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Introduction

A careful study of Hilbert [22] and Cauchy’s [6] original work reveals that the word
characteristique in French translates to ”eigenschaften” in German (”eienskap” in
Afrikaans) which may be interpreted as intrinsic or property in the sense that it
associates a(n) (set of) eigenvalue(s) λ [thought of as the seed] belonging to an oper-
ator T [thought of as the stem]. It is due to this operator-eigenvalue tug’o war that
most of the modern theory has become so well developed to model physical prob-
lems leading to insightful results. The word ”integralgleichung” is used frequently
throughout the text which translates to English as integral equation. In his article
Hilbert discusses the symmetric kernel on page 52, characteristic determinant equa-
tions on page 53, linear combinations and algebraic solutions to the integral equations
on page 57, convergent power series solution of Fredholm determinant expression on
page 58, orthogonality and eigenfunction solutions of integral equations on page 67,
essentially the foundation for classical operator theory.

Long before the power of vector space algebra was postulated into existence and
became common practice, the eigenvalue method was one of the tools used to study
systems of linear equations as roots of determinant equations, but made some of its
first appearance in the studies of differential and integral equations originating from
variational calculus during the celestial era of mathematics, giving birth to operator
theory. Operator theory can be chronologically tracked through Leonard Euler (1707
- 1783), Jean le Rond d’Alembert (1717 - 1783), Joseph Louis Lagrange (1736 - 1813),
Daniel (1700 - 1782) & the three Bernoulli brothers (1710 - 1790, 1744 - 1807, 1759
- 1789), Pierre Simon Laplace (1749 - 1827), Joseph Fourier (1768 - 1830), Johann
Peter Gustav Lejeune Dirichlet (1805 - 1859), who all played a big part in pursuit
of an even bigger picture - Modelling, analysing, solving and generalising functional
equations.

Sometimes eigenvalues are referred to as the roots of characteristic equations, those
equations deeply associated with its homogeneous auxiliary equations and in modern
mathematics related to the spectrum, the set of values in a scalar field associated
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with algebraic invertibility of an operator expression of the form T − λI. In fact,
eigenvalues arise naturally in the generalization of operator equations as the following
examples illustrate:

Example 0.0.0.1 Consider the homogeneous linear system of differential equations:
d
dt

x(t) = Ax(t)

where x(t) is a column of functionals dependent on t and A is the coefficient mat-
rix for the system. It is an elementary exercise to verify upon substitution that
x(t) = v(t)eλt reduces the equation to λv = Av not surprisingly, an ordinary eigen-
value problem which may be written more recognizably as (A − λI)v = 0 with the
remaining task to compute the eigenvalues λ and eigenvectors v. 2

Example 0.0.0.2 Consider the classical homogeneous Fredholm integral equation:

g(x) = µ
∫ b

a
K(x, t)g(t) dt

Let µ = 1
λ

and define the integral transform by (Tg)(x) :=
∫ b

a
K(x, t)g(t) dt so

that the above may be written more compactly as g(x) = 1
λ
Tg(x). Multiplying λ

throughout gives λg(x) = Tg(x) which can be rearranged as Tg(x) − λg(x) = 0 and
finally factoring g(x), the equation is recognizable as an ordinary eigenvalue problem
(T − λI)g(x) = 0. 2

Example 0.0.0.3 Consider the operator equation (Tu)(x, t) = (Su)(x, t) for an
unknown two variable function u(x, t) dependent on position x along the closed
interval [0, l] and time t, described on the domain D(u) = {(x, t) : x ∈ [0, l], t ≥ 0}.

If we assign T = ∂
∂t

and S = α ∂
∂x

then we recover the familiar transport equation.

If we assign T = ∂
∂t

and S = α2 ∂2

∂x2 then we recover the familiar heat equation.

If we assign T = ∂2

∂t2 and S = α2∇2 then we recover the familiar wave equation.

We wish to find a product solution of the form u(x, t) = f(x)g(t) so that the equation
becomes separable T g

g
= Sf

f
in which case this reduces to the recognizable ordinary

eigenvalue problems:

Tg = λg and Sf = λf

2



but as it turns out, separability of operator equations is related to the spectral the-
orem. The applicability of the technique is intrinsic to the coordinate system in which
the equation is modelled and depends on the symmetry properties of the equation. 2

In each example above, the equations were reducible to an ordinary linear eigen-
value problem. The foundations of the solvability theory for such problems had
already mostly been explored by researchers such as the three prodigies, Johann
Carl Friedrich Gauss (1777 - 1855) (in his Disquisitiones Arithmeticae), Évariste
Galois (1811 - 1832), and Niels Hendrik Abel (1802 - 1829). This is the insight
which motivated mathematicians to study operator equations collectively as a sub-
ject. However, a great deal of the behaviour of operator equations is due to the
underlying structure space on which the equation is defined. For example continu-
ity, convergence, invertibility, integrability and differentiability are all in one way or
another, dependent, not only on the form of the equation, but also largely on the
underlying algebraic and topological aspects of the space.

The demand for clear insight about the underlying structure space for operator
equations further stimulated research in the fields of topology and algebra. The
story diverts to set theory and the axiomatization of mathematics. Georg Ferdinand
Ludwig Philipp Cantor’s (1845 - 1918) set theory had been digested by the mathem-
atics community and axiomatized by Ernst Zermelo (1871 - 1953) in his 1908 paper
Untersuchengen über die Grundlagen der Mengenlehre [”mengenlehre” in German
translates to set theory in English] while Giuseppe Peano fully axiomatized linear
spaces in his 1888 book, titled Calcolo. Cantor had already loosely defined the no-
tions of open, closed and derived sets, influencing René-Louis Baire (1874 - 1932),
Émile Borel (1871 - 1956) and Henri Lebesgue (1875 - 1941) to write his phenom-
enal piece, titled Sur l’approximation des fonctions, thereby extending the ideas of
George Friedrich Bernhard Riemann (1826 - 1866) with strong reliance on set theory,
consequently giving rise to the subjects of measure and integration theory as it is
taught in current times.

Set theory shed new light on the concept of a function which inspired Maurice René
Fréchet (1878 - 1973) to fabricate the axioms of a metric space, in doing so, extend-
ing Leibniz and Newton’s classical calculus of functions to topology, roughly phrased
from the mouth of contemporary mathematical dialect. Felix Hausdorff (1868 - 1942)
extended much of topology and set theory by introducing the concepts of neighbour-
hoods, neighbourhood systems and partially ordered sets, associated with Zorn’s
lemma, in his 1914 piece Grundzüge der Mengenlehre. By now, the duality principle
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seeped its way through to function spaces found in the works of Hans Hahn (1879
- 1934), Frigyes Riesz (1880 - 1956), Stefan Banach (1892 - 1945), Juluisz Schauder
(1899 - 1943), Giulio Ascoli (1843 - 1896) and Cesare Arzelá (1847 - 1912) who all
played roles on elaborating the concepts of Bernard Bolzano (1781 - 1848), Karl
Theodor Wilhelm Weierstrass (1815 - 1897) and other contemporaries to sequences
of functions (boundedness, continuity, convergence, compactness), representations
of linear functionals, functional domain extension, normed spaces, completeness of
spaces, etc...

The power of the duality principle was once again emphasised when Kazimierz Kur-
atowski (1896 - 1980) defined his closure algebra, a dual approach for constructing a
topology on any collection, in his 1922 paper [25], a discovery that would become ex-
tremely important to the marriage of algebra and topology. In the words of Herman
Weyl (1885 - 1955) - ”...the angel of topology and the devil of abstract algebra fight
for the soul... ” A substantial amount of modern mathematical content for algebraic
topology is due to the team of writers, under the name Nicolas Bourbaki (1934 -
1935) in their series of textbooks.

For the past couple of decades, attempts have been made (Oscar Zariski (1899 -
1986)) to find an analytic expression which generates a topology on a ring. The first
question that would come to mind for the majority of people is ”why do we want
such a structure?”

To answer this question we heavily rely on the motto modelling, analysing, solving
and generalising functional equations to argue our point of view that it is convenient
to know the topological and algebraic features of an operator all at once, since this
will allow us to decide whether it may have certain desirable properties such as being
(left/right (nearly)) invertible, open, continuous, quasinilpotent, etc...

This dissertation celebrates the work of Robin Harte and Dragana Cvetković-ilić
who recently succeeded in the task of defining a topology on a ring via a Kuratowski
closure operation, leading to new insights for operators - the main theme of this
dissertation. Below is a brief overview of the content of various chapters.

In Chapter 1 we define basic concepts that we need to understand the content that
follows.

In Chapter 2 we prove that the construction of the authors is a Kuratowski closure
operation. We also discuss some properties of the closure operation.

In Chapter 3 we compare the spectral topology with the norm topology on a Banach
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algebra. We also look at additional properties, including the structure of neighbour-
hoods of the spectral topology.

In Chapter 4 we look at how the spectral closure enables us to define a concept of
quasinilpotent that applies to a general ring.

In Chapter 5 we look at how the spectral closure intervenes in concepts of generalized
invertibility.

In Chapter 6 we look at how the spectral closure intervenes with Fredholm Theory
relative to a Banach algebra homomorphism.

In Chapter 7 we look at how the spectral closure intervenes in the concepts of Bass
Stable Rank of a ring.

In Chapter 8 we give a brief summary of what was achieved, as well as highlight
some questions raised by the study.

✠
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Chapter 1

Rings, topologies, Banach algebras

1.1 Introduction
This chapter provides an overview of all the prerequisites needed for our discussions
in coming chapters. The main mathematical structures we will encounter are rings,
topologies, topologocal rings and Banach algebras. In this chapter these structures
are defined and discussed in the detail necessary to make the theory that follows
understandable. Groups and vector spaces are considered to be understood and are
not defined.

1.2 Rings
Definition 1.2.0.1 ([15], p. 95) A ring is a nonempty set R on which there are
defined two binary operations, + and ·, called addition and multiplication respect-
ively, which satisfy the following axioms:

R1. with respect to +, R is an abelian group.

R2. · is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ R.

R3. The following distributive laws are satisfied (for all a, b, c ∈ R)

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a.

If R is a ring with operations of + and · we will also use the triple ⟨R, +, ·⟩ to
represent the ring structure.
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If R is a ring and a · b = b · a for all a, b ∈ R, then R is called commutative.

If R is a ring then by R1 it has a unique additive identity, which we denote by 0,
which satisfies the condition that 0 · a = a · 0 = 0 for all a ∈ R.

Let R be a ring and suppose there exists 1 ∈ R with the property that for all a ∈ R

1 · a = a = a · 1.

We will call such an element an identity element, multiplicative identity or simply
an identity of the ring. A ring with an identity is referred to as a ring with unity or
a unital ring. It is not necessary for a ring to have an identity, but if it does then
the identity is unique. This is easily seen to be the case as follows. Suppose 1 and 1′

are identities of the ring. Then it is clear (from the properties of 1 and 1′) that we
must have

1 = 1 · 1′ = 1′.

If a ring R contains an identity with respect to multiplication, we will write 1R if we
need to emphasize the ring R. In this dissertation every ring will have an identity.
From this point the expression ‘Let R be a ring’ will mean ‘Let R be a ring with
identity’.

If ⟨R, +, ·⟩ is a ring then we will usually suppress the multiplication sign, so that for
a, b ∈ R, ab will have the same meaning as a · b. The symbol for multiplication will
be used only if we feel readability will be enhanced by its use.

Let R be a ring. An element a ∈ R, is called left (respectively right) invertible if
there exists b ∈ R such that ba = 1 (respectively ab = 1). The element b is called a
left (respectively right) inverse of a.

If an element a ∈ R is both left and right invertible, then the left and right inverses
for a coincide, as we shall now illustrate. If a is left invertible and right invertible
then there exist b, c ∈ R such that ba = 1 and ac = 1. So

b = b · 1 = b · (a · c) = (b · a) · c = 1 · c = c. (1.1)

In this last case a is called invertible and its left (and right) inverse is called an
inverse. This argument also shows that the inverse of an element, if it exists, must
be unique. This is so because an inverse is both a left inverse and a right inverse.
The inverse of a is denoted by a−1. The sets of left invertible, right invertible and
invertible elements in R are denoted by R−1

l , R−1
r and R−1 respectively.

7



Example 1.2.0.2 ([15], p. 97) Let R = {0}, and let us define addition and mul-
tiplication by:

0 + 0 = 0 and 0 · 0 = 0.

Then the axioms R1 - R3 are satisfied in a trivial way. R is a ring called the trivial
ring. Note that R is commutative with identity 0. Note also that in R, we have
1R = 0R. 2

In what follows we will always assume that an arbirary ring is not the trivial ring.

An element a of a ring R is said to be nilpotent if there exists some n ∈ N such that
an = 0.

Remark 1.2.0.3 Suppose G, H ⊆ R and K ⊆ R−1 for a ring R. We will use the
following notations:

(a) K−1 = {k−1 : k ∈ K}.

