
βt2αΛ

qκtµh(µb − gb)
,

where [R0] is the so-called time-averaged basic reproduction number for the ty-

phoid model (4.2). It follows that µb > gb implies [R0] > 0.
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4.2.2.3 Local Stability Analysis of the Disease Free Equilibrium

We begin by analysing the stability of the solutions of model (4.2) at the disease

free equilibrium x0. We apply the Routh-Hurwitz criterion [30] in order to find

the nature of the eigenvalues.

Theorem 7. The disease free equilibrium, x0, for system (4.2) is locally asymp-

totically stable whenever µb > gb and [R0] < 1. It is unstable otherwise.

Proof. The Jacobian of system (4.2) at the disease free equilibrium is

J(x0) =


−µh −Λβt1

µh
ρ −Λβt2

µhκt

0
Λβt1

µh
− q 0

Λβt2

µhκt

0 ϵ −(µh + ρ) 0

0 α 0 gb − µb

 .

By inspection, it is clear that the two eigenvalues, −µh and −(µh + ρ), of J(x0)

lie in the left open half plane. The properties of the remaining two eigenvalues

will be obtained from the following sub-matrix

J̄(x0) =

 Λβt1

µh
− q

Λβt2

µhκt

α gb − µb

 .

The characteristic polynomial associated with matrix J̄(x0) is λ2 − tr(J̄(x0))λ+

det(J̄(x0)). The Routh-Hurwitz criterion states that the roots of J̄(x0) lie in the

left open half plane if and only if tr(J̄(x0)) < 0 and det(J̄(x0)) > 0. Indeed,

tr(J̄(x0)) =
Λβt1

µh

− q + gb − µb = q

(
Λβt1

µhq
− 1 +

gb − µb

q

)
,

det(J̄(x0)) =q(gb − µb)

(
Λβt1

µhq
− 1 +

αΛβt2

µhκtq(µb − gb)

)
= q(µb − gb)(1− [R0]).

We observe that tr(J̄(x0)) < 0 if µb > gb and Λβt1

µhq
< 1, whilst det(J̄(x0)) > 0 if

µb > gb and [R0] < 1. It is also worth noting that [R0] < 1 implies Λβt1

µhq
< 1. Thus

tr(J̄(x0)) < 0 and det(J̄(x0)) > 0 whenever µb > gb and [R0] < 1. Therefore, it

follows from the Routh-Hurwitz criterion that µb > gb and [R0] < 1 implies that

all four eigenvalues of J(x0) lie in the left open half plane.
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4.2.2.4 Global Stability Analysis of the Disease Free Equilibrium

Following Bhunu et al. [10], we study the global stability of the system by casting

the system into the following form

dX

dt
= F(X,Y),

dY

dt
= G(X,Y), G(X∗,0) = 0,

where X = (S,R) and Y = (I, B). The disease free equilibrium is then written

in the form

U0 = (X∗,0), X∗ =

(
Λ

µh

,0

)
.

The conditions that must be met in order for the system to be globally asymptoti-

cally stable are:

(H1)
dX

dt
= F(X∗,0), X∗ is globally asympototically stable,

(H2) G(X,Y) = AY − Ĝ(X,Y), Ĝ(X,Y) ≥ 0 for (X,Y) ∈ Ω,

where A = DY G(X∗,0) is a Metzler matrix, and Ω is the region of biological

significance.

Theorem 8. ([16], p. 19) The fixed point U0 = (X∗,0) is a globally asymptoti-

cally stable equilibrium of a system provided that [R0] < 1, and conditions (H1)

and (H2) are satisfied.

We establish the global stability of system (4.2) following Theorem (8).

Theorem 9. The disease free equilibrium of the typhoid model (4.2) is globally

asymptotically stable if [R0] < 1.

Proof. Applying condition (H1) to the system gives

dX

dt
= F(X∗,0) =

 Λ− µhS + ρR

−(µh + ρ)R

 . (4.8)
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The Jacobian of equation (4.8) is

DX F(X∗,0) =

 −µh ρ

0 −(µh + ρ)

 .

We conclude that the fixed point X∗ is a globally asymptotically stable equilibrium

point of system (4.8) since the system is linear, and all the eigenvalues of the

Jacobian are negative and real. Alternatively, the solution for system (4.8) is

X = c1 exp(−ut)e1 + c2 exp(−(u+ ρ)t)(e1 − e2) +
Λ

µh

e1,

where {e1, e2} is the standard basis in E2. Thus, limt→∞ X = X∗.

Applying condition (H2) to the system yields

[A] =

 Λ

µh

βt1 − q
βt2Λ

κtµh

α gb − µb

 ,

[Ĝ] =

 βt1I

(
Λ

µh

− S

1 + kI

)
+ βt2B

(
Λ

κtµh

− S

B + κt

)
gb
κt

B2

 .

Since 1
(1+kI)

≤ 1 and S ≤ Λ
µh

, it follows that S
(1+kI)

≤ Λ
µh

or Λ
µh
− S

(1+kI)
≥ 0. Also,

since B
(B+κt)

≤ B
κt

, and S ≤ Λ
µh

, it follows that SB
(B+κt)

≤ ΛB
µhκt

or Λ
µhκt

− S
(B+κt)

≥ 0.

We conclude that Ĝ(X,Y) ≥ 0 in the biologically feasible region Ω. Since

system (4.2) satisfies conditions (H1) and (H2), it follows from Theorem (8) that

[R0] < 1 implies that the disease free equilibrium for system (4.2) is globally

asymptotically stable.

4.2.2.5 Endemic Equilibrium

The endemic equilibrium for the typhoid model (4.2) is given by setting the time

derivative for each class to zero.

Λ− (λ∗
1 + λ∗

2)S
∗ − µhS

∗ + ρR∗ = 0, (λ∗
1 + λ∗

2)S
∗ − qI∗ = 0,

ϵI∗ − (µh + ρ)R∗ = 0, gbB
∗
(
1− B∗

kt

)
+ αI∗ − µbB

∗ = 0.
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We isolate R∗ and S∗ from ϵI∗ − (µh + ρ)R∗ = 0 and (λ∗
1 + λ∗

2)S
∗ − qI∗ = 0,

respectively. We then substitute those expressions for R∗ = ϵI∗/(µh + ρ) and

S∗ = qI∗/(λ∗
1 + λ∗

2) into Λ− (λ∗
1 + λ∗

2)S
∗ − µhS

∗ + ρR∗ = 0 to produce

Λ− qI∗ − µhqI
∗

λ∗
1 + λ∗

2

+
ρϵI∗

µh + ρ
=

Λ+

(
(λ∗

1 + λ∗
2)ρϵ− q(µh + ρ)(λ∗

1 + λ∗
2 + µh)

(µh + ρ)(λ∗
1 + λ∗

2)

)
I∗ = 0.

