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SUMMARY 
 
HIV infection promotes the progression of latent infection of Mtb to the active disease 

with the primary challenge of diagnosis being the development of efficient and 

sensitive methods to detect latent TB in HIV infected individuals. Previous studies have 

identified transcriptional signatures for active TB along with signatures predicting the 

risk of active TB disease in latent TB infected individuals or those with other diseases. 

Existing studies have also identified characteristic genes for active TB in HIV infected 

patients. However, no studies have identified predictive transcriptional signatures that 

discriminate latent TB from active TB disease in HIV positive persons as well 

epigenetic mechanisms associated with latent TB/HIV coinfection. The aim of this 

study was to develop a computational pipeline using statistical modelling and machine 

learning (ML) methods to identify a transcriptomic signature associated with latent TB 

in HIV positive patients and to identify candidate epigenetic modifications for future 

studies.  

A novel pipeline, that leverages statistical differential expression analyses (OPLS-DA) 

and supervised ML and feature selection methods, was applied to an existing 

transcriptomic dataset (NCBI GEO repository accession number GSE37250) and the 

outcome of the two methodologies were integrated to define a gene signature 

characterising the progression of latent to active TB in HIV infected patients. 

Enrichment analysis was performed on the transcriptomic panel of genes to predict 

candidate epigenetic marks in latent TB/HIV coinfection.   

An 11-gene minimal signature was identified of which the expression levels  

discriminate between latent TB and active TB in HIV positive patients.  A broader 

analysis of DEGs identified by the ML and OPLS-DA revealed enrichment of pathways 

related to T- and B-cell receptor signalling, metabolic processes, insulin signalling, 

endocrine resistance and ATP-binding. Candidate epigenetic alterations associated 

with latent TB in the HIV positive cohort were identified using transcription factor (TF), 

histone modification (HM) and miRNA enrichment analyses.  

This novel integrative approach to identify a discriminative latent TB gene signature 

provided new insights into the response mechanism of HIV co-infection with Mtb, and 

pathways that merit further investigation was identified. The genes of interest identified 

may provide novel diagnostic and therapeutic targets for latent TB in patients who are 

HIV positive.  
  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37250
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ABBREVIATIONS 
 

Abbreviation Description 
ANOVA Analysis of Variance 
APC Antigen presenting cell 
AUC Area under ROC curve  
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DEGs Differentially expressed genes 
FC Fold change 
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LTB Latent tuberculosis 
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ML Machine learning  
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1 GENERAL INTRODUCTION 
1.1 Epidemiology  

Tuberculosis (TB) is a communicable disease, which according to the Global 

Tuberculosis Report Tuberculosis (TB) is one of the top ten causes of death and one 

of the leading causes of death from a single infectious agent, above HIV/AIDS [1]. In 

2019, an estimated 10 million people worldwide fell ill with TB and there were a total 

of 1.4 million TB related deaths [1] 

 

The World Health Organization (WHO) estimates that 1.8 billion people (almost one-

quarter of the world’s population are infected with Mycobacterium tuberculosis (Mtb), 

the pathogen that causes TB [2]. However not everyone infected with Mtb becomes 

sick as a result two-TB related conditions exist, namely latent TB infection and active 

TB disease. Latent TB infection usually occurs following exposure to the bacteria and 

is described as the state in which persons are infected with Mtb without any clinical 

symptoms, microbiological evidence or radiological abnormality [3]. An individual with 

latent TB infection is not considered contagious but the bacteria remain dormant in 

their lungs, and if left untreated latent TB can progress to the active disease state [4]. 

Active TB disease is the condition when an individual has signs and symptoms of TB 

infection and can be caused by either primary infection or reactivation of latent TB [6]. 

Primary TB occurs when the immune system is unable to defend itself against Mtb 

infection [6]. While reactivation TB is the reactivation of contained Mtb infection and is 

the most common form of active TB, representing 90% of cases [6]. People infected 

with Mtb have a 5-10% risk of developing active TB from latent TB during their lifetime 

while the remainder can contain the infection unless immunosuppressed with 

coinfecting viruses such as HIV.  [1] 

 

WHO reports that 1.2 million TB deaths were among HIV-negative patients and an 

additional 208 000 among HIV-positive patients in 2019 [7]. People living with HIV 

(PLHIV) are 20 times more likely to fall ill with TB, thus TB remains the leading cause 

of death in PLHIV [8]. The African continent has 74% of the 1.2 million HIV/TB cases 

worldwide [9]. Sub-Saharan Africa in particular has a significant increase in TB due to 

the burden of HIV [9]. South Africa, Lesotho, Botswana, Zimbabwe and Swaziland,  

are the southern African countries whose annual TB incidence and caseloads have 

increased immensely over the past 20 years, shifting what was previously a TB 
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problem to a crisis [10]. The latest data from Statista (2017) showed that in South 

Africa – where a quarter of all global HIV/TB coinfections occur – the leading cause of 

death was TB [11]. Epidemiologically, countries with a high burden of TB parallels the 

HIV pandemic.  

 

Although present globally, the epidemiology of TB significantly varies depending on 

the region. South Africa in particular is one of the 30 high burden TB countries 

contributing to approximately 87% of TB cases worldwide [12]. Among these countries 

it is amongst the 14 countries with the highest burden of TB, TB/HIV coinfection and 

multi-drug resistant TB (MDR-TB) [12]. South Africa’s TB epidemic is further driven by 

various factors such as low socioeconomic status, high HIV coinfection burden, 

delayed health-seeking behaviour in TB infected individuals, and a high instance of 

undiagnosed disease in communities [12]. Furthermore, the country also has the 

highest HIV epidemic in the world, with an estimated 7.7 million PLHIV in 2018 and 

accounts for a third of all new HIV infections in Sub-Saharan Africa [13].  

 

Bacterial, host, and environmental factors influence the progression of latent TB to 

active TB [14]. TB is an infectious disease that begins in the lungs through infection 

via aerosol droplets or the bloodstream [15]. Once the Mtb pathogen has entered the 

bloodstream, the bacteria spreads through the body and result in the infection of 

various tissues; however with latent TB the bacteria stay dormant before resulting in 

active TB [15]. In more than 90% of cases immune responses which are cell-mediated, 

control progression of the disease, result in latent TB [16]. While less than 10% of 

these cases advance to active TB causing approximately 3 million deaths globally 

every year [16].  

 
In HIV infected individuals, the presence of other infections such as TB accelerates 

the rate of HIV replication [17]. This acceleration results in greater levels of infection 

and consequently a quicker progression to the AIDS stage [17]. HIV promotes the 

progression of latent infections of Mtb to the active disease and consequently 

increases the rate of occurrence of TB shortly after HIV infection [18]. In the past, the 

main challenge of diagnosis has been the development of efficient and sensitive 

methods to detect latent TB in HIV-infected individuals [15]. However, in more recent 

years, the significant progress made in genomics has provided an important reference 

to assist in the diagnosis of HIV combined TB infection [19].  
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1.2 Pathogenesis and Mechanism of Latent TB/HIV Coinfection  

The pathogenesis of Mtb is complex, involving an elaborate interaction with the host  

[20]. Key factors such as the ability of Mtb to survive in macrophages, its preference 

for the lung, the formation of granulomas and its long term persistence remain poorly 

understood [20]. Mtb infect via the respiratory tract where they invade and replicate 

within the alveolar macrophages [21]. The macrophages then illicit an immune 

response resulting in the formulation of a granuloma, which is a structure composed 

of macrophages, dendritic cells, lymphocytes, neutrophils and sometimes fibroblasts 

[21]. This structure acts to contain the bacilli and limit Mtb replication; however, just 

the simple formation of a granuloma is not sufficient enough to control infection as a 

person with active TB may contain multiple granulomas in the lungs [21]. Instead, the 

granuloma requires optimal immunological function in order to contain the bacilli [21]. 

 

This ongoing immune response against Mtb has been shown to increase the 

replication of HIV-1 in the blood and at the sites of Mtb infection in the lungs [22] as 

seen in Figure 1.1. HIV causes a depletion of CD4 T-cells, which contributes to the 

progression of latent TB to active TB [21]. HIV also affects other cells such as 

macrophages, and thus influences cytokine production, which can also prevent a host 

from containing latent Mtb infection [21]. As with all opportunistic illnesses in HIV-

infected, the risk of TB increases at lower CD4 counts.   

  
Figure 1.1 Proposed mechanism of HIV induced reactivation of latent TB.  
Stage 1 illustrates a necrotic granuloma functioning normally in a latent TB infected individual. This is proceeded 
by Stage 2 whereby HIV enters the granuloma causing functional changes within macrophages and T cells and also 
kills activated T cells. Stage 3 results in the decrease in a number of T cells and an increase in cellular dysfunction 
resulting in the functional disruption of the granuloma, which may ensue increased dissemination. Stage 4a 
indicates the disruption of granulomas shortly after HIV infection causing continued Mtb dissemination as well as 
early TB reactivation. Stage 4b demonstrates the fibrotic granulomas temporarily re-establishing granuloma 
containment, preventing reactivation [21].  
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Although several hypotheses regarding the exacerbation of TB by HIV have been put 

forward, the mechanisms by which HIV infection disrupts TB granuloma function 

resulting in increased morbidity and mortality are poorly understood. Thus, HIV/TB 

coinfection presents enormous diagnostic and therapeutic challenges on immensely 

burdened countries that are heavily infected [18].   

 

Considering most patients infected Mtb do not develop the active clinical disease, 

latent TB exhibits a unique and challenging opportunity to comprehend the intricate 

relationship between host cells in the granuloma [23]. Another major contributor to this 

problem is that no clear pattern of host responses are linked with latent TB infection 

since molecular correlates of latent TB infection have been difficult to identify [5].  

1.3 Diagnosis of Latent and Active TB 

The standard diagnostic test for TB is the Tuberculin Skin Test (TST) which involves 

intradermal injection of a purified protein derivative (PPD) – a mixture of more than 200 

antigens which are shared by other mycobacteria [24]. Injection of this PPD leads to a 

delayed hypersensitivity response and thus causing a cutaneous induration at the site 

of injection, usually between 48-72 hours [24]. TST has several limitations with regards 

to its specificity and sensitivity, as it may be positive in patients that have a prior Bacille 

Calmette-Guerin (BCG) vaccination to those that have had exposure to non-

tuberculous mycobacteria [24]. In addition, false negative TST results can frequently 

occur in patients that have impaired T-cell function [24].  

 

Another assay that was introduced for the detection of Mtb infected individuals is the 

Interferon Gamma Release Assay (IGRA) which is a blood test that works by 

measuring interferon-gamma release in response to T-cell stimulation cause by 

specific Mtb antigens [24]. IGRAs have progressively replaced TST as they are meant 

to offer improved specificity and sensitivity [25]. However, IGRAs major limitations are 

that they are unable to discriminate between active and latent TB [26] and are therefore 

insufficient for marking the disease status.  

 

Although there have been recent advances in the identification of TB biomarkers – 

specifically those that have the potential to diagnose and differentiate active TB from 

latent TB [27]; the problem lies when an individual has an immunosuppressing 

infectious disease such as HIV. The sensitivity of TB diagnosis is further limited by the 

presence of HIV infection as it results in the increase of false negatives [28]. There is 
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only limited data available that describes IGRA performance in HIV-infected individuals 

in which their immunological impairment could affect the performance of this 

lymphocyte based assay [26] 

Due to their high risk of TB, PLHIV need to be regularly screened for TB [29]. This 

screening involves investigating the presence of a current cough, fever, weight loss 

and night sweats; the presence of one of more of these symptoms would then prompt 

the application of a TB diagnostic procedure as the individual would be presumed to 

have TB [29]. To diagnose latent TB in PLHIV, the TST should be used. IGRA might 

be used instead of TST in settings where BCG vaccination coverage is high and 

whereby organisation of testing is feasible.  A positive TST or IGRA result among 

PLHIV without any indicating signs of active TB should be considered to indicate latent 

TB in an individual and this requires the implementation of TB preventive treatment 

[29].  

New tests to diagnose latent TB are required for immunocompromised individuals such 

as HIV infected persons. Ideally, these tests should have numerous characteristics 

such as high sensitivity for all populations that are at risk including high specificity, 

reliability, stability over time and objective criteria for a positive result [26]. And because 

latent TB occurs at such a high incidence, the tests should be inexpensive and easy 

to perform [26]. Therefore novel biomarkers that target the host immune responses 

against Mtb may aid in improving clinical tests [16].  

1.4 Treatment for Latent TB Infection in PLHIV 

Prevention of active TB by means of latent TB treatment is one of the greatest strategic 

elements to eliminate TB. Clinical trials have illustrated that latent TB treatment in 

PLHIV reduces the risk of active TB, particularly in those with a positive tuberculin skin 

test [30]. There are several latent TB treatment options available for PLHIV [30]. Until 

recently, isoniazid (INH) preventive therapy has been the most widely recommended 

and used regimen for the treatment of latent TB infection in PLHIV [30]. However, 

completion of INH therapy in both HIV infected and uninfected persons is very low [31]. 

The WHO recommends screening HIV infected individuals for a cough, fever, night 

sweats and weight loss [31]. If no symptoms are present INH preventive therapy is still 

recommended even in the absence of skin testing [31]. The main challenge to this 

strategy is the lack of proven efficacy of INH in tuberculin skin test negative persons 

[31]. Thus, it is imperative to identify other safe and effective treatment regimens with 

high completion rates.   
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For persons with positive tuberculin skin tests, the Centers for Disease Control and 

Prevention (CDC) recommends that healthcare providers prescribe a short-course 

regimen when possible since patients are more likely to complete a shorter treatment 

plan [32]. The latest CDC recommended treatment for individuals with latent TB and 

HIV taking antiretroviral medications (with acceptable drug-drug interactions) is 12 

weeks of isoniazid and rifapentine antibiotics [32]. Another treatment option is four 

months of daily rifampin; however, this regimen should not be administered in HIV 

infected persons taking some combinations of antiretroviral therapy (ART) [30, 32]. An 

alternative treatment for individuals taking antiretroviral medications with significant 

drug interactions is nine months of daily isoniazid [32].  

1.5 Transcriptome Profiling for Disease Prediction 

Over the last few decades, transcriptome profiling has been one of the most widely 

used approaches to analyse human diseases at a molecular level [33]. Many molecular 

biomarkers and therapeutic targets have been identified for various human pathologies 

through gene expression studies [33]. The transcriptome contains all sets of RNA 

transcripts of the genome in a specific tissue or cell type [33]. The two key techniques 

in the field of transcriptomics include microarrays and RNA sequencing (RNA-Seq) 

[34]. Microarrays quantify a set of predetermined transcripts/genes through 

hybridisation, while RNA sequencing utilises high throughput sequencing in order to 

capture all sequences of the whole transcriptome [35]. Transcriptomic analysis has 

enabled the study of gene expression changes in different organisms, which is 

fundamental to understanding human disease [34]. Measuring the expression of an 

organisms’ genes in different conditions provides information of how the genes are 

regulated [34].  

1.5.1 Microarray Gene Expression and Gene Expression Signatures 

Microarray technology is used to measure the expression levels of thousands of genes 

simultaneously, during a single experiment [36]. The primary use of DNA microarrays 

is transcriptional profiling. Microarrays enables the identification of differentially 

expressed genes (DEGs) between two or more biological conditions. A gene is 

described as differentially expressed when an observed difference or a change in 

expression levels or read counts between two experimental conditions is statistically 

significant [37].  A microarray is a collection of DNA probes bound to a fixed surface in 

such a way that the identity of each probe can be determined through its position on 
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the array. The probes of microarrays comprise of a string of nucleotides that are 

complementary to the sequence of the gene being investigated [38]. The probes can 

be oligonucleotides, complementary DNA (cDNA) or small fragments of PCR products 

corresponding to mRNAs [38]. Typically an oligonucleotide probe is single-stranded 

and between 25 and 70 bases long [38]. While cDNA probes are double-stranded with 

the length of a full gene product (2kb on average) [38].  

 

Omics repositories such as the National Center of Biotechnology Information (NCBI) 

Gene Expression Omnibus (GEO) and EMBL-EBI ArrayExpress accumulate and 

provide gene expression data from thousands of studies facilitating the reanalysis of 

gene expression data by researchers [39]. The generation of large datasets from 

microarray experiments, that can be accessed through such repositories, presents 

unique challenges in acquiring, annotating, analysing and warehousing that data [38]. 

More recently, research requires much more from microarray experiments than just a 

list of up or downregulated genes, the functional associations between those genes 

must also be made [38]. Gene annotation requires the assimilation of functional 

information about protein products and motifs [38]. Gene Ontologies (GO) are used to 

capture and describe these annotations and provide biological classifications, specific 

molecular interactions as well as subcellular localisations [38].  

1.5.2 Transcriptomic Signatures for Diagnosing Tuberculosis  

A means of screening populations that have latent infection or are at high-risk of 

developing active TB disease is crucial in applying prophylactic therapy for the 

prevention of TB [40]. Transcriptomic signatures for individuals with active TB have 

been proposed and indicate a promising diagnostic tool  [41]. More recent studies have 

explored the identification of transcriptomic signatures which differentiate individuals 

with latent TB infection from those with active TB [41-44]. Although biomarkers have 

been identified they have not yielded translatable outcomes for understanding 

protective immunity in the host. Thus, our understanding of the relationships that exist 

between the states of latent TB and active TB along with the immune factors that affect 

possible transition between states is very limited [40]. Moreover, the overlap of 

pathology caused by Mtb and the HIV virus presents further challenges. TB/HIV 

coinfection increases the risk of active TB, however, the determinants of this synergism 

are uncertain [45]. As such, transcriptomic data remains insubstantial for differentiating 

latent TB from active TB in HIV infected persons.   
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1.6 Identification and Classification of Gene Expression 
Signatures using Computational Biology  

The rapid developments in genomics, through the applications of technologies such 

as microarrays or high-throughput performance sequencing, have produced a 

significant amount of biological data [46]. This has presented new opportunities and 

challenges in the fields of computational biology and bioinformatics since this large 

data needs to be analysed to draw conclusions from this data [46]. Increasingly, 

sophisticated computational methods and tools, such as machine learning tools or 

gene expression analysis tools, are required and applied for downstream analyses of 

complex biological data. Multivariate statistical methods, particularly for both 

supervised and unsupervised clustering, principal component analysis, regression and 

visualization tools, such as heatmaps, have proved vital to the interpretation of 

outcomes for these complex data which are generated by combinations of epigenetic 

changes and molecular events [47].  

 

The use of numerous computational approaches and tools in order to comprehend 

transcriptional and epigenetic changes and their impact on disease has thus become 

increasingly more important for data generation, mapping and management as well 

gene analysis and therapy [47]. Computational tools play a critical role in forming 

testable hypotheses and directing the selection of key experiments through the 

analysis of complex and large genomic information, which is not attainable using only 

traditional approaches [48].  Managing and mapping for “-omics” studies are important 

steps, but the real challenge now is the interpretation of this data in order to quantify 

risk and drive therapeutic development and disease management. [47]. 

 

A gene signature or a gene expression signature (GES) is a combined set of genes 

with a unique characteristic pattern of altered gene expression that can distinguish 

patients with different conditions [36]. A GES can be used for the purposes of 

diagnosis, prognosis or the prediction of therapeutic response [36]. GESs are typically 

determined through the use of statistical methods such as fold change and the t-test 

[36], but over the more recent years, machine learning has become the method of 

choice for identifying GESs. With these recent methods, similar GESs that are most 

likely induced by the same or related biological mechanisms can be established [49]. 

Identifying genes that are positively or negatively correlated can provide insights into 

previously unknown connections among biological networks [49]. For instance, distinct 

diseases may result in overlapping mRNA expression patterns emerging from the 
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same or related immune response processes [49]. Moreover, mutations that are 

induced by similar GESs may enable functional associations with biological processes 

even if the affected genes do not share sequence similarities. Likewise, drugs 

employed for different therapeutic applications may share similar GESs owing to 

related mode of actions [49]. GES technology may be extremely beneficial for 

identifying novel drug targets leading to the discovery of novel pharmaceutical 

treatments for various diseases and for addressing key biological and human health 

research problems [49]. 