(b) G + H = {g + h : g ∈ G, h ∈ H}.

(c) G · H = {g · h : g ∈ G, h ∈ H}.

(d) a + G = {a + g : g ∈ G}.

2

The following lemma lists a number of properties of invertible elements which we
will need to refer to.

Lemma 1.2.0.4 Let R be a ring. Then

(a) If a, b ∈ R−1 then ab ∈ R−1.

(b) If ab ∈ R−1 then a ∈ R−1
r and b ∈ R−1

l .

(c) If ab ∈ R−1 and b ∈ R−1 then a ∈ R−1.

(d) If a ∈ R−1 and b ̸∈ R−1 then ab ̸∈ R−1.

2
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Remark 1.2.0.5 We can say more about the structure of the set of invertibles in a
ring. If ⟨R, +, ·⟩ is a ring, then ⟨R−1, ·⟩ is a group. We will refer to this group as the
group of units or the invertible group of the ring R. 2

Next, we define types of rings encountered throughout the dissertation:

Definition 1.2.0.6 ([13], p. 252) Let R be a ring and suppose that a, b ∈ R.
Suppose also that a ̸= 0 and b ̸= 0, but that a · b = 0. Then we call a and b divisors
of zero. In particular, a is a left divisor of zero and b is a right divisor of zero.

Definition 1.2.0.7 ([13], p. 254) An integral domain is a commutative ring with
unity containing no divisors of zero.

Example 1.2.0.8 ([14], p. 249) The ring of integers is an integral domain. 2

Proposition 1.2.0.9 ([15], p. 101) Let R be an integral domain, a, b, c ∈ R, a ̸=
0. Suppose that a · b = a · c. Then b = c. 2

Definition 1.2.0.10 A division ring is a ring with the property that every nonzero
element is invertible.

Definition 1.2.0.11 A Boolean ring is a ring R with the property that r2 = r for
every r ∈ R.

Remark 1.2.0.12 If R is a Boolean ring, then R−1 = {1}. To see this suppose
r ∈ R−1. Then

r = r · 1 = r · (r · r−1) = r2 · r−1 = r · r−1 = 1.

2

It is well known that Z, together with the usual addition and multiplication of integers
is a ring. In what follows we will assume some of the basic properties of this ring.
This includes the fact that it is a ring with unity and some of the order theoretic
properties of the ring. Developing these from scratch would take us too far from the
main focus of this dissertation. The details of these properties of the ring of integers
is developed in Chapter 2 of [15].
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Example 1.2.0.13 Z with usual addition + and multiplication · is a ring. We show
that Z−1 = {−1, 1}. Consider arbitrary a, b ∈ Z such that ab = 1. We show that
either a = b = 1 or a = b = −1.

Clearly a ̸= 0 and b ̸= 0. We prove the statement above using a proof by cases
argument, based on the possible values for a. These values are:

a > 1, a < −1, a = 1, a = −1.

Suppose that a > 1. If b > 1 then ab > 1, contradicting ab = 1. If b < −1 then
ab < −1, contradicting ab = 1. If b = 1, then ab > 1, again contradicting ab = 1.
Finally, if b = −1, then ab < −1, again leading to a contradiction.

The argument for a < −1 follows a similar pattern, with signs and inequalities
reversed.

Suppose that a = 1. Then we must have b = 1, for suppose b ̸= 1. Then ab = 1 · b =
b ̸= 1, contradicting that ab = 1.

Finally, suppose that a = −1. Then necessarily b = −1 since otherwise ab = (−1)·b =
−b ̸= 1. 2

Example 1.2.0.14 ([15], p. 100) Let R and S be any two rings, and let R × S
denote the Cartesian product of R and S as sets. Let (r, s), (r′, s′) ∈ R × S. Then
we define addition and multiplication in R × S by

(r, s) + (r′, s′) = (r + r′, s + s′),
(r, s)(r′, s′) = (rr′, ss′)

With + and · defined as above we have that ⟨R × S, +, ·⟩ is a ring. This structure is
sometimes referred to as the direct sum of R and S and denoted by R ⊕S. Checking
that R ⊕ S is a ring is a routine exercise. So, instead of checking every condition
(R1 - R3) we look at only the details relating to the zero element and invertibility
in the product ring, R ⊕ S, since those details will be pertinent for the discussions
to come.

Let 0R and 0S be the zero elements in R and S respectively, and let 1R and 1S be
the multiplicative identities in R and S respectively.

First we show that (0R, 0S) is the zero element in the product ring. To see this, let
(r, s) ∈ R ⊕ S. Then
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(r, s) · (0R, 0S) = (r · 0R, s · 0S) = (0R, 0S)

and

(0R, 0S) · (r, s) = (0R · r, 0S · s) = (0R, 0S).

Also,

(0R, 0S) + (r, s) = (0R + r, 0S + s) = (r, s)

and

(r, s) + (0R, 0S) = (r + 0R, s + 0S) = (r, s).

Hence (0R, 0S) is the zero element in R ⊕ S. Next,

(r, s) · (1R, 1S) = (r · 1R, s · 1S) = (r, s)

and

(1R, 1S) · (r, s) = (1R · r, 1S · s) = (r, s).

Hence (1R, 1S) is the multiplicative identity in R ⊕ S.

Next, let R−1 and S−1 be the sets of invertibles in R and S respectively. Then

(R ⊕ S)−1 = R−1 × S−1.

To see this, let (r, s) ∈ (R ⊕ S)−1. Then there must be (r′, s′) ∈ R ⊕ S such that

(r′, s′) · (r, s) = (1R, 1S)

and

(r, s) · (r′, s′) = (1R, 1S).

These equations imply that r′ = r−1 and s′ = s−1. Hence (r, s) ∈ R−1 × S−1, which
means (R ⊕ S)−1 ⊆ R−1 × S−1.

Conversely, let (r, s) ∈ R−1 × S−1. Then r ∈ R−1 and s ∈ S−1. Hence the inverses
r−1 and s−1 exist. The equations

(r, s)(r−1, s−1) = (1R, 1S)

and

(r−1, s−1)(r, s) = (1R, 1S)

11



prove that (r, s) ∈ (R ⊕ S)−1. Hence R−1 × S−1 ⊆ (R ⊕ S)−1. We have proved that

(R ⊕ S)−1 = R−1 × S−1.

2

Lemma 1.2.0.15 ([7], p. 86) Let R be a ring and a, b ∈ R. Then

1 − ab ∈ R−1 ⇐⇒ 1 − ba ∈ R−1 (1.2)

2

Remark 1.2.0.16 Let R be a ring and a, b ∈ R. We note that condition (1.2) in
Lemma 1.2.0.15 is equivalent to the condition

1 − ab /∈ R−1 ⇐⇒ 1 − ba /∈ R−1 (1.3)

2

1.2.1 Ideals
Definition 1.2.1.1 ([15], p. 114) Let R be a ring. A subset S of R is called a
subring of R if S is a ring with respect to the operations of addition and multiplication
inherited from R.

Theorem 1.2.1.2 ([15], p. 115) Let S be a nonempty subset of a ring R. Then
S is a subring of R if and only if for a, b ∈ S, we have a − b ∈ S and ab ∈ S. 2

Definition 1.2.1.3 ([15], p. 117) Let R be a ring and let I be a subring of R.
We say that I is a left (right) ideal of R if for all r ∈ R and a ∈ I we have that
ra ∈ I (ar ∈ I). An ideal I which is both a left and right ideal of R, is simply called
an ideal of R.

For any ring R, R itself is an ideal of R, called the improper ideal. All other ideals
of R are proper ideals. For any ring R, the singleton set {0} is an ideal, called the
trivial ideal. All other ideals of R are non-trivial ideals.

Lemma 1.2.1.4 Let R be a commutative ring with identity and I an ideal of R. If
I ∩ R−1 ̸= ∅ then I = R.
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Proof: Let R and I be as described and suppose that a ∈ I ∩ R−1. We have that
I ⊆ R. We show that R ⊆ I. Since a ∈ R−1, a has an inverse, a−1 in R. Since I is
an ideal we have 1 = a−1a ∈ I. Let r ∈ R be arbitrary. Then r = r · 1 ∈ I, hence
R ⊆ I. Hence I = R. 2

Definition 1.2.1.5 ([13], p. 322) A maximal left (right) ideal of a ring R is a left
(right) ideal I of R different from R such that there is no proper left (right) ideal of
R properly containing I. An ideal which is both a maximal left ideal and a maximal
right ideal is simply called a maximal ideal.

Proposition 1.2.1.6 ([15], p. 118) Let R be a ring and I an ideal of R. Denote
by R/I the set of cosets of the form a + I where a ∈ R. Define addition and
multiplication of cosets in R/I by:

(a + I) + (b + I) = (a + b) + I and (a + I) · (b + I) = a · b + I.

With these definitions R/I is a ring called the quotient ring of R modulo I. 2

Remark 1.2.1.7 The ring R/I partitions the ring R into a set of pairwise disjoint
equivalence classes. The set a + I is the equivalence class containing the element
a. We will also use the equivalent notation [a] for the equivalence class of a. Hence
[a] = a + I. If [a], [b] are elements in R/I, then [a] = [b] ⇐⇒ a − b ∈ I. 2

Theorem 1.2.1.8 ([32], p. 347) (Krull’s Theorem) Let R be a ring with unity
and let I be a proper (left/right) ideal of R (respectively). Then there is a maximal
(left/right) ideal of R containing I (respectively). 2

1.2.2 The Jacobson radical
We define the notions relating to an important ideal, called the Jacobson radical.

Definition 1.2.2.1 ([26], p. 50) Let R be a ring and Ml be the collection of all
maximal left ideals of R. The Jacobson radical of R is the intersection of all maximal
left ideals of R:

Rad R = ⋂
I∈Ml

I
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Strictly speaking, Rad R is the left Jacobson radical. Similarly, the right Jacobson
radical of R is defined by intersecting the maximal right ideals I ∈ Mr of R. It turns
out, fortuitously, that the left and right Jacobson radicals coincide, so the distinction
is, after all, unnecessary.

The following proposition is used to characterize the Jacobson radical of a ring R in
terms of its group of invertible elements, R−1.

Proposition 1.2.2.2 ([26], Lemma 4.1 - p. 50) Let R be a ring. Then

Rad R = {a ∈ R : 1 − Ra ⊆ R−1}

2

Definition 1.2.2.3 ([26], p. 52) Let R be a ring. If Rad R = {0}, then R is said
to be a semisimple ring.

Example 1.2.2.4 ⟨Z, +, ·⟩ is semisimple. To see why this is the case, recall that
x ∈ RadZ if and only if 1 − xr ∈ Z−1 for all r ∈ Z. From Example 1.2.0.13 we
have Z−1 = {−1, 1} so that x ∈ RadZ if and only if for all r ∈ R we have that
1 − xr = −1 or 1 − xr = 1, which simplifies to xr = 0 or xr = 2. Upon substitution
of r = ±1 we get x = 2 and x = −2, an impossibility, or x = 0 necessarily. 2

Definition 1.2.2.5 ([26], p. 279) A ring with a unique maximal ideal is called
local.

It is not true in general that a ring has a unique maximal ideal. For example the
ring of integers Z has infinitely many maximal ideals. If I = pZ where p is prime,
then I is a maximal ideal in Z ([14], page 269, Exercise 9).

Proposition 1.2.2.6 Let R be a local ring. Then R = R−1 ∪ Rad R.

Proof: The fact that R−1 ∪ Rad R ⊆ R is obvious. It remains to show that
R ⊆ R−1 ∪ Rad R. Consider arbitrary a ∈ R. If a ∈ R−1, we are done. So suppose
that a ̸∈ R−1. Then either a ̸∈ R−1

l or a ̸∈ R−1
r . Without loss of generality, suppose

that a ̸∈ R−1
r . Then aR is a proper right ideal of R. By Theorem 1.2.1.8, aR is

contained in a maximal right ideal. But Rad R is the unique maximal right ideal,
hence a = a · 1 ∈ aR ⊆ Rad R and the result follows. The case in which a ̸∈ R−1

l is
similar. 2
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Proposition 1.2.2.7 Let R be a commutative ring and let I = R \ R−1. If I is an
ideal then I is the unique maximal ideal of R.

Proof: Suppose that R is a commutative ring with identity and that I = R \ R−1

is an ideal. Notice that since 1 /∈ I, we know that I is a proper ideal. To see that
I is maximal, suppose that there exists an ideal J such that I ⊆ J ⊆ R. Suppose
also that I ̸= J . Hence there exists a ∈ J such that a /∈ I. But then a ∈ R−1. Hence
J ∩ R−1 ̸= ∅. By Lemma 1.2.1.4 we have that J = R, and so I must be maximal.