Isolation of I∗ gives

I∗ =
Λ(µh + ρ)(λ∗

1 + λ∗
2)

(λ∗
1 + λ∗

2)
(
ρ (µh + δ) + µhq

)
+ µhq (µh + ρ)

. (4.9)

Back substituting equation (4.9) into R∗ = ϵI∗/(µh+ρ) and S∗ = qI∗/(λ∗
1+λ∗

2),

respectively, gives

R∗ =
ϵΛ(λ∗

1 + λ∗
2)

(λ∗
1 + λ∗

2)
(
ρ (µh + δ) + µhq

)
+ µhq (µh + ρ)

,

S∗ =
qΛ(µh + ρ)

(λ∗
1 + λ∗

2)
(
ρ (µh + δ) + µhq

)
+ µhq (µh + ρ)

.

In order to show the existence of the endemic equilibrium for the typhoid model

(4.2), we complete the square on the equation: gbB∗
(
1− B∗

kt

)
+αI∗−µbB

∗ = 0,

to obtain (
B∗ +

kt(µb − gb)

2gb

)2

=
k2(µb − gb)

2 + 4gbktαI
∗

4g2b
. (4.10)

The two roots for the equation (4.10) are

B1 =
−kt(µb − gb) +

√
k2
t (µb − gb)2 + 4gbktαI∗

2gb
,

B2 =
−kt(µb − gb)−

√
k2
t (µb − gb)2 + 4gbktαI∗

2gb
.

Since k2
t (µb − gb)

2 ≤ k2
t (µb − gb)

2 + 4gbktαI
∗, it follows from taking the square

root function on both sides of the inequality that

kt|µb − gb| ≤
√

k2
t (µb − gb)2 + 4gbktαI∗.



4.2. Methodology 69

Therefore

−
√

k2
t (µb − gb)2 + 4gbktαI∗ ≤ kt(µb − gb) ≤

√
k2
t (µb − gb)2 + 4gbktαI∗.

Hence subtracting kt(µb−gb) from the inequalities and then dividing by 2gb yields

B2 ≤ 0 ≤ B1. Clearly, B2 must be discarded since it is negative, thus B∗ = B1.

4.2.3 The Seasonal Typhoid Model

We study the full effects of seasonality on the typhoid model by removing the

time-average function, [f(t)] =
1

ω

∫ ω

f(t) dt, from our analysis. We apply our

analysis on model (4.1) for the rest of this section. The model with seasonality

thus becomes non-autonomous.

4.2.3.1 Properties of the Non-autonomous Model

We show that model (4.1) is well posed, it has non-negative trajectories, a unique

disease free equilibrium, among others. Setting all the derivatives of dynamical

system (4.1) to zeros, and setting (I, B) = (0, 0), gives a unique disease free

equilibrium (S∗, I∗, R∗, B∗) =
(
Λ/µh, 0, 0, 0

)
.

Since λ1, λ2 ≥ 0, it follows that λ1 + λ2 ≥ 0. We conclude that the force of

infection for model (4.1) is non-negative.

The partial derivatives of the force of infection are

∂

∂I

(
λ1 + λ2

)
=

βt1

(1 + kI)2
≥ 0,

∂

∂B

(
λ1 + λ2

)
=

βt2κt

(B + κt)2

(
1 + θ sin

(
2πt

365

))
≥ 0.

It is clear that the force of infection increases with the number of infected peo-

ple and the concentration of bacteria. The bacterial growth rates are bounded as
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follows:

∂

∂B

(
dB

dt

)
= gb

(
1− 2

B

kt

)(
1 + ξ sin

(
2πt

365

))
− µb ≤ 0,

∂

∂I

(
dB

dt

)
= α ≥ 0,

whenever B ≥ kt/2. The first inequality shows that the bacterial growth rate
increases with the number of infected individuals; the second inequality shows
that in the absence of infected people, there exists a threshold, kt/2, such that if
the bacteria exceeds this threshold, then the bacterial growth rate decreases with
the concentration of the bacteria.
We show, geometrically, that the surface that represents the force of infection,
λ1 + λ2, lies below its associated tangent plane at the origin. This means that the
remainder term, R1, from the truncated Taylor expansion of λ1 + λ2 when the
degree equals one is non-positive. The second partial derivatives of the force of
infection are

∂2

∂I2

(
λ1 + λ2

)
=

−2βt1k

(1 + kI)3
≤ 0,

∂2

∂B∂I

(
λ1 + λ2

)
= 0,

∂2

∂B2

(
λ1 + λ2

)
=

−2βt2κt
(B + κt)3

(
1 + θ sin

(
2πt

365

))
≤ 0.

Consider the matrix

A =


∂2

∂I2

(
λ1 + λ2

) ∂2

∂B∂I

(
λ1 + λ2

)
∂2

∂B∂I

(
λ1 + λ2

) ∂2

∂B2

(
λ1 + λ2

)


=


−2βt1k

(1 + kI)3
0

0
−2βt2κt

(B + κt)3

(
1 + θ sin

(
2πt

365

))
 .
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Since

 I

B

T


−2βt1k

(1 + kI)3
0

0
−2βt2κt
(B + κt)3

(
1 + θ sin

(
2πt

365

))

 I

B

 =

− 2

 βt1kI
2

(1 + kI)3
+

βt2κtB
2

(B + κt)3

(
1 + θ sin

(
2πt

365

)) ≤ 0,

R1 = −

 βt1kζ
2

(1 + kζ)3
+

βt2κtη
2

(η + κt)3

(
1 + θ sin

(
2πt

365

)) ,

where ζ ∈ (0, I) and η ∈ (0, B), it follows that

R1 ≤ −

 βt1kI
2

(1 + kI)3
+

βt2κtB
2

(B + κt)3

(
1 + θ sin

(
2πt

365

)) ≤ 0, and that matrix A is nega-

tive semi-definite.

It is clear to see that I > 0 implies λ1 + λ2 > 0 and B > 0 implies λ1 + λ2 > 0.

The model shows that in the absence of bacteria, a single infected individual is

sufficient for a positive infection rate; and in the absence of infected individuals,

the presence of bacteria is sufficient for a positive infection rate.

4.2.3.2 Basic Reproduction Number

We apply the methods outlined in [80, 89] to determine basic reproduction num-

ber.

We show that the system (4.1) meets the seven assumptions in the article by Wang
and Zhao [89]. Let x = (S, I, R,B)T . The disease free equilibrium is
x0 = (Λ/µh, 0, 0, 0)

T and the new infections vector and transfer vectors are as
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follows

F =


(λ1 + λ2)S

0

0

0

 , V− =


qI

µbB

(λ1 + λ2)S + µhS

(µh + ρ)R

 ,

V+ =



0

gbB

(
1− B

κt

)(
1 + ξ sin

(
2πt

365

))
+ αI

Λ + ρR

ϵI


.

The Jacobians of the input rate of new infections and the transfer rate of infections
are

F (t) =

 Λ

µh
βt1

Λβt2
µhkt

(
1 + θ sin

(
2πt

365

))
0 0

 , V (t) =

 q 0

−α µb − gb

(
1 + ξ sin

(
2πt

365

))
 .