1.6.1 Statistical Techniques that can be applied to Microarray Datasets 

Statistical analysis is defined as the study of the collection, organisation, interpretation, 

analysis and organisation of data and involves the drawing of inferences from the 

samples to the whole population [50]. Statistical analysis usually requires the proper 

design applied to the study, a suitable selection of the study sample as well as the 

choice of a suitable statistical test [50]. Statistical analysis is one of the most important 

techniques used to identify transcripts whose expressions change significantly across 

different samples or experimental conditions [51]. The complex nature of gene 

expression studies presents challenging statistical problems that require the use of a 

number of specialised statistical techniques to exploit each data set [52]. Statistical 

analysis may be represented by both univariate and multivariate data analysis [50]. 

Univariate analysis is the simplest of statistical analyses where only one variable is 

analysed [53]. Multivariate data analysis, which is used to compare more than two 

variables, is beneficial for summarising data and examining patterns in 

multidimensional data [53]. Before utilising any statistical test, it is necessary to apply 

some pre-filtering processes, normality tests and normalisation, respectively to obtain 

results with reduced error [51]. The Fold Change (FC) is a fundamental method that is 

widely used to identify DEGs [54]. The FC is calculated as a ratio of averages from 

control and test sample values initially used [54]. Cut-offs are used and genes with FC 

values below or above thresholds are selected [54]. Other statistical methods are also 

used, which apply three steps. First, a statistical test (for e.g. Student’s t-test) is 

performed to derive the p-value for each gene in the microarray study [54]. Second, 

the p-values are compared to a selected threshold that has an acceptable False 

Discovery Rate (FDR), after which a list of genes is attained [54]. Third, using the FC 

level thresholds, up and down-regulated genes from the above list are selected [54].  

Statistical testing procedures can be broadly classified as parametric and 

nonparametric tests [55]. The most common statistical procedures are parametric 
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statistics, which make certain assumptions about the distribution of the sample 

population such as that the sample distribution has the same parameters (means, 

standard deviations)  and are the same shape (normally distributed) [55, 56].  If the 

data does not meet these assumptions then one possible alternative is to use 

nonparametric statistics that make no such assumptions about the parameters or 

shape of the population distribution [55, 56]. Different parametric and nonparametric 

testing methodologies can be used for discovering DEGs from microarray datasets 

[51]. The types of popular parametric tests which can be used to identify DEGs include: 

t-test, ANOVA 1 test and Pearson’s correlation test. While common nonparametric 

tests that can be applied include: Permutated t-test, Wilcoxon Ranksum Test, 

Significance Analysis of Microarray, Linear Models for Microarray Data (Limma) and 

Shrink-t [51].  

1.6.2 Machine Learning Classification and Feature Selection  

In biological research, observation data is used to derive classes into which patients 

can be assigned to. The classes could include patients with a disease subtype, disease 

state or patients responding to a particular treatment. Consequently, these classes 

may be used for personalised healthcare rather than making use of a one-size-fits-all 

approach. The problem is usually not knowing in advance which classes are relevant 

for each patient; hence the main challenge lies in defining criteria to assign individual 

patients to known classes [57]. The classification methods used in microarray studies 

are distinct in the manner that they deal with the underlying intricacy of the data and in 

the technique employed to build the classification model [58].  

Microarray DNA technology is computationally expensive and generates high-

dimensional data with minimal sample size [59]. This high dimensionality is largely 

owed to the vast number of values generated for every gene in a genome [59]. 

Employing such a high dimensional dataset can result in over-fitting of the model [60]. 

To address this issue the dimension of the data needs to be reduced by a considerable 

amount [60]. In the past few years, Machine Learning (ML), a subset of Artificial 

Intelligence has gained traction in the field of genomic studies [60]. The primary 

purpose of ML is to enable a model to train and learn a dataset to make predictions or 

decisions in the future without being explicitly programmed to do so [60].  

 

ML is generally categorised as Supervised, Unsupervised and Reinforcement learning 

[60, 61]. Supervised learning involves feeding a learning algorithm labelled data and 

over time the algorithm learns to approximate the relationship between examples and 
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their labels [61]. Once fully trained, the supervised learning algorithm is able to observe 

a never before seen example and predict a label for it [61]. Unsupervised learning on 

the other hand involves no labels, instead, the algorithm is fed a lot of data and 

provided with the tools required to understand the properties of the data. The algorithm 

can then learn to group, cluster and/or organise the data in a way that a human or 

other intelligent algorithm can make sense of the new organised data [61]. 

Reinforcement learning is a feedback-based ML technique where agents are trained 

on a reward and punishment mechanism [61]. The agent is rewarded on desired 

behaviours or moves and/or punishing undesired ones [61]. In doing so the agent 

attempts to minimise incorrect moves and maximise the correct ones [61].  

 

Microarray data classification is typically performed in two phases: (i) Feature 

Selection which selects the most relevant features from a large dataset in order to 

reduce noise, overfitting and computational overheads. (ii) Classifier Training which 

builds a model from selected features to accurately and reliably classify a given 

microarray sample [62]. Feature selection is a dimensionality reduction technique and 

assists in preserving informative attributes [63] and is significantly useful in fields with 

datasets containing too many features and relatively scarce samples, such as DNA 

microarray [63]. Feature selection techniques assist in overcoming model overfitting, 

handling the high dimension, maximising prediction accuracy and model training time 

[64, 65]. The feature selection outcome is usually the optimal number of features 

relevant to a given class label, which ultimately contributes to the process of prediction 

[64, 65]. The primary purpose of applying feature selection to gene expression data is 

to select the most regulating genes and discount redundant genes that do not 

contribute to the target class [66].  

1.6.3 Pathway and Network Analysis of Differentially Expressed Genes 

In the past, gene expression data were analysed on a gene-by-gene basis, 

disregarding complex interactions and association mechanisms, thus overlooking the 

presence of important underlying biological signals [67]. Researchers began to realise 

the concerted manner in which genes act and that cellular processes are a result of 

the complex interactions between different genes and molecules [68]. Genes can be 

categorised based on various traits such as sequence, function and interactions [67]. 

Grouping genes by biological pathway is usually the most relevant approach [67]. 

Pathway analysis is defined as an approach that identifies differential expression 

patterns in a dataset by considering pathways structure. In pathway analyses, 
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researchers are typically interested in determining pathways associated with a 

biological condition and establishing crucial components of those pathways which 

explain the association [67]. Numerous repositories exist containing information about 

thousands of biological pathways which contain up to several hundred proteins [67].  

 

High-throughput technologies such as microarrays generate large gene lists of interest 

as their final outputs, which can range in size from hundreds to thousands of genes 

[68]. Over the decades, bioinformatics methods have made use of biological 

knowledge generated in public databases such as Gene Ontology (GO) to perform 

network enrichment analyses that This allows researchers to systematically dissect 

these large gene lists, ascertain which genes are differentially expressed (enriched) 

and have an association with disease phenotypes [68, 69] and gain information on the 

relationships between genes that are provided by gene networks [68]. In order to gain 

insight into the biological significance of the alterations in gene expression levels of 

DEGs, researchers utilise the GO enrichment analysis to establish whether GO terms 

relating to specific molecular functions, biological processes, or cellular components 

are over or under-represented within a gene set of interest [70].  

1.7 Epigenetic Mechanisms  

Epigenetics has emerged as an important field in studying the influence of non-gene 

factors on the traits and functions of organisms [48]. The term ‘epigenetics’ was coined 

by biologist Conrad Waddington in 1942, by using studies of how environmental 

influences develop in conjunction with genotype, leading to the development of 

phenotype [71]. The field of study involves changes in gene expression caused by 

factors other than an individual's DNA sequence. Every cell type has a unique 

epigenome which allows for specific cell differentiation and since a single genotype 

can be associated with several phenotypes, it is believed that infinite epigenomes exist 

for a single genome sequence [71]. Epigenetic changes refer to changes in DNA 

structure as a result of DNA modification after replication or post-translational 

modification of proteins that are associated with DNA [72]. Contrary to mutations, 

epigenetic changes occur very rapidly and are reversible [72]. The major epigenetic 

mechanisms include DNA methylation, histone modifications, and non-coding RNA-

associated gene silencing [48, 72] and an eminent goal for this area is to determine 

regions in the genome that are susceptible to these epigenetic modifications.  

1.7.1 DNA Methylation  
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A key driver in epigenetics is DNA methylation, which is a biological process resulting 

in the addition of a methyl group to the fifth carbon of a cytosine residue in CpG 

dinucleotide sequences to form 5-methylcytosine (5mC) [72]. This process is catalysed 

by a family of DNA methyltransferases (DNMTs) [72].  The main DNMTs responsible 

for DNA methylation include DNMT1, DNMT3A, DNMT3B and DNMT3C [73, 74]. 

Methylation of DNA is the most extensively studied epigenetic mechanism. DNA 

methylation regulates gene expression through the recruitment of proteins involved in 

gene expression or by inhibiting transcription factor binding to DNA [75].  

 

DNA methylation, occurring in the context of the CpG dinucleotide, has profound 

effects on gene expression by modifying the accessibility of DNA to transcription 

factors [72]. CpG islands (CGIs) are short DNA sequences of 200 bp to several 

kilobases in length usually located near the promoter, that deviate significantly from 

the average genomic pattern by being CpG-rich, GC-rich, and predominantly non-

methylated [72, 76]. It is widely accepted that DNA methylation that occurs on CGIs 

acts as a silencing mechanism [77]. There are  ~29 million CpGs located in the human 

genome, of which 60-80% are methylated and approximately 7% of CpGs are found 

in CGIs [78]. Additionally, ~70% of annotated genes have promoter regions containing 

CGIs which can be highly, partially or lightly methylated [76].  

 

The process of demethylation is more complex and can occur through either active or 

passive mechanisms [79]. Active DNA methylation occurs through an enzymatic 

process that modifies or removes the methyl group from 5mC. Ten-eleven 

translocation  (TET) enzymes such as TET1, TET2, and TET3 are involved in active 

DNA methylation through the oxidation of 5mC and promoting locus-specific removal 

of DNA methylation [80]. Passive DNA methylation, in contrast, refers to the loss of 

5mC that can occur in the absence of functional DNA methylation maintenance 

machinery during successive rounds of replication [81].  

 

Over the years, it was believed that DNA methylation played a crucial role in repressing 

gene expression by blocking the promoter sites where transcription factors should bind 

[82]. At present, the exact role of methylation in gene expression is unclear; however, 

it seems that DNA methylation is vital for cell differentiation and embryonic 

development [82]. Evidence has observed the role of methylation in gene expression 

mediation. Studies have shown that methylation occurring near gene promoters 

considerably varies depending on cell type, whereby more methylation of promoters is 
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correlated with little or no transcription [83]. Although overall methylation levels of 

particular promoters are similar in humans, there are significant disparities in specific 

and overall methylation levels between different cell lines and tissue types [83].    

 

Given the integral role of DNA methylation in gene expression and cell differentiation, 

errors in methylation can give rise to a number of perilous consequences such as 

various diseases [83]. Over the years, changes in DNA methylation have been 

detected in many human diseases [78] such as cancer, autoimmune diseases, 

neurological disorders, metabolic disorders, and a range of birth defects caused by 

defective imprinting mechanisms [79, 84]. To date, a significant amount of DNA 

methylation research has focused on cancer and tumour suppressor genes [83]. 

Tumour suppressor genes are usually silenced in cancer cells as a consequence of 

hypermethylation, which represses transcription of the promoter regions [83, 85]. 

Comparatively, cancer cell genomes have shown to be hypomethylated in comparison 

to normal cells [84]. DNA hypermethylation has been more extensively studied as 

opposed to DNA hypomethylation as a cause of oncogenesis [85] 

1.7.2 Histone Modification  

Epigenetics is not just limited to the study of DNA, the post-translational modification 

on histone proteins play a significant role in gene expression regulation [86]. Histone 

modification modulates the structure of the chromatin, thus limiting the accessibility of 

DNA [87]. Several types of histone modifications exist, with methylation, acetylation, 

phosphorylation and ubiquitination being the best studied and most important with 

regards to the regulation of chromatin structure and transcriptional activity [88]. The 

main histone-modifying writer enzymes (i.e enzymes adding marks on histones) are 

histone methyltransferases (HMTs), histone acetyltransferases (HATs), protein 

kinases (PTKs) and ubiquitin ligases [87]. While their respective eraser enzymes 

include histone deacetylases (HDACs), histone demethylases (HDMs), protein 

phosphatases (PPs) and deubiquitinating enzymes (DUBs). In addition to epigenetic 

writers and erasers, there are also epigenetic readers which are molecules that are 

able to recognise and bind to epigenetic marks created by writers, thus establishing 

their functional consequences [87].  

 

Histone acetylation, which involves the addition of an acetyl group to histones, is 

mediated by two groups of enzymes the HATs and HDACs [87]. HATs catalyse the 

transfer of an acetyl group from an acetyl-CoA molecule to an amino acid group of the 
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target lysine (K) residues in the histone tails resulting in the removal of a positive 

charge on the histone, thereby weakening the interaction between DNA and histones 

[89-91]. Histone methylation is facilitated by HMTs, including lysine methyltransferases 

(KMTs) and arginine methyltransferases (PRMPTs) as well as by HDMs. Contrary to 

acetylation of the histone lysine which affects the electrical charge of the histones, 

methylation of lysine or arginine residues affects the recruitment and binding of 

regulatory proteins to chromatin which in turn affects the histones interaction with DNA 

[92-94].  

 

Histone phosphorylation is controlled by PTKs and PPS which have opposing modes 

of action [87]. Kinases add phosphate groups, while phosphatases remove 

phosphates [95, 96]. The three main functions of phosphorylated histones include DNA 

damage repair, the regulation of transcriptional activity and the control chromatin 

compaction linked to meiosis and mitosis [95, 96]. In contrast to histone methylation 

and acetylation, histone phosphorylation works in tandem with other histone 

modifications allowing for mutual interaction between the modifications. This crosstalk 

between the histone modifications may determine transcriptional outcomes such as 

transcriptional activation or repression [97]. Protein ubiquitination is an essential post-

translational modification that controls substrate degradation and quantity and quality 

of various proteins thus ensuring cell homeostasis [98]. Histone ubiquitination is 

carried out by ubiquitin ligases and can be removed by DUBs [87]. Monoubiquitination 

is involved in protein translocation, DNA damage signalling as well as transcriptional 

regulation [87]. Polyubiquitination marks the protein for activation or degradation in 

certain signalling pathways [98-100]. As with histone phosphorylation, crosstalk exists 

between histone ubiquitination and other histone modifications [98-100]. 

 
Histone modification and DNA methylation affect one another during nucleosome 

remodelling and gene expression regulation, which may influence the development of 

cellular processes [101]. For instance, DNA methylation alone is unable to directly 

maintain stable gene silencing, therefore histone modifications may assist in directing 

DNA methylation patterns and thus provide long-term stability of gene repression 

[102]. In contrast, histone methylation may only cause reversible gene suppression, 

where DNA methylation would be a secondary event leading to stable long-term 

repression [103].  

1.7.3 Non-coding RNA  
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Less than 2% of mammalian genome transcripts have a protein-coding function, while 

the remaining 98% are non-coding RNA (ncRNA) [104]. ncRNA are categorised into 

two types namely microRNA (miRNA) and long non-coding RNA (lncRNA) [104]. 

Studies have shown the promoter regions of miRNA and lncRNA genes contain 

different epigenetic modifications and involve various biological processes through the 

interaction with transcription factors [105-108]. Consequently, any abnormalities 

occurring in these transcriptional processes can result in disease [109].  

 

MiRNAs are a class of short double-stranded RNAs, approximately 18-25 nucleotides 

in length [110]. This class of ncRNAs are responsible for silencing mRNA translation 

through direct interaction with the transcript [111]. Recent advances have established 

miRNAs as epigenetic modulators that affect the target mRNAs protein levels with 

modifying the gene sequences [112]. Furthermore, miRNAs can be regulated by 

epigenetic modifications such as DNA methylation, histone modifications and RNA 

modifications. The complementary actions of epigenetic pathways and miRNAs form 

a miRNA-epigenetic feedback loop which has a substantial influence on the 

proliferation of gene expression [112]. The misregulation of this feedback loop impedes 

the pathological and physiological processes, leading to various human diseases 

[112].  

 
LncRNAs are RNA molecules which are longer 200 nucleotide bases that lack protein 

coding potential and are transcribed by the RNA polymerase II [113]. Many lncRNAs 

play an essential regulatory role in varied biological processes  and their dysregulation 

can contribute to different diseases [113]. Depending on their cellular localisation and 

interacting molecules, lncRNAs mechanisms of action are heterogeneous in nature 

[113]. Different lncRNAs in the nucleus act by directing epigenetic regulators to specific 

loci or by coordinating chromatin folding and compartmentalisation so as to achieve 

enhancer-promoter communication [113]. Genome studies have highlighted that 

mutations occurring in regulatory regions that alter either enhancer and promoter 

sequences or their chromatin state, bring about abnormal expression of lncRNA in 

diseased tissues [114-117].  

 

1.7.4 Transcription Factors  

Gene transcriptional regulation is an integral part of tissue-specific gene expression as 

well as gene activity in response to external stimuli [118]. The main regulators of DNA 

transcription are transcription factors (TFs) [119]. TFs are proteins that bind to the 
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upstream regulatory elements in the promoter and enhancer regions of DNA in order 

to control transcription [120]. When a cell encounters changes in environment, it 

responds by modifying one or more TFs [121]. Through transcriptional changes, TFs 

are then responsible for altering cellular function and deciding the cell fate [121]. Due 

to their importance in cellular programming, measuring the differential TF activity in 

two different conditions provides critical insight, particularly when the involved cellular 

processes are unknown [121].   
 

Transcription factors contribute to the epigenetic control of gene expression through 

several contexts [122]. In eukaryotes, TFs interact with a range of mechanisms that 

methylate DNA, post-transcriptionally modify histones and regulatory proteins, 

reorganise chromatin structures, remodel nucleosomes and recruit coregulators in 

order to regulate transcription [123]. These genetic and epigenetic mechanisms mark 

regulatory regions of a gene of interest [123]. The complex nature of individual gene 

regulation is driven by environmental factors and cellular requirements for the gene 

product 103]. As such, TFs acting at specific enhancer and promoter regions evolve 

to match the gene’s regulatory needs [124]. The TF binding sites and the DNA 

sequence’s propensity to assemble nucleosomes defines the promoter architecture 

and function [124]. However, because the DNA is weaved with several forms of 

epigenetic information contributing to gene regulation, the genetic and epigenetic 

information, which act at the same regulatory sequences, integrate and complement 

each other in all genes [124]. 

 

1.8 The Role of Epigenetic Modifications in TB Infection  

Epigenetic mechanisms play a pivotal role in the regulation of gene expression during 

cellular response to extracellular stimuli [125]. Studies have shown that Mtb can alter 

the host epigenome, but the mechanism of these Mtb-induced epigenetic alterations 

is not fully understood yet [125]. Genome-wide association and candidate gene studies 

have revealed complex links between TB susceptibility and heritable genetic factors 

however their the reproducibility and consistency of these studies remains uncertain 

[126, 127] . In order to answer important questions regarding host susceptibility, further 

research on the role of epigenetics during immune response regulation in the context 

of TB is essential [125].   
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A limited number of studies have reported on the interaction between Mtb infection and 

host epigenetic machinery changes, although the precise molecular mechanisms have 

yet to be determined [125]. Epigenetic alterations such as DNA methylation, histone 

modifications and miRNA mediated up or downregulation of immune-related genes 

play a pivotal role in immunomodulation following Mtb infection (Figure 1.2) [125]. 

Epigenetic modification induced by Mtb can promote either host defense or survival of 

Mtb. [128] Thus Mtb may be regarded as a potential host epigenome modulator with 

these epigenetic changes being either beneficial or harmful to Mtb [128].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 
 

 

 

 
Figure 1. 2 Interaction between the host epigenetics factors and mycobacteria. Adapted from Kathirvel & 
Mahadevan 
Epigenetic modifications such as DNA methylation, RNA mediated regulations and histone modifications are 
interlinked and regulate patterns of gene expression [125].  

Milena et al. have reported on how HIV alters effector functions of monocytes [129]. 