To see that I is unique, suppose that J is another maximal ideal of R. Then J must
be a proper ideal, so that J ∩ R−1 = ∅. That means that J ⊂ R \ R−1 = I. Since J
is a maximal ideal it cannot be properly contained in any other proper ideal, hence
J = I, and I is unique. 2

Example 1.2.2.8 ([33], p. 3) Let R be a commutative ring. Denote by R[[x]] the
set of all infinite expressions of the form

a0 + a1x + a2x
2 + · · · + aix

i + · · · =
∞∑

i=0
aix

i (1.4)

with coefficients ai coming from the ring R. In (1.4), x is an indeterminate, i.e. x
is not in R and is not a solution of any algebraic equation with coefficients in R.
Also, even though the symbol ′+′ is used, the expression does not really represent
addition. The expression in (1.4) is actually a convenient way to express the infinite
sequence

(an)n∈N = (a0, a1, a2, . . . , ai, . . . ). (1.5)
The alternative notation (1.4) is sometimes preferable. We will use both notations.

If (an) and (bn) are two elements of R[[x]] then (an) = (bn) if and only if ai = bi for
all i ∈ N.

Let
∞∑

i=0
aix

i,
∞∑

i=0
bix

i ∈ R[[x]]. Then we define on R[[x]] operations of addition and

multiplication as:
∞∑

i=0
aix

i +
∞∑

i=0
bix

i =
∞∑

i=0
(ai + bi)xi

and
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( ∞∑
i=0

aix
i
)

·
( ∞∑

j=0
bjx

j
)

=
∞∑

k=0
ckxk

where, for each integer k ⩾ 0,

ck = a0bk + a1bk−1 + · · · + akb0 (1.6)

With these operations R[[x]] becomes a ring, called the ring of formal power series
over R. In this ring, the additive and multiplicative identities are given by

(0, 0, 0, . . . ) and (1, 0, 0, . . . )

respectively. 2

Lemma 1.2.2.9 ([26], p. 8) Let R[[x]] be the ring of all formal power series over
R in the indeterminate x as described in Example 1.2.2.8. Then an arbitrary formal
power series

∞∑
i=0

aix
i is invertible in R[[x]] if and only if its leading coefficient a0 is

invertible in R.

Proof:
Suppose

∞∑
i=0

aix
i is invertible in R[[x]]. Then there exists

∞∑
j=0

bjx
j ∈ R[[x]] such that

( ∞∑
i=0

aix
i
)

·
( ∞∑

j=0
bjx

j
)

=
∞∑

k=0
ckxk (1.7)

and ( ∞∑
j=0

bjx
j
)

·
( ∞∑

i=0
aix

i
)

=
∞∑

k=0
ckxk (1.8)

where c0 = 1 and ck = 0 for k > 0. From (1.6) we must have that 1 = c0 = a0 · b0
and 1 = c0 = b0 · a0. This means that a0 ∈ R−1, as required.

Conversely, suppose that
∞∑

i=0
aix

i ∈ R[[x]] and that a0 ∈ R−1. Let
∞∑

j=0
bjx

j ∈ R[[x]],

such that b0 = a−1
0 , and bj = 0 for j > 0. Then it is easy to see that the inverse of

∞∑
i=0

aix
i is

∞∑
j=0

bjx
j.

2
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Example 1.2.2.10 The ring R = C[[z]] is a local ring.

Proof: We can write C[[z]] = (C[[z]])−1 ⋃C[[z]] \ (C[[z]])−1. The ring C is a division
ring, and so by Lemma 1.2.2.9 we can write

C[[z]] \ (C[[z]])−1 =
{ ∞∑

i=0
aiz

i ∈ C[[z]] : a0 = 0
}

We will show that I =
{ ∞∑

i=0
aiz

i ∈ C[[z]] : a0 = 0
}

is an ideal in C. So, let
∞∑

i=0
aiz

i,
∞∑

j=0
bjz

j ∈ I. Then a0 = b0 = 0, hence a0 − b0 = 0, and a0b0 = 0. This means

that
∞∑

i=0
aiz

i −
∞∑

j=0
bjz

j ∈ I and

( ∞∑
i=0

aiz
i
)

·
( ∞∑

j=0
bjz

j
)

∈ I. Hence, by Theorem 1.2.1.2, I is a subring of C[[z]].

To see that I is an ideal, let
∞∑

i=0
aiz

i ∈ C[[z]] and
∞∑

j=0
bjz

j ∈ I. Then b0 = 0 and so

a0b0 = 0 and b0a0 = 0. This means that
( ∞∑

i=0
aiz

i
)

·
( ∞∑

j=0
bjz

j
)

∈ I and
( ∞∑

j=0
bjz

j
)

·

( ∞∑
i=0

aiz
i
)

∈ I. Hence I is an ideal. By Proposition 1.2.2.7, I is the unique maximal

ideal in C, and so C is a local ring. 2

Proposition 1.2.2.11 If R is a local ring, then the quotient ring R/ Rad R is a
division ring.

Proof: Suppose R is a local ring. Then by Proposition 1.2.2.6 we can write R as
R = R−1 ∪ Rad R. For r ∈ R we denote its equivalence class as [r] = r + Rad R.
Suppose [r] ̸= [0]. Then r = r − 0 /∈ Rad R. Hence r ∈ R−1, so there exists s ∈ R
such that rs = sr = 1. But then [r][s] = [rs] = [1] and [s][r] = [sr] = 1. This shows
that every nonzero element of the ring R/ Rad R is invertible. Hence R/ Rad R is a
division ring. 2
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1.2.3 Homomorphisms
Definition 1.2.3.1 ([15], p. 121) let R and S be rings. A ring homomorphism
from R to S is a function f : R → S such that for a, b ∈ R, we have

H1. f(a + b) = f(a) + f(b),

H2. f(a · b) = f(a) · f(b).

Definition 1.2.3.2 ([15], p. 125) Let R and S be rings and f : R → S be a ring
homomorphism. Then we define the kernel of f as

ker f = f−1({0}) = {r ∈ R : f(r) = 0}.

Proposition 1.2.3.3 ([15], p. 124) Let R and S be rings, and let f be a homo-
morphism from R onto S. If R has an identity 1, then S has an identity f(1). 2

Proposition 1.2.3.4 ([15], p. 125) Let R and S be rings and let f : R → S be a
ring homomorphism. Then the kernel of f is a two sided ideal of R. 2

Remark 1.2.3.5 Let R be a ring and I a two sided ideal of R. The map

πI : R → R/I

a 7→ a + I

is a homomorphism ([14], p. 282) called the canonical homomorphism from R to
R/I.

The canonical homomorphism from R to R/ Rad R will be denoted by π. Hence for
a ∈ R, π(a) = a + Rad R = [a]. 2

1.3 Topologies

1.3.1 General notions
Definition 1.3.1.1 ([36], p. 23) A topology on a set X is a collection τ of subsets
of X, called the open sets, satisfying:
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T1. Any union of elements of τ belongs to τ ,

T2. Any finite intersection of elements of τ belongs to τ ,

T3. ∅ and X belong to τ .

⟨X, τ⟩ is called a topological space, abbreviated X, when the topology τ is under-
stood.

Given two topologies τ1 and τ2 on the same underlying set X, we say τ1 is weaker,
smaller or coarser than τ2, alternatively τ2 is stronger, larger or finer than τ1 if and
only if τ1 ⊆ τ2.

Definition 1.3.1.2 ([36], p. 27) If X is a topological space and A ⊆ X, then the
interior of A in X is the set int(A) = ⋃{G ⊆ X : G open in X and G ⊆ A}.

An element belonging to int(A) is called an interior point of A.

We will encounter the following examples of topological spaces.

Example 1.3.1.3 Let X be any set and let τ = {∅, X}. Then τ is a topology on X,
called the trivial (indiscrete) topology. Clearly it is coarser than any other topology
on X. 2

Example 1.3.1.4 Let X be any set and let τ be the collection of all subsets of X.
Then τ is a topology on X, called the discrete topology on X. It is the strongest
topology on X. 2

Definition 1.3.1.5 ([36], p. 24) Let ⟨X, τ⟩ be a topological space. Then A ⊆ X
is said to be closed if its complement is open, i.e. if X \ A ∈ τ .

The following theorem is a consequence of De Morgan’s laws in conjunction with the
obvious duality between the notions of open set and closed set.

Theorem 1.3.1.6 ([36], p. 24) If F is the collection of closed sets in a topological
space X, then

F1. Any intersection of members of F belongs to F ,

F2. Any finite union of members of F belongs to F ,

F3. X and ∅ both belong to F .
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Conversely, given a set X, and a family F of subsets of X that satisfies conditions
F1, F2 and F3, the collection of complements of members of F is a topology on X
in which the family of closed sets is just F . 2

Definition 1.3.1.7 ([36], p. 25) If ⟨X, τ⟩ is a topological space and A ⊆ X, then
the closure of A in X is the set

clτ (A) = ⋂ {K ⊆ X : K closed in ⟨X, τ⟩ and A ⊆ K}.

If the topology is understood, we will omit the subscript τ and write cl(A) to mean
clτ (A).

By property F1 from Theorem 1.3.1.6, for A ⊆ X, the set clτ (A) is closed. It is the
smallest closed set containing A in the sense that it is contained in every closed set
containing A.

In Definition 1.3.1.1, we defined a topology by specifying the open sets. Often topo-
logies are defined by using a closure operation, described next.

Definition 1.3.1.8 ([36], p. 25) Let X be a set and let

k : ℘(X) → ℘(X)

be an operation assigning to each A ⊆ X the subset k(A) ⊆ X satisfying the following
properties for all A, B ⊆ X and ∅:

K1. A ⊆ k(A)

K2. k(k(A)) = k(A)

K3. k(A ∪ B) = k(A) ∪ k(B)

K4. k(∅) = ∅.

Then k is called a Kuratowski closure operation on X.

Theorem 1.3.1.9 ([36], p. 25) Suppose X is a set and k : ℘(X) → ℘(X) is a
Kuratowski closure operation on the set X. For A ⊆ X we define:

K5. A is closed in X if and only if k(A) = A.
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The result is a topology on X, whose closure operation is just the closure operation
we started with.

Proof: Suppose that X is a set and that k : ℘(X) → ℘(X) is a Kuratowski closure
operation on X. We define

F0 = {A ⊆ X : k(A) = A}

We show that F0 satisfies the conditions of Theorem 1.3.1.6 and hence defines a
topology on X.

First we show that A ⊆ B =⇒ k(A) ⊆ k(B). If A ⊆ B then B = A∪ (B \A). From
K3 we have that k(B) = k(A) ∪ k(B \ A), from which it follows that k(A) ⊆ k(B).
Hence we have shown that

A ⊆ B =⇒ k(A) ⊆ k(B) (1.9)

Next, suppose that Fλ ∈ F0 for each λ ∈ Λ. Then for each λ ∈ Λ we have:⋂
λ∈Λ

Fλ ⊆ Fλ (1.10)

We apply (1.9) above to (1.10) to give us

k

( ⋂
λ∈Λ

Fλ

)
⊆ k(Fλ) (1.11)

From (1.11) and the fact that k(Fλ) = Fλ for all λ ∈ Λ we have

k

( ⋂
λ∈Λ

Fλ

)
⊆
⋂

λ∈Λ
k(Fλ) =

⋂
λ∈Λ

Fλ (1.12)

From K1 we have that ⋂
λ∈Λ

Fλ ⊆ k

( ⋂
λ∈Λ

Fλ

)
(1.13)

From (1.12) and (1.13) we have that

⋂
λ∈Λ

Fλ = k

( ⋂
λ∈Λ

Fλ

)
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which shows that F1 is satisfied by F0.

Next, suppose that F1, · · · , Fn ∈ F0. Then by K3 and induction we have that:

k(F1 ∪ · · · ∪ Fn) = k(F1) ∪ · · · ∪ k(Fn)
= F1 ∪ · · · ∪ Fn.

Hence F0 satisfies F2.

Finally, by K4 we have that ∅ ∈ F0 and by K1 we have that X ∈ F0, so that F0
satisfies F3. Since the collection F0 satisfies the conditions of Theorem 1.3.1.6, F0
defines a topology on X, in which F0 is the collection of closed sets.

It remains to show that the closure of a set in the generated topology is simply the
closure operation we initially started with. What we need to show is that if A ⊆ X,
then k(A) is the smallest closed set containing A.

First we note that by K2, we have that k(k(A)) = k(A), hence we know that k(A)
is a closed set in the generated topology. From K1, we have that k(A) is a closed
set that contains A. Next, let K be any element from F0 containing A. Then from
(1.9)

A ⊆ K =⇒ k(A) ⊆ k(K) = K.