Define f = F − V , V = V− − V+, and ρ(J) as the spectral radius of matrix J .

Lemma 1. ([96], Lemma 2.1.) Let A(t) be a continuous, cooperative, irreducible,

and ω-periodic k × k matrix function and let p = 1
ω
ln(ρ(ΦA(ω))). Then

dx(t)

dt
= A(t)x(t), (4.11)

gives a solution x(t) = eptv(t) for some ω-periodic function v(t). ΦA(ω) denotes

the monodromy matrix of system (4.11).

The next infection operator is defined by [89] as follows

(Lϕ) =

∫ ∞

0

Y (t, t− s)F (t− s)ϕ(t− s)ds, (4.12)

where Y (t, s) is the evolution operator for the system dy/dt = −V (t)y and ϕ(t)

is the initial distribution function of the infected. The spectral radius of L gives

the basic reproduction number

R0 = ρ(L).
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In most nonlinear systems, the integral in equation (4.12) is intractable, thus nu-

merical methods are used to compute R0. Since the basic reproduction number

is the maximum eigenvalue of the operator eigenvalue problem (Lϕ)t = λϕ(t),

the authors of [70] constructed an eigenvalue-preserving transformation of the

above operator eigenvalue problem into a matrix eigenvalue problem. The spec-

tral radius of the eigenvalue problem is an accurate estimator for the true basic

reproduction number.

Theorem 10. ([89], Theorem 2.2) The following statements are valid for model

(4.1):

1. R0 = 1 ⇐⇒ ρ(Φf (365)) = 1,

2. R0 < 1 ⇐⇒ ρ(Φf (365)) < 1,

3. R0 > 1 ⇐⇒ ρ(Φf (365)) > 1,

4. R0 < 1 (R0 > 1) =⇒ x0 is locally asymptotically stable (unstable),

whenever,

(B1) The functions F(t,x) ≥ 0, V+(t,x) ≥ 0, and V−(t,x) ≥ 0 are continuous,

continuously differentiable with respect to x on R × R4
+, and each have a

period of 365 with respect to t.

(B2) xi = 0 =⇒ V−
i for i = 1, 2.

(B3) i > 2 =⇒ Fi = 0.

(B4) Fi(x0) = 0 ∧ V+
i (x0) = 0 for i = 1, 2.

(B5) ρ(Φf (365)) < 1, where ρ(Φf (365)) is the spectral radius of Φf (365).

(B6) ρ(Φ−V (365)) < 1
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We claim that, for model (4.1), f conditionally satisfies (B1) to (B6). By in-

spection, we can see that for each i = 1, . . . , 4, the functions Fi(t,x), V+
i (t,x),

and V−
i (t,x) are non-negative, continuous on R×R4

+, continuously differentiable

with respect to x, and 365-periodic in t. If I = 0 (B = 0), then

V−
1 (t,x) = 0 (V−

2 (t,x) = 0). F3(t,x) = F4(t,x) = 0. At the disease free state,

x0, for each i = 1, 2, Fi(t,x) = V+
i (t,x) = 0. We define the matrix

M(t) =

[
∂

∂xj

(
fi(t,x0)

)]
3≤i,j≤4

=

 −µh ρ

0 −(µh + ρ)

 ,

where fi(t,x0) = Fi(t,x) − (V−
i (t,x) − V+

i (t,x)). The initial value problem,

z′ = Mz, z(s, s) = I2×2, can be written component wise to produce the system

dz1
dt

=− µhz1 + ρz3,
dz2
dt

= −µhz2 + ρz4,
dz3
dt

= −(µh + ρ)z3,

dz4
dt

=− (µh + ρ)z4.

The solution and the monodromy matrices to the initial value problem above are,

respectively,

z(t, s) =

 exp(µh(s− t)) exp(µh(s− t))− exp((µh + ρ)(s− t))

0 exp((µh + ρ)(s− t))

 ,

z(t, 0) = ΦM(t) =

 exp(−µht) exp(−ut)− exp(−(µh + ρ)t)

0 exp(−(µh + ρ)t)

 . (4.13)

The spectral radius of the monodromy matrix (4.13) at t = 365 is

ρ(ΦM(365)) = max{exp(−365µh), exp(−365(µh + ρ))} < 1.

The initial value problem Y′ = −V (t)Y, Y(s, s) = I2×2, can be written compo-
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nent wise as follows
d

dt

(
Y1(t, s)

)
= −qY1(t, s),

d

dt

(
Y2(t, s)

)
= −qY2(t, s),

d

dt

(
Y3(t, s)

)
= αY1(t, s) +

(1 + ξ sin

(
2πt

365

))
gb − µb

Y3(t, s),

d

dt

(
Y4(t, s)

)
= αY2(t, s) +

(1 + ξ sin

(
2πt

365

))
gb − µb

Y4(t, s).

Thus a solution to the differential equation

d

dt

(
Y (t, s)

)
= −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I2×2, (4.14)

is

Y (t, s) =

 Y1(t, s) Y2(t, s)

Y3(t, s) Y4(t, s)



=


exp(q(s− t)) 0

Y3(t, s) exp

(gb − µb)(t− s) + ξgb
365

2π

(
cos

(
2πs

365

)
− cos

(
2πt

365

))
 ,

where

Y3(t, s) =α exp

(
qs+ (gb − µb)t−

365

2π
ξgb cos

(
2πt

365

))

×
∫ t

s

exp

(
(µb − gb − q)τ +

365

2π
ξgb cos

(
2πτ

365

))
dτ.

The monodromy matrix of differential equation (4.14)) is

Φ−V (t) = Y (t, 0) =


exp(−qt) 0

Y3(t, 0) exp

(gb − µb)t+ ξgb
365

2π

(
1− cos

(
2πt

365

))
 .

Thus, the spectral radius is

ρ(Φ−V (365)) = max{exp(−365q), exp(365(gb − µb))}.

It is clear to see that ρ(Φ−V (365)) < 1 whenever gb < µb. We have proven that

assumptions (A1)—(A7) of Wang [89] hold for model (4.1) if gb < µb.



76 Chapter 4. Mathematical Analysis . . .

Corollary 10.1. The following statements are valid for model (4.1) if gb < µb:

(I) R0 = 1 ⇐⇒ ρ(Φf (365)) = 1.

(II) R0 < 1 ⇐⇒ ρ(Φf (365)) < 1.

(III) R0 > 1 ⇐⇒ ρ(Φf (365)) > 1.

(IV) The disease free equilibrium, x0, is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Proof. Since model (4.1) satisfies conditions (A1)—(A7) of Wang [89] whenever

gb < µb, it follows from Theorem 2.2 of [89] that gb < µb implies that conditions

(I)− (IV ) hold.

4.2.3.3 Global Stability of the Disease Free Equilibrium

In this subsection, we prove that the disease free equilibrium of model (4.1) is

globally asymptotically stable. We begin with the following Theorem.