Once these alterations associated with epigenetic changes are identified, these could 
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Host transcriptional machinery 

Host immunosuppression and disease progression 



19 
 

be used as targets in therapies that are aimed are reducing the systematic activation 

state in HIV infected patients [129]. Understanding epigenetic changes in HIV/latent 

TB coinfection is of major interest in targeting intervention and therefore providing 

appropriate diagnostic methods and pharmaceutical development [47]. Further studies 

focusing on how epigenetic factors influence and regulate the activation of active TB 

from latent TB infected individuals are required. To date, there appear to be no studies 

that have addressed the impact of epigenetic factors in latent TB patients coinfected 

with HIV [125].  

1.9  Rationale 

To the best of our knowledge, there exists no study integrating the transcriptional and 

epigenetic changes in the immune response genes associated with HIV positive 

patients coinfected with latent TB. Therefore, developing a preparative computational 

workflow in order to select transcriptomic and epigenomic markers in the genes of 

interest to establish their role in latent TB/HIV coinfection will be vital in the prevention 

of progression of latent TB to active TB and possibly contributing towards the 

development of suitable diagnostic methods.  

1.10  Aim & Study Objectives  

The overall aim of this study was to develop a computational pipeline using statistical 

modelling and machine learning methods to identify a transcriptomic-based minimal 

gene signature associated with latent TB in HIV positive patients and to identify 

candidate epigenomic markers for future studies. The study focused on an integrative 

transcriptomics approach and an epigenomics approach, each having its own 

objectives.  

 

For the integrative transcriptomics approach to identify a latent TB gene signature in 

HIV infected individuals, the specific objectives are outlined as follows:  

1. Apply OPLS-DA statistical modelling on a previously published transcriptomic 

dataset to find a list of differentially expressed genes to distinguish the latent 

and active TB classifications. 

2. Utilise machine learning and feature selection methods on the same dataset to 

identify differentially expressed genes distinguishing the latent and active TB 

classifications.  
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3. Perform a network enrichment analysis to identify biological pathways related 

to the genes of interest using the outputs from the statistical and machine 

learning methods.  

4. Integrate the outcomes of the statistical and machine learning approaches to 

define a minimal latent TB gene signature in HIV infected persons.    

 

For the epigenomics approach to determine epigenetic mechanisms involved in latent 

to active TB progression in HIV infected persons, the main objective are the following:  

 

5. Using the identified gene signature, perform transcription factor, histone 

modification and miRNA enrichment analyses to obtain candidate epigenetic 

marks in latent TB/HIV coinfection.   
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2 AN INTEGRATIVE TRANSCRIPTOMIC APPROACH TO 
IDENTIFY A MINIMAL LATENT TB GENE SIGNATURE IN 
HIV INFECTED INDIVIDUALS   

 

2.1 Introduction 

The development of transcriptomics approaches has enabled the discovery of genes 

whose differential expression is associated with disease. Transcriptional profiling has 

previously been used extensively to identify biomarkers in pathogen infections [130-

132]. Berry et al. identified the first complete human blood transcriptional signature of 

393 transcripts for active TB and an 86 transcript signature discriminating active TB 

from other infectious diseases [130]. A later study reported a 16-gene signature in 

whole blood, which predicted the risk of active TB in individuals with latent TB infection 

[133]. Researchers have also identified characteristic genes and pathways for TB in 

HIV infected patients [134].  However, the genes involved in the progression from 

latent to active TB in HIV positive patients remain unclear. 

In a noteworthy study, Kassa et al. aimed to identify genes that have the potential to 

discriminate active TB from non-active TB in HIV infected patients from Ethiopia. Five 

genes of interest were suggested (CD8A, CCL22, FCGR1A and TNFRSF1A).  Whole 

blood samples from 106 patients among three clinical groups (active TB/HIV positive, 

latent TB/HIV positive, TB negative/HIV positive) were used [135]. The latent TB group 

reflected patients who tested positive for the TST, while the TB negative group 

reflected patients who tested negative for the TST. However, since their results 

revealed no difference in gene expression between HIV infected patients with latent 

TB and those who tested negative for TB, they combined these two groups and 

compared this combined group (described as non-active TB) with the active TB/HIV 

positive patients. Since the study combined latent TB and TB negative groups, it is 

therefore still unclear which genes are differentially expressed in HIV positive patients 

when comparing latent and active TB.  

Kaforou et al. [135] conducted a microarray study to investigate the progression from 

latent to active TB in different disease backgrounds. The dataset comprised of 536 

adults from South Africa and Malawi diagnosed with latent TB (n = 167 ), active TB (n 

= 194) and other non-TB diseases (with similar clinical phenotypes; n = 175) and were 

either HIV positive (n = 273) or HIV negative (n = 263). The authors then employed an 
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elastic net variable selection algorithm (a technique combining both the lasso and ridge 

regression methods) to calculate a disease risk score for each patient. The risk score 

would provide the basis for determining each patient’s risk for developing active TB.  

Their primary analysis showed that clustering of samples (patients) was based on 

disease state – active TB,  latent TB or ‘other diseases’ – rather than geographical 

location (South Africa or Malawi) or HIV status. As such, HIV infected and uninfected 

patient cohorts from South Africa and Malawi were grouped together to identify 

transcript signatures in patients with differing HIV statuses that are applicable across 

geographic locations. This risk score was, therefore, an indicator of an underlying 

signature of TB disease progression, independent of HIV status or geographical 

location.  

 

In the present study, we sought to analyse the same microarray dataset as Kaforou et 

al., but to use alternative analytical methods (OPLS-DA and ML methods) in order to 

specifically probe the progression from latent to  active TB in HIV positive patients.  

Traditional statistical tests have been widely used for identifying DEGs that can be 

used as biomarkers. Typically, a gene is defined as differentially expressed if the 

observed difference in expression levels between two experimental conditions is 

statistically significant [37].  DEGs are typically identified as genes whose differential 

expression between groups is significant to a specific threshold (usually p < 0.05) and 

user-defined thresholds for expression fold change (FC) to discern up-and down-

regulated genes. Traditional differential expression (DE) analysis using gene 

expression data provided by microarray technology can make downstream analysis 

challenging due to the high dimensionality of the datasets. In recent years, multivariate 

statistical analyses have been developed and applied to microarray datasets. 

Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA), for 

example, is widely used to analyse gene expression data to distinguish two groups. 

OPLS-DA is a powerful and robust modelling tool with the main benefit in interpreting 

data compared to other multivariate models being its ability to separate predictive from 

non-predictive (orthogonal) variation [136]. An additional advantage is the ability to 

determine the optimal number of orthogonal components, thus improving its cross-

validated accuracy.  

ML classifiers can be trained on gene expression data to find significant features and 

combining multiple ML methods to identify differentially expressed genes as 

biomarkers is an effective approach [137]. This combined approach takes advantage 
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of the strengths and weaknesses of the individual methods to improve biomarker 

discovery [137]. Reducing the number of features in machine learning approaches 

plays a crucial role when working with large gene expression datasets, including 

avoiding overfitting, speeding up training, and resulting in better classification through 

the reduced noise in the data [138].  When testing a large number of hypotheses, as 

is the case for high-dimensional data, where the number of features is larger than the 

available samples, a high number of false-positive test results can be expected [139]. 

Consequently, the raw p-values in the transcriptomic dataset need to be adjusted to 

control a false positive rate using the false discovery rate (FDR). The FDR measures 

the expected proportion of false positives among a set of hypothesis tests called 

significant [140]. Furthermore, the ML algorithms tend to perform better if the dataset 

is trimmed down. For this reason, a pre-filtering step is required to compare how 

filtering the dataset would affect the efficiency of the models.  

 

The commonly used supervised machine learning algorithms that have previously 

been applied to transcriptomic datasets for disease studies include logistic regression 

(LR), support vector machine (SVM), decision tree (DT), random forest (RF) and 

artificial neural network (ANN). LR is the simplest to implement and mathematically the 

least complex. However, its accuracy declines when input variables have complex 

relationships. It is also vulnerable to overfitting and may overstate the prediction 

accuracy as a result of sampling bias. SVC is more robust than LR as it can handle 

multiple feature spaces, and it also has less risk of overfitting. However, it has the 

disadvantage of being computationally expensive for large datasets and may not 

perform well in the case of noisy data. The RF classifier consists of a set of decision 

trees derived from a randomly selected subset of the training set. The votes from 

different decision trees are aggregated to determine the output predictions [141]. RF 

can scale well for large datasets and can handle thousands of input variables. It also 

can provide estimates of which attributes are the most important for classification. It is 

one of the more complex ML algorithms, and as with SVM, it is computationally 

expensive. The RF algorithm is also easily prone to overfitting [142].   

 

Since microarray datasets have a large volume and high dimensional data, it is 

normally expected that SVCs, RFs and neural networks outperform other classification 

algorithms, such as LR [143]. Both LR and SVC have been used in existing research 

for TB prognosis [143]. RF is currently one of the most used ML algorithms and has 

been widely applied in TB detection [142, 144].  

 



24 
 

Supervised ML algorithms can be combined with feature selection methods to identify 

marker genes from transcriptomic profiles. Feature selection is a primary step in 

machine learning as it helps improve the performance of the model being trained. 

Several feature selection methods are available that can be applied to different 

algorithms. Due to the size of a microarray dataset, the choice of feature selection 

methods is pragmatic, as some feature selection methods tend to be computationally 

expensive and time-consuming. In LR and SVC, standardised regression coefficients 

can be compared to determine feature importance. For most implementations of RF, 

the default feature importance choice is the mean decrease in impurity (MDI). The MDI 

of a feature is computed as the total reduction in loss or impurity contributed by all 

splits (across all decision trees) [145].   

 

Using an integrative data-driven approach that leverages statistical DE results and 

results obtained by ML feature selection and classification can provide a viable gene 

signature that helps understand differences between disease states. Van Ijzendoorn 

et al. [146] combined statistical tests with machine learning techniques to reveal 

biomarkers and targets for soft tissue sarcomas. To select the genes of interest, they 

combined significantly differentially expressed genes (with a Benjamini-Hochberg 

adjusted p-value < 0.05 and logFC > 0) with RF. In addition, Abbas and El-Manzalawy 

presented a novel approach that leveraged i) statistical DE analysis to identify a list of 

DEGs (using absolute fold change ≥1.5 and adjusted p-value ≤0.05) ii) supervised 

feature selections methods (Random Forest Feature importance and minimum 

Redundancy and Maximum Relevance) to obtain an optimal subset of DEGs iii) 

supervised machine learning methods to evaluate the discriminatory power of the 

selected genes [147]. Their approach resulted in a 10-gene signature of mortality in 

paediatric sepsis. Both approaches mentioned above utilised supervised ML feature 

selection to refine the outcome of the statistical DE analysis. In this study, we applied 

statistical DE and supervised ML feature selection separately to an entire 

transcriptomic dataset and then integrated the outcome of the two methods to define 

a gene signature. 

 

In the context of TB/HIV coinfection, Duffy et al. [148] used four previously published 

TB and HIV coinfection datasets to train and validate six machine learning classifiers 

(namely Random Forest, Support Vector Machine, Neural Networks, Elastic-net 

Logistic Regression, K-Nearest Neighbour and Extreme Gradient Boosting) to predict 

TB and HIV status. Their work generated a multinomial model that discriminates TB 

from non-TB states (including LTB and OD) and discriminates HIV positive TB as a 
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unique disease state. More recently, meta-analysis has been used to integrate 

transcriptome datasets from various studies to screen for TB biomarkers in HIV 

positive individuals [149]. Since these transcriptome-based biomarker studies focused 

solely on TB disease and HIV coinfection, the identification of predictive biomarkers 

for the progression of latent TB infection to active TB disease in HIV infected 

individuals remains unclear.  

 

Furthermore, an ideal biomarker should be capable of discriminating between latent 

TB and active TB and be functionally relevant. For this reason, further enrichment 

analysis of DEGs is required to infer networks and associated pathways from 

expression profiles. An enrichment analysis can provide avenues for further 

investigation into the potential biological mechanisms of sets of genes.   

 

Against this background, we present a novel approach that leverages statistical 

differential expression analyses (OPLS-DA) and supervised ML and feature selection 

methods to an entire transcriptomic dataset and integrate the outcome of the two 

pipelines to characterise progression from latent to active TB in HIV infected patients. 

The dataset used for this purpose is the microarray dataset of Kaforou et al. We 

identified a minimal gene signature, but also performed pathway enrichment analyses 

on a broader list of genes of interest to ascertain their biological function in relation to 

latent TB and HIV coinfection.  

2.1.1 Aim 

To develop a computational pipeline using statistical modelling and machine learning 

methods to identify genes of interest and a minimal gene signature associated with 

latent TB in HIV positive patients and to ascertain the biological functions associated 

with these genes.  

2.1.2 Objectives 

1. Apply OPLS-DA statistical modelling on the Kaforou et al. microarray dataset 

to find a list of differentially expressed genes that distinguish latent and active 

TB classifications. 

2. Utilise machine learning and feature selection methods on the same dataset to 

identify differentially expressed genes distinguishing the latent and active TB 

classifications.  
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3. Integrate the outcomes of the statistical and machine learning approaches to 

define a minimal latent TB gene signature in HIV infected persons.    

4. Perform a network enrichment analysis to identify biological pathways related 

to the genes of interest using the outputs from the statistical and machine 

learning methods.  

2.2 Methods 
2.2.1 Dataset 

The microarray dataset of Kaforou et al. (NCBI GEO repository accession number 

GSE37250) was used for all analyses. The sample consisted of 536 adults from 

South Africa and Malawi diagnosed with latent TB (n = 167 ), active TB (n = 194) and 

other non-TB diseases (with similar clinical phenotypes; n = 175) and were either HIV 

positive (n = 273) or HIV negative (n = 263). The latter groups were combined to 

create the ‘all patients’ group. The dataset contained quantile-normalised gene 

expression data. Ilumina probe IDs were converted to Entrez gene IDs using the 

RStudio (v1.3.1093) BiocManager package. The expression changes between the 

latent and active TB groups were represented as log2 fold change (FC) in the HIV 

positive or ‘all patients’ groups, where  FC = (counts for latent TB)/(counts for active 

TB).  

2.2.2 Data Pre-Filtering 

The SelectFdr class of sklearn (v0.24.1) in Python (v3.8) was used to filter the 

dataset using ANOVA with Benjamini-Hochberg (BH) correction for multiple 

comparisons. The data was filtered to either p < 0.05, p <0.01 or p < 0.001. Probes 

associated with higher p-values were excluded in each case. FDR- and unfiltered 

datasets were used as input for ML classifiers.  

2.2.3 Differential Expression Analysis using Orthogonal Projections to 
Latent Structures – Discriminant Analysis (OPLS-DA)  

Prior to performing OPLS-DA, a principal component analysis (PCA) was done for data 

visualisation using the web-based tool MetaboAnalyst. OPLS-DA was conducted using 

the base packages pyopls (v0.24.1) and sklearn (v0.24.1) in Python (v3.8). The 

number of components for the OPLS-DA model was optimised for the HIV positive 

group and the ‘all patients’ groups, and a PLS scores plot and ROC curve was 

generated for the respective groups. A 34-component OPLS was performed to improve 

cross-validated accuracy from 0.8014 to 1 in the HIV positive patient group, and a 20-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37250
https://www.metaboanalyst.ca/
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component OPLS improved accuracy from 0.8604 to 1 in the HIV all patient group. 

Two sets of the top 100 DEGs ranked by PLS regression coefficients were obtained 

amongst the latent TB and active TB classes for both the HIV positive and ‘all patients’ 

groups.  

2.2.4 Identification of Differentially Expressed Genes using a Machine 
Learning and Feature Selection Approach   

ML algorithms (RF, LR or SVC) were trained on quantile-normalised expression counts 

(GSE37250) to which no filtering, or FDR-filtering (Section 1.2.2) had been applied. 

The full dataset was used to represent the ‘all patients’ group whereas the HIV positive 

cohort was used for the ‘HIV positive’ group. LR was regularised with an L2-penalty 

term. SVC and RF algorithms were optimised using 5-fold cross-validation on each 

dataset. A grid search across the hyperparameter space was employed for SVC ('C': 

[0.01,0.05,0.1], 'gamma': [5,4,3]) and a linear kernel was used. For RF, a random grid 

search was employed to optimise parameters ('n_estimators', ’max_features', 

‘max_depth', 'min_samples_split', 'min_samples_leaf’, and 'bootstrap'). Data were 

standardized (Z-scaled) and classes (‘latent TB’ and ‘active TB’) encoded using the 

LabelEncoder function of sklearn. The data was split into training and testing sets in a 

9:1 ratio and optimised ML algorithms were trained on the training set. AUC values 

relating to predictions made by models on the test set were captured as accuracy 

metric. For LC and SVC, model coefficients were standardised by multiplying each 

variable coefficient with the standard deviation of its expression value, and captured 

to reflect feature importance. Mean decrease in impurity (MDI) was used as a metric 

for RF feature importance and was calculated using the feature_importance function 

in sklearn. The training-testing-feature importance workflow was repeated 5000 times. 

After every 50 iterations, the top 10 genes by feature importance were captured. 

Notebooks detailing the procedures described above are available as supplementary 

material . The cumulative frequency for each gene was determined by adding the 

number of times it occurred in the Top 10 genes over the 5000 iterations.  

2.2.5 Pathway Enrichment Analysis 

A signalling network was constructed using the NetworkAnalyst visual analytics 

platform from the list of DEGs identified from the OPLS-DA analysis and the ML 

classifiers that were unique to the HIV positive group. SIGNOR 2.0 data were used to 

construct the network. The network was subjected to enrichment analysis for 

associations with terms in the Gene Ontology (GO), Kyoto Encyclopedia of Genes and 

https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://pubmed.ncbi.nlm.nih.gov/30931480/
https://pubmed.ncbi.nlm.nih.gov/31665520/
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Genomes (KEGG) and Reactome databases. GO annotations were split into GO 

Biological Pathway (GOBP), GO Molecular Function (GOMF) and GO Motif (GOMo) 

terms. Terms that were significantly enriched (FDR p < 0.05) were considered. 

Significant terms that were shared by genes identified by OPLS-DA and all three ML 

classifiers were further considered and ranked according to average FDR p-value.  
 

2.2.6 Integrating Machine Learning and Statistics-Based Approaches to 
Select Genes of Interest  

A minimal gene signature was established by integrating the cumulative frequency Z-

scores, the standardised OPLS-DA regression coefficient and log2FC expression 

values of the three different ML classifiers. Genes of interest were selected if the 

cumulative frequency Z-score obtained from the ML and feature selection and the 

standardised OPLS-DA regression coefficients were in the upper quartile of the data 

and if the log2FC expression values were either in the upper quartile (for upregulated 

genes) or the lower quartile (for down-regulated genes). The genes of interest from the 

three ML classifiers were consolidated to define two minimal gene signatures, one for 

the HIV positive cohort and the other for the ‘all patients’ cohort.  

2.3 Results  

To identify a transcriptomic minimal gene signature to distinguish latent and active TB 

classifications in HIV infected patients, OPLS-DA and ML modelling was performed on 

a previously published microarray dataset consisting of 536 patients in two 

geographically distinct African adult populations that have been diagnosed with either 

latent TB, active TB or other diseases and had either an HIV positive or HIV negative 

status [135]. Primary analysis conducted in the original study showed clustering by 

disease state (active vs latent TB) independent of HIV status and geographical 

location. Consequently, the ‘experimental’ group in the study reported here consisted 

of the entire HIV positive cohort from both African populations and the ‘control’ group, 

referred to as the ‘all patients’ group used in this study was the total cohort, irrespective 

of geographical location or HIV status.  

 

2.3.1 Data Exploration using Principal Component Analysis (PCA)   

A standard two-component PCA model was applied to explore the natural separation 

patterns seen in the microarray data. The first and second principal components (PC1 

and PC2) of the HIV positive group explained only 5.3% and 3.6% of the variation, 
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respectively (see Figure 2.1). Similarly, PC1 and PC2 in the ‘all patients’ group 

explained only 4.9% and 3% of the data, respectively. Although a modest separation 

was observed between the two classes (active TB and latent TB), the two-component 

PCA was not sufficient in explaining the variation in the data, and therefore could not 

model transcriptomic differences between latent and active TB in the different groups; 

as such, more refined approaches were explored to interrogate the data.  