Hence k(A) is the smallest element of F0 containing A. 2

Example 1.3.1.10 ([36], p. 26) Let X be an infinite set and for A ⊆ X we define
k0 : ℘(X) → ℘(X) as:

k0(A) =
A if A is finite

X if A is infinite

The properties K1 to K4 can be verified for the operation k0, and it is a Kuratowski
closure operation on X. The generated topology is called the co-finite topology. It
has as closed sets, all sets A such that k0(A) = A, hence the closed sets are X, ∅ and
A ⊆ X such that A is finite. The open sets are X, ∅ and A ⊆ X such that X \ A is
finite. 2

Definition 1.3.1.11 ([36], p. 38) If ⟨X, τ⟩ is a topological space, a base for τ is a
collection B ⊆ τ such that
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τ =
{⋃

B∈C B : C ⊆ B
}

Definition 1.3.1.12 ([36], p. 39) If ⟨X, τ⟩ is a topological space, a subbase for τ
is a collection D ⊆ τ such that the collection of all finite intersections of elements
from D forms a base for τ .

Definition 1.3.1.13 ([36], p. 31) If X is a topological space and x ∈ X, a neigh-
bourhood of x is a set U which contains an open set V containing x. The collection
Nx of all neighbourhoods of x is the neighbourhood system at x.

Definition 1.3.1.14 ([36], p. 35) An accumulation point (cluster point) of a set
A in a topological space X is a point x ∈ X such that each neighbourhood of x
contains some point of A, other than x. The set der A is the set of accumulation
points of A.

Theorem 1.3.1.15 ([36], p. 35) Let ⟨X, τ⟩ be a topological space, and let A ⊆ X.
Then

clτ (A) = A ∪ derτ A.

2

When the topology is understood, the symbol A is often used to represent the closure
of A.

Definition 1.3.1.16 ([36], p. 70) A sequence (xn) in a topological space X is said
to converge to x ∈ X written xn

∞−−→
n

x if and only if for each neighbourhood U of x,
there exists N ∈ N such that n ≥ N =⇒ xn ∈ U .

Lemma 1.3.1.17 Let X be a set with topologies τ and σ such that clτ (A) ⊆ clσ(A)
for every A ⊆ X. Then σ ⊆ τ .

Proof: Let A ∈ σ. Then X \ A is closed in X with respect to σ giving X \ A =
clσ(X\A). By assumption clτ (X\A) ⊆ clσ(X\A) = X\A, hence clτ (X\A) = X\A.
Hence A ∈ τ , and so σ ⊆ τ . 2
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1.3.2 Product and quotient topologies
Definition 1.3.2.1 ([36], p. 52) Let {⟨Xi, τi⟩ : i ∈ I} be any collection of topo-
logical spaces, with index set I. Denote by X = ∏

i Xi = {t = ⟨xi : i ∈ I⟩ : xi ∈ Xi}
the Cartesian product of X ′

is, the set of all functions t defined on the index set I
such that the value of the function at a particular index i is an element of Xi.

The map pj : ∏i Xi → Xj defined by pj(t) = xj returns the jth coordinate for the
tuple t = ⟨xi : i ∈ I⟩ and is called the jth projection map.

Definition 1.3.2.2 ([36], p. 53) The product topology on X = ∏
i Xi is obtained

by taking as a base for the open sets, sets of the form ∏
i Ui, where

P1. Ui is open in Xi, for each i ∈ I.

P2. For all but finitely many coordinates, Ui = Xi.
P1 can be replaced by

P1′. Ui ∈ Bi where for each i, Bi is a (fixed) base for the topology of Xi.

Also, notice that the set ∏i Ui, where Ui = Xi except for i = i1, . . . , in can be written
∏

i

Ui = p−1
i1 (Ui1) ∩ · · · ∩ p−1

in
(Uin)

Thus the product topology is precisely that topology which has for a subbase the
collection {p−1

i (Ui) : i ∈ I, Ui is open in Xi}. Again, the sets Ui can be restricted to
come from some fixed base (in fact, in this case, subbase) in Xi.

Wherever necessary, we will denote the product topology by τ× and the product
topological space by ⟨X, τ×⟩, where X = ∏

i Xi. Hereafter, X = ∏
i Xi is always

assumed to be endowed with the product topology if each Xi is a topological space.

Proposition 1.3.2.3 ([36], p. 54) The product topology τ× on X is the weakest
topology on X with respect to which all the projection functions pi : X → Xi defined
by pj0(⟨xi : i ∈ I⟩) = xj0 for each j0 ∈ I are continuous. 2

Definition 1.3.2.4 ([36], p. 59) Let ⟨X, τ⟩ be a topological space, Y a set and
g : X → Y be an onto map. Then the collection τg of subsets of Y defined by
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τg = {G ⊆ Y : g−1(G) is open in X}
is a topology on Y , called the quotient topology induced on Y by g. When Y is
given some such topology, it is called a quotient space of X, and the inducing map
is called the quotient map.
Theorem 1.3.2.5 ([36], p. 59) If X and Y are topological spaces and f : X → Y
is continuous and either open or closed, then the topology τ on Y is the quotient
topology τf . 2

1.3.3 Separation
Definition 1.3.3.1 ([36], p. 85) A topological space X is a T0-space (or the to-
pology on X is T0) if and only if whenever x and y are distinct points in X, there is
an open set containing one and not the other.
Definition 1.3.3.2 ([36], p. 86) A topological space X is a T1-space if and only
if whenever x and y are distinct points in X, there is a neighbourhood of each not
containing the other.
Definition 1.3.3.3 ([36], p. 86) A topological space X is a T2-space or a Haus-
dorff space if and only if whenever x and y are distinct points in X, there are disjoint
open sets U and V in X with x ∈ U and y ∈ V .
Remark 1.3.3.4 It follows from Definitions 1.3.3.1, 1.3.3.2 and 1.3.3.3 that every
T2 space is a T1 space and every T1 space is a T0 space, but the converse statements
are not true in general.

For example, the set X = {a, b} equipped with the topology τ = {∅, {a}, X} is a T0
space which is not T1.

Similarly an infinite set equipped with the co-finite topology is a T1 space, since
singleton sets are closed. Such a topology is not T2, since no two nonempty open
sets are disjoint.
Proposition 1.3.3.5 ([36], p. 86) If X is a topological space, then the following
are equivalent:

(a) X is T1,

(b) each one-point set in X is closed,

(c) each subset of X is the intersection of the open sets containing it. 2
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1.3.4 Continuity
Definition 1.3.4.1 ([36], p. 44) Let X and Y be topological spaces. A function
f : X → Y is said to be continuous at x0 if and only if for each neighbourhood V of
f(x0) in Y there is a neighbourhood U of x0 in X such that f(U) ⊆ V . We say that
f is continuous on X if and only if f is continuous at each x0 ∈ X.

Proposition 1.3.4.2 ([36], p. 44) Let X and Y be topological spaces and

f : X → Y

Then the following are equivalent:

(a) f is continuous,

(b) for each open set H in Y , f−1[H] is open in X,

(c) for each closed set K in Y , f−1[K] is closed in X,

(d) for each E ⊂ X, f [clX E] ⊂ clY f [E]. 2

Definition 1.3.4.3 ([36], p. 46) If X and Y are topological spaces, a function f
from X to Y is a homeomorphism if and only if f is one to one, onto, continuous and
has a continuous inverse, f−1. In this case, we say that X and Y are homeomorphic.

Evidently, a continuous map f : X → Y is a homeomorphism if and only if there
is a continuous map g : Y → X such that the compositions g ◦ f and f ◦ g are the
identity maps on X and Y respectively.

1.3.5 Compactness
Definition 1.3.5.1 ([36], p. 104) Let X be a topological space. A cover (or cov-
ering) of X is a collection A of subsets of X whose union is X. A subcover of a cover
A, is a subcollection A′ of A which is a cover. An open cover is a cover consisting
of open sets.

Definition 1.3.5.2 ([36], p. 116) Let X be a topological space. X is compact if
and only if every open cover of X has a finite subcover.
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1.4 Topological groups and topological rings
Definition 1.4.0.1 ([35], p. 13) A topology τ on a group G, denoted multiplic-
atively, is a group topology and G, furnished with τ , is a topological group if the
following conditions hold:

TG1. (x, y) 7→ xy is continuous from G × G to G,

TG2. x 7→ x−1 is continuous from G to G,

where G is given topology τ and G × G carries the Cartesian product topology τ×

determined by τ .

Definition 1.4.0.2 ([35], p. 1) A topology τ on a ring R is a ring topology and
R, furnished with τ , is a topological ring if the following conditions hold:

TR1. (x, y) 7→ x + y is continuous from R × R to R,

TR2. x 7→ −x is continuous from R to R,

TR3. (x, y) 7→ xy is continuous from R × R to R,

where R is given topology τ and R × R carries the Cartesian product topology τ×

determined by τ .

Remark 1.4.0.3 Notice that every topological ring is also a topological group with
respect to addition and we call − : A → A defined by x 7→ −x the inversion map.
2

Theorem 1.4.0.4 ([35], p. 14) Let G be a topological group and let a ∈ G. The
functions x → −x, x → a + x and x → x + a are homeomorphisms from G to G.
Consequently, for any X ⊆ G, we have −X = −X, a + X = a + X, X + a = X + a.
Also, for any open (closed) subset P ⊆ G we have that , −P, a+P are open (closed).

2

Lemma 1.4.0.5 ([35], p. 15) Let G be a topological group. If V is a neighbour-
hood of zero, so is −V . 2
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1.5 Banach algebras
Definition 1.5.0.1 ([24], p. 59) Let V be a vector space over a field K. A norm
on V is a map ∥ · ∥ : V → R+ that satisfies the following properties, for all x, y ∈ V
and α ∈ K:

N1. ∥x∥ ⩾ 0,

N2. ∥x∥ = 0 ⇐⇒ x = 0,

N3. ∥αx∥ = |α|∥x∥,

N4. ∥x + y∥ ⩽ ∥x∥ + ∥y∥.

A vector space V with a norm ∥ · ∥ defined on it is called a normed vector space,
denoted by ⟨V, ∥ · ∥⟩. One now constructs (or induces) a metric using the norm, by
defining the distance between a, b ∈ V as

d(a, b) = ∥a − b∥.

A Banach space is a normed vector space which is complete in the metric induced
by the norm.

Definition 1.5.0.2 An algebra is a vector space A over a field K, with a multiplic-
ation operation such that for all x, y, z ∈ A and λ ∈ K:

BA1. x(yz) = (xy)z,

BA2. (x + y)z = xz + yz,

BA3. x(y + z) = xy + xz,

BA4. λ(xy) = (λx)y = x(λy).

If, in addition, A is a Banach space for a norm || · || and satisfies the norm inequality
||xy|| ≤ ||x|| · ||y||, for all x, y ∈ A, we say that A is a Banach algebra.

If the field K is either the set of real numbers R or complex numbers C, the Banach
algebra is called a real or complex Banach algebra, respectively.

An identity of A is an element 1 ∈ A such that for all x ∈ A we have that 1x = x1 = x.
We use 1A to represent the identity, when emphasizing the Banach algebra A. If a
Banach algebra has an identity, it is unique and the Banach algebra is called unital.
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The proof that the identity is unique is essentially the same as the proof that the
identity in a ring is unique. Left and right invertible (and invertible) elements in a
Banach algebra are defined as they are in a ring.

We make a normed space ⟨X, || · ||⟩ into a topological space, via the concept of an
open ball as follows. For x0 ∈ X and ϵ ∈ R+, we define the open ball of radius ϵ,
centered at x0 as

B(x0, ϵ) := {x ∈ X : ||x − x0|| < ϵ}.

Next, we define an arbitrary set in the space ⟨X, || · ||⟩ to be open if it contains a ball
about each of its points.

Theorem 1.5.0.3 ([3], p. 35) Suppose that A is a Banach algebra with identity
1. If x ∈ A and ||x|| < 1 then 1 − x ∈ A−1 and

(1 − x)−1 =
∞∑

k=0
xk where x0 = 1.

2

Theorem 1.5.0.4 ([3], p. 36) Suppose that A is a Banach algebra and that a is
invertible. If ||x − a|| <

1
||a−1||

, then x is invertible. Moreover the mapping x 7→ x−1

is a homeomorphism from A−1 onto A−1. 2

Remark 1.5.0.5 Theorem 1.5.0.4 proves that the set of invertible elements in a
Banach algebra is an open set in the topology induced by the norm. 2

Proposition 1.5.0.6 ([8], p. 3549) In a Banach algebra A, we have:

cl∥·∥(A−1
l ) ∩ A−1

r = A−1 = A−1
l ∩ cl∥·∥(A−1

r )

2
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1.5.1 Spectral theory
Definition 1.5.1.1 ([20], p. 341) Let A be a unital complex Banach algebra. The
spectrum of a ∈ A is defined as the set

σ(a) = {λ ∈ C : λ − a ̸∈ A−1}.

Definition 1.5.1.2 ([20], p. 352) Let A be a unital complex Banach algebra. The
spectral radius of a ∈ A is defined as

ρ(a) = max{|λ| : λ ∈ σ(a)}.

It follows easily that ρ(a) = 0 if and only if σ(a) = {0}. In fact, we have the
characterization:

Theorem 1.5.1.3 ([3], Theorem 3.2.8 p. 38) Let A be a unital complex Banach
algebra and let a ∈ A. Then

(a) λ → (λ1 − a))−1 is analytic on C \ σ(a) and goes to zero at infinity,

(b) σ(a) is compact and non empty,

(c) ρ(a) = lim
n→∞

∥an∥
1
n .