Theorem 11. ([78], Theorem B.1.) Let D ⊆ Rn be open in Rn. Let f : R×D →
Rn be continuous on R × D such that. Let x(t) be a solution of (B.1) defined

on [a, b]. If z(t) is a continuous function on [a, b] satisfying (B.2) on (a, b) with

z(a) ≤ x(a), then z(t) ≤ x(t) for all t in [a, b]. If y(t) is continuous on [a, b]

satisfying (B.3) on (a, b) with y(a) ≥ x(a), then y(t) ≥ x(t) for all t in [a, b].

Limiting our focus to the two infected classes, I and B, the Jacobian of system

(4.1) is

[F (t)− V (t)] =


Λ

µh

βt1 − q
Λβt2

µhkt

(
1 + θ sin

(
2πt

365

))

α gb

(
1 + ξ sin

(
2πt

365

))
− µb

 .
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Applying Lemma (1) to z = [Ĩt, B̃t]
T gives

d

dt

[
Ĩt

B̃t

]
=

 Λ

µh

βt1 − q
Λβt2

µhkt

(
1 + θ sin

(
2πt

365

))

α gb

(
1 + ξ sin

(
2πt

365

))
− µb


 Ĩt

B̃t

 =⇒

 Ĩt

B̃t

 = ebtv(t).

Since R0 < 1 ⇐⇒ ρ(Φf (365)) < 1 ⇐⇒ b < 0, it follows that R0 < 1 implies

lim
t→∞

ebtv(t) = [0, 0]T .

From applying the Taylor expansion to first order and using the R1 ≤ 0, we obtain

the following differential inequality

d

dt

[
I

B

]
=

 (λ1 + λ2)S − qI

gbB

(
1− B

kt

)(
1 + ξ sin

(
2πt

365

))
+ αI − µbB

 ,

=


Λ

µh

βt1 − q
Λβt2

µhkt

(
1 + θ sin

(
2πt

365

))

α gb

(
1 + ξ sin

(
2πt

365

))
− µb


 I

B



+

 R1

−gb
B2

kt

(
1 + ξ sin

(
2πt

365

))
 ,

≤


Λ

µh

βt1 − q
Λβt2

µhkt

(
1 + θ sin

(
2πt

365

))

α gb

(
1 + ξ sin

(
2πt

365

))
− µb


 I

B

 .

It follows from Theorem (11) that

lim
t→∞

[I, B]T ≤ lim
t→∞

[Ĩt, B̃t]
T = [0, 0]T ,

thus

lim
t→∞

[I, B]T = [0, 0]T .
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Theorem 12. If R0 < 1, the following statements are valid for model (4.1):

a) limt→∞ R = 0.

b) limt→∞ S = Λ/µh.

Proof.

a) We want to show that for any υ > 0, there exists γ ∈ R+, such that if t > γ,

then R < υ. Assume R0 < 1. Since limt→∞ I = 0, it follows that for any

υ > 0, there exists γ1 ∈ R+, such that

t > γ1 =⇒ I(t) <
(µh + ρ)

ϵ
υ. (4.15)

Choose γ ≥ γ1. Since Ṙ = ϵI−(µh+ρ)R, it follows from (4.15) that t > γ

implies Ṙ < (µh + ρ)(υ − R). The solution to the differential inequality,

Ṙ < (µh + ρ)(υ − R), is R < υ −M exp(−t(µh + ρ)) for some positive

constant M . Indeed R < υ.

b) Since N = S + I + R, it follows from limt→∞ R = 0 and limt→∞ I = 0

that R0 < 1 implies limt→∞ N = limt→∞ S = Λ/µh.

We thus have the following result.

Theorem 13. The disease free equilibrium, x0, of system (4.1) is globally asymp-

totically stable whenever R0 < 1.

4.3 Numerical Simulation

In this section, simulation results are carried out through MATLAB. We hypothet-

ically choose the following initial conditions and the parameter values in Table
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(4.1). The initial conditions used were S(0) = 99980, I(0) = 20,

R(0) = 0, B(0) = 40000.

Table (4.1) shows the parameters of the typhoid model. On the same table, we

include a column that shows the most sensitive parameters in the model. The

human birth rate, Λ, has the highest sensitivity with sensitivity index equal to one.

It is followed by the human natural death rate, µh, with a sensitivity index of

−0.9901.

Parameter Range Point Value Source

βt1 0− 1 7.5× 10−5 Assumed
βt2 0− 1 1.97× 10−11 [52, 56]
δ 0.001− 1 0.06 [52]
ρ 0− 1 1.3× 10−3 [62]
gb 0− 1 0.014 [56]
α 0− 20 10 [56]
µb 0− 1 0.0345 [56]
Λ 100− 467 449.31 [12]
µh 0.019− 0.021 0.02 [32]
ϵ 0− 1 0.1 [2, 53]
κt 0− 1 0.62 Assumed
k 0.2 Assumed
kt 500000 Assumed

Table 4.1: Parameter values and their sources.

4.3.1 Sensitivity Analysis

We begin by considering the sensitivity analysis of the model parameters to the

model output. The Latin Hypercube sampling method was used. This method
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produced a set of partial rank correlation coefficients (PRCC) between each of

the model parameters and the state variable I . The simulation was carried out

over 1000 runs. The human birth rate, Λ, is the most sensitive parameter relative

to the infectious class, and it is positively correlated to the infectious class. The

natural human death rate, µh, is the second most sensitive parameter relative to

the infectious class, and it is negatively correlated to the infectious class.

Figure 4.2: The partial rank correlation coefficients (PRCC). The correlation coefficients between

the each of the parameters on Table 4.1 and the state variable I are shown. Parameters with

negative PRCC values are negatively correlated to I , whilst those with positive PRCC values are

positively correlated to I .

4.3.2 Plots of the Reproduction Numbers and Time Series

The graph of the basic reproduction number, R0, superimposed on the graph of

the time average basic reproduction number, [R0], is shown in Fig 4.3. The time

average basic reproduction number was computed by setting the the direct trans-

mission rate βt1 = 7.5 × 10(−6). Using the same direct transmission rate and the
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method outlined in [70], we numerically computed the basic reproduction num-

ber when ξ = 0. Since the seasonal period of the disease in 365 days, the rate of

exponential decay in all expressions containing the period will be fast. This then

means that iterations exceeding five in such terms will achieve minimal improve-

ment in the accuracy. It is for this reason that we have set M = 10 and n = 100

as defined in [70].

Figure 4.3: A comparison of the basic reproduction number, R0, and the time average basic

reproduction number [R0] as a function of the seasonal parameter θ.

We consider the seasonal plots for our models (with and without) seasonality.