 
 
Figure 2.1 Explorative analysis of microarray dataset using a two-component PCA model.  
(A) PCA score plot of the two classes (active TB vs LTB) in HIV positive patients where PC1 and PC2 
explained 5.3% and 3.6% of the variation, respectively. (B) 3D score plot of the two classes (active TB vs 
latent TB) in HIV positive patients. (C) PCA score plot of the two classes (active TB vs latent TB) in all 
patients where PC1 and PC2 explained 4.9% and 3% of the variation. (D) 3D score plot of the two classes 
(active vs latent TB) in all patients. Figures were generated in Metaboanalyst. 
 

2.3.2 Differential Expression (DE) Analysis using Orthogonal Projections 
to Latent Structures Discriminant Analysis (OPLS-DA) 

To more precisely investigate the structure of the data and identify differentially 

expressed genes, OPLS-DA modelling was employed. This modelling process 
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30 
 

involved a two-step procedure. The first step entailed optimising the number of 

orthogonal components, and PLS regression analysis was conducted in the second 

step. The score plots showed an obvious separation of the active and latent TB classes 

in both HIV positive and ‘all patients’ groups (Figure 2.2 A and C). The model for HIV 

positive patients required 34 components, while a 20-component model was used for  

the ‘all patients’ group. These models accurately explained the data variance, as is 

evident from the ROC curves with AUC = 1 (Figure 2.2 B and D). This high AUC score 

indicated the models’ ability to distinguish between the active TB and latent TB classes 

perfectly. The OPLS-DA model yielded 1648 DEGs for the HIV positive group and 

2167 DEGs for the ‘all patients’ group from a total of 5574 genes. The genes of interest 

were ranked according to their PLS regression coefficients (the top 200 DEGs for each 

group are shown in Table S1 in the Supplementary material).  

 

 
  
 
Figure 2.2 OPLS-DA score plots and ROC curves showing the discriminant separation between 
active and latent TB classes in HIV positive and ‘all patients’ groups.  
OPLS-DA score plots of the two classes (active TB vs latent TB) in HIV positive patients (A) and the ‘all 
patients’ group (B) are shown. ROC curves of the two classes (active TB vs latent TB) in HIV positive 
patients and the ‘all patients’ group are shown in (C) and (D), respectively. 
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2.3.3 Identification of DEGs using a Machine Learning and Feature 
Selection Approach 

As an alternative means to identify DEGs that play a role in the progression of disease 

from latent to active TB in HIV positive patients, machine learning (ML) algorithms were 

investigated. We developed an ML workflow to identify genes predictive of active or 

latent TB (Figure 2.3). Using pre-filtered expression data as an input, each machine 

learning algorithm generated an output of either active TB or latent TB classifications 

based on the expression pattern of the microarray dataset. The raw p-values in the 

transcriptomic dataset were adjusted to control a false positive rate using the false 

discovery rate (FDR). Three FDR p-values (<0.05, <0.01 and < 0.001) were applied to 

the dataset as pre-filtering steps to improve the performance of the ML algorithms. 

These FDR-filtered datasets were compared against the unfiltered dataset in the three 

ML analyses. Supervised ML algorithms, namely RF, LR and SVC, were applied to the 

training dataset to classify samples as either latent or active TB given the pre-filtered 

or unfiltered microarray expression data.  Each machine learning algorithm was 

optimised by cross-validation. Following optimisation, the Top 10 discriminative 

features were extracted. For LR and SVC, the regression coefficients were used to 

rank differentially expressed genes (i.e. as a feature selection method), while MDI 

attributes were used for this purpose when RF was applied. This procedure was 

repeated over 5000 iterations. The cumulative occurrence (frequency) of genes in the 

top 10 discriminating features of each of the 5000 ML models generated were used as 

a final gene ranking metric. 

 

To compare the accuracy of the three machine learning classifiers applied to the 

differentially filtered input datasets, the performance of the classifiers was assessed 

using the area under the ROC curve (AUC) as the performance metric (Figure 2.4). 

The pre-filtering of data using an FDR p-value < 0.05 yielded the narrowest 

distributions and highest median AUC scores: 0.9296, 0.9264 and 0.926 for the LR, 

RF and SVC models, respectively, in the ‘all patients’ group. In comparison, the 

reported AUC values for the HIV positive group included 0.9169, 0.9017 and 0.9163 

for the LR, RF and SVC models, respectively. An ANOVA test confirmed that the FDR 

p <0.05 pre-filtration yielded statistically significant results.  Subsequently, the pre-

filtering method of FDR < 0.05 was used for the rest of the analyses reported in this 

Chapter.  
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Figure 2.3 Machine learning pipeline for the selection of DEGs. The Logistic Regression (LR), Support 
Vector Classifier (SVC) and Random Forest (RF) machine learning algorithms were applied to the pre-
filtered microarray dataset to classify latent TB and active TB DEGs. Following training, the Top 10 
features were extracted, and the genes were ranked accordingly.  

 

 

The median AUC of the models ranged from 90.2% to 91.7% in the HIV positive group 

and 92.4% to 93.0% in the ‘all patients’ group. Although the algorithms exhibited high 

performance as assessed by their comparable AUC values, LR marginally 

outperformed the other two algorithms, while RF showed a slightly lower performance 

over the 5000 iterations. However, this is not statistically significant as judged by an 

ANOVA test (p > 0.05).  
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Figure 2.4 Comparison of the performance of the different ML classifiers in the two patient groups.  
Each box and whisker plot represents the distribution of the average AUC score of the ML classifiers 
across three different levels of FDR pre-filtering. The box consists of the upper quartile, lower quartile and 
the median in the centre, along with the upper and lower hinge. The range between the upper and lower 
quartile values are shown as the dark shaded regions. The whiskers indicate variability outside the upper 
and lower quartiles.     
 
After each iteration, the top 10 genes of which the expression levels could discriminate 

between active and latent TB were determined by feature importance metrics and 

ranking. The cumulative number of times that a gene appeared in the top 10 across 

the 5000 iterations was determined and used to rank the DEGs identified in this 

manner (Figure 2.5). Genes with the highest cumulative occurrence (frequencies) in 

the top 10 were deemed as the most significant contributors to a transcriptomic 

signature of latent vs active TB. Within the HIV positive cohort, there were a total of 

121, 124 and 116 genes occurring in the top 10 using the LR, SVC or RF classifiers, 

respectively. While the ‘all patients’ group resulted in 118, 145 and 55 genes occurring 

in the top 10 from the LR, SVC or RF classifiers, respectively.  

 

Although each algorithm yielded several unique genes, there was an overlap in the  

genes found by all three classifiers (Figure 2.6, Table 2.1). The relatively small extent 

of overlap may reflect the distinct mathematical underpinnings of each classifier. Still, 

it may equally express the intertwined and redundant nature of the biological pathways 

that give rise to latent vs active TB phenotypes.   
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Figure 2.5 Cumulative frequencies of the genes that appear in the top 10-ranked genes across 
5000 iterations of the feature selection process following ML modelling with pre-filtering at FDR 
p-value < 0.05.  
Classifiers acting on the HIV positive group are shown in (A) and those acting on the ‘all patients’ group 
are shown in (B). All figures show only the top 25 genes. The cumulative frequency of occurrence in the 
top 10-ranking genes is colour-coded. The darker the intensity of grey, the more times the genes 
cumulatively appeared in the top 10-ranking genes.  
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Figure 2.6 Relationship between sets of top-ranking genes identified by Logistic Regression (LR), 
Random Forest (RF) or Support Vector Classifier (SVC) in the HIV positive and ‘all patients’ 
groups. Venn diagrams were generated using InteractiVenn.   

Table 2.1 Genes symbols and cumulative frequencies of top genes occurring in the output of all 
three ML approaches. Genes in bold are unique to either the HIV positive or the ‘all patients’ cohort. The 
frequency reported is the average cumulative frequency of occurrence after application of the three ML 
classifiers. 
 

HIV Positive All patients 

  Gene Name Cumulative Frequency Gene Name Cumulative Frequency 

RASSF5 9 POMP 1226 
LOC644132 20 GADD45B 131 
GOT2 27 RAPGEF1 2088 
FLVCR2 111 IDH1 1060 
ECH1 20 TRPV2 273 
ALPK1 611 CCR2 987 

LOC653314 64 PPPDE2 948 

PPPDE2 329 ALPK1 1515 

CARD11 894 LOC645173 2207 

MMS19L 172 FCER1G 2507 

FCER1G 962 S100A9 1939 

TAP1 343   
DPF2 1792   
CCR2 1679   
RPUSD3 3727   
LOC645173 3646   

 
 

 

HIV Positive ‘All Patients’ 

http://www.interactivenn.net/
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A Pearson correlation matrix was generated to investigate the correlation between the 

classification models and how well the algorithms performed with respect to one 

another. To identify which classifier performed best at detecting differences between 

the two patient groups, an upper cut-off of 0.3 for the Pearson correlation coefficient 

value (r) was applied since a value lower the 0.3 indicates a weak correlation. The 

correlation between HIV positive and ‘all patients’ groups was the lowest for the RF 

classifier (r-value of 0.1446), suggesting a weak correlation between the genes 

selected to classify active TB and latent TB. In contrast, the correlation was moderate 

between the groups for the LR (r-value of 0.3816) and SVC (r-value of 0.4236) 

classifiers. The corresponding r values imply that the RF classifier best differentiated 

between the HIV positive and ‘all patient’ groups.  

 
 
Figure 2.7 Pearson correlation matrix of ML classifiers in the different groups using a pre-filtration 
at FDR p-value < 0.05.  

2.3.4 Pathway Enrichment Analysis  

Pathway enrichment analysis is a network-based method that provides insight into 

gene lists generated from omics data by finding functional categories such as overly 

represented pathways in an experimental set. Utilising this method allowed an 

exploration of the functional context of the genes of interest obtained using OPLSDA 

and the different ML classifiers. The main objective of this analysis was to understand 

if the function of the genes obtained was relevant to latent TB infection to corroborate 

our approach to obtain genes relevant to the progression of latent TB to active TB. 

 

Genes obtained from the OPLS-DA and the ML classifiers unique to the HIV positive 

group were used to construct a signalling network using NetworkAnalyst (Figure 2.8). 

These DEGs were then subjected to enrichment analysis using five databases, namely 

GOBP, GOMF, GOMo, KEGG and Reactome. Figure 2.9 presents the unique and 

overlapping pathway enrichment terms distinguished from the OPLS-DA and the 
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machine learning models across the five databases. Overlapping terms were ranked 

by statistical significance based on the average FDR p-value.  

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.8 Example signalling network constructed using the gene set of the HIV positive group 
yielded by the RF model.  
Venn diagrams and minimal triangular matrices represent the overlap of genes in the HIV positive and 
‘all patients’ groups identified using the (A) OPLS-DA model (B) RF classifier (C) LR classifier, or (D) 
SVC classifier. Only the genes exclusive to HIV positive groups in the different classifiers were selected 
and used for further analyses. The signalling networks constructed using the gene lists from the different 
ML classifiers can be found in the supplementary section (Supplementary Figure S1-S4). The signalling 
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networks were constructed using NetworkAnalyst. Venn diagrams and minimal triangular matrices 
were constructed using Molbiotools. 
 

 
Figure 2.9 Comparison of the combined enriched pathway terms identified from the KEGG, Gene 
Ontology, and Reactome databases. 
The Venn diagrams represent the unique and overlapping pathway enrichment terms determined from 
the OPLS-DA and ML models across the (A) KEGG pathway (B) Reactome pathway (C) GOBP pathway 
D) GOMF pathway (E) GOMo pathway. The triangular matrices constructed using Molbiotools represent 
the number of overlapping terms by pairwise comparison. 
 
 
The gene set enrichment analysis identified specific pathways associated with latent 

TB to active TB progression in the HIV infected cohort. The top pathways found in the 

enrichment analysis that have been reported in literature within the context of active 

TB, latent TB or TB/HIV coinfection are summarised in Table 2.2. The detailed list of 

the comparison of the pathway enrichment terms found using the GO, KEGG and 

Reactome databases can be found in Supplementary Table S4.  
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Table 2.2 The top enriched pathway terms that have been reported in the context of latent or active 
TB in literature were determined from the OPLS-DA and ML models in HIV positive patients using 
the combined KEGG and gene ontology databases.  
The represented pathways are ranked according to statistical significance. Only pathway terms with an 
FDR p < 0.05 were considered statistically significant.  
 

Top Pathways  OPLSDA 
 

LR SVC RF Avg FDR Literature report in the context of latent TB/active TB or TB/HIV coinfection 

 

  

FDR p-Value   

GGGCGGR_V$SP1_Q6 1.08E-02 

 

1.78E-02 6.61E-03 - 1.17E-02 The GGGCGGR motif matches the annotation for the Sp1 transcription 
factor [150]. Literature has shown that the recruitment of Sp1 to the TNF-α 

promoter correlates to the critical functional roles that the Sp1 promoter site 
plays in the activation of the gene by Mtb [151].  

Signal Transduction 1.33E-05 

 

1.76E-03 1.41E-06 3.25E-02 9.09E-04 

 
The expression of cell signalling transduction receptors  (such as  CD14, 
TLR2, CD206, and β2 integrin LFA-1) have been studied on monocytes 
from patients with active TB and healthy individuals with Mtb latency. A 
simultaneous increase in the expression of the  mCD14 receptor and LFA-
1 integrin in active TB patients might be considered an early sign of 
breaking immune control by Mtb bacilli in subjects with latent TB [152]. 

Insulin receptor signalling 
cascade 7.87E-08  4.77E-05 7.33E-08 2.00E-02 7.24E-04 

Vitamin D is known to play a crucial role in the control of TB infection. 
Through the modulation of insulin resistance and secretion, vitamin D is 
related to controlling blood glucose in Type 2 Diabetes (T2D). Vitamin D 
deficiency is common in T2D patients, and some studies have related this 
deficiency to an increased risk of TB. Insulin signalling involves reduced 
antigen-specific proliferation and proinflammatory cytokine production in T 
cells. Diminished insulin production and modified insulin receptor-mediated 
signalling in T cells could increase TB risk in patients with diabetes of longer 
duration [153]. 

IRS-related events 7.87E-08 

 

4.77E-05 7.33E-08 2.00E-02 5.96E-04 

 
TB associated immune restoration syndrome (IRS) is a frequent event 
observed in approximately 10-30%  of patients coinfected with HIV-1 and 
Mtb. TB-IRS is associated with an increase in the number of IFN-γ 
producing tuberculin specific cells[154].  

ATP binding 1.12E-14 

 

5.46E-07 3.54E-24 1.12E-14 3.79E-04 
Bedaquiline is a drug used to treat active TB, particularly in individuals with 
multi-drug resistant TB. Bedaquiline targets the mycobacterial ATP 
synthase, a crucial enzyme in the obligate aerobic Mycobacterium genus; 
however, how ATP synthase binds to the enzyme remains unknown [155]. 

Innate Immune System* 1.05E-07 

 

5.49E-05 1.04E-07 2.14E-02 3.23E-04 

 
Cell-mediated immunity is crucial from controlling Mtb infection. The 
activation of CD4+ and CD8+ T cells occurs in active TB. The depletion of 
CD4+ cells is characteristic of HIV and contributes to the increased risk of 
reactivation of latent TB. In the latent phase of TB several immune 
mechanisms including increased levels of FoxP3+ Treg cells, TGF-β,  IL-
27, SOCS1, PGE-2 or decreased levels of TNF, IFN-γ and polyfunctional; 
specific T cells are involved in latent TB reactivation [156].  

CD28 co-stimulation 9.47E-19 

 

7.66E-07 5.37E-13 3.70E-04 1.36E-04 

 
A recent study with B7DKO mice that were highly susceptible to chronic 
mycobacterial infection highlighted the importance of the CD28/B7 co-
stimulation pathway, this susceptibility being due to impaired Th1 T-cell 
responses [157]. 

Endocrine resistance 3.11E-13 

 

5.73E-09 1.64E-16 1.89E-04 1.85E-05 

Although rare, TB of endocrine glands, such as the adrenals, thyroid, and 
pituitary, have clinically significant pathophysiologic effects; however, 
diagnosing endocrine gland involvement in TB is a clinical challenge. It is 
now known that even in the absence of direct gland involvement, endocrine 
and metabolic derangement can occur due to the TB disease process 
and/or anti-TB treatment [158].  

TGF-beta signalling pathway 3.80E-04 

 

1.41E-02 3.80E-05 5.81E-03 1.50E-05 

 
There is robust activation of pathways downstream of TGF-β signalling 
among CD4+ T cells of the granuloma. This, along with previous literature 
on the deleterious role of TGF beta in TB, suggest the potential role of TGF 
beta signalling in curbing T-cell function. In addition to TLR2 and cytokine 
signalling, research has indicated TGFβ mediated signalling responses to 

be highly active in latent TB. TGFβ levels are also known to be high in active 
TB and are required for intracellular survival of Mtb [5]. 

PI3K-Akt signalling pathway 1.88E-04 

 

1.02E-02 7.56E-05 9.99E-05 1.37E-05 

 
Earlier studies have shown that Mtb and its components can trigger the 
PI3K/Akt signalling pathway in macrophages. It is possible that Mtb-
mediated Akt signalling plays a major role in the suppression of 
macroautophagy during infection. PI3K-Akt signalling pathway has a key 
role in cell growth, differentiation, apoptosis, autophagy, metabolism and 
infectious disease, particularly tuberculosis [159]. 

Insulin signalling pathway 6.47E-09 

 

1.59E-05 8.15E-09 1.81E-03 1.27E-05 

 
Studies in mice have found that TB to be associated with increased insulin 
signalling and systemic glucose tolerance in adipocytes. Infection with Mtb 
stimulated adipose tissue inflammation and adipocyte hypertrophy, which 
are typically linked with insulin resistance [160].. 

Protein serine/threonine 
kinase activity* 1.08E-10 

 

1.51E-03 8.19E-20 1.08E-10 1.19E-05 PknE, a Serine/Threonine Protein Kinase of Mtb, plays a vital role in MAPK 
cross talks, enabling intracellular survival of Mtb, a survival strategy found 
to also affect HIV/TB co-infection[161]. 

Phosphotransferase activity, 
alcohol group as acceptor 4.88E-10 

 

5.07E-04 9.98E-09 4.88E-10 8.05E-06 

Lcp1 has been identified as an essential phosphotransferase that ligates 
two essential cell wall macromolecules found in the mycobacterial cell wall, 
namely arabinogalactan and peptidoglycan. The discovery of this 
phosphotransferase sheds new light on the final stages of the 
mycobacterial cell wall assembly. It suggests a key biosynthetic step that 
could be used for new anti-TB drug discovery [162]. 

Sphingolipid signalling 
pathway 9.32E-09 

 

1.82E-08 7.34E-20 1.99E-02 6.75E-06 
Sphingosine-1-phosphate (S-1P) is a key sphingolipid involved in the 
pathobiology of various respiratory diseases. Studies have illustrated the 
importance of S-1P in controlling non-pathogenic mycobacterial infection in 
macrophages. There also appears to exist the therapeutic potential of S-1P 
against pathogenic Mtb.[163]. 
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Signalling by FGFR in disease 9.34E-14 
 

1.28E-08 3.55E-10 4.15E-02 5.75E-06 
A recent study has indicated that in addition to TLR2 and cytokine 
signalling, TGFβ, PDGFR, FGFR and EGFR mediated signalling responses 
to be highly active in latent TB infection [5].  

MAPK signalling pathway 3.10E-12 

 

3.31E-03 1.45E-04 1.74E-04 4.25E-06 
MAPK is a major immune signalling pathway that mediates the regulation 
of innate immune responses by controlling the synthesis of different 
cytokines such as MAPK and NF-κB. The MAPK signalling pathway can 
also regulate the production of many cytokines by the macrophages 
infected with Mtb [164].   

Fc epsilon RI signalling 
pathway 8.09E-12 

 

1.62E-07 6.70E-15 4.20E-04 4.23E-06 

After JieHeWan (JHW is a traditional Chinese medicine that exhibits anti-
TB effects) treatment, one of the pathways related to the immune and 
inflammatory response regulation was the down-regulated Fc epsilon RI 
signalling pathway [165]. 
 