2

Definition 1.5.1.4 ([20], p. 251) If A is a normed algebra and a ∈ A, then a is
quasinilpotent if ∥an∥

1
n

∞−−→
n

0. The set of quasinilpotent elements in A is QN∥·∥(A).

Proposition 1.5.1.5 ([20], p. 354) An element a in a Banach algebra is quasin-
ilpotent if and only if σ(a) = {0}. 2

Definition 1.5.1.6 ([16], p. 72) An element a of a Banach algebra A, is called a
left (right) topological zero divisor if and only if there exists a sequence (xn) in A
such that ∥xn∥ = 1 for all n ∈ N and axn → 0 (xna → 0). An element which is
both a left and right topological zero divisor, is said to be a (two-sided) topological
zero divisor.
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Proposition 1.5.1.7 ([28], p. 6) Let A be a unital Banach algebra with invertible
group A−1. If a ∈ A is any element such that a ∈ ∂A−1 then a is a topological divisor
of zero. 2

Example 1.5.1.8 Any quasinilpotent element in a Banach algebra is a topological
zero divisor.

Proof: Suppose a ∈ QN∥·∥(A). Then from Proposition 1.5.1.5 we have that σ(a) =
{0}. It follows that a ̸∈ A−1. Let (λn) be any sequence in C such that λn ̸= 0 for
all n ∈ N and lim

n→∞
λn = 0. Then clearly (a − λn) is a sequence in A−1 such that

lim
n→∞

(a − λn) = a. Hence it follows that a ∈ ∂A−1. By Proposition 1.5.1.7 a is a
topological divisor of zero. 2

Example 1.5.1.9 ([3], p. 19) We construct a counterexample to show that, in the
infinite dimensional case, quasinilpotence does not imply nilpotence. Define the unit
square S = [0, 1]× [0, 1] ⊆ R2 with Lebesgue measure η. Then the Riemann-Liouville
operator on Hilbert space L2(S, η) is defined by:

(V αf)(x) = 1
Γ(α)

∫ x

0
(x − t)α−1f(t)dt

where α is a complex number with positive real part

If we let α = 1, we recover the Volterra operator:

(V f)(x) =
∫ x

0 f(t)dt

with the kernel on S defined by K(x, t) =
1 if x ≥ t

0 if x < t

By the famous Arzelá-Ascoli theorem, we have that since V is equicontinuous and
bounded, consequently compact, it must therefore be quasinilpotent. However, by
direct calculation, we can verify that if f = 1 identically, then V is not nilpotent:

V (x) =
∫ x

0
1 dt = t

∣∣∣∣x
0

= x − 0 = x ̸= 0 =⇒ V αf ̸= 0 for all α ∈ N
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1.5.2 Basic Operator Theory
In this section we briefly discuss some basic notions in Operator Theory. Our aim
is to have the notions of Fredholm and Weyl operators available to us for later
discussions.

Let X and Y be Complex Banach spaces. By an operator T : X → Y we mean
a bounded linear mapping. The set of all bounded linear mappings is denoted by
BL(X, Y ). We denote the range of T by ran T .

If X = Y then BL(X, Y ) is denoted by BL(X).

Let T ∈ BL(X). Then we say T has finite rank if dim(T (X)) < ∞. T is called a
compact operator on X if T (U) is compact, where U is the closed unit ball of X. The
finite rank operators in BL(X) form an ideal, denoted by F(X), and the compact
operators form a closed ideal, denoted by K(X).

Example 1.5.2.1 ([4], p. 3) Let X be a Banach space. Denote by l∞(X) the
linear space of all bounded sequences (xn) of elements xn ∈ X with the supremum
norm:

∥(xn)∥ = sup{∥xn∥ : n ∈ N}.

m(X) is the linear subspace of l∞(X) consisting of those sequences every subsequence
of which contains a convergent subsequence. It is elementary to check that l∞(X) is
a Banach space and that m(X) is a closed subspace of l∞(X).

Let X̂ denote the quotient space l∞(X)/ m(X) and if T ∈ BL(X) let T̂ denote the
operator on X̂ defined by

T̂ ((xn) + m(X)) = (Txn) + m(X).

2

Definition 1.5.2.2 ([28], p. 149) Let X, Y be Banach spaces, and let T ∈ BL(X, Y ).
We say that

(a) T is upper semi-Fredholm if ran T is closed and dim ker T < ∞;

(b) T is lower semi-Fredholm if codim ran T = dim Y/ ran T < ∞;

(c) T is Fredholm if dim ker T < ∞ and codim ran T < ∞.
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Definition 1.5.2.3 ([28], p. 150) Let X, Y be Banach spaces and let T ∈ BL(X, Y ).
Suppose also that T has closed range. Then we define:

α(T ) = dim ker T and β(T ) = codim ran T .

We also define the index of T as:

ι(T ) = α(T ) − β(T ).

We denote the class of Fredholm operators acting between Banach spaces X to Y
by Φ(X, Y ) and if X = Y we simply write Φ(X). Clearly if T ∈ Φ(X, Y ), then
ι(T ) ∈ Z. A Fredholm operator for which ι(T ) = 0 is called Weyl. We denote the
class of Weyl operators acting between Banach spaces X to Y by Ω(X, Y ) and if
X = Y we simply write Ω(X). It’s obvious that Ω(X, Y ) ⊆ Φ(X, Y ).

Definition 1.5.2.4 ([34], p. 251) Let X and Y be Banach spaces. Given T ∈
BL(X, Y ), we say that an operator S ∈ BL(Y, X) is a pseudoinverse or generalized
inverse of T if and only if T = TST . The operator T is called relatively regular.

The following result is called Atkinson’s Theorem

Theorem 1.5.2.5 ([4], p. 3) Let X be a Banach space over C. For T ∈ BL(X)
the following statements are equivalent

(a) T ∈ Φ(X),

(b) T + F(X) ∈
(
BL(X)/F(X)

)−1
,

(c) T + K(X) ∈
(
BL(X)/K(X)

)−1
,

(d) T̂ ∈ BL(X̂)−1.

✠
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Chapter 2

The spectral topology in rings

2.1 Introduction
In this chapter we present an example of a Kuratowski closure operation, called the
spectral closure, which gives rise to a topology on a ring, called the spectral topology.
We discuss some of the properties of this topology. We look at some examples of
the topologies on different types of rings. We also look at the product spaces and
quotient spaces of rings with the spectral topology.

2.1.1 Algebraic closure
In [8] the authors of that article (Harte and Cvetkovic-Ilić) made a first attempt at
defining an operation that defines a topology on a ring.

Definition 2.1.1.1 ([8], p. 3547) Let R be a ring and K ⊆ R. We define the
algebraic closure of K by:

clalg(K) = {a ∈ R : for all b ∈ R there exists a′ ∈ K : 1 − b(a − a′) ∈ R−1}

Proposition 2.1.1.2 Let R be a ring and a ∈ R. Then clalg({a}) = a + Rad R.

Proof: We show that clalg({a}) ⊆ a + Rad R and a + Rad R ⊆ clalg({a}).

To see the first inclusion, let c ∈ clalg({a}). Then for every b ∈ R there exists a′ ∈ {a}
such that 1 − b(c − a′) ∈ R−1. Since {a} is a singleton, this is equivalent to saying
that: For every b ∈ R we have that 1 − b(c − a) ∈ R−1. Hence 1 − R(c − a) ⊆ R−1.
This means that c − a ∈ Rad R. So there exists d ∈ Rad R s.t. c − a = d. Hence
c = a + d, or c ∈ a + Rad R as required.
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To prove the second inclusion, let b ∈ a + Rad R. Then there exists c ∈ Rad R such
that b = a+c. This means that c = b−a ∈ Rad R. Hence 1−R(b−a) ⊆ R−1. Hence,
for every d ∈ R, we have that 1 − d(b − a) ∈ R−1. This means that b ∈ clalg({a}).
Hence the second inclusion holds and the proposition is proved. 2

Remark 2.1.1.3 The algebraic closure has almost all the properties of a topological
closure, failing only at K3 (see [8], page 3548). The definition in the next section is
essentially a generalization of the the definition of algebraic closure. As we shall see
it satisfies all the conditions of a closure operator.

2.2 The spectral topology on a ring

2.2.1 The spectral closure
Definition 2.2.1.1 ([9], p. 268) Let R be a ring, K ⊆ R. The spectral closure of
K is:

CL(K) = {a ∈ R : ∀ finite J ⊆ R ∃ a′ ∈ K : 1 − J(a − a′) ⊆ R−1} (1)

Our first concern is to show the equivalence of (1) with (2):

CL(K) = {a ∈ R : ∀ finite J, L ⊆ R ∃ a′ ∈ K : 1 − J(a − a′)L ⊆ R−1} (2)

For the purpose of the argument, denote the set in (1) by CL1(K) and the set in (2)
by CL2(K). We show that CL1(K) ⊆ CL2(K) and CL2(K) ⊆ CL1(K).
For the first inclusion, let a ∈ CL1(K) and let H, L ⊆ R such that H, L are finite.
Then the product set H · L is finite. Since a ∈ CL1(K) there exists a′ ∈ K such that
1 − H · L(a − a′) ⊆ R−1. This means that 1 − h · l(a − a′) ∈ R−1 for all h ∈ H, l ∈ L.
By Lemma 1.2.0.15, this means that 1 − l(a − a′)h ∈ R−1 for all h ∈ H, l ∈ L. Hence
1 − L(a − a′)H ⊆ R−1, which means that a ∈ CL2(K). Hence CL1(K) ⊆ CL2(K).

For the reverse inclusion, let a ∈ CL2(K). Then for all finite J, L ⊆ R there exists
a′ ∈ K such that 1 − J(a − a′)L ⊆ R−1. In particular, consider L = {1}. Then
1−J(a−a′) = 1−J(a−a′){1} ⊆ R−1. Hence a ∈ CL1(K), so that CL2(K) ⊆ CL1(K).

Combining the two inclusions gives CL1(K) = CL2(K).

If we want to emphasize that the spectral closure of a subset K is taken in a specific
ring R, we indicate this explicitly by use of a subscript, as in CLR(K), but omit the
subscript whenever no confusion is possible.
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2.2.2 Basic properties of the spectral closure
Lemma 2.2.2.1 Let R be a ring, and let A ⊆ B ⊆ R. Then CL(A) ⊆ CL(B).

Proof: Suppose A ⊆ B and let a ∈ CL(A). Also, suppose that J ⊆ R, J finite. Since
a ∈ CL(A) there exists a′ ∈ A such that 1 − J(a − a′) ⊆ R−1. But A ⊆ B, so a′ ∈ B.
Hence a ∈ CL(B), as required. 2

Proposition 2.2.2.2 Let R be a ring. Then CL(R−1) = R−1 CL(R−1).

Proof: To see that CL(R−1) ⊆ R−1 CL(R−1), let a ∈ CL(R−1). Then a = 1 · a ∈
R−1 CL(R−1), and hence CL(R−1) ⊆ R−1 CL(R−1).

To see the reverse inclusion, let a ∈ R−1 CL(R−1). Then a = a1a2, where a1 ∈ R−1

and a2 ∈ CL(R−1). Let J ⊆ R, J finite and arbitrary. Then Ja1 is also finite, and
since a2 ∈ CL(R−1) there exists a′

2 ∈ R−1 such that 1 − Ja1(a2 − a′
2) ∈ R−1, hence

1 − J(a1a2 − a1a
′
2) ∈ R−1. This gives 1 − J(a − a1a

′
2) ∈ R−1. By part (a) of Lemma

1.2.0.4, we have that a1a
′
2 ∈ R−1. Hence a ∈ CL(R−1), or R−1 CL(R−1) ⊆ CL(R−1).

Hence the result follows. 2

Proposition 2.2.2.3 ([9], p. 268) Let R be a ring. Then

CL({a}) = a + Rad R for all a ∈ R.

Proof: We show that

a + Rad R ⊆ CL({a}) for all a ∈ R. (1)

and

CL({a}) ⊆ a + Rad R for all a ∈ R. (2)

To see (1), let b ∈ a + Rad R. Then b = a + c for some c ∈ Rad R. Let J ⊆ R, J
finite. Then

1 − J(b − a) ⊆ 1 − R(b − a) (since J ⊆ R)
⊆ R−1 (by Proposition 1.2.2.2).

This last containment shows that b ∈ CL({a}) as required.

To prove (2), let b ∈ CL({a}). Let x ∈ R. Then {x} ⊆ R, {x} finite. Since b ∈
CL({a}) we must have that
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1 − {x}(b − a) ⊆ R−1.