The trajectories of all the state variables are shown in Figure 4.4. This figure

shows the trajectories of the: (a), the susceptible class; (b), the infectious class;

(c), the recovered class; and (d) the bacterial class. In each of the four figures in

Figure 4.4, the trajectories of the seasonal model (4.1) are superimposed onto the

trajectories of the non-seasonal model (4.2).
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(a) (b)

(c) (d)

Figure 4.4: The trajectories of the models. The dotted lines depict the trajectories of the non-

seasonal model (4.2), whilst the solid lines depict the trajectories of the seasonal model (4.1). The

trajectories of the susceptibles, (a), the infected, (b), the recovered, (c), and the typhoid bacteria,

(d) are shown.

4.3.3 Simulating the Role of Fear

We now consider the potential impact of fear on the model with and without sea-

sonality. We use the logarithmic scale for clarity of presentation of results. The

manner in which fear affects the prevalence of typhoid is shown in Figure 4.5.
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Figure 4.5(a) shows this effect on the non-seasonal model (4.2), whilst Figure

4.5(b) shows the same effect on the seasonal model (4.1). In both cases, the fear

constant k is allowed to run through the set {0.2, 0.3, 0.4, 0.5}.

(a) (b)

Figure 4.5: Typhoid prevalence as a function of fear. The fear constant, k, runs through

{0.2, 0.3, 0.4, 0.5}. The effects of fear on the typhoid prevalence of the non-seasonal model (4.2)

are shown in (a). The effects of fear on the typhoid prevalence of the seasonal model (4.1) are

shown in (b).

4.4 Discussion and Conclusion

Seasonality is a common phenomenon in bacterial infections such as cholera and

typhoid in which the diseases are more prevalent in summer than in winter. The

spread of these diseases is further compounded by poor hygiene and maintenance

of sewage disposal infrastructure. The mechanisms that drive seasonality in ty-

phoid fever are mainly driven by rainfall patterns and poor sewage disposals sys-

tem especially during summer. While some work has recently been done in [73],

the role of fear, which impacts the rate of infection was not considered. Fear of

infection has the propensity to reduce the infection rate, and in this paper, our

interest was on investigating how the seasonality dynamics of typhoid fever are

impacted by fear. In this paper, we propose and analyze a model of typhoid fever
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that follows the work presented in [51] in the presence of fear. The model is mo-

tivated by the fact that in the presence of poor health infrastructure, behaviour

changes become critical in the reducing the rate of typhoid fever infection in sea-

sonally fluctuating environments. In addition, we are also motivated by scenarios

in many countries in Sub-Saharan Africa, such as Zimbabwe, where typhoid fever

remains a problem especially in Summer.

The seasonal fluctuations are modelled by the inclusion of a trigonometric func-

tion in the transmission rate driven by the bacterial population. The model is

considered in cases where there is no seasonality and in the presence of seasonal

fluctuations. In both cases, the basic reproduction numbers R0 and [R0] are de-

termined.

The stability of the steady states is carried out and we noted that the disease free

equilibrium is globally stable when the basic reproduction number is less than

unit. The existence of the endemic equilibrium is also discussed.

Numerical simulations are carried out following some hypothetical initial condi-

tions and some chosen parameter values from the literature. Sensitivity analysis

is also carried out using the Latin hyper cube sampling technique and the model

is sensitive to the addition of susceptible individuals and the natural mortality rate

of the human population.

It is important to note that the model presented in this paper has a number of lim-

itations, as is the case with all mathematics models in which various assumptions

are used in the construction of the models. The model is not validated by data.

In the presence of data (which was not readily available in this case) the model

would have been more robust, and in this case remains a theoretical model. This

forms the basis of our future work. Despite this short coming, the model remains

of great interest in the investigation of the role of human behaviour, such as fear

in bacterial infections.
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The subsequent chapter includes the analysis of a cholera and typhoid coinfection

mathematical model with hygiene driven contact.



Chapter 5

A Mathematical Model of Hygiene
Driven Contact in Cholera Typhoid
Coinfection Transmission Dynamics

5.1 Introduction

Cholera is a water borne infection that is associated with vomiting and diarrhoea.

The bacteria causing cholera, V. cholerae, is part of the estuary and coastal ecosys-

tem [20]. The African continent has seen a sharp rise (31%) in cholera infections

since 2004. In some developing countries, outbreaks occur as much as twice in

a single year [33]. Malnutrition is one of the major drivers of cholera infections.

In the world’s poorest countries, cholera is often endemic. Zinc and vitamin A

deficiency increase the susceptibility of children to the disease, and sub-Saharan

Africa and South Asia have a vitamin A deficiency [79]. Child malnutrition in

Zimbabwe led to an increase in cholera in 2008.

Typhoid fever is a waterborne infection that is associated with fever, vomiting, di-

arrhoea, weight loss, anaemia, and weakness. The infection is caused by salmonella

86
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typhi bacteria. It is acquired through human-to-human transmission and through

the ingestion of salmonella contaminated food. Twenty one million cases and half

a million deaths per year have been caused by typhoid fever. Most of these deaths

occur within the African continent.

Several models have been created to study the various aspects of typhoid fever and

cholera in the literature. Mushayabasa et al. developed and analysed a typhoid

malaria coinfection model [54]. They discovered that the two infections led to an

increase in the prevalence of the coinfected individuals. Tilahun et al. proposed a

pneumonia typhoid coinfection model with optimal control, and they discovered

that prevention was the most effective control strategy and it was closely followed

by treatment as the second best control strategy [84]. A malaria typhoid coin-

fection model was studied by Mutua et al. [56]. They concluded that the two

infections must be managed in tandem for the most optimal results. Matsebula et

al. developed and analysed a seasonal model for typhoid with fear [45]. One of

the results was that the average basic reproduction number was an inaccurate esti-

mator for the basic reproduction number in fluctuation environments. Baracchini

et al. proposed a cholera a model with seasonality [8]. In that model, they showed

that the phase of the model and whether the disease is unimodal or bimodal is

decided by the level of water in the environment. Nyabadza et al. modelled the

effects of limited resources on the dynamics of cholera, and they discovered that

the model had multiple equilibria [51]. To the best of our knowledge, the effects of

behavioural changes such as hygiene on the co-dynamics of typhoid and cholera

have not been established in the literature.

5.2 Model Formulation

The cholera typhoid coinfection model classifies the total human population at

time t, denoted by N(t), into susceptible individuals S(t), cholera infected in-

dividuals Ic(t), individuals who recovered from cholera Rc(t), typhoid infected

individuals It(t), individuals who recovered from typhoid Rt(t), individuals in-



88 Chapter 5. A Mathematical Model . . .

fected with both cholera and typhoid Ict(t), and individuals who recovered from

both cholera and typhoid Rct(t). Thus,

N(t) = S(t) + Ic(t) +Rc(t) + It(t) +Rt(t) + Ict(t) +Rct(t).

Additional compartments Bc(t) and Bt(t), representing respectively the concen-

tration of Vibrio Cholerae and Salmonella Typhi in the environment have also been

incorporated in the model.