VEGF signalling pathway 1.71E-10 

 

1.82E-08 4.89E-15 3.91E-02 2.14E-06 

 
VEGF is an immunosuppressive that can inhibit the function of T cells, 
increase the recruitment of regulatory T cells (Tregs) and myeloid-derived 
suppressor cells (MDSCs), and hinder the differentiation and activation of 
dendritic cells (DCs). Research has reported that TB granulomas also have 
a functionally abnormal vasculature with enhanced expression of vascular 
endothelial growth factor (VEGF) and that anti-VEGF therapies could play 
a role in treating TB [166] through creating a normalised granuloma 
vasculature by blocking VEGF signalling [167].  

FoxO signalling pathway 8.09E-12 
 

1.62E-07 6.70E-15 4.20E-04 1.34E-06 
FOXO3 (a target of the PI3KAkt pathway) has been proposed as a potential 
target for developing host-directed strategies for better prevention of or 
treatment of TB [168].  

B cell receptor signalling 
pathway 4.36E-10 

 

1.13E-06 4.34E-11 1.69E-05 6.19E-07 

 
B cells play a crucial role in regulating innate and adaptive immune 
responses to infectious agents even in disease states dominated by T 
lymphocytes, as is the case of TB. Studies have shown B cell-deficient mice 
and human patients receiving B cell depletion therapy typically present 
changes in their CD4+ T cell and CD8+ T cell repertoires [169]. B cells in 
TB disease have been demonstrated in mouse models whereby B cell-
deficient mice are more susceptible to TB [170]. Mtb membrane antigens 
are strong inducers of B cell responses resulting in the production of high 
antibody titres [171].  

Apoptotic process 5.97E-22 
 

1.57E-07 2.68E-14 2.78E-08 3.23E-07 Many studies have supported the model that virulent Mtb  inhibits 
apoptosis, while avirulent Mtb induces apoptosis [172]. 

Protein phosphorylation 6.28E-18 

 

5.04E-08 5.58E-18 3.11E-05 2.65E-07 
Protein phosphorylation plays a key role in the physiology and 
pathogenesis of Mtb. The PtpA (a secreted protein tyrosine phosphatase) 
is a substrate of the  protein tyrosine kinase and  has proven essential for 
Mtb inhibition of host macrophage acidification and maturation [173] 

Positive regulation of cellular 
metabolic process 6.78E-23 

 

3.06E-08 2.74E-16 4.25E-06 2.44E-07 

Recent studies have provided a better understanding of the metabolic 
interplay between host immune cells and pathogens and how their 
interactions impact disease outcomes and antibiotic-treatment efficacy. 
The metabolic cascades in immune environments during Mtb infection and 
the metabolites produced exhibit critical roles in the induction of anti-Mtb 
protective immunity and progression of disease [174]. 

Positive regulation of 
transcription, DNA dependent 5.84E-08 

 

8.28E-04 2.22E-05 5.84E-08 1.37E-07 

 
Rip1 is a kinase that acts in multiple signalling pathways to regulate 
inflammatory responses and trigger apoptosis and necroptosis. Although 
the substrates of Rip1 are undefined, it has been reported as a determinant 
of Mtb cell envelope composition and virulence during HIV coinfection.  The 
protein has proven to positively regulate transcription of other proteins, 
namely BCG2962c and BCG2953 [175]. 

 

Transmembrane receptor 
protein tyrosine kinase 
signalling pathway 

4.51E-16 

 

2.48E-08 1.61E-12 5.28E-04 4.62E-08 

 
Individuals who are latently infected with TB and healthy controls have 
shown differential expression in genes belonging to the regulation of 
metabolism, translation, apoptosis and signal transduction pathways that 
involve MAP kinase phosphatase and protein tyrosine/threonine 
phosphatase activities [176]. 

 

T cell receptor signalling 
pathway* 8.26E-09 

 

1.36E-02 2.35E-10 6.54E-03 5.72E-11 

Mtb modulates host immune response, particularly in T cell responses, for 
its survival, leading to disease or latent infection [177]. It has been shown 
that the glycolipids of the Mtb can indirectly inhibit CD4+ T cells by 
interceding with T cell receptor signalling [178]. HIV infection may result in 
the upregulation of inhibitory receptors on Mtb CD4+ T cells. This 
mechanism has been linked with antigen-specific T cell dysfunction in 
chronic infections [179].  

*Refer to pathways that have been linked to TB/HIV coinfection in literature studies.  
 
 
 
 

2.3.5 Integrating Machine Learning and Statistics-Based Approaches to 
Select Minimal Transcriptomic Signature   

The results from the statistical and machine learning pipelines were integrated to 

identify a minimal transcriptomic gene signature relevant to the progression of latent 

to active TB (Figure 2.10). Z-scores of the cumulative frequencies (with which a gene 

was ranked in the top 10 following ML feature selection across 5000 iterations) were 

calculated in order to cross-compare data-sets. A gene was considered significant if : 
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1. The cumulative frequency Z-score was in the upper quartile of the data 

2. The standardised OPLS-DA regression coefficient was in the upper quartile of 

the data 

3. The log2FC value was either in the upper quartile (for upregulated genes) or 

the lower quartile (for down-regulated genes) 

 

Genes obtained from all three ML classifiers were combined, resulting in a  total of 16 

genes (eleven upregulated and five downregulated; Table 2.6) in the ‘all patients’ 

cohort and an 11-gene signature (seven upregulated and four downregulated; Table 

2.5) for HIV positive individuals. A total of 5 significant genes were identified using the 

LR and SVC classifiers in the HIV positive group and four genes in the ‘all patients’ 

group. While six genes were discovered using RF in the HIV positive group, RF yielded 

only one gene of interest in the ‘all patients’ group.  
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Figure 2.10 Cumulative frequency Z-scores of differentially expressed genes versus their average 
log2 fold expression change (log2FC) and standardised OPLS-DA regression coefficients (in HIV 
positive and ‘all patients’ groups.  
Genes identified using the (A) Logistic Regression (LR) classifier (B) Random Forest (RF) classifier (C) 
Support Vector Classifier (SVC) are shown. Z-scores of the cumulative frequencies were used in order 
to cross-compare datasets. Genes with y-values lying in the upper quartile and x-values in the upper 
quartile (PLS regression coefficients) or outer quartiles (log2FC) were considered significant. 
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Table 2.3 Top upregulated and downregulated DEGs in HIV positive patient group.  
Transcript signatures for HIV positive patients, including the common gene name, log2FC value, FDR 
value, direction of regulation and a description of the gene’s function.  
 

Group  HIV Positive 

Classifier Genes log2FC FDR Direction of 
Regulation 

Description  

 
 
Logistic 
Regression/ 
Support 
Vector 
Classifier 

CCR2 0.99194 1.33E-09 Up The functional receptor for CCL2 and regulates the 
expression of T-cell inflammatory cytokines and T-cell 
differentiation.  

FCER1G 1.33557 6.38E-09 Up An adapter protein containing an immunoreceptor tyrosine-
based activation motif (ITAM) which transduces activation 
signals from various immunoreceptors.  

PRMT1 -1.28474 1.00E-08 Down An arginine methyltransferase enzyme that methylates the 
guanidino nitrogens of arginyl residues present in protein 
substrates.  PRMT1 mainly catalyses asymmetric 
dimethylation of histone H4 on arginine 3 (H4R3me2a), 
usually a marker of transcriptional activation, which has been 
implicated in transcriptional control 

RINL -0.88937 7.25E-06 Down Guanine nucleotide exchange factor (GEF) for RAB5A and 
RAB22A that activates RAB5A and RAB22A by exchanging 
bound GDP for free GTP. It plays a role in endocytosis via its 
role in activating Rab family members.   
 

UBR2 1.01844 2.04E-06 Up E3 ubiquitin-protein ligase that recognises and binds to 
proteins bearing specific N-terminal residues that are 
destabilising according to the N-end rule, leading to their 
ubiquitination and subsequent degradation 
Plays a critical role in chromatin inactivation and 
chromosome-wide transcriptional silencing during meiosis via 
ubiquitination of histone H2A 

 
 
 
Random 
Forest 

AGPAT9/
GPAT3 

0.79881 1.04E-07 Up Converts glycerol-3-phosphate to 1-acyl-sn-glycerol-3-
phosphate (lysophosphatidic acid or LPA) by incorporating an 
acyl moiety at the sn-1 position of the glycerol backbone.  
 

CARD11 -1.51021 5.28E-12 Down Adapter protein that plays a key role in adaptive immune 
response by transducing the activation of NF-kappa-B (NF-
κB) downstream of T cell receptor (TCR) and B-cell receptor 
(BCR) engagement.  
 

IDH1 1.15038 1.41E-12 Up Provides instructions for making an enzyme called isocitrate 
dehydrogenase 1. This enzyme is primarily found in the fluid-
filled space inside the cytoplasm. IDH1 converts a compound 
called isocitrate to another compound called 2-ketoglutarate. 
This reaction also produces a molecule called NADPH, which 
is necessary for many cellular processes. 
 

NOP2 -1.47994 3.65E-10 Down S-adenosyl-L-methionine-dependent methyltransferase that 
specifically methylates the C5 position of cytosine 4447 in 28S 
rRNA. May play a role in regulating the cell cycle and the 
increased nucleolar activity associated with cell proliferation.  
 

DESI1 0.81535 5.19E-08 Up A chromatin enzyme, which enables SUMO-specific 
isopeptidase activity and identical protein binding activity. The 
enzyme is involved in protein desumoylation.  
 

RRAGD -0.77986 2.30E-08 Up Guanine nucleotide-binding protein that plays a crucial role in 
the cellular response to amino acid availability through 
regulation of the mTORC1 signalling cascade.  
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Table 2.4 Top upregulated and downregulated DEGs in ‘all patients’ group.  
Transcript signatures for all patients, including the common gene name, log2FC value, FDR value, 
direction of regulation and a description of the gene’s function.  
 

Group All 

Classifier Genes log2FC FDR Direction of 
Regulation 

Description 

 
 
Logistic 
Regression/ 
Support 
Vector 
Classifier 

GNS 2.72251 3.00E-13 Up Provides instructions for producing an enzyme called N-
acetylglucosamine-6-sulfatase. GNS is involved in the step-
wise breakdown of large molecules called 
glycosaminoglycans (GAGs) 
 

GOT2 -1.06568 3.52E-13 Down Catalyses the irreversible transamination of the L-tryptophan 
metabolite L-kynurenine to form kynurenic acid (KA). As a 
member of the malate-aspartate shuttle, it has a key role in 
the intracellular NAD(H) redox balance. It is important for 
metabolite exchange between mitochondria and cytosol and 
amino acid metabolism. Facilitates cellular uptake of long-
chain free fatty acids. 
 

PSMB3 1.06774 1.74E-10 Up Non-catalytic component of the 20S core proteasome 
complex involved in the proteolytic degradation of most 
intracellular proteins. This complex plays numerous essential 
roles within the cell by associating with different regulatory 
particles. Two 19S regulatory particles form the 26S 
proteasome and thus participate in the ATP-dependent 
degradation of ubiquitinated proteins. The 26S proteasome 
plays a key role in maintaining protein homeostasis by 
removing misfolded or damaged proteins that could impair 
cellular functions and removing proteins whose functions are 
no longer required. 
 

TLR5 0.70875 9.65E-10 Up Pattern recognition receptor (PRR) located on the cell surface 
activates innate immunity and inflammatory response. These 
receptors recognise distinct pathogen-associated molecular 
patterns that are expressed on infectious agents.  

     
 
 
 
Random 
Forest 

HPSE 
 

0.68426
9 

4.25E-11 Up Endoglycosidase cleaves heparan sulfate proteoglycans 
(HSPGs) into heparan sulfate side chains and core 
proteoglycans. Participates in extracellular matrix (ECM) 
degradation and remodelling. Facilitates cell migration 
associated with metastasis, wound healing and inflammation.  

     

 

 

2.4 Discussion  

This study presented an OPLS-DA and ML pipeline to identify genes that are involved 

in the progression of latent to active TB in HIV positive individuals using existing 

microarray data. Integration of genes identified with log2 FC values yielded an 11-gene 

minimal signature for latent TB (vs. active TB) in HIV positive individuals.  

 

Below, we discuss the performance of the ML classifiers applied in this study and how 

they compare with one another. We then examine the observed functional redundancy 

in the gene expression patterns that distinguish latent TB from active TB in HIV positive 

individuals. The parallels and discrepancies between the results from this study and 

the original microarray study are also addressed.  
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2.4.1 General Performance of the ML classifiers and Comparison 
Between Models 

In this study, the AUC was used to measure the overall discriminative performance of 

each ML classifier. Overall, the three classification models performed extremely well 

in predicting active TB and latent TB from expression data. Indeed, LR and SVC have 

been used in existing research for TB prognosis [143]. The LR model performed the 

best, followed by SVC and RF; however, these differences were not statistically 

significant. A similar observation had been reported by Abbas and El-Manzalawy [147] 

whereby the LR model outperformed RF, making it the preferred algorithm for 

developing prediction models based on gene expression profiles according to their 

work. Since the AUC values for the models generated were very similar, other 

performance metrics may be able to better discriminate between the performance of 

the models. Additional performance metrics that can be used in future for classification 

problems include specificity and sensitivity measures, logarithmic loss, or an F1 score. 

 

Interestingly, the LR- and SVC-based methods yielded an identical list of genes. This 

similarity is most likely due to the algorithmic parallels between LR and SVM. SVC and 

LR are generalised linear models as they both create a decision boundary that linearly 

divides and classifies the data [180]. On the other hand, the RF classifier consists of a 

set of decision trees derived from a randomly selected subset of the training set. The 

votes from different decision trees are aggregated to determine the output predictions 

[141].  

 

Previous research has established that linear decision functions can capture the 

underlying distributions in microarray classification tasks better than RF, suggesting 

that LR and SVC may be less sensitive to the choice of input parameters than RFs 

and can model linear decision functions more naturally than RFs [181]. In contrast, 

Uddin et al. [142] compared different supervised ML algorithms used for disease 

prediction. The study found that although the SVC algorithm is applied most frequently, 

the RF algorithm shows superior accuracy. Indeed, RF is currently one of the most 

widely used ML algorithms in TB detection [142, 144]. 

 

The different feature selection methods used in this study may additionally account for 

the differences observed between LR/SVC vs RF. In our study, the feature selection 

for the RF model used was based on Mean Decrease Impurity (MDI), while feature 

importance for LR and SVC was determined by comparing the standardised regression 
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coefficients of each input variable. These methods are the gold standards for feature 

selection in the respective algorithms. In the case of gene expression data, where the 

number of features or genes is large and the number of samples is small, it is common 

for the results to differ for each feature selection method [182]. Since the expression 

patterns and functions of all genes are unknown when applying a dataset, a useful 

approach in making the appropriate selection might be comprehensively evaluating 

the data using various feature selection methods. However, not all ML methods can 

be used to identify important features because their underlying methods are too 

complex to analyse the contributions of single covariates to the overall results [183]. 

This problem can be corrected by applying a bias-correcting measure of feature 

importance called ‘permutation importance’. This method normalises the biased 

measure, returns significant p-values for each feature, and preserves the relations 

between features by using permutations of the outcome [183]. Permutation importance 

was not an option in this study due to computational constraints.  

 

While the three different algorithms were very similar in terms of their ability to classify 

latent TB and active TB from the transcriptome dataset, they were not equal in the 

context of finding genes that discriminate between the two patient groups of interest 

(HIV positive vs ‘all patients’). RF had the lowest Pearson r value comparing the two 

patient groups; here, RF was superior. We used genes from both LR/SVC and RF to 

define a transcriptomic gene signature of progression from latent to active TB in HIV+ 

individuals. 

2.4.2 Comparison with the Original Microarray Study  

The work by Kaforou et al. primarily focused on defining a gene signature that 

distinguishes latent TB from active TB and active TB from other diseases (OD). Using 

an elastic net variable selection algorithm combining the Lasso and Ridge regression 

methods, they identified 27 transcripts that distinguished active TB patients from those 

with latent TB and 44 transcripts differentiating active TB from other diseases. Our 

integrative statistical and ML approach resulted in an 11-gene signature for HIV 

positive patients and a 16-gene signature for patients whose HIV status is unknown 

(‘all patients’ group). 

 

We identified an overlap between the broader sets of genes generated from the OPLS-

DA and ML algorithms and the 27 transcript signature from the study (a total of 8 and 

12 overlapping genes for the HIV positive and ‘all patients’ groups, respectively). 
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However, our narrowed down 16-gene signature that distinguished latent TB from 

active TB for the ‘all patients’ group contained no genes in common with the 27 

transcript signature. This is likely due to the use of different computational approaches 

in the two studies. This again points to the importance of applying various models to a 

dataset to ensure the inclusion of important genes that might otherwise have been 

disregarded if only one model were used. Another possibility for the lack of overlap 

between the gene signatures could be due to the exclusion of the ‘other diseases’ 

group in our analyses and the fact that we focused on HIV positive individuals.  

 

The results of Kaforou et al. have been validated by several studies and provided the 

groundwork for further research. However, the genes involved in the progression of 

latent to active TB in HIV+ individuals remained unexplored. This study was able to 

reveal findings that can assist in addressing these missing elements.  

2.4.3 Functional Redundancy Associated with Latent TB Genes of Interest  

Following the ML and feature selection procedure, we observed several genes that 

appeared more frequently as top 10 features than others (Figure 2.6), suggesting the 

importance of these genes for distinguishing active TB and latent TB. Setting aside the 

distinct mechanics of the algorithms, it is interesting that the same genes did not 

always constitute the top 10 features. In the HIV+ group, 14, 17, and 92 genes were 

unique to LR, SVC and RF classifiers, respectively. While there is a random 

component to the machine learning algorithms used, the iterative approach followed 

would be expected to largely overcome any noise in the output; indeed, clear gene 

patterns emerged after 5000 iterations applied. It is possible that differences in the 

output between the algorithms employed reflected a redundancy in the gene 

expression patterns or processes involved in distinguishing latent TB from active TB 

in HIV positive individuals. This idea is supported by Chen et al., who noted that 

although ML methods have been proven to be successful in identifying disease-related 

genes, many methods fall short in considering the multifunction properties of many 

genes, particularly those that are associated with the disease [184].  

 

ALPK1, PPPDE2, FCER1G and CCCR2 (Table 2.1) were genes of interest found in 

both groups investigated. The occurrence of these genes in both groups is likely due 

to the HIV positive group being a subset of the ‘all patients’ group. However, the degree 

of dysregulation of these genes differs between the two groups. To increase the 

discriminatory power of our final gene signatures, we excluded overlapping genes 
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found in both the HIV positive and ‘all patients’ cohorts. Additionally, some of the genes 

in our HIV positive latent TB signature have been implicated in the pathobiology of TB, 

thus supporting their significance as functional biomarkers of LTB infection in HIV+ 

individuals.   

 

A number of genes and pathways found to be significant in this study have been linked 

to disease progression from latent TB to the TB disease state; however, it is unclear 

how the associated mechanisms and pathways occur in HIV infected patients. The 

following sections will discuss how some of these genes and pathways may be 

specifically relevant in HIV positive patients.  

2.4.4 Biological Pathways, Interactions and Functions Associated with 
Latent TB, Active TB or TB/HIV coinfection which have been Studied 
in Literature 

Immunosuppression in TB is a complex and not clearly understood phenomenon 

involving multiple mechanisms. An ideal biomarker should be capable of discriminating 

between latent TB and active TB and be functionally relevant. For this reason, 

examining the enriched pathways played an integral role in determining functionally 

relevant genes of interest in latent TB/HIV coinfected persons. Statistical and machine 

learning analysis of the transcriptomic dataset in this study identified DEGs enriched 

in biological pathways of the host immune response to Mtb, including CCR2, FCER1G 

and CARD11. Literature-based evidence has shown that the T cell receptor and B cell 

receptor signalling pathways are related to either active TB or latent TB infection. Lee 

et al., for instance, reported T cell receptor (TCR) and B cell receptor (BCR) signalling 

pathways enriched by DEGs among latent TB and active TB groups [176]. The above 

pathways involving the identified genes are discussed below.  