Since this last containment holds for all x ∈ R, we must have that 1−R(b−a) ⊆ R−1.
By Proposition 1.2.2.2 we have that b − a ∈ Rad R. Hence

b − a = r, for some r ∈ Rad R, or b ∈ a + Rad R,

as required. 2

Proposition 2.2.2.4 ([9], p. 268) Let R be a ring and K, H ⊆ R. Then the
spectral closure is compatible with the ring operations:

(a) CL(K) + CL(H) ⊆ CL(K + H)

(b) CL(K) · CL(H) ⊆ CL(K · H)

Proof:

(a) Suppose that x ∈ CL(K) and y ∈ CL(H). We show that x + y ∈ CL(K + H).

Let J ⊆ R, J finite. Since x ∈ CL(K) there exists x′ ∈ K such that 1 −
J(x − x′) ⊆ R−1. Let G = 1 − J(x − x′). Then G ⊆ R−1 and G is finite.
Then G−1J is also finite, and since y ∈ CL(H) there exists y′ ∈ H such that
1 − G−1J(y − y′) ⊆ R−1. Hence we have, for j ∈ J :

1 − j[(x + y) − (x′ + y′)] = 1 − j[x + y − x′ − y′]
= 1 − j[x − x′ + y − y′]
= 1 − j[(x − x′) + (y − y′)]
= 1 − j(x − x′) − j(y − y′).

Hence

1 − j[(x + y) − (x′ + y′)] ∈ G − J(y − y′)
⊆ G[1 − G−1J(y − y′)]
⊆ R−1 (using part (a) of Lemma 1.2.0.4).

Hence 1 − J [(x + y) − (x′ + y′)] ⊆ R−1. It is clear that x′ + y′ ∈ K + H so that
(a) is proved.
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(b) Suppose x ∈ CL(K) and y ∈ CL(H). We show that xy ∈ CL(KH). Let J ⊆
R, J finite. Since x ∈ CL(K) there exists x′ ∈ K such that 1−J(x−x′)y ⊆ R−1.
Let D = 1 − J(x − x′)y. Then D ⊆ R−1, and since D is finite, we have D−1 is
also finite. Also {x′} ⊆ R and is finite. Hence D−1Jx′ ⊆ R and is finite. Since
y ∈ CL(H) we have that there exists y′ ∈ H such that 1−D−1Jx′(y−y′) ⊆ R−1.
Hence for j ∈ J :

1 − j(xy − x′y′) = 1 − j(xy) + j(x′y′)
= 1 − j(xy) + j(x′y) − j(x′y) + j(x′y′)
= 1 − jxy + jx′y − jx′y + jx′y′

= 1 − j(xy − x′y) − j(x′y − x′y′)
= 1 − j(x − x′)y − jx′(y − y′).

Hence

1 − j(xy − x′y′) ∈ D − Jx′(y − y′)
⊆ D[1 − D−1Jx′(y − y′)]
⊆ R−1 (using part (a) of Lemma 1.2.0.4).

Hence 1−J(xy−x′y′) ⊆ R−1. It is clear that x′y′ ∈ KH, and so (b) is proved 2

Lemma 2.2.2.5 Let R be a ring. Then for V ⊆ R, we have:

(a) a ∈ CL(V ) =⇒ −a ∈ CL(−V ),

(b) CL(−V ) = − CL(V ).

Proof: To prove (a), suppose that a ∈ CL(V ) and let J be an arbitrary finite subset
of R. Let J ′ = −J . Then J ′ is also finite. Since a ∈ CL(V ), there exists a′ ∈ V such
that 1 − J ′(a − a′) ⊆ R−1. Then 1 + J ′(−a + a′) ⊆ R−1. Hence

1 + J ′(−a − (−a′)) ⊆ R−1 (2.1)

Let b = −a′. Then b ∈ −V . From (2.1) we have that

1 − J(−a − b) ⊆ R−1
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Since J was arbitrary and finite, we have that −a ∈ CL(−V ), as desired.

To prove (b) we show that CL(−V ) ⊆ − CL(V ) and − CL(V ) ⊆ CL(−V ). For
the first inclusion, suppose that a ∈ CL(−V ). From part (a), we have that −a ∈
CL(−(−V )) = CL(V ). Hence −a ∈ CL(V ), so a ∈ − CL(V ). Hence the first
inclusion is proved. For the reverse inclusion, suppose that a ∈ − CL(V ). Then
−a ∈ CL(V ) so by part (a) we have that a ∈ CL(−V ), as desired. Hence the second
inclusion is proved and CL(−V ) = − CL(V ). 2

2.2.3 The spectral closure on products of rings
In the next result we extend the spectral closure to the direct sum of two rings.

Proposition 2.2.3.1 Let R and S be rings. and let E1 ⊆ R and E2 ⊆ S. Then

CLR⊕S(E1 ⊕ E2) = CLR(E1) ⊕ CLS(E2)

Proof: We prove the statement by showing that

(e1, e2) ∈ CLR⊕S(E1 ⊕ E2) ⇐⇒ (e1, e2) ∈ CLR(E1) ⊕ CLS(E2).

So, (e1, e2) ∈ CLR⊕S(E1 ⊕ E2) ⇐⇒

for finite J ⊕ K ⊆ R ⊕ S there exists (e′
1, e′

2) ∈ E1 ⊕ E2 such that

(1, 1) − (J ⊕ K)
[
(e1, e2) − (e′

1, e′
2)
]

⊆ (R ⊕ S)−1 = R−1 ⊕ S−1 ⇐⇒

J ⊆ R, J finite and e′
1 ∈ E1 and 1 − J(e1 − e′

1) ⊆ R−1

and

K ⊆ S, K finite and e′
2 ∈ E2 and 1 − K(e2 − e′

2) ⊆ S−1 ⇐⇒

(e1, e2) ∈ CL(E1) ⊕ CL(E2)

2
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2.3 The spectral topology
Theorem 2.3.0.1 ([9], p. 268) On a ring R, the spectral closure generates a to-
pology, called the spectral topology, defined as

τ = {K ⊆ R : CL(R \ K) = R \ K}.

Proof: We show that CL(·) : ℘(R) → ℘(R) satisfies the Kuratowski closure axioms,
K1 through K4 of Definition 1.3.1.8.

To show that K1 holds, suppose that K ⊆ R. Let J ⊆ R, J finite and let x ∈ K.
Then 1 − J(x − x) = 1 − {0} = {1} ⊆ R−1. Hence x ∈ CL(K). So K ⊆ CL(K), and
K1 holds.

To show that K2 holds, notice that from K1 and Lemma 2.2.2.1 we have CL(K) ⊆
CL(CL(K)). So it remains to show the reverse inclusion, that CL(CL(K)) ⊆ CL(K).
To do so, let a ∈ CL(CL(K)). We show that a ∈ CL(K). Let J ⊆ R, J finite. Then
there exists a′ ∈ CL(K) such that 1 − J(a − a′) ⊆ R−1. Let G = 1 − J(a − a′).
Then G ⊆ R−1. Since J is finite, G is finite, and since G ⊆ R−1, the set G−1 is well
defined. Also, since G is finite, so is G−1, and so is G−1J .

Since a′ ∈ CL(K) and G−1J is finite, there exists a′′ ∈ K such that

1 − G−1J(a′ − a′′) ⊆ R−1.

Next we have for j ∈ J :

1 − j(a − a′′) = 1 − j(a − a′ + a′ − a′′)
= 1 − j(a − a′) − j(a′ − a′′).

Hence

1 − j(a − a′′) ∈ G − J(a′ − a′′)
⊆ G(1 − G−1J(a′ − a′′)).

Since G ⊆ R−1 and 1 − G−1 · J(a′ − a′′) ⊆ R−1, by part (a) of Lemma 1.2.0.4, we
have that G(1 − G−1 · J(a′ − a′′)) ⊆ R−1, which means that 1 − J(a − a′′) ⊆ R−1.
Hence a ∈ CL(K), giving the reverse inclusion, that CL(CL(K)) ⊆ CL(K), and so
K2 holds.

To prove K3 holds, we show CL(K) ∪ CL(H) ⊆ CL(K ∪ H) and CL(K ∪ H) ⊆
CL(K) ∪ CL(H).
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Since K ⊆ K ∪ H and H ⊆ K ∪ H, we have from Lemma 2.2.2.1 that CL(K) ⊆
CL(K ∪ H) and CL(H) ⊆ CL(K ∪ H). If two sets are both subsets of the same set,
then so is the union of the two sets, giving CL(K) ∪ CL(H) ⊆ CL(K ∪ H).

For the reverse inclusion, suppose that x ∈ CL(K ∪ H) \ CL(H). Then we have that
x ∈ CL(K ∪ H) and x ̸∈ CL(H). Since x ̸∈ CL(H), there exists L ⊆ R, L finite,
such that for all h ∈ H we have

1 − L(x − h) ̸⊆ R−1 (2.2)

Let J ⊆ R, J finite and arbitrary. Since x ∈ CL(K ∪ H), and J ∪ L ⊆ R is finite
there exists x′ ∈ K ∪ H with 1 − L(x − x′) ⊆ 1 − (J ∪ L)(x − x′) ⊆ R−1. Since
x′ ∈ K ∪ H, we have that x′ ∈ K or x′ ∈ H. But x′ ∈ H would contradict (2.2),
hence x′ ∈ K. So we have, for the arbitrary finite J ⊆ R that there exists x′ ∈ K
with the property that

1 − J(x − x′) ⊆ 1 − (J ∪ L)(x − x′) ⊆ R−1.

So x ∈ CL(K), and so CL(K ∪ H) ⊆ CL(K) ∪ CL(H). Hence the spectral closure
operation satisfies property K3.

To show that K4 holds, notice that it follows vacuously that CL(∅) = ∅ from defini-
tion CL(∅) = {a ∈ A : ∀ finite J ⊆ R ∃ a′ ∈ ∅ : 1 − J(a − a′) ⊆ R−1}.

By Theorem 1.3.1.9, CL(·) generates a topology on R defined by

τ = {K ⊆ R : CL(R \ K) = R \ K}

which we will call the spectral topology on the ring R.
2

Theorem 2.3.0.2 Let R be a ring and τ be the spectral topology on R. Let R ⊕ R
be endowed with the product topology induced by the spectral topology on R. Then

(a) The map · : R ⊕ R → R is continuous.

(b) The map + : R ⊕ R → R is continuous.

(c) The map − : R → R, that maps r ∈ R to its additive inverse, is continuous.

(d) ⟨R, τ⟩ is T1 ⇐⇒ R is semisimple.
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Proof:

(a) To see that multiplication is continuous, we use part (d) of Theorem 1.3.4.2.
So we let E1 ⊆ R and E2 ⊆ R. We will show that

·
[

CLR⊕R

(
E1 ⊕ E2

)]
⊆ CLR

(
·
[
E1 ⊕ E2

])
(2.3)

First, from Proposition 2.2.3.1 we have CLR⊕R(E1⊕E2) = CLR(E1)⊕CLR(E2).

Next, we note that

·
[
E1 ⊕ E2

]
= {·((e1, e2)) : (e1, e2) ∈ E1 ⊕ E2}
= {e1 · e2 : e1 ∈ E1, e2 ∈ E2}
= E1 · E2

So, to prove (2.3) is equivalent to proving:

·
[

CLR(E1) ⊕ CLR(E2)
]

⊆ CLR

(
E1 · E2

)
or

CLR(E1) · CLR(E2) ⊆ CLR

(
E1 · E2

)
.

This is what we proved in part (b) of Proposition 2.2.2.4. Hence multiplication
is continuous.

(b) To see that addition is continuous, we use part (d) of Theorem 1.3.4.2. So we
let E1 ⊆ R and E2 ⊆ R. We will show that

+
[

CLR⊕R

(
E1 ⊕ E2

)]
⊆ CLR

(
+
[
E1 ⊕ E2

])
(2.4)

First, from Proposition 2.2.3.1 we have CLR⊕R(E1⊕E2) = CLR(E1)⊕CLR(E2).

Next, we note that

+
[
E1 ⊕ E2

]
= {+((e1, e2)) : (e1, e2) ∈ E1 ⊕ E2}
= {e1 + e2 : e1 ∈ E1, e2 ∈ E2}
= E1 + E2.

So, to prove (2.4) is equivalent to proving:
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+
[

CLR(E1) ⊕ CLR(E2)
]

⊆ CLR

[
E1 + E2

]
or

CLR(E1) + CLR(E2) ⊆ CLR

(
E1 + E2

)
.

This is what we proved in part (a) of Proposition 2.2.2.4. Hence addition is
continuous.

(c) Next we show that the inversion map − : R → R that maps a ∈ R to −a is
continuous. We use (c) of Theorem 1.3.4.2, to prove that for each closed set V
in R, we have that −−1[V ] is closed in R with respect to the spectral topology.
i.e. CLR(−−1[V ]) = −−1[V ]. Notice that:

−−1[V ] = {a ∈ R : −a ∈ V } = −V .