We construct a contact rate function

f(x,H) =
x

1 + AeζH
,

where x is the maximum contact rate and H is the proportion of the population that

is hygienic. In this function, A is the scale parameter and ζ is the shape parameter.

For this function to be well posed, it needs to exhibit the following characteristics.

First, A must be between zero and one such that (0 ≤ A ≪ 1). This is to allow the

contact rate function to approach the maximum contact rate whenever the levels of

hygiene are poor. Second, if H = 1, f(x,H) → 0 iff ζ → ∞. This characteristic

suggests that when the population is hygienic, the contact rate function approaches

0 whenever zeta approaches infinity. This means that zeta controls the speed at

which improved hygiene translates to a break in transmission, or that a break in

transmission is characterised by zeta approaching infinity. It is clear that zeta

must be chosen to be high enough so that the correlation between the contact

rate function approaching 0 and the hygiene levels approaching one is strong.

Although shedding is also a function of hygiene, incorporating it into a functional

response turns out to be cumbersome exercise, so this exercise is omitted from

this work.
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Figure 5.1: The proportion of the maximum contact rate, x, as a function of hygiene, H . The

shape and scale parameters are as follows, A = 0.01 and ζ = 9.5.

Since the incubation periods of the two infections are different, we assume that

dually infected individuals can only transmit either cholera or typhoid but not both

infections simultaneously. Susceptible individuals acquire cholera infection either

through person-to-person transmission or by ingesting Vibrio Cholerae from con-

taminated aquatic reservoirs at the rates

λc1 =
f(βmax

c1
, H)(Ic + ηcIct)

N
, λc2 =

βc2Bc

Bc + κc

,

respectively. The parameter βmax
c1

denotes the maximum person-to-person cholera

transmission and is defined as the product of the probability of cholera transmis-

sion per contact and the effective contact rate for cholera transmission to occur.

The modification parameter ηc, accounts for the relative infectiousness of individ-

uals in class Ic relative to individuals in class Ict. We assume that ηc ∈ (0, 1).

This assumption is motivated by the fewer numbers of coinfected individuals as

compared to those infected with cholera only. The parameter βc2 denotes the
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environment-to-humans per capita contact rate and the Vibrio Cholerae in the con-

taminated environment and κc denotes the half saturation constant of the Vibrio

Cholerae. The half saturation constant is the bacterial concentration that is re-

quired to support half of the maximum rate, βc2 .

Similarly, susceptible individuals acquire typhoid infection at rates given by

λt1 =
f(βmax

t1
, H)(It + ηtIct)

N
, λt2 =

βt2Bt

Bt + κt

,

respectively. The parameter βmax
t1

denotes the maximum effective person-to-person

typhoid transmission rate and the modification parameter ηt, accounts for the rel-

ative infectiousness of individuals in class It relative to individuals in class Ict.

We also assume that ηt ∈ (0, 1) following the assumptions given in the cholera

infection dynamics. The parameter βt2 denotes the environment-to-humans per

capita contact rate for susceptibles and the Salmonella Typhi in the contaminated

environment and κt denotes the half saturation constant relative to the Salmonella

Typhi.

Individuals infected with typhoid acquire cholera infection either through person-

to-person transmission or by ingesting Vibrio Cholerae from the contaminated

environment at the rates

λc3 =
f(βmax

c3
, H)(Ic + ηcIct)

N
, λc4 =

βc4Bc

Bc + κc

,

respectively. The parameter βmax
c3

denotes the maximum effective person-to-person

cholera transmission rate of individuals in class It. The parameter βc4 denotes

the environment-to-humans per capita contact rate for individuals in class It and

the Vibrio Cholerae in the contaminated environment. Individuals infected with

cholera acquire typhoid infection either through person-to-person transmission or

by ingesting Salmonella Typhi from the contaminated environment at the rates

λt3 =
f(βmax

t3
, H)(It + ηtIct)

N
, λt4 =

βt4Bt

Bt + κt

,

respectively. The parameter βmax
t3

denotes the maximum effective person-to-person

typhoid transmission rate of individuals in class Ic. The parameter βt4 denotes the
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environment-to-humans per capita contact rate for individuals in class Ic and the

Salmonella Typhi in the contaminated environment.

Infected individuals in classes Ic, It and Ict experience disease related death at

rates given respectively by δc, δt and δct. Individuals in the infectious states Ic and

It respectively excrete Vibrio Cholerae bacteria and Salmonella Typhi bacteria

into the environment at rates αc and αt. Individuals in the infectious state Ict

excrete Vibrio Cholerae bacteria into the environment at a rate given by θc and

also excrete Salmonella Typhi bacteria into the environment at a rate given by θt.

Individuals in the recovered classes Rc, Rt and Rct are temporarily immune to

cholera/typhoid infection and immunity wanes out at rates given respectively by

ρc, ρt and ρct, leading to the individuals being susceptible again.

The Vibrio Cholerae bacteria population is generated at a rate gcBc

(
1− Bc

kc

)
and

its growth is enhanced by individuals in the infectious states Ic and Ict at rates

αc and θc respectively. The Salmonella Typhi bacteria population is generated at

a rate gtBt

(
1− Bt

kt

)
and its growth is enhanced by individuals in the infectious

states It and Ict at rates αt and θt respectively. We assume that the Vibrio Cholerae

and the Salmonella Typhi bacteria in the environment are respectively removed by

interventions such as improved sanitation and treatment of contaminated environ-

ments at rates µc and µt. The constant recruitment into the susceptible population

is represented by Λ, while the natural death rate for the general population is

represented by µ. We assume that individuals in each compartment are indistin-

guishable and there is homogeneous mixing.

The dynamical system associated with the schematic diagram in Figure 3.1 is;
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dS

dt
=Λ− (λc1 + λc2 + λt1 + λt2)S − µS + ρcRc + ρtRt + ρctRct,

dIc
dt

=(λc1 + λc2)S − (λt3 + λt4)Ic − (µ+ δc + ϵc)Ic,

dIt
dt

=(λt1 + λt2)S − (λc3 + λc4)It − (µ+ δt + ϵt)It,

dIct
dt

=(λt3 + λt4)Ic + (λc3 + λc4)It − (µ+ δct + ϵct)Ict,

dRc

dt
=ϵcIc − (µ+ ρc)Rc, (5.1)

dRt

dt
=ϵtIt − (µ+ ρt)Rt,

dRct

dt
=ϵctIct − (µ+ ρct)Rct,

dBc

dt
=gcBc

(
1− Bc

kc

)
+ αcIc + θcIct − µcBc,

dBt

dt
=gtBt

(
1− Bt

kt

)
+ αtIt + θtIct − µtBt,

with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Bt(0) = Bt0 ≥ 0, Ic(0) = Ic0 ≥ 0,

It(0) =It0 ≥ 0, Ict(0) = Ict0 ≥ 0, Rc(0) = Rc0 ≥ 0, Rt(0) = Rt0 ≥ 0,

Rct(0) =Rct0 ≥ 0.