 

2.4.4.1 T cell receptor signalling pathway 

 
Mtb regulates host immune response, primarily T cell responses, to survive, leading to 

disease or latent infection. This is mainly due to the organism living inside cells. As a 

result, T cells, rather than antibodies, are needed to eliminate the bacteria [177]. For 

proper T cell activation to occur, engagement with TCRs and antigen-presenting cells 

(APCs) in the presence of co-stimulation is required [177]. Any variation of this 

engagement could lead to T cell anergy (a tolerance mechanism whereby the 

lymphocyte is functionally inactivated) [177]. The pathogenic Mtb resides within 
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macrophages and inhibits several host cell procedures, which allows for its survival in 

the host cells [177]. However, the inhibited host processes and the molecules utilised 

by the pathogenic mycobacteria to accomplish intracellular survival are poorly 

understood [177]. Recent research suggests that TCR signalling is crucial for T cell 

memory and differentiation. The fate of T cell differentiation and how it is regulated has 

been extensively investigated [185]. However, there is limited understanding of T cell 

responses during the progression of latent TB to active TB, which inhibits the diagnosis 

of infection. IGRAs, which measure T cell responses to secreted protein antigens, have 

become the standard immunodiagnostic test of TB infection; however, these assays 

are poor predictors for the progression of latent TB to active TB [186].  

 

Among the LTB HIV positive signature genes identified in our study, CCR2 participates 

in the T cell receptor signalling pathway. CCR2 is the functional receptor for CLL2, 

which regulates the expression of T cell inflammatory cytokines and T cell 

differentiation. Moreover, the expression profile of CCR2 has been shown to a play 

critical role in mediating alveolar macrophage migration during granuloma formation 

and has been described as a marker of terminally differentiated T cells [187]. However, 

the chemotactic signals promoting the recruitment of proinflammatory cytokines, 

including the CCR2 pathway, are unknown [187].  

 

To understand the role of CCR2 in mediating cellular recruitment during Mtb infection, 

Riknink et al. infected CCR2 deficient mice with Mtb [188]. CCR2 deficient mice were 

more susceptible to Mtb infection and displayed increased pulmonary cellular 

composition due to a higher accumulation of neutrophils [188]. CCR2 was upregulated 

in latent TB and HIV positive individuals in the dataset used in this study. Thus, its 

expression decreases from latent to active disease state.  This agrees with a recent 

study conducted by Guzman et al., which established that low expression of CCR2 in 

peripheral blood monocytes is a predictor of active TB and correlates with a high Mtb 

burden [187], although the HIV status of the subjects in their study was unknown. 

CCR2 acts as an entry coreceptor for HIV-1, and a mutation in the coding gene for the 

coreceptor, CCR2-64I, has been shown to delay disease progression of HIV-1 [189, 

190]. This delayed progression is reflected in a slow CD4 T cell decline and in 

maintaining a stable viral load [189]. Further investigation of the modulation of CCR2 

in the progression of LTB to active TB in HIV positive individuals and its regulation of 

T cell expression is needed.  
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2.4.4.2 B cell receptor signalling pathway 

A series of studies have shown that B cells and antibodies may significantly reduce 

mycobacterial burden. With increasing evidence of B cells’ ability to modulate immune 

response to Mtb, emphasis on characterising B cells might be of significant value. 

Older B cell knockout studies did not support the major role of B cells, but more recent 

studies have provided evidence that B cells and antibodies contribute to host defence 

against Mtb [191]. However, as with T cells, understanding the differential modulation 

of B cell responses during active and latent TB is limited.   

 

Our study placed FCER1G in the 11-gene latent TB signature for HIV positive 

individuals. This adapter protein contains an immunoreceptor tyrosine-based 

activation motif (ITAM) which transduces activation signals from different 

immunoreceptors [192] It is a component of the Immunoglobulin E (IgE) receptor that 

plays a role in allergic reactions. Fc gamma receptors modulate immunity by engaging 

immunoglobulins (IgG) produced by B cells [192] and can potentially engage 

opsonising antibodies that protect against Mtb and thus impact mycobacterial 

survival [188].  A recent study reported FCER1G as one of the marker genes in Mtb 

infected alveolar macrophages in mice and human populations [193]. Even though 

limited studies exist linking FCER1G to latent Mtb infection, FCGR1A (a high-affinity 

receptor for the Fc region of immunoglobulin gamma receptor 1A) has frequently 

appeared as a transcriptional biomarker able to distinguish active TB from latent TB. 

The IntAct database indicates a molecular interaction between the two FCER1G and 

FCGR1A receptors. Kassa et al. also reported the potential of FCGR1A to discriminate 

latent TB from active TB in HIV patients [194]. In addition, research has reported 

increased FCGR1A expression in active TB patients compared to those that are latent 

TB infected [195]. TB treatment has been shown to significantly reduce its expression 

[195], suggesting the importance of FCGR1A in TB pathogenesis.  

 

While our final gene signature did not contain FCGR1A, it did appear as an upregulated 

DEG in the 27 transcript signature of the original study conducted by Kaforou et al., 

albeit in the ‘all patients’ group. Given the abovementioned data and literature, 

FCGR1A is seemingly a key biomarker in LTB progression. A further understanding of 

its role in the B cell receptor signalling pathway will shed light on LTB/HIV coinfection. 

Further investigation of the FCGR1A gene might also unearth more knowledge on 

FCER1G since the two genes appear to be closely linked. Furthermore, FC gamma 

receptor gene polymorphisms, which influence receptor binding to IgG antibodies, 
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have been reported to likely play a critical role in the course of disease progression 

during HIV-1 infection [196]. These findings suggest that both the FCER1G and 

FCGR1A receptors might be involved in the progression of latent TB, particularly in 

individuals infected with HIV.  

 

Furthermore, CARD11 was identified as a gene of interest in our study. This protein-

coding gene plays a key role in the adaptive immune response by transducing the 

activation of NF-κB, JNK and mTOR downstream of the T cell receptor (TCR) and B 

cell receptor (BCR) engagement [197]. When T or B cells recognise a foreign 

substance, CARD11 is activated and binds to the BCL10 and MALT1 proteins, forming 

the CBM signalosome complex. The CBM complex proceeds to activate other protein 

complexes such as NF-κB, JNK and mTOR that are important for cellular signalling. 

NF-κB is a crucial transcription factor downstream of TLR that participates in a wide 

range of inflammatory diseases. Studies have highlighted evidence of how the 

inhibition of NF-κB activation affects the viability of intracellular Mtb in human 

macrophages [198]. It has been found that the inhibition of NF-κB activation decreases 

the viability of Mtb through the cellular processes apoptosis and autophagy, which are 

processes known to promote mycobacterial killing [198]. NF-κB, JNK and mTOR 

signalling direct the development of T cells and B cells to support immune response 

against foreign invaders [199]. The CARD11 gene might be a key modulator in 

preventing TB infection in both T cell and B cell signalling pathways. CARD11 has 

been identified as a frequently mutated gene associated with HIV-related diffuse large 

B cell lymphoma [200]. Still, the mechanism by which the gene can modulate B 

lymphocytes in HIV requires more comprehension. In addition, the CARD11 is required 

for NF-κB activation in T cells. Since canonical and noncanonical NF-κB pathways 

have been established in driving HIV expression [201], CARD11 could be involved in 

promoting HIV expression from latency.  

 

It should be highlighted that the ‘signature’ genes reflect a minimal subset of genes 

that might be necessary for the classification of disease states, so there may be other 

genes closely correlated with CCR2, FCER1G and CARD11 that might provide insight 

into the biological processes driving the dysregulation exhibited.   

 
The adaptive immune responses mediated by the abovementioned pathways are 

critical for the control of Mtb. Although, the manner in which T cell and B cell responses 

differ in persons with latent TB is not fully understood and warrants further exploration. 

Further understanding of the difference in TCR and BCR expression between active 
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TB and latent TB infection may be beneficial in the diagnosis and development of 

personalised treatment in subjects with Mtb [202]. This is also the case pertaining to 

HIV coinfection.  

 

The fact that our study revealed genes that play a significant role in two pathways that 

have been extensively discussed in literature in relation to TB further supports the 

validity of the approach used to generate the gene signature. Using the associated 

genes for further downstream analyses, our research might fill the gap in 

understanding the mechanisms of T cell and B cell receptors in the progression of 

latent TB to active TB, particularly in HIV infected individuals. However, we 

recommend further studies, especially in sub-Saharan African patients, to confirm the 

role of these genes in latent TB/HIV coinfection and the associated biological pathways, 

which would establish their influence in latent TB/HIV coinfection therapies.  

 

During our research, we have also revealed possible pathways who although no genes 

from our minimal gene signature were associated with these pathways, their possible 

involvement in the potential of the disease might require future investigation to be 

defined appropriately. Below we briefly describe the link between some of these 

pathways of interest with active or latent TB and HIV.  

 

2.4.4.3 Positive regulation of cellular metabolic process  

The ability of Mtb to recalibrate host metabolic processes in infected macrophages has 

been linked to its pathogenic success [203]. Several studies have illustrated the ability 

of Mtb in reprogramming macrophage metabolism, and it is believed that these 

adaptations might be crucial for its pathogenic success [203]. Metabolic changes 

induced by Mtb provide the necessary nutrients and could also rewire the activation 

state and the anti-microbial effector functions of infected macrophages [203]. Over the 

recent years, although still unclear, many studies in the emerging field of 

immunometabolism have attempted to describe the associations between 

macrophage metabolic states along with their immunological responses [203]. In the 

context of LTB infection, latent Mtb are less metabolically active and have diminished 

replication rates compared to bacilli in active TB disease [20]. Emerging evidence 

indicates the vital role of metabolic pathways usage in immune cells in HIV-1 

pathogenesis [204]. Immunometabolism shapes immune responses against infection 

as cell metabolic products are key drivers of inflammation [204]. Moreover, the 

metabolic pathways of CD4+ T cells determine their susceptibility to HIV-1 infection 
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and the persistence of these infected cells [204]. However, further knowledge is 

required to understand the links between cellular metabolic processes and latent 

TB/HIV coinfection.  

 

2.4.4.4 Insulin signalling pathway  

Although immunity to TB in the lung and lymphoid system has been studied intensively, 

very little is known about the involvement of adipose tissue and non-immune cells in 

the interaction between the host and pathogen during the disease [160]. Using a 

mouse model infected with Mtb, Martinez et al. found TB to be associated with 

increased insulin signalling and systemic glucose tolerance in adipocytes [160]. TB 

infection promoted adipose tissue inflammations and adipocyte hypertrophy, both 

conditions typically associated with insulin resistance [160]. The synergic association 

between diabetes and TB has recently emerged as a global health concern due to the 

increasing prevalence of diabetes in TB endemic regions [153]. Yoo et al. investigated 

the association of diabetes status with risk of TB incidence and found that individuals 

with diabetes had a 48% higher risk of TB incidence than individuals without diabetes 

[160]. These findings support the positive association between TB risk and diabetes 

duration [160]. The study also confirmed that reduced insulin receptor expression and 

downstream signalling in T lymphocytes are found in patients with diabetes [160]. 

Since diminished insulin signalling includes proinflammatory cytokine production in T 

cells and antigen-specific proliferation, reduced insulin production and altered 

receptor-mediated signalling in T cells could result in increased TB risks in patients 

with diabetes [153]. Research has shown insulin resistance contributes to the 

metabolic alteration observed in HIV positive patients [205]. In HIV untreated patients, 

there is severe insulin resistance with increased LPS and cytokines that involves 

adipose tissue, love, hypothalamus, vessels and muscle [205, 206]. While HIV patients 

that undergo antiretroviral drug therapy show mild/moderate insulin resistance with 

reduced LPS and cytokines, although there is a decrease in proinflammatory 

cytokines, they do not completely return to normal, indicating some level of 

inflammation that persists [205]. As such, the possible role of the insulin signalling 

pathway in the progression of TB infection within HIV positive groups is an avenue that 

might need to be explored.  

2.4.4.5 Endocrine resistance  

Although TB is typically seen as a pulmonary disease, extrapulmonary TB, which 

affects various organs and other systems, is not unusual. Endocrine gland 
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involvement in TB has markedly diminished due to the availability of effective anti-TB 

therapy [207]. Although rare, TB of endocrine glands (such as adrenals, thyroid and 

pituitary) has pathophysiological effects that have been established to be clinically 

significant [207]. Other endocrine glands that might be affected by TB include the 

thymus, pancreas, pineal gland, parathyroid and gonads. Furthermore, research has 

confirmed that even in the absence of gland involvement, the TB disease process and 

anti-TB treatment could result in endocrine and metabolic derangements [207]. HIV 

infected patients have a high risk of developing endocrine disorders. The endocrine 

glands are affected in various ways, such as functional derangement, resultant 

immune suppression, invasion of neoplasms, and opportunistic infections [208]. 

Some endocrine abnormalities associated with HIV include growth hormone 

deficiencies, which may also contribute to insulin resistance, and growth hormone 

resistance. 

 

Along with other glandular dysfunctions such as hypopituitarism, thyroid disorders and 

hypogonadism [209]. The most affected gland in HIV is the adrenal gland [209]. A 

deeper understanding of endocrine resistance in latent TB infection is required to 

establish how the pathway might affect disease progression in immunocompromised 

HIV patients.  

 

2.4.4.6 ATP binding  

Mtb is able to survive low-energy conditions. This allows for infections to remain 

dormant and thus decreasing their susceptibility to many antibiotics [210]. Bedaquiline, 

a novel therapeutic drug used to treat multi-drug resistant tuberculosis, can sterilise 

even LTB infection [210]. The drug works by targeting the mycobacterial ATP 

synthase; an enzyme reported to be essential in Mtb for optimal growth. However, the 

manner in which the drug binds the intact enzyme is unknown [210]. Mtb’s ability to 

persist in the latent state has been associated with the pathogen’s ability to adapt to 

host induced metabolic constraints such as oxygen stress [20]. The production of ATP 

is much greater in the presence of oxygen; thus, to survive in an oxygen-deprived 

environment, the bacteria need to alter their metabolic pathways to depend on 

anaerobic respiration or find alternative mechanisms to generate energy [20]. These 

survival mechanisms of the pathogen are potential contributors to latent TB 

progression. The HIV-1 accessory protein Nef is essential for viral replication, and 

disease progression and studies have shown that Nef mediates functional impairment 

of ATP binding cassette transporter A1 (ABCA1) and suppresses cholesterol efflux 
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[211]. The Nef-mediated inactivation of ABCA1 results in an accumulation of 

cholesterol in macrophages, the increase in abundance of lipid rafts and elevation in 

cholesterol content of viral membranes [211]. These effects consequently increase HIV 

production and infectivity. As such, further exploration of the ATP binding pathway’s 

involvement in latent TB progression within the context of HIV is needed.   

 

2.5 Conclusion 

By means of a computational, integrative approach that leveraged statistical DE 

analysis and ML feature selection we were able to determine a broader list of genes 

of interest and a minimal gene signature for latent TB in HIV positive persons.  A 

network enrichment analysis and literature search was applied to these genes of 

interest to elucidate the biological pathways associated with latent TB/HIV coinfection. 

A number of these observed genes were linked to biological processes that require 

further investigation to establish these pathways possible involvement in latent TB 

progression in immunocompromised individuals.  
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3 PREDICTION OF EPIGENETIC MECHANISMS 
INVOLVED IN PROGRESSION FROM LATENT TO 
ACTIVE TB IN HIV POSITIVE INDIVIDUALS 

3.1 Introduction 

Several studies indicate that susceptibility or resistance to active TB disease goes 

beyond genetic influences encoded in the DNA and that disease risk may be 

influenced by epigenetic variation [212]. Epigenetic mechanisms play a pivotal role in 

regulating gene expression during cellular response to extracellular stimuli [125]. 

Epigenetic regulation involves a combination of various molecular and biochemical 

mechanisms, including transcription factor (TF) binding, histone-modifications (HM), 

DNA methylation and non-coding RNA. The epigenetic regulation of transcriptional 

profiles in TB disease is poorly understood and much less so in latent TB infection. 

The identification of epigenetic alterations associated with latent TB could be used as 

targets in therapies that are aimed at reducing the systematic activation state in HIV 

infected patients.  

 

High-throughput sequencing analyses such as chromatin immunoprecipitation 

sequencing (ChIP-seq), RNA sequencing (RNA-seq), and DNA affinity purification 

sequencing (DAP-seq) typically produce sets of genes of interest requiring further 

analyses to ascertain their underlying regulatory mechanisms and biological 

implication [213]. As such, it is important to focus on sets of genes that share 

biologically important attributes. Enrichment analysis can support the discovery of 

biological functions which may have been missed in a resultant gene set [214]. 

Enrichment analysis is undertaken on a gene set of interest identified using high 

throughput genomic methods to provide insight into the biological function underlying 

a list of genes [214]. The analysis maps genes and proteins to their associated 

biological annotations and compares them with all genes represented on a microarray 

chip [214]. Enriched terms or marks are defined as those that are statistically over- or 

underrepresented within the gene list [215]. An in-silico approach can be performed to 

characterise the epigenetic marks of genes of interest that are likely modulated in TB 

infection. The annotations and retrieval of enriched epigenetic features of a gene list 

can be done using web-based tools that utilise sequencing data from reference 

experimental databases. 
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A bioinformatics tool called AnnoMiner has a transcription factor (TF) and histone 

modification (HM) enrichment analysis function, which identifies enriched peaks in the 

promoter regions of a user-provided gene list [216]. This gene list could be one 

generated from a transcriptomic analysis. AnnoMiner performs TF and HM enrichment 

analysis using ChIP-seq datasets taken from the ENCODE, modENCODE and 

modERN databases [216]. The tool considers a gene as a potential target if its 

promoter overlaps with a TF or HM peak. AnnoMiner’s enrichment function provides a 

‘dynamic ranges’ option that automatically detects the optimal threshold to define the 

up or downstream boundary for each TF and HM. Alternatively, the user can manually 

define the promoter region up or downstream of the annotated transcription start site 

(TSS) of the genes of interest. Additionally the user can also set the minimum required 

overlap, in base pairs (bp) or percentage, to consider binding biologically relevant 

[216].  

Considering that a single miRNA is able to target multiple genes and a single gene can 

simultaneously be targeted by more than one miRNA, it is crucial to narrow down a 

large list of miRNA-target interactions to gain insights into the mechanisms regulated 

by miRNAs in a variety of cellular processes. Over the years, numerous bioinformatics 

tools related to miRNAs have been established to predict candidate mRNAs based on 

information related to the sequence and evolutionary conservation [217, 218]. The 

major drawback of these bioinformatics methods is that they typically result in the 

prediction of tens or hundreds of targets for each miRNA, usually with high false-

positive rates [219]. Consequently, further experiments are required to determine 

which of the predicted targets are genuinely targeted by miRNAs. This is usually 

hindered by the unfeasibility to experimentally validate all candidate genes individually 

[220]. A solution to this issue is filtering out those that are statistically insignificant, 

prioritising miRNA target interactions, and investigating these candidate interactions 

more thoroughly [220]. Although computational methods that tackle this prioritisation 

and validation problem exist, they still require navigating multiple websites and 

merging the results for further analysis [220].  

The interactive web tool MIENTURNET (MicroRNA Enrichment TURned NETwork) 

performs a miRNA target enrichment analysis using an input list of genes. The tool 

retrieves data of experimentally validated and computationally predicted miRNA-target 

interactions from the miRTarBase and TargetScan databases, respectively [220]. It 

then filters based on statistical significance resulting from a miRNA target enrichment 

analysis [220]. The miRTarBase databases report miRNA target interactions that have 

https://www.nature.com/articles/s41598-021-94805-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3105-x
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been experimentally validated by microarrays, reporter assay, western blot and next-

generation sequencing experiments [220]. Furthermore, MIENTURNET captures 

topological properties of the miRNA regulatory network, which would not be apparent 

through the pairwise analyses of individual components  [220].  

Using the identified minimal transcriptomic gene signature of latent TB in HIV infected 

individuals (Chapter 2), we performed an enrichment analysis to study the epigenomic 

landscape of different cell lines to determine the epigenetic mechanisms that may be 

relevant to latent TB during HIV infection using enrichment analysis. A selection of 

suitable cell lines was made for our specific research question for the epigenetic 

enrichment analyses. We selected the major innate immune cell types involved in TB 

infection: PBMCs, T cells, and B cells. Enrichment analyses are typically performed by 

testing for TF and HM overrepresentation in the promoter regions of user-provided 

gene lists. Our epigenomic analysis focused on identifying enriched TFs, HMs and 

miRNAs.  

3.1.1 Aim 

To predict possible epigenetic mechanisms that underly the regulation of genes 

involved in latent to active TB disease progression in HIV positive individuals using 

enrichment analysis.   