To verify this, consider arbitrary a ∈ −−1[V ]. Then −a ∈ V giving that a ∈ −V
hence −−1[V ] ⊆ −V . For the reverse inclusion, consider arbitrary a ∈ −V then
−a ∈ V giving a ∈ −−1[V ]. Thus, the reverse inclusion −V ⊆ −−1[V ], holds,
giving equality, as desired.

Now, suppose that V is closed in R. We must show that −V is closed in R. i.e
CL(V ) = V =⇒ CL(−V ) = −V . Suppose that CL(V ) = V , then from part
(b) of Lemma 2.2.2.5, we have that CL(−V ) = − CL(V ) = −V , giving that
the inversion map is continuous.

(d) Suppose that ⟨R, τ⟩ is a T1 space. Then from part (b) of Proposition 1.3.3.5,
we have that singletons are closed in R. This gives that CL({0}) = {0}. By
Proposition 2.2.2.3, we know for all a ∈ R that CL({a}) = a+Rad R. Therefore
Rad R = 0 + Rad R = CL({0}) = {0}. Hence R is semisimple.

Conversely, suppose that R is semisimple. Consider arbitrary, distinct a, b ∈ R.
Since R is semisimple, we have that CL({a}) = a+Rad R = a+{0} = {a} and
CL({b}) = b + Rad R = {b}. So {a} and {b} are closed sets. Therefore R \ {b}
is an open set containing a and not b and R \ {a} is an open set containing b
and not containing a. Hence, ⟨R, τ⟩ is a T1 space. 2

Remark 2.3.0.3 Parts (a) to (c) of Theorem 2.3.0.2 means that the spectral topo-
logy is a ring topology as defined in Defintion 1.4.0.2.
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Lemma 2.3.0.4 Let J is a subset of the ring Z containing more than two nonzero
elements. Then the following implication holds:

1 − Jy ⊆ Z−1 =⇒ y = 0.

Proof: Suppose that {a1, a2, a3} ⊆ J with a1 ̸= a2 ̸= a3 ̸= a1 and assume that ai is
nonzero for each i ∈ {1, 2, 3}. The condition

1 − Jy ⊆ {±1} (2.5)

means that:
1 − a1y = 1 or 1 − a1y = −1 (a)

and 1 − a2y = 1 or 1 − a2y = −1 (b)
and 1 − a3y = 1 or 1 − a3y = −1 (c)

In determining the set of values for y that satisfy (2.5) we have the following options:

1 − a1y = 1 and 1 − a2y = 1 and 1 − a3y = 1 (1)

or 1 − a1y = −1 and 1 − a2y = −1 and 1 − a3y = −1 (2)

or 1 − a1y = −1 and 1 − a2y = 1 and 1 − a3y = 1 (3)

or 1 − a1y = 1 and 1 − a2y = −1 and 1 − a3y = 1 (4)

or 1 − a1y = 1 and 1 − a2y = 1 and 1 − a3y = −1 (5)

or 1 − a1y = 1 and 1 − a2y = −1 and 1 − a3y = −1 (6)

or 1 − a1y = −1 and 1 − a2y = 1 and 1 − a3y = −1 (7)

or 1 − a1y = −1 and 1 − a2y = −1 and 1 − a3y = 1 (8)

Consider the set of equations (1). They imply that −aiy = 0 which means that
aiy = 0 for each i ∈ {1, 2, 3}. Since we assumed that ai ̸= 0 for each i ∈ {1, 2, 3}
and since we know that Z is an integral domain (Example 1.2.0.8), we conclude that
y = 0.

Next, consider the set of equations (2). They imply that a1y = 2 and a2y = 2 and
a3y = 2. Our options for values of y are y = 1, y = −1, y = 2, y = −2. Suppose
y = 1. Then we must have that a1 = a2 = a3 = 2, contradicting our assumption that
the ai are distinct. Suppose y = −1. Then we get a1 = a2 = a3 = −2, contradicting
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the same assumption. Each of the other two options for a value for y contradicts the
same assumption. Hence the set of equations (2) has no solution.

Next, consider the set (3). They imply that a1y = 2 and a2y = 0 and a3y = 0.
The first of these equations imply that y ∈ {−2, −1, 1, 2}. The other two imply that
y = 0. Clearly there is no solution then.

The remaining sets of equations ((4) - (8)) all fail in a way similar to equations (3)
to produce a solution for y. The result follows. 2

Example 2.3.0.5 ([9], p. 270) On Z the spectral closure generates the discrete
topology.

Proof: Suppose K ⊆ Z. First we show that CL(K) = K. From K1 of Theorem
2.3.0.1 we have that K ⊆ CL(K). To see that CL(K) ⊆ K, suppose that a ∈
CL(K). Let J be an arbitrary finite subset of Z. Then there exists a′ ∈ K such that
1 − J(a − a′) ⊆ Z−1. Since this expression holds for all finite J , it must also hold
when J contains more than two nonzero elements. By Lemma 2.3.0.4, this means
that a − a′ = 0 which means that a = a′, hence a ∈ K, so that CL(K) = K. This
shows that every subset of Z is closed.

Again, let K ⊆ Z, K arbitrary. Then Z \ K is closed by the above reasoning, so
K is open. We have shown that every subset of Z is open, i.e. the spectral closure
generates the discrete topology on Z. 2

Example 2.3.0.6 ([9], p. 270) For a Boolean ring R, the spectral closure gener-
ates the discrete topology.

Proof: Suppose R is a Boolean ring. As was noted in Remark 1.2.0.12, R−1 = {1}.

Let K be an arbitrary subset of R. Then from K1 of Theorem 2.3.0.1 we know that
K ⊆ CL(K). It remains to show that CL(K) ⊆ K. Suppose that a ∈ CL(K). Then
there exists a′ ∈ K such that 1 − {1}(a − a′) ⊆ {1}, hence

1 − (a − a′) = 1 =⇒ −(a − a′) = 0 =⇒ a − a′ = 0 =⇒ a′ = a

Hence a ∈ K. The rest of the argument is the same as in Example 2.3.0.5. We
conclude that the spectral topology on R is discrete. 2
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Proposition 2.3.0.7 ([9], p. 270) If R is a division ring, the spectral closure gives
the co-finite topology:

(a) if K ⊆ R, K finite then CL(K) = K,

(b) if K ⊆ R, K infinite then CL(K) = R.

Proof: From Definition 1.2.0.10, we can write R = R−1 ∪ {0}.

(a) Assume that K ⊆ R, and that K is finite. Either R is finite, or R is infinite.
Suppose R is finite. Then either K = R or K ̸= R.

So first, suppose that K = R. By definition of the CL(·) operation, CL(R) = R,
so CL(K) = CL(R) = R = K as required.

Next, suppose that K ̸= R. We show that a /∈ K =⇒ a /∈ CL(K), as follows.
Suppose a ̸∈ K. This is possible since K ⊆ R and K ̸= R, hence R \ K ̸= ∅.
We will show that a ̸∈ CL(K). So let a′ ∈ K, a′ arbitrary. Then a ̸= a′ which
means a−a′ ̸= 0. Since R is a division ring, we have that a−a′ ∈ R−1. Consider
J = {(a−a′)−1}, a finite subset of R. Then the expression 1−J(a−a′) simplifies
to give 1 − {(a − a′)−1}(a − a′) = 1 − {1} = {0} ̸⊆ R−1. Hence a ̸∈ CL(K).
Since a was arbitrary, we have that CL(K) ⊆ K, giving equality.

(b) Next, we assume that K is infinite. We always have that CL(K) ⊆ R. It
remains to show that R ⊆ CL(K). Let a ∈ R and suppose that a ̸∈ CL(K).
Then by definition of the spectral closure there exists J , a finite subset of R
such that for all a′ ∈ K, we have

1 − J(a − a′) ̸⊆ R−1. (2.6)

This means that for each value of a − a′, there exists a value j ∈ J such that

1 − j(a − a′) ̸∈ R−1. (2.7)

Using Remark 1.2.0.16, we have that (2.7) is equivalent to

1 − (a − a′)j ̸∈ R−1. (2.8)

Consider (2.7). Since R is a division ring it means that 1− j(a−a′) = 0, which
means that j(a − a′) = 1. This means that each a − a′ has a left inverse in
J . Similarly, (2.8) implies that j is also a right inverse for a − a′ in J . Hence
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(a − a′) is invertible. J was assumed to be finite, and the set {a − a′ : a′ ∈ K}
is an infinite set (since K is infinite). This means we have a finite list of unique
inverses for an infinite set, which is impossible, i.e. it contradicts the fact that
inverses are unique (by (1.1)). The contradiction stems from our assumption
that a ̸∈ CL(K). Hence a ∈ CL(K), and part (b) is proved.

Example 2.3.0.8 The rings R and C, under the usual addition and multiplication
of real numbers and complex numbers respectively, are division rings, and so Pro-
position 2.3.0.7 describes what the spectral topology looks like for these rings.

Example 2.3.0.9 In this example we illustrate the fact that R(C), equipped with
the spectral topology, is a T1 space but not a T2 space. To do so, we show that R,
equipped with the spectral topology, is a T1 space but not a T2 space. The argument
for C, equipped with the spectral topology, is exactly the same.

To show that R is a T1 space, we note that R is a division ring, hence as discussed
in Example 2.3.0.8, the spectral topology on R is the co-finite topology. Hence any
finite subset of R is s closed set in the spectral topology. Now {0} is a finite subset
of R, hence closed. Hence CL({0}) = {0}. From Proposition 2.2.2.3, we have that
RadR = CL({0}) = {0}. Hence R is semisimple, and so by Proposition 2.3.0.2, we
know that R, endowed with the spectral topology is a T1 space.

Next, we prove that R equipped with the spectral topology, is not a T2 space. To
see this, we note that the spectral closure on R generates the co-finite topology, and
hence by the second part of Remark 1.3.3.4 the topology cannot be T2. 2

2.3.1 The spectral topology on R / Rad R
Lemma 2.3.1.1 ([3] - Theorem 3.1.5, p. 35) Let R be a ring. Then [x] ∈ (R/ Rad R)−1

if and only if x ∈ R−1. 2

Proposition 2.3.1.2 Let R be a ring, K ⊆ R. Then

a ∈ CLR(K) ⇐⇒ [a] ∈ CLR/ Rad R(π(K)).

Proof: Suppose a ∈ CLR(K). We will show that [a] ∈ CLR/ Rad R(π(K)). So let J̃ be
any finite subset of R/ Rad R. By picking one representative from each equivalence
class in J̃ we can construct a finite J ⊆ R such that π(J) = J̃ . Since a ∈ CLR(K)
there exists a′ ∈ K such that 1 − J(a − a′) ⊆ R−1. By Lemma 2.3.1.1 we have
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[1] − π(J)([a] − [a′]) ⊆ (R/ Rad R)−1

Next π(J) = J̃ and [a′] ∈ π(K). Hence

[1] − J̃([a] − [a′]) ⊆ (R/ Rad R)−1,

which means that [a] ∈ CLR/ Rad R(π(K)).

Conversely, let [a] ∈ CLR/ Rad R(π(K)), for K ⊆ R. To see that a ∈ CLR(K), let J ⊆
R, J finite. Then π(J) is a finite subset of R/ Rad R. Since [a] ∈ CLR/ Rad R(π(K))
there exists b ∈ R such that [b] ∈ π(K) and

[1] − π(J)([a] − [b]) ⊆ (R/ Rad R)−1.

Since [b] ∈ π(K) we know there exists a′ ∈ K such that [b] = [a′]. Hence we have

[1] − π(J)([a] − [a′]) ⊆ (R/ Rad R)−1.

By Lemma 2.3.1.1 we have 1 − J(a − a′) ⊆ R−1. Since a′ ∈ K we have a ∈ CLR(K).
2

Proposition 2.3.1.3 Let R be a ring, K ⊆ R. Then

K is closed in R =⇒ π(K) is closed in R/ Rad R.

Proof: Suppose that K is closed in R. We show that π(K) is closed in R/ Rad R.
From Theorem 2.3.0.1 we know that π(K) ⊆ CLR/ Rad R(π(K)). It remains to show
that CLR/ Rad R(π(K)) ⊆ π(K). So let [a] ∈ CLR/ Rad R(π(K)). By Proposition
2.3.1.2 we have that a ∈ CLR(K). Since K is closed this means that a ∈ K. Hence
[a] ∈ π(K) as required. 2

Let R be a ring. We will denote the spectral topology on R by τCLR
.

Proposition 2.3.1.4 Let R be a ring. The map

π : R → R/ Rad R

a 7→ [a]

from ⟨R, τCLR
⟩ onto ⟨R/ Rad R, τCLR/ Rad R

⟩ is continuous.