The Jacobian of the full system is

J =

 A C

B D

 , (5.2)

where
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A =


−µ −f(βmax

c1
, H) −f(βmax

t1
, H) −(f(βmax

c1
, H)ηc + f(βmax

t1
, H)ηt) ρc

0 f(βmax
c1

, H)− qc 0 ηcf(β
max
c1

, H) 0

0 0 f(βmax
t1

, H)− qt ηtf(β
max
t1

, H) 0

0 0 0 −(µ+ δct + ϵct) 0

0 ϵc 0 0 −(µ+ ρc)

 ,

B =


0 0 ϵt 0 0

0 0 0 ϵct 0

0 αc 0 θc 0

0 0 αt θt 0

 , C =



ρt ρct −Λβc2

µκc

−Λβt2

µκt

0 0
Λβc2

µκc

0

0 0 0
Λβt2

µκt

0 0 0 0

0 0 0 0


,

D =


−(µ+ ρt) 0 0 0

0 −(µ+ ρct) 0 0

0 0 gc − µc 0

0 0 0 gt − µt

 .

The dynamical system (5.1) is locally asymptotically stable if all nine of its eigen-

values have negative real parts. Five of the eigenvalues for the Jacobian, J , are

λ1 = −µ, λ2 = −(µ + ρc), λ3 = −(µ + ρt), λ4 = −(µ + ρct) and λ5 =

−(µ + δct + ϵct). The other four eigenvalues for J are the eigenvalues from the

sub-matrix

J̄ =


f(βmax

c1
, H)− qc 0

Λβc2

µκc
0

0 f(βmax
t1

, H)− qt 0
Λβt2

µκt

αc 0 gc − µc 0

0 αt 0 gt − µt

 .

The characteristic equation for matrix J̄ is (λ2 + ν1λ+ ν2)(λ
2 + ν3λ+ ν4), where

ν1 = −
(
(gc − µc) + (f(βmax

c1
, H)− qc)

)
,

ν2 = (f(βmax
c1

, H)− qc)(gc − µc) (1−RC) ,

ν3 = −
(
(gt − µt) + (f(βmax

t1
, H)− qt)

)
,

ν4 = (f(βmax
t1

, H)− qt)(gt − µt) (1−RT ) ,
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and

RC =
αcβc2Λ

κcµµcqc(1−Rc
h)(1−Rc

b)
, RT =

αtβt2Λ

κtµµtqt(1−Rt
h)(1−Rt

b)
,

Rc
h =

f(βmax
c1

, H)

qc
, Rc

b =
gc
µc

, Rt
h =

f(βmax
t1

, H)

qt
, Rt

b =
gt
µt

.

The constants Rc
b and Rc

h are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the cholera only sub-model.

The constants Rt
b and Rt

h are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the typhoid only sub-model.

The constants RC and RT are the so-called basic reproduction numbers for the

cholera only sub-model and the typhoid only sub-model, respectively. Clearly,

Rc
h,Rc

b < 1 or Rc
h,Rc

b > 1 if and only if RC > 0; Similarly, Rt
h,Rt

b < 1 or

Rt
h,Rt

b > 1 if and only if RT > 0.

We note that

ν2 >(f(βmax
c1

, H)− qc)(gc − µc)
(
1−max {RC ,RT}

)
,

ν4 >(f(βmax
t1

, H)− qt)(gt − µt)
(
1−max {RC ,RT}

)
.

Thus

R0 = max {RC ,RT} .

The constant R0 is the basic reproduction number for the systems (5.1). It follows

from the Routh Hurwitz criterion that the four eigenvalues of J̄ have negative real

parts if ν1, ν2, ν3, ν4 > 0. It is easy to see that ν1, ν2, ν3, ν4 > 0 if Rt
h < 1,Rt

b < 1,

Rt
h < 1,Rt

b < 1 and R0 < 1. Hence, a positive basic reproduction number for

system (5.1) that is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

5.3 Numerical Simulation

In this section, we present the numerical results obtained in this investigation.

Graphs depicting the cumulative differences arising from the improvement of hy-

giene in each of the states variables are shown. For all the graphs, the basic
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reproduction number was 1.4 whenever the level of hygiene was 0%, whereas

the basic reproduction number reduced to 1.3 whenever the level of hygiene was

25%. The initial conditions used for the state variables are as follows: S(0) =

99980, Ic(0) = 20, It(0) = 20,

Ict(0) = 20, Rc(0) = 0, Rt(0) = 0, Rct(0) = 0, Bc(0) = 40000,

Bt(0) = 40000. The parameters of the models are found in Table 5.1.

Par. Range Point Value Source

βmax
c1

1 Assumed
βmax
t1

1 [55]
βc2 (0.1—1) 1.97× 10−11 [19, 9, 44, 57]
βt2 1.97× 10−11 [52]
βmax
c3

0.5 Assumed
βmax
t3

1 Assumed
βc4 10−1 Assumed
βt4 10−1 Assumed
kc (106—109) 5× 106 [19]
kt 5× 106 Assumed
δc 6.58× 10−1 [57, 75, 77]
δt 0.6 [52]
ρc 8.12× 10−3 [37, 74]
ρt 1.3× 10−3 [62]
ρct 1.3× 10−3 Assumed
gc 0.014 Assumed

Par. Range Point Value Source

gt 0.014 [56]
αc 10 Assumed
αt 10 [56]
µ (0.017—0.123) 0.02 [27, 50, 57]
µt 0.0345 [56]
Λ (100—467) 449.32 [12]
µc 0.0345 Assumed
ϵc (0.07—0.245) 0.07 [74, 57, 75, 28]
ϵt 0.1 [2, 53]
ϵct 0.1 Assumed
κc 0.62 Assumed
κt 0.62 Assumed
θc 0.8 Assumed
θt 0.8 Assumed
ηc 7× 10−4 Assumed
ηc 7× 10−2 Assumed

Table 5.1: Parameter values and their sources.
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Figure 5.2: The trajectories of the susceptible classes are shown. The dotted curve shows the

hygiene levels at zero, whilst the solid curve shows a 25% improvement of the hygiene levels. The

total shaded region represents the cumulative number of susceptibles that avoid infection owing

an improvement of hygiene.

Figure 5.3: The trajectories of individuals infected with cholera are shown. The dotted curve

shows the hygiene levels at zero, whilst the solid curve shows a 25% improvement of the hygiene

levels. The total shaded region represents the cumulative number of cholera infections avoided by

the improvement of hygiene.
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Figure 5.4: The trajectories of individuals infected with typhoid are shown. The dotted curve

shows the hygiene levels at zero, whilst the solid curve shows a 25% improvement of the hygiene

levels. The total shaded region represents the cumulative number of typhoid infections avoided by

the improvement of hygiene.