3.1.2 Objectives 

The specific objectives include: 

• Identifying transcription factors and histone modifications that may punctuate 

latent to active TB disease progression through AnnoMiner enrichment 

analysis. 

• Identify miRNAs that may regulate genes involved in latent to active TB 

disease using the MIENTURNET enrichment analysis tool. 

3.2 Methods 
3.2.1 Transcription Factor and Histone Modification Enrichment Analysis  

A transcription factor analysis was conducted with the AnnoMiner web server. Two 

separate plain .txt files containing a list of gene names were used as an input, including 

the 11-gene latent TB signature for the HIV positive cohort and the 5-gene signature 

identified for the ‘all patients’ group. Since AnnoMiner requires a minimum query size 

of ten genes, an additional five genes (POLB, KIF22, MEF2D, EVL, PVRIG, ZNF438) 

https://www.nature.com/articles/s41598-021-94805-1
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from our broader OPLS-DA and ML analysis were added to the ‘all patients’ group. 

However, these five additional genes were not considered in the final analysis. The 

Homo sapiens (hg38) reference genome was used and GENCODE was the reference 

human genome annotation of choice for the analysis. The default minimum overlap of 

1 bp was selected to define biological relevance and promoter regions were defined 

as 500 bp downstream and 1000 bp upstream to the TSS. These promoter boundaries 

were defined based on the recommended regions suggested by Georgakilas et al. 

[221]. A results table containing experiment information, lists of target genes, 

enrichment scores (a measure of magnitude of enrichment) and the FDR p-values 

were obtained along with a bar plot showing the first 10 top-ranking results ranked by 

combined score (defined as the score of the hypergeometric test *-log10(p-value)).TFs 

or HMs were sorted by ascending order of FDR adjusted p-values (FDR p-values > 

0.05 were excluded). Only TFs and HMs enriched in cell lines of interest (PBMCs, 

B cells and T cells) were considered. A literature search was conducted to investigate 

the role of these TFs or HMs in latent and active TB regulation.  

3.2.2 MicroRNA Enrichment Analysis 

MIENTURNET was utilised for miRNA target enrichment analysis. The .txt files 

containing the lists of gene names, including the 11-gene latent TB signature for the 

HIV positive cohort and the 5-gene signature identified for the ‘all patients’ group were 

uploaded to the tool. As with the TF and HM analysis, an additional five genes (POLB, 

KIF22, MEF2D, EVL, PVRIG, ZNF438) from our broader OPLS-DA and ML analysis 

were added to the ‘all patients’ group gene set. However, these five additional genes 

were not considered in the final analysis. The default threshold value of 2 for the 

minimum number of miRNA target interactions was selected. TargetScan and 

miRTarBase reference databases were used for the enrichment analysis. The results 

table, including target genes, p-values, FDR-adjusted p-values, odd ratios, and the 

number of interactions, was downloaded as a CSV file along with bar plots showing 

the top 10 target genes resulting from the enrichment analysis. Only the miRNAs 

reported as statistically significant (FDR p-value < 0.05) were assessed. A literature 

review of the miRNAs of interest was conducted to determine their epigenetic 

modulation in latent or active TB.  

 

 

 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3105-x
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3.3 Results 
3.3.1 Transcription Factor Enrichment Analysis  

To predict the involvement of transcription factor binding in the regulation of latent TB 

associated genes of interest in both the HIV positive and the ‘all patients’ group, an 

enrichment analysis was performed to identify TFs in the defined promoter region of 

the selected genes. Figure 3.1 illustrates the most significantly enriched TFs in both 

patient groups (the full results table can be found in Supplementary Table S5). The 

HIV positive cohort contained higher combined scores for the top 10 hits, indicating 

higher TF binding densities for each individual TF compared to the combined scores 

of the ‘all patients’ group. Only the enriched TFs found within the cell lines of interest 

(PBMCs, B cells and T cells) were selected for further investigation. Of these, YY1, 

SRSF3 and ATF3 (in the HIV positive group) have been reported in literature in relation 

to latent or active TB (Table 3.1). One enriched TF, namely KDM1A, in the HIV positive 

cohort whose involvement has not previously been reported in TB research may be an 

additional candidate for epigenetic regulation of TB disease progression, based on its 

modulation and target genes.  

 

 

 

 
Figure 3.1 The 10 most enriched TFs found in the promoter regions of the minimal latent TB 
signature target genes within the HIV positive and (B) ‘all patients’ groups. 
The identity and combined score of the enriched TF are shown. The combined score was calculated by 
multiplying the -log10(p-value) to the score of the hypergeometric test (computed as (List Hist/List 
Size)/(GenomeHits/Genome Size)).  
 
 
 
 
 
 
 
 
 

A
. 

B
. 

HIV positive 
‘All patients’ 
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Table 3.1 The top enriched TFs in PBMCs and immune cells identified using AnnoMiner in HIV 
positive patients, which have been reported in the context of latent TB or active TB in literature.  
Only enriched TFs with an FDR < 0.05 were considered statistically significant. 
 

 Top Enriched TFs 
Literature report in the context of latent or 
active TB  Sample Cell-Line  FDR 

Target 
Gene  

HIV 
Positive 

YY1 

YY1 is known to play a crucial role in the 
maintenance and progression of some 
pulmonary diseases; however, its specific 
role in TB remains unknown. Recent 
studies in a mouse model have elucidated 
the role of YY1 in regulating the 
transcription of CCL4. YY1, CCL4 and 
TGF-β were found to be overexpressed in 
the lung tissue of TB infected mice during 
the late stage of the disease. YY1 is 
overexpressed in experimental and 
human TB. Thus treatment that 
decreases YY1 expression may be a new 
therapeutic strategy against TB [222].  

GM12891 B-Lymphocyte  3.60E-07 IDH1;RRA
GD 

K562 

Human blood 
(chronic 
myelogenous 
leukemia) 

2.17E-04 GPAT3 

SRSF3 

The expression of genes encoding SR 
proteins in Mtb has been evaluated. 
SRSF2 and SRSF3 were found to be 
significantly downregulated post Mtb 
infection. These findings suggest that 
alternative splicing might be involved in 
host gene regulation during Mtb infection 
of macrophage cells [223]. 

K562 

Human blood 
(chronic 
myelogenous 
leukemia) 

9.02E-05 PRMT1 

 

ATF3 

TF activating transcription factor 3 (ATF3) 
is shown to be upregulated during early 
infection of macrophages in mice. ATF3 
depletion promotes mycobacterial survival 
in macrophages suggesting its protective 
role in the host [224].  K562 

Human blood 
(chronic 
myelogenous 
leukemia) 7.25E-07 GPAT3 

 

KDM1A* 

KDM1A demethylates H3K4me1/2, and 
together with the histone deacetylases 
HDAC1/2, it forms part of co-repressor 
complexes recruited by zinc finger factors 
to control transcription [225] GM12878 B-Lymphocyte  2.98E-08 PRMT1 

 
*Refers to TF that has not been directly reported in TB related literature but might be of interest in future studies 
 
 

3.3.2 Histone Modifications Enrichment Analysis 

To broadly assess the histone modifications associated with regulating the genes of 

interest, an HM enrichment analysis was performed. Figure 3.2 depicts the ten most 

significantly enriched HMs in both patient groups (the full results of enrichment hits 

across various human cell types and tissues can be found in Supplementary Table 

S6). Like the TF enrichment analysis, only the enriched HMs found within the cell lines 

of interest (PBMCs, B cells and T cells) were investigated. Three histone marks 

(H4K20me1, H3K27me3 and H3K4me1) have been associated with latent TB or active 

TB in literature, while another three HMs (H3F3A, H3K36me3, H3K27ac) have not 

been reported in literature related to TB and require further investigation.   
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Figure 3.2 The 10 most enriched HMs found in the promoter regions of the signature target genes 
within the (A) HIV positive group and (B) ‘all patients’ group.   
The identity and combined score of the enriched HM are shown. The TFs have been ranked by their 
combined score. The combined score is calculated by multiplying the -log10(p-value) to the score of the 
hypergeometric test (computed as (List Hist/List Size)/(GenomeHits/Genome Size)).  
 
Table 3.2 The top enriched HMs in immune cells determined using AnnoMiner in HIV positive 
which have been reported in the context of latent TB or active TB in literature.  
Only enriched HMs with an FDR < 0.05 were considered statistically significant. 
 

 
Top Enriched Histone 
Modifications 

Functional 
Association 

Literature report in the context of latent or 
active TB  Sample Cell Line FDR Target Gene 

HIV 
Positive H4K20me1 Transcriptional 

activation 

It has been reported that SET8, a histone 
H4 lysine 20 monomethylase 
(H4K20me1), is highly induced during Mtb 
infection. The epigenetic reprogramming 
of the host cell by the SET 
methyltransferase promotes the survival 
of Mtb in macrophages through the 
regulation of apoptosis and inflammation. 
SET8 can orchestrate immune evasion 
strategies by initiating NQO1 and TRXR1 
and regulating the Mtb induced 
expression of these two reductases. The 
loss-of-function studies in a TB mouse 
model support the critical role of SET8- 
NQO1/TRXR1 in Mtb survival. Therefore, 
enhancing host immune responses 
against Mtb by harnessing  SET8-
NQO1/TRXR1 with its specific and potent 
inhibitors could lead to host-directed 
therapeutic adjuvants for TB treatment 
[226]. 

Loucy T-cell leukemia  3.77E-02 DESI1; IDH1; PRMT1 

 
Table 3.3 The top enriched HMs in immune cells determined using AnnoMiner in HIV positive and 
all patients, which have not been directly reported in TB related literature.  
Only enriched HMs with an FDR < 0.05 were considered statistically significant. 
 

 
Top Enriched Histone 
Modifications 

Functional 
Association Literature report  Sample Cell Line FDR Target Gene 

HIV 
Positive 

H3F3A Transcriptional 
activation 

H3F3A's target gene, PRMT1, 
enhances AKT signalling by 
methylating Er-alpha. This pathway 
plays a protective role in Mtb 
infection and is targeted by the 
pathogen to evade the host immune 
system by modulating the host 
defence mechanisms [227] 

NCI-H929 B-lymphocyte  5.00E-03 FCER1G; 
PRMT1 

MM.1S 
Peripheral blood 
of a multiple 
myeloma patient 

3.15E-02 FCER1G; 
IDH1; PRMT1 

H3K36me3 Transcriptional 
activation 

Evidence indicates that pathogens 
such as Mtb can alter DNA 
methylation and regulate the 
function and expression of DNA 
methylation modifiers such as 
DNMTs. It has been reported that a 
gene body enriched with H3K36 tri-
methylation (H3K36me3) or 
H3K9me3 is favourable for 
DNMT3B recruitment, resulting in 
hypermethylation at these regions 
that functionally relate to gene 
transcription initiation, proper 
splicing and compact chromatin at 
active genes [228].  

DND-41 T-cell leukemia  1.52E-02 
DESI1; 
FCER1G; 
IDH1; PRMT1 

DOHH2 B-cell lymphoma 1.22E-02 
DESI1; 
FCER1G; 
IDH1; PRMT1 

KOPT-K1 
T-cell acute 
lymphoblastic 
leukemia  

2.69E-04 FCER1G; 
IDH1 

 

A
. 

B
. 

HIV positive ‘All patients’ 
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3.3.3 miRNA Target Enrichment Analysis 

One of the main epigenetic mechanisms includes regulation by non-coding RNAs. The 

aberrant expression of miRNAs, in particular, can alter the DNA or chromatin state by 

restricting chromatin remodelling enzyme activity. Because miRNAs have been well 

understood as epigenetic modulators and can be modulated by epigenetic changes, a 

miRNA target enrichment analysis was executed using the MIENTURNET web tool. 

We identified hsa-miR-3135a as the only significantly enriched miRNA in the HIV 

positive group, with an FDR value of 0.05738 (Figure 3.3). This conserved miRNA was 

retrieved from the miRTarBase database containing experimentally validated miRNA 

target interactions in various human cell lines. The identified miRNA’s target genes 

include desumoylating isopeptidase 1 (DESI1) and protein arginine methyltranserase 

1 (PRMT1). No significantly enriched miRNAs were found in the ‘all patients’ group 

(Figure 3.4.).  

 
Figure 3.3 miRNA enrichment analysis using MIENTURNET (taken from miRTarBase) showing the 
10 top miRNA families enriched in the HIV positive group and their number of validated target 
interactions.  
The colour code reflects the increasing FDR value. miRNAs with FDR < 0.05 were considered statistically 
significant.  
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Figure 3.4 miRNA enrichment analysis using MIENTURNET showing the 10 top miRNA families 
enriched in the ‘all patients’ group and their number of validated target interactions.  
miRNAs with FDR < 0.05 were considered statistically significant. 
 

3.4 Discussion  

Recent reports have highlighted the influence of pathogenic Mtb in modulating the 

transcriptional profile of host defense associated genes by influencing epigenetic 

factors. Mtb infection can alter the host epigenome to modulate the transcriptional 

machinery and thus trigger susceptibility to disease. This mechanism of epigenetic 

alterations during latent TB infection is not fully understood.  

The aim of the work presented in this Chapter was to identify epigenetic mechanisms 

that may play a role in the regulation of genes linked to the progression from latent to 

active TB in HIV positive individuals through enrichment analyses. Accordingly, several 

TFs, HMs and miRNA enriched in blood and immune cells of available ChIP-seq data 

are of interest. A comprehensive list of TFs and HMs found in other cell lines can be 

found in the supplementary section (Supplementary Table S5-S7). While experimental 

data in HIV infected models are lacking, the enriched TFs and HMs identified in 

PBMCs, B- and T-cells, may provide a focus for future efforts to uncover the latent TB 

epigenetic landscape in HIV positive individuals and its role in the host immune 

response. 

3.4.1 Transcription Factors that may regulate progression from latent 
to active TB in HIV positive individuals  

We identified three TFs (YY1, SRSF3 and ATF3) enriched in the promoters of the 

genes of interest (HIV positive group) in PBMCs and immune cells, that have been 

linked to latent and active TB in literature.  
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Yin-Yang-1 (YY1) contributes to the maintenance and progression of some pulmonary 

diseases, including pulmonary fibrosis [222]. Although, the role of YY1 in TB remains 

unknown. Research conducted by Santiago et al. aimed to elucidate the role of YY1 in 

the regulation of the CCL4 chemokine and its implication in TB [222]. The study aimed 

to determine whether YY1 regulates CCL4 using reporter plasmids, ChIP and siRNA 

assays and measuring the expression of YY1 and CCL4 in a mouse model of TB [222]. 

Their results indicated that YY1 regulates the transcription of CCL4. Moreover, YY1 

and CCL4 were overexpressed in the lung tissues of mice with TB during the late 

stages of the disease and the tissues of TB patients [222]. This could reflect the 

possibility of an increase in the expression of YY1 during the progression of latent to 

active TB. Therefore, treatments that decrease YY1 expression may be examined as 

a therapeutic strategy against latent TB progression. 

 

YY1 is a transcriptional activator or repressor depending on the context and is known 

to interact with chromatin modifiers, suggesting that chromatin modifications may 

determine the direction of regulation [229]. YY1 functions as a Polycomb group (PcG) 

protein and initiates methylation of histone 3 lysine 27 (H3K27me3). While H3K27me3 

had the highest combined score (Figure 3.2) in the ‘all patients’ group, this modification 

was not enriched in the promoters of genes linked to latent TB in HIV positive patients 

in our analysis.  Furthermore, YY1 promotes transcription through the recruitment of 

the PRMT1 methyltransferase [229]. Indeed, PRMT1 has been identified in this study 

as a gene of interest in the HIV positive group. PRMT1 is an arginine methyltransferase 

known to methylate histone 3 arginine 3 (H3R3me2a), a transcriptional activation 

marker [229]. However, H3R3me2a enrichment in the promoters of the genes of 

interest was not observed in PBMCs and immune cells of this study. 

 

IDH1 and AGPAT9, identified as genes of interest in this study, are target genes of 

YY1. IDH1 produces NADPH, a molecule necessary for many cellular processes [230]. 

NADPH oxidases play critical roles in antimicrobial host defense and inflammation 

beyond the production of reactive oxygen species (ROS) [231]. A well-studied 

mechanism whereby HIV infection is shown to directly impact oxidative stress is the 

interaction between the NADPH-oxidases and the HIV protein tat [232]. Tat (Trans-

Activator of Transcription) is a regulatory protein encoded for by the Tat gene in HIV-

1 which drastically enhances the efficiency of viral transcription [233]. The HIV-1 tat 

protein activates Rac1 which is crucial for the activation of various isoforms pf NADPH-

oxidases [234]. AGPAT9 catalyses the conversion of glycerol-3-phosphate to 
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lysophosphatidic acid during the synthesis of triacylglycerol. Pathogens may use 

stored lipids inside host cells as a potential energy source, particularly under serum-

starved conditions [230]. An important study by Raja et al. reported that serum 

starvation leads to the reactivation of HIV-1 latency in monocytes through the 

ERK/JNK pathway [235]. It is, therefore, possible that AGPAT9 supports mycobacterial 

survival and growth under conditions that may be unique in HIV positive individuals. 

While experimental evidence is lacking, these connections present interesting leads 

for future investigation.  

 

The RNA-binding SRSF3 protein is a splicing factor and regulator of pre-mRNA 

alternative splicing [236]. Zhang et al. found the protein to be significantly 

downregulated post-Mtb infection [223]; however, its regulation during latent TB 

remains unclear. SRSF3, along with other members of the SR protein family  (such as 

SRSF2, SRSF3 and SRSF), is a strong repressor and can significantly downregulate 

Tat activity [237]. The role of SRSF3 in Mtb progression in HIV positive individuals 

needs to be elucidated in future studies. A meta-analysis study conducted by Chen et 

al. identified ATF3 as one of four most statistically significant genes in combined TB 

infection with HIV positive patients  [149]. ATF3 was found to be upregulated in active 

TB and HIV positive infected individuals compared to the control group (TB negative 

and HIV positive). Further studies possibly exploring the role of the ATF3 mark in latent 

TB might unearth more knowledge regarding the mechanism involved in progression 

to the active disease state during HIV infection.    

The analyses also identified an enriched TF, namely KDM1A, that has not previously 

been reported in TB disease progression per se but has some links with Mtb and HIV 

infection. KDM1A was the first demethylase to dispute the concept of the irreversible 

nature of methylation marks and has emerged as an epigenetic developmental 

regulator [238]. The lysine demethylase has been reported to cooperate with CTIP2 to 

repress HIV-1 transcription and viral expression [239]. To the best of our knowledge, 

no literature discusses KDM1A’s role in Mtb infection.  

3.4.2 Histone Modification Marks that may regulate TB disease 
progression in HIV infected individuals  

Like the TF enrichment, the selected HMs reported in this study are those of immune 

cell lines (both healthy and diseased cells), which do not represent HIV infected cell 

lines as ChIP data on HIV infected cells was not available. Based on literature, we 

identified one histone mark, H4K20me1, from the HIV positive group that has been 
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associated with latent TB or active TB and an additional two HMs, namely H3F3A and 

H3K36me3 in HIV infected patients that have yet to be reported in TB related literature 

and require further investigation.  

 

Singh et al. analysed the SET8 methyltransferase associated with H4K20me1 to define 

the epigenetic regulation of inflammation during Mtb infection through the induction of 

NQO1 and TRXR1 [226]. They found that SET8 mediates H4K20me1 modification on 

Mtb-triggered promoters of NQO1 and TRXR, regulating inflammation and apoptosis, 

and thereby assisting Mtb survival [226]. The promotors of DESI1, IDH1 and PRMT1, 

identified in this study as genes of interest, are enriched with H4K20me1 marks in 

PBMCs and immune cells. These genes may therefore be regulated by this 

modification. H4K20me1 is associated with transcriptional activation [240]; indeed, our 

analysis showed that DESI1 and IDH1 are upregulated in latent TB/HIV coinfected 

individuals. In contrast, PRMT1 in our study is downregulated in these individuals, 

suggesting that PRMT1 promoters are less extensively marked by H4K20me1 than 

DESI1 and IDH1.  