Figure 5.5: The trajectories of individuals infected with both cholera and typhoid are shown. The

dotted curve shows the hygiene levels at zero, whilst the solid curve shows a 25% improvement

of the hygiene levels. The total shaded region represents the cumulative number of coinfections

avoided by the improvement of hygiene.
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Figure 5.6: The trajectories of individuals that have recovered from cholera are shown. The

dotted curve shows the hygiene levels at zero, whilst the solid curve shows a 25% improvement of

the hygiene levels. The total shaded region represents the cumulative number of individuals that

avoided the cholera infection because of the improvement of hygiene.

Figure 5.7: The trajectories of individuals that have recovered from typhoid are shown. The dotted curve shows the

hygiene levels at zero, whilst the solid curve shows a 25% improvement of the hygiene levels. The total shaded region

represents the cumulative number of individuals that avoided the typhoid infection because of the improvement of hygiene.
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Figure 5.8: The trajectories of individuals that have recovered from the coinfection are shown.

The dotted curve shows the hygiene levels at zero, whilst the solid curve shows a 25% improve-

ment of the hygiene levels. The total shaded region represents the cumulative number of individ-

uals that avoided the coinfection because of the improvement of hygiene.

Figure 5.9: The trajectories of V. cholerae concentration, measured in vibros per litre, are shown. The dotted curve

shows the hygiene levels at zero, whilst the solid curve shows a 25% improvement of the hygiene levels. The total shaded

region represents the cumulative vibros per liter that were avoided because of the improvement of hygiene.
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Figure 5.10: The trajectories of S. typhi concentration, measured in bacterial cell per litre, are

shown. The dotted curve shows the hygiene levels at zero, whilst the solid curve shows a 25%

improvement of the hygiene levels. The total shaded region represents the cumulative amount

of bacteria per liter that were avoided because of the improvement of hygiene. R0 = 1.4 when

H = 0, and R0 = 1.3 when H = 0.25.
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Figure 5.11: The basic reproduction number, R0, as a function of hygiene, H , is shown.

We observe that the disease free equilibrium is locally asymptotically stable when-

ever the basic reproduction number is less than one. Increasing the hygiene by

25% does not yield a significant change in the reproduction number. However,

the same increase of 25% in hygiene levels produces a significant change in the

shape of the trajectories of the infected classes. We observe that the peak is de-

layed in each of the infectious classes, and the severity of the infection, that is

the height of the peaks, are greatly diminished. These delayed peaks result in a

negative difference in the short term, but the net difference is always positive in

the long term. A significant difference in the concentration of the pathogen is also

observed from a change in hygiene.
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5.4 Conclusion

In this article, we present a hygiene dependent model for typhoid and cholera

coinfection transmission dynamics. For the purposes of this model, the impact of

hygiene on the direct transmission route is analysed. A sigmoidal decay curve is

used to model the contact rate function. The effects of hygiene on the reproduction

number are documented, as well as the effects of hygiene on the trajectories of

each of the state variables are also documented.

The management of hygiene, even if it is limited to the direct transmission route, is

sufficient to produce a significant drop in the prevalence levels of both infections.

Despite the reproduction number changing minimally, significant changes in the

disease peaks and delays in the peaks support this fact. This means that during an

outbreak of these two infections, policymakers are afforded the necessary time to

put together intervention strategies before the peak is reached, and it also means

that hospitals will not be overwhelmed by number of infected individuals present-

ing with the diseases. Although the indirect transmission routes were not curtailed

directly, managing the direct transmission routes through hygiene proved to have

a positive effect on the indirect transmission route. This can be seen in how a sig-

nificant difference in the concentration of pathogens was observed from a change

in hygiene. The reason for this is that with fewer people getting infected, bacte-

rial concentration will also be minimized since the number of individuals that are

shedding are reduced.

The following chapter concludes the thesis.
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Discussion and Conclusion

This chapter gives a summary of the findings of the research. Recommendations

for policy makers, limitations of the study, and the possibilities for future research

are also discussed in this chapter.

A cholera typhoid coinfection model was analysed in this thesis. The analysis was

carried out by first analysing the associated sub-models. Numerical simulations

were carried out, and the conditions required for the model to be well posed were

established. The equilibria and the stability of the model at the fixed points are

determined. Through impact analysis, we were able to determine whether the

two diseases were in conflict, or whether they were symbiotic. We then proposed

and analysed a typhoid model with seasonality. A trigonometric function was

inserted into the transmission rate to model the seasonality. To understand the

effects of seasonality on the basic reproduction number, a comparison of the basic

reproduction numbers of models with and without seasonality was done. The

Latin Hypercube sampling technique was used to carry out the sensitivity analysis

for this model. Lastly, we constructed a coinfection model for typhoid and cholera

that is hygiene dependant. A sigmoidal decay curve was used to model the contact

rate as a decreasing function of hygiene. We further showed how the reproduction

number changes as the hygiene levels change.

103
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Several results were discovered form the cholera typhoid coinfection model. Nu-

merical simulations revealed the following properties about this model. First, it

showed that increases in the coinfected recovery rate yields maximum impact in

the presence of typhoid, yet it yields minimal impact in the presence of cholera.

Second, the simulations also showed that the prevalence of the coinfected class is

mostly impacted by an increase in cholera recovery rates, as opposed to typhoid

recovery rates. For the model to be well posed, the death rates of the bacteria

must exceed the birth rate of the bacteria. When this condition was not met, we

observed that negative trajectories for the state variables could not be ruled out.

We proved that the disease-free equilibrium locally was locally stable whenever

the basic reproduction number was less than one, and that the endemic equilib-

rium was locally stable whenever the basic reproduction number was greater than

one. A mathematical justification for why the two infections are symbiotic was

provided.

Some key insights that were obtained from the typhoid model with seasonality

where the following. First, the time average production number tends to be an

unreliable estimator for the basic reproduction number for diseases with seasonal

fluctuations. The recruitment rates and the natural mortality rate turned out to be

the most sensitive parameters for this model.

The addition of hygiene dependence to the cholera typhoid coinfection model also

produced several new insights. We observed that the decay sigmoidal curve used

in this model, by design, reduced the force of infection in the direct transmission

route. Unexpectedly, we also observed a substantial drop in the transmission along

the indirect transmission route. It was also observed that the basic reproduction

number was a decreasing function of hygiene.

Several limitations were present throughout the modelling in this thesis. The most

consistent of all these limitations was the lack of data. For the typhoid cholera
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coinfection model, the highly seasonal nature of the two infections was not con-

sidered, and fear was also a glaring omission in the modelling of these infections.

This then formed the basis of the subsequent model on typhoid seasonality with

fear. This typhoid model also had a problem of data, and the consideration of

other behavioural factors such as hygiene was not done. To address these issues,

we developed and analysed a hygiene dependant coinfection model for typhoid

and cholera. This theoretical hygiene dependent coinfection model also had a

data challenge. A possibility for future extensions to this model would be the

introduction of hygiene dependency on both transmission routes, given that we

understand how hygiene dependence affects the direct transmission routes. De-

spite these shortcomings, the results of these models can still be of great use to

policymakers.
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