 

Previous studies have indicated that Rv1988, a functional methyltransferase, share 

similarities with PRMTs [241]. Decreased levels of Rv1988 in Mtb reduce bacterial 

survival in the host through epigenetic control of host cell transcription [241]. As such, 

it is possible that reduced expression of PRMT1 could inhibit Mtb survival and 

consequently prevent the progression from latent to active TB. These genes and their 

association with the H4K20me1 mark need to be further investigated to explore the 

epigenetic regulation that occurs during Mtb and HIV coinfection. Aditionally, PRMT1, 

which is a target gene of H3F3A, enhances AKT signalling by methylating Estrogen 

receptor alpha. This pathway plays a protective role in Mtb infection and is targeted by 

the pathogen to evade the host immune system by modulating the host defence 

mechanisms.  

 

Mtb has been reported to change DNA methylation [228]. DNA methyltransferase 

genes such as DNMT3A, DNMT3B and DNMT3L have been found to have 

differentially methylated regions (DMRs) related to Mtb infection [242]. Qin et al. 

reported that enrichment of H3K36me3 and H3K9me3 marks in gene bodies is 

favourable for DNMT3B recruitment, resulting in DNA hypermethylation at the regions 

functionally relating to the initiation of gene transcription, splicing and compact 

chromatin at repressed genes [228]. Exploring the role of the H3K36me3 mark might 

reveal crucial knowledge in the progression of TB infection in HIV infected persons. 
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3.4.3 Possible regulation of TB disease progression in HIV positive 
individuals by hsa-miR-3135a 

miRNAs can induce chromatin remodelling through the regulation of histone 

modification [243]. miRNA enrichment analysis on the genes of interest in this study 

yielded the conserved hsa-miR-3135a miRNA as the only significantly enriched miRNA 

in the HIV positive group associated with disease progression from latent to active TB. 

This miRNA regulates DESI1 and PRMT1, both of which were associated with 

H4K20me1 modification. Research has previously identified hsa-miR-3135a as being 

down-regulated in latent TB compared with active TB [244], but the HIV status of the 

study group was not reported. This result, and our analysis, suggest that hsa-miR-

3135a recruitment to DESI1 and PRMT1 would reduce their expression, resulting in 

progression from latent to active TB disease. This does appear to be the case with 

PRMT1, which is downregulated in latent TB and HIV-coinfection in our study. 

However, the results from our analysis show an inverse correlation between hsa-miR-

3135a and DESI1 expression in latent TB and HIV coinfection. Further research is 

therefore required to clarify the relationship between this miRNA, H4K20me1 and the 

target genes DESI1 and PRMT1 in the progression from latent to active to TB in HIV 

infected individuals.  

3.4.4 Challenges in identifying differentially methylated regions from 
studies using blood samples 

Among all the epigenetic modifications, DNA methylation perturbations have been the 

most widely studied. Several studies exist describing the reprogramming of DNA 

methylation patterns in PBMCs after Mtb exposure [245]. Due to convenience and 

ease of sampling, DNA samples used for methylation studies are commonly derived 

from whole blood as tissue types. However, blood tissue comprises many different cell 

types in varying proportions and different cell compositions [246]. In addition, DNA 

methylation profiles show significant variation across tissue types and individual cell 

types [247]. As such, observed changes in DNA methylation may lead to confounding 

signals. Over the years, studies have observed that this variation can affect the 

interpretation of methylation studies based on whole blood [248].  

 

For instance, in the case of latent and active TB, blood samples might be taken from 

individuals latently infected with Mtb and those with active TB disease to look at DNA 

methylation differences in the two states. The observed changes in DNA methylation 

at individual CpG sites within genes may be a result of changes in the ratio of different 
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cell types in latent Mtb infection and once the disease has progressed to the active 

state, and would reflect differences in methylation profiles of different cell types rather 

than adaptive changes in methylation due to immune response. This could impede the 

inferences drawn about the functional role of DNA methylation changes in latent and 

active TB.  

 

We faced constraints in analysing DNA methylation in TB as the transcriptomics 

dataset used in this study was taken from PBMC samples. The available methylation 

tracks of the NIH Roadmap Epigenomics Consortium that are of interest to us were 

those of PMBCs. Since the cellular compositions of those PMBCs would differ, we 

could not get a sense of differential methylation between the patient groups.  

 

DNA methylation is an important component of the epigenetic landscape; however, the 

issue lies in how informative DNA methylation patterns in whole blood samples can 

be. Thus, great caution should be exercised when interpreting methylation profiles 

from blood samples to draw insights from any differences implicated in a disease. A 

future avenue for epigenetic studies is the use of cell-free DNA (cfDNA) from blood 

samples. CfDNA refers to small DNA fragments present in plasma and other body 

fluids such as urine, cerebral spinal fluid, pleural fluid, saliva, and others [247]. Recent 

human studies have shown that sequencing of methylation from cfDNA in blood is an 

accessible and non-invasive method to gain information on the state of various 

diseases [247]. New studies have even begun exploring Mtb cfDNA detection in 

patients with latent and active TB [249]. This approach could potentially be used to 

observe DNA in particular tissues for future TB epigenetic studies focusing on HIV 

infected persons.  

3.5 Conclusion 

Through the use of TF, HM and miRNA enrichment analyses in specific cell lines of 

interest, we have identified possible epigenetic marks that underly the regulation of our 

selected genes of interest involved in latent to active TB disease progression in HIV 

positive individuals. Following enrichment analyses, an extensive literature search was 

performed to narrow down candidate epigenetic marks that have potential in 

unearthing latent TB regulation in HIV positive patients and are recommended for 

further investigation. Our findings present future opportunities to gather experimental 

evidence that connects these epigenetic marks during latent TB and HIV coinfection.  
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4 CONCLUDING REMARKS 

4.1 Study Rationale  

HIV infection promotes the progression of latent infections of Mtb to the active disease 

with the primary challenge of diagnosis being the development of efficient and 

sensitive methods to detect latent TB in HIV infected individuals. Previous studies have 

identified and reported transcriptional signatures for active TB along with signatures 

predicting the risk of active TB disease in latent TB infected individuals or those with 

other diseases. Researchers have also identified characteristic genes for active TB in 

HIV infected patients. However, no studies have identified predictive transcriptional 

signatures that discriminate latent TB from active TB disease in HIV positive persons. 

Traditional statistical tests have been widely used for identifying DEGs as biomarkers 

using microarray gene expression data with the drawback of challenging downstream 

analysis due to the high dimensionality of the datasets. In recent years, multivariate 

statistical analyses and machine learning approaches have been developed and 

applied to microarray datasets. Using an integrative data-driven approach that 

leverages statistical DE results and results obtained by ML feature selection and 

classification can provide a viable gene signature that helps understand differences 

between disease states.  

 

Additionally, ideal biomarkers capable of discriminating between latent TB and active 

TB in immunocompromised persons need to also be biologically significant and 

functionally relevant. This requires the use of enrichment analyses to infer networks 

and associated pathways from expression profiles consequently providing avenues for 

further investigation into the potential biological mechanisms of sets of genes.  Given 

the pivotal role that epigenetic modulation plays in gene expression, existing studies 

have explored Mtb-induced epigenetic alterations. Although epigenetic regulation 

appears to be a possible biological factor underlying susceptibility or resistance to 

latent TB progression to active TB disease in immunocompromised individuals, the 

mechanisms of these epigenetic modifications are not fully understood. As such, the 

annotation and retrieval of enriched epigenetic features of a transcriptional gene list 

can be beneficial for targets in therapies to reduce the activation of TB disease state 

in HIV infected patients.  

 

Thus, the current study applied a novel data-driven approach that leveraged statistical  
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differential expression analyses as well as supervised machine learning and feature 

selection methods to an entire pre-existing transcriptomic dataset and integrated the 

outcome of the two pipelines to define a latent TB gene signature in HIV infected 

patients. This was performed in conjunction with enrichment analyses to gain a deeper 

understanding of the biological networks and pathways the genes of interest are 

associated with. Our work also used this latent TB transcriptional gene signature to 

perform epigenetic enrichment analyses to obtain candidate epigenetic marks for 

latent TB in HIV positive individuals.   

4.2 Findings  

Extensive computational analyses facilitated the identification of a transcriptomic 

signature associated with latent TB in HIV positive patients based on samples from an 

existing microarray dataset. This involved applying ML modelling to the transcriptomic 

dataset for latent and active TB classification. Overall, the three ML classification 

models performed extremely well in predicting active TB and latent TB from expression 

data. The resulting genes from the ML pipeline were integrated with results from a 

conventional statistical pipeline for DE analysis, namely OPLS-DA and log2 FC, to 

define an 11-gene signature for latent TB in HIV positive individuals. We observed 

numerous genes which appeared more frequently in the different ML classifiers, which 

suggest functional redundancy in the gene expression patterns that distinguish latent 

TB from active TB in HIV positive individuals.  

 

These analyses in combination with a literature search enabled us to ascertain the 

biological functions associated with these genes of interest. Using OPLS-DA and three 

machine learning approaches, namely logistic regression, support vector classifier and 

random forest, our study identified a total of 11 DEGs that discriminate between active 

TB and latent TB in HIV positive patients. A number of these genes are linked to 

biological processes including the T and B cell receptor signalling pathways, that have 

been characterised in terms of latent TB and active TB but remain to be characterised 

in terms of coinfection with HIV. Pathway enrichment analysis on DEGs also revealed 

several pathways that may be involved in TB and HIV coinfection. These pathways 

include positive regulation of cellular metabolic process, insulin signalling pathway, 

endocrine resistance and ATP binding. Although these pathways have not been 

strongly linked to literature and no genes from our final gene list were associated with 

them, they require future investigation to establish their possible involvement in latent 

TB progression in immunocompromised individuals. Additionally, some of the genes 
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identified in the signature pointed to chromatin regulation, which signified the 

involvement of epigenetic regulation in the progression from latent to active TB in HIV 

infected persons.  

 

The enrichment analysis performed allowed for the prediction of epigenetic 

mechanisms of latent TB and HIV positive associated genes through the identification 

of TFs and HMs in the defined promoter region of the genes of interest in PBMCs and 

immune cells. Furthermore, miRNA enrichment analysis on the genes of interest in this 

study yielded one conserved miRNA as the only significantly enriched miRNA in the 

HIV positive group associated with disease progression from latent to active TB. While 

experimental data in HIV infected models are lacking, these enriched TFs, HMs and 

miRNA identified in PBMCs, B and T cells may provide a focus for future efforts to 

uncover the latent TB epigenetic landscape in HIV positive individuals and its role in 

the host immune response. 

4.3 Implications of the Study  

In this study, we presented a novel approach that leveraged statistical differential 

expression analyses and supervised ML and feature selection methods to an entire 

transcriptomic dataset and integrated the outcome of the two pipelines to define a gene 

signature panel characterising progression from latent to active TB in HIV infected 

patients. Overall, this work has presented a reliable set of predictive genes that 

contribute to a better understanding of the biological mechanisms of latent TB in HIV 

infected persons.  This defined gene signature panel was used to ascertain biological 

pathways, interactions and functions that may be related to latent TB and HIV 

coinfection. The fact that our study revealed genes that play a significant role in 

pathways that have been extensively discussed in literature in relation to TB further 

supports the validity of the approach used to generate the gene signature. The study 

identified some of the epigenetic alterations associated with latent TB, which could be 

used as targets in therapies that are aimed are reducing the systematic activation state 

in HIV infected patients. Using the associated genes for further downstream analyses, 

our research might fill the gap in understanding the mechanisms of the discussed 

pathways in the progression of latent TB to active TB, particularly in HIV infected 

individuals. However, we recommend further studies, especially in sub-Saharan 

African patients, to confirm the role of these genes in latent TB/HIV coinfection and the 

associated biological pathways, which would establish their influence in latent TB/HIV 

coinfection therapies.  
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4.4 Challenges and Limitations 

Some of the challenges faced during this study include the following: 

1. One challenge was the possible application of other feature selection methods, 

which might have been more suitable to the microarray dataset; however, some 

of these methods are computationally expensive to run on a large expression 

dataset containing thousands of genes. Although we were restricted in our 

choice of feature selection methods, we selected the most suitable methods for 

this type of dataset.  

2. Given the limited available data on HIV infected cell lines, during enrichment 

analysis we selected cell lines involved in TB infection that would be the best 

substitution (i.e., the major innate immune cell types including PBMCs, T cells, 

and B cells).  

3. We faced constraints in predicting DNA methylation in TB as the 

transcriptomics dataset used in this study was taken from PBMC samples. The 

available methylation tracks of the NIH Roadmap Epigenomics Consortium that 

are of interest to us were those of PMBCs. Since the cellular compositions of 

those PMBCs would differ, we could not get a sense of differential methylation 

between the patient groups.  

4.5 Future Prospectives  

• ML approaches could potentially be used for the prediction of genomic sites 

that are susceptible to epigenetic modifications [250]. This could significantly 

increase the potential to develop efficient molecular diagnostics for latent TB in 

immunocompromised individuals.  

• The poor reproducibility of microarray gene expression studies can be 

overcome by the application of recent meta-analysis approaches [251]. In 

future, a meta-analysis approach could be taken where existing transcriptome 

datasets from different studies could be integrated to screen for latent TB 

biomarkers in patients who are HIV positive.  

• There is a need for future studies performing enrichment analyses using 

experimental data collected from HIV infected cell lines to gain greater clarity 

on the epigenomic landscape of latent TB/HIV coinfected patients.   

• DNA methylation is an important component of the epigenetic landscape; 

however, the issue lies in how informative DNA methylation patterns in whole 

blood samples can be. Thus, great caution should be exercised when 
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interpreting methylation profiles from blood samples to draw insights from any 

differences implicated in a disease. A future avenue for epigenetic studies is 

the use of cell-free DNA (cfDNA) from blood samples. Recent human studies 

have shown that sequencing of methylation from cfDNA in blood is an 

accessible and non-invasive method to gain information on the state of various 

diseases [247]. New studies have even begun exploring Mtb cfDNA detection 

in patients with latent and active TB [249]. This approach could potentially be 

used to observe DNA in particular tissues for future TB epigenetic studies 

focusing on HIV infected persons.  
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(JPEG) 
 
Table S1.  
Microarray Dataset used for Statistical Analyses. 
(XLSX) 
 
Table S2.  
Cumulative frequencies of the genes that appear in the Top 10 across 
5000 iterations of the feature selection process following ML modelling 
with pre-filtering at FDR < 0.05. 
(XLSX) 
 
Table S3.  
Final list of top upregulated and downregulated DEGs in HIV positive and all 
patient groups.  
(XLSX) 
 
Table S4.  
Enriched network pathway terms that were identified using the OPLS-DA and 
three ML models in HIV positive patients using the combined KEGG and 
gene ontology databases. 
(XLSX) 
 
Table S5. 
Transcription factor enrichment analysis results. 
(XLSX) 
 
Table S6. 
Histone modification enrichment analysis results. 
(XLSX) 
 

https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/home/Supplementary%20Data
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0


91 
 

Table S7. 
miRNA enrichment analysis results. 
(XLSX) 
 
Notebook S1.  
OPLS-DA modelling in Python (example) 
(IPYNB) 
 
Notebook S2.  
FDR procedure and log2 fold change calculation (example) 
(IPYNB) 
 
Notebook S3.  
Selection of Top 10 genes by ML and feature selection (example) 
(IPYNB) 
 
Workbook S1. 
Comparison of the performance of the different ML classifiers in the two 
patient groups. Z-score frequencies of the top genes identified using the 
average log2FC and the OPLS-DA standardised regression coefficients 
(in HIV positive and all patients at different FDR values.  
(TWBX) 
 
Workbook S2. 
Pearson correlation matrix created in Tableau of ML classifiers in the 
different groups at different FDR values. 
(TWBX) 
 
Workbook S3. 
Cumulative frequencies of genes in the Top 10 by ML algorithm, group and pre-
filter method. 
(TWBX) 
 
 
 
 
 

https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/sh/k7rdjqzw6iqr1ck/AABDktLCNYPa6BYCUt0XSOCRa?dl=0
https://www.dropbox.com/s/euu78el56gkx6bl/Workbook%20S3..twbx?dl=0

	ACKNOWLEDGEMENTS
	SUMMARY
	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	TABLE OF CONTENTS
	1 GENERAL INTRODUCTION
	1.1 Epidemiology
	1.2 Pathogenesis and Mechanism of Latent TB/HIV Coinfection
	1.3 Diagnosis of Latent and Active TB
	1.4 Treatment for Latent TB Infection in PLHIV
	1.5 Transcriptome Profiling for Disease Prediction
	1.5.1 Microarray Gene Expression and Gene Expression Signatures
	1.5.2 Transcriptomic Signatures for Diagnosing Tuberculosis

	1.6 Identification and Classification of Gene Expression Signatures using Computational Biology
	1.6.1 Statistical Techniques that can be applied to Microarray Datasets
	1.6.2 Machine Learning Classification and Feature Selection
	1.6.3 Pathway and Network Analysis of Differentially Expressed Genes

	1.7 Epigenetic Mechanisms
	1.7.1 DNA Methylation
	1.7.2 Histone Modification
	1.7.3 Non-coding RNA
	1.7.4 Transcription Factors

	1.8 The Role of Epigenetic Modifications in TB Infection
	1.9  Rationale
	1.10  Aim & Study Objectives

	2 AN INTEGRATIVE TRANSCRIPTOMIC APPROACH TO IDENTIFY A MINIMAL LATENT TB GENE SIGNATURE IN HIV INFECTED INDIVIDUALS
	2.1 Introduction
	2.1.1 Aim
	2.1.2 Objectives

	2.2 Methods
	2.2.1 Dataset
	2.2.2 Data Pre-Filtering
	2.2.3 Differential Expression Analysis using Orthogonal Projections to Latent Structures – Discriminant Analysis (OPLS-DA)
	2.2.4 Identification of Differentially Expressed Genes using a Machine Learning and Feature Selection Approach
	2.2.5 Pathway Enrichment Analysis
	2.2.6 Integrating Machine Learning and Statistics-Based Approaches to Select Genes of Interest

	2.3 Results
	2.3.1 Data Exploration using Principal Component Analysis (PCA)
	2.3.2 Differential Expression (DE) Analysis using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA)
	2.3.3 Identification of DEGs using a Machine Learning and Feature Selection Approach
	2.3.4 Pathway Enrichment Analysis
	2.3.5 Integrating Machine Learning and Statistics-Based Approaches to Select Minimal Transcriptomic Signature

	2.4 Discussion
	2.4.1 General Performance of the ML classifiers and Comparison Between Models
	2.4.2 Comparison with the Original Microarray Study
	2.4.3 Functional Redundancy Associated with Latent TB Genes of Interest
	2.4.4 Biological Pathways, Interactions and Functions Associated with Latent TB, Active TB or TB/HIV coinfection which have been Studied in Literature
	2.4.4.1 T cell receptor signalling pathway
	2.4.4.2 B cell receptor signalling pathway
	2.4.4.3 Positive regulation of cellular metabolic process
	2.4.4.4 Insulin signalling pathway
	2.4.4.5 Endocrine resistance
	2.4.4.6 ATP binding


	2.5 Conclusion

	3 PREDICTION OF EPIGENETIC MECHANISMS INVOLVED IN PROGRESSION FROM LATENT TO ACTIVE TB IN HIV POSITIVE INDIVIDUALS
	3.1 Introduction
	3.1.1 Aim
	3.1.2 Objectives

	3.2 Methods
	3.2.1 Transcription Factor and Histone Modification Enrichment Analysis
	3.2.2 MicroRNA Enrichment Analysis

	3.3 Results
	3.3.1 Transcription Factor Enrichment Analysis
	3.3.2 Histone Modifications Enrichment Analysis
	3.3.3 miRNA Target Enrichment Analysis

	3.4 Discussion
	3.4.1 Transcription Factors that may regulate progression from latent to active TB in HIV positive individuals
	3.4.2 Histone Modification Marks that may regulate TB disease progression in HIV infected individuals
	3.4.3 Possible regulation of TB disease progression in HIV positive individuals by hsa-miR-3135a
	3.4.4 Challenges in identifying differentially methylated regions from studies using blood samples

	3.5 Conclusion

	4 CONCLUDING REMARKS
	4.1 Study Rationale
	4.2 Findings
	4.3 Implications of the Study
	4.4 Challenges and Limitations
	4.5 Future Prospectives

	5 REFERENCES
	6 SUPPLEMENTARY INFORMATION