Proof: We use the characterization of continuity - part (d) of Proposition 1.3.4.2.
To see that π is continuous, let R be ring and let E ⊆ R. We show that
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π(CLR(E)) ⊆ CLR/ Rad R(π(E)).
To see that this is the case, let [a] ∈ π(CLR(E)). Then there exists b ∈ CLR(E) such
that [a] = [b]. Let J̃ ⊆ R/ Rad R, J̃ finite. Since J̃ is finite there exists J ⊆ R, J
finite such that π(J) = J̃ . Since J is finite and b ∈ CLR(E) there exists c ∈ E such
that 1 − J(b − c) ⊆ R−1. By Lemma 2.3.1.1, we know that

[1] − π(J)([b] − [c]) ⊆ (R/ Rad R)−1.
Hence [1] − J̃([a] − [c]) ⊆ (R/ Rad R)−1, and since [c] ∈ π(E) we have that
[a] ∈ CLR/ Rad R(π(E)), as required. 2

Proposition 2.3.1.5 Let R be a ring. The spectral topology on R/ Rad R, τCLR/ Rad R
,

equals the quotient topology generated by the natural homomorphism,
π : R → R/ Rad R.

Proof: By Proposition 2.3.1.4 we know that π is continuous. By Proposition 2.3.1.3,
π is closed. In view of Theorem 1.3.2.5, the result follows. 2

We state the next result without proof.
Proposition 2.3.1.6 ([9], p. 270) Let R be a local ring, and K ⊂ R. Then K is
closed in R if and only if it is finite modulo the radical.

2

We can now apply Proposition 2.3.1.6 to characterize the closed sets in C[[z]], as
follows.
Theorem 2.3.1.7 ([9], p. 270) Let R = C[[z]] be the ring of all formal power
series over the field C in the indeterminate z and let K ⊆ R. Then necessary and
sufficient for K to be closed in R is that the set

K0 = {a0 ∈ C : a0 +∑
n≥1 anzn = f(z) ∈ K}

of all leading coefficients in K be finite.
2

✠
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Chapter 3

Properties of the spectral topology

3.1 Introduction
In this chapter, we discuss some interesting properties of the spectral topology. We
start by looking at notions of continuity for the multiplication map defined on a ring
with a topology defined on it. Then we discuss the neighbourhood system around a
point of the ring.

3.2 Joint and separate continuity
The multiplication operation on a ring R is essentially a map · : R × R → R. This
map from the product space can be continuous in more than one way. We look at
the two notions of continuity that are relevant for us. We start with the most general
definitions of the notions and then make the definitions specific for our needs.

Definition 3.2.0.1 ([29], p. 517) A map f from the product X ×Y of topological
spaces X and Y into a topological space Z is said to be separately continuous if,
for each (x0, y0) ∈ X × Y , the maps x 7→ f(x, y0) from X to Z and y 7→ f(x0, y)
from Y to Z are continuous. When f is continuous at (x0, y0) relative to the product
topology, we shall say that f is jointly continuous at (x0, y0).

To make our discussions below easier we will introduce some terms, used by the
authors in [21].

Let R be a ring and let · : R × R → R be the multiplication operation on R. Fix
r0 ∈ R. Then we define the maps ·(r0,·) and ·(·,r0) from R to R as:
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(a) ·(r0,·)(r) = r0 · r, and

(b) ·(·,r0)(r) = r · r0.

We will call ·(r0,·) the vertical section of · by r0 and ·(·,r0)(r) the horizontal section of
· by r0.

It is now easy to see that Definition 3.2.0.1 above is equivalent to

Definition 3.2.0.2 Let R be a ring with a topology τ defined on it. The map

· : R × R → R

is separately continuous w.r.t. τ if and only if for every r0 ∈ R, the vertical and
horizontal sections of · by r0 are continuous w.r.t. τ .

Now we are ready to construct the working definition of separate continuity for our
multiplication operation.

Lemma 3.2.0.3 Suppose R is a ring with a topology τ defined on it. Suppose that
the multiplication operation · on R is separately continuous w.r.t. τ . Then for each
element a ∈ R and for each neighbourhood of zero, U , there exists a neighbourhood
of zero, V , such that a · V ⊆ U and V · a ⊆ U .

Proof: Let R, τ and · be as described and let a ∈ R, a arbitrary. By assumption
the map ·(a,·) : R → R is continuous at 0. Next, note that ·(a,·)(0) = a · 0 = 0. So
suppose that U is a neighbourhood of 0 = ·(a,·)(0). By the continuity of ·(a,·) we
have that there exists a neighbourhood of 0, V say, such that ·(a,·)[V ] ⊆ U . But
·(a,·)[V ] = {a · v : v ∈ V } = aV . The second part of the statement is proved using
the fact that ·(·,a) is continuous at 0 as well. The result follows. 2

3.3 Comparison of closures
Proposition 3.3.0.1 ([9], p. 269) If A is a Banach algebra with identity 1 and
invertible group A−1 then for K ⊆ A we have cl∥·∥(K) ⊆ CL(K) ⊆ clalg(K).

Proof: Let A be a Banach algebra and let K ⊆ A. To prove that cl∥·∥(K) ⊆ CL(K)
let a ∈ cl∥·∥(K). Then a ∈ K ∪ der∥·∥(K). If a ∈ K then from part (a) of Theorem
2.3.0.1 we have that a ∈ CL(K). If a ∈ der∥·∥(K) there exists a sequence of points
(bn) from K such that bn

∞−−→
n

a. This means ∥a − bn∥ ∞−−→
n

0. Let J be a finite

51



subset of A. Then J = {0} or J ̸= {0}. If J = {0} then for every k ∈ K we have
that 1 − J(a − k) = {1} ⊆ A−1. Hence we have that a ∈ CL(K). If J ̸= {0} then
max
j∈J

∥j∥ ∈ R+. From ∥a − bn∥ ∞−−→
n

0 we have that there exists N ∈ N such that
n ⩾ N =⇒ ∥a − bn∥ < 1

maxj∈J ∥j∥ giving max
j∈J

∥j∥∥a − bn∥ < 1. Let j ∈ J . Then
∥j(a − bN)∥ ≤ ∥j∥∥a − bN∥ ≤ maxj∈J ∥j∥∥a − bN∥ < 1. Hence by Theorem 1.5.0.3
we have that 1 − j(a − bN) ∈ A−1. Since j ∈ J was chosen arbitrarily, we have that
1 − J(a − bN) ⊆ A−1, giving a ∈ CL(K). Thus cl∥·∥(K) ⊆ CL(K) as required.

To show that CL(K) ⊆ clalg(K), let a ∈ CL(K). Then for all finite J ⊆ A there
exists a′ ∈ K such that 1 − J(a − a′) ⊆ A−1. Let b ∈ A. Then {b} is a finite subset
of A and by assumption there exists a′ ∈ K such that 1− b(a−a′) ∈ A−1 from which
the result follows. Hence CL(K) ⊆ clalg(K). 2

Corollary 3.3.0.2 On a Banach algebra the spectral topology is coarser than the
norm topology.

Proof: The proof follows as an application of Lemma 1.3.1.17 and Proposition
3.3.0.1. 2

Theorem 3.3.0.3 ([9], p. 270) Let R be a ring. Then R−1 is open in the spectral
topology.

Proof: We show that CL(R\R−1) = R\R−1. From the fact that the spectral closure
satisfies K1 from Theorem 2.3.0.1 we already have that R \ R−1 ⊆ CL(R \ R−1), so
it remains to show that CL(R \ R−1) ⊆ R \ R−1. We prove this by showing that
a ̸∈ R\R−1 =⇒ a ̸∈ CL(R\R−1). So suppose that a ̸∈ R\R−1. Then a ∈ R−1. Let
J = {a−1} and pick arbitrary a′ ∈ R \ R−1. Then 1 − J(a − a′) = 1 −{a−1}(a − a′) =
1 − (1 − a−1a′) = a−1a′. Notice that with a−1 ∈ R−1 and a′ ̸∈ R−1, from part (d) of
Lemma 1.2.0.4 we have that a−1a′ ̸∈ R−1 so it follows that a ̸∈ CL(R \ R−1). 2

The fact that in a ring R, the group of invertibles is open in the spectral topology
enables us to construct neighbourhoods of 0.

Theorem 3.3.0.4 Let R be a ring and J a finite subset of R. The set

UJ = {a : 1 − Ja ⊆ R−1}

is a neighbourhood of 0.
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Proof: Let R and J be as described. Since 1 ∈ R−1 and R−1 is open in the spectral
topology, there exists V ∈ N1 such that V ⊆ R−1. By Theorem 1.4.0.4, since V ∈ N1
we have that 1−V ∈ N0. By the separate continuity of multiplication, for each j ∈ J
there exists Ũj ∈ N0 with the property that jŨj ⊆ 1 − V. This means that

1 − jŨj ⊆ 1 − (1 − V ) = V ⊆ R−1. (3.1)

Let ŨJ =
⋂
j∈J

Ũj. Since ŨJ is a finite intersection of neighbourhoods of 0, it is also a

neighbourhood of 0.

We show next that ŨJ ⊆ UJ . To see this, let a ∈ ŨJ . Then a ∈ Ũj for each j ∈ J .
By (3.1) we have that 1 − ja ∈ R−1 for each j ∈ J . Hence 1 − Ja ⊆ R−1 and so
a ∈ UJ . Hence ŨJ ⊆ UJ and so UJ ∈ N0. 2

Theorem 3.3.0.5 ([9], Theorem 4 - p. 270) Let R be a ring with topology ρ for
which the multiplication operation is separately continuous. For K ⊆ R, let clρ(K)
represent the closure of K with respect to ρ. Then

clρ(K) ⊆ CL(K) for all K ⊆ R ⇐⇒ A−1 ∈ ρ.

Proof: Suppose that A−1 ∈ ρ. We show that clρ(K) ⊆ CL(K) for all K ⊆ R. Let
x ∈ clρ(K). Since A−1 is open and 1 ∈ A−1 there exists a V ∈ N1 with the property
that V ⊆ R−1. By Theorem 1.4.0.4, we have that V − 1 ∈ N0. Let J ⊆ R, J finite.
Since multiplication is separately continuous, for every j ∈ J , there exists Uj ∈ N0
such that jUj ⊆ V −1. This gives us 1+jUj ⊆ V ⊆ A−1. Next, let UJ = ⋂

j∈J
Uj. Then

UJ is a finite intersection of neighbourhoods of zero, hence UJ ∈ N0. By Lemma
1.4.0.5 −UJ ∈ N0 also. Again by Theorem 1.4.0.4, x − UJ ∈ Nx. Since x ∈ clρ(K)
there exists x′ ∈ K such that x′ ∈ x − UJ . Hence x′ − x ∈ −UJ =⇒ x − x′ ∈ UJ .
So 1 − J(x − x′) ⊆ 1 − JUJ ⊆ A−1. Hence x ∈ CL(K).

Conversely, suppose that clρ(K) ⊆ CL(K) for every K ⊆ R. Then by Lemma
1.3.1.17 the spectral topology is weaker than ρ. Since A−1 is open in the spectral
topology, we have that A−1 ∈ ρ. 2

Definition 3.3.0.6 ([9], p. 271) Let R be a ring. An element x ∈ R is called:

(a) Nearly left invertible if x ∈ CL(R−1
l ).

(b) Nearly right invertible if x ∈ CL(R−1
r ).
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(c) Nearly invertible if x ∈ CL(R−1).

In the spectral topology we have the following version of the well known property in
the norm closure (Proposition 1.5.0.6).

Proposition 3.3.0.7 ([9], p. 271) Let R be a ring. Then

R−1
l ∩ CL(R−1

r ) = R−1 = CL(R−1
l ) ∩ R−1

r .

Proof: We show R−1
l ∩ CL(R−1

r ) ⊆ R−1 and R−1 ⊆ R−1
l ∩ CL(R−1

r )

To see the first inclusion, let a ∈ R−1
l ∩ CL(R−1

r ). Then a ∈ R−1
l and a ∈ CL(R−1

r ).
Since a ∈ R−1

l we know there exists a′ ∈ R−1
r such that a′a = 1. Since a ∈ CL(R−1

r )
we know that there exists a′′ ∈ R−1

r such that 1−a′(a−a′′) ∈ R−1. Hence a′a′′ ∈ R−1.
So there exists b ∈ R with the property that (ba′)a′′ = b(a′a′′) = (a′a′′)b = 1 which
means that a′′ ∈ R−1

l , hence a′′ ∈ R−1. Since a′′ ∈ R−1 there exists c ∈ R such that
ca′′ = a′′c = 1.

Next, we show that a′ ∈ R−1. Since we already have that a′ ∈ R−1
r all we have

to show is that a′ ∈ R−1
l . We know that ba′a′′ = 1. Hence ba′a′′c = c, which gives

ba′ = c which gives us a′′ba′ = a′′c = 1. Hence a′ ∈ R−1
l . So we have that a′a = 1 and

a′′ba′ = 1, so that a′ is both left invertible and right invertible. From the paragraph
preceding (1.1) we must have that a′′b = a, so that a′a = aa′ = 1. Hence a ∈ R−1.
Hence R−1

l ∩ CL(R−1
r ) ⊆ R−1.

For the reverse inclusion, we use the fact that R−1
r ⊆ CL(R−1

r ) (K1 from Theorem
2.3.0.1) and reason as follows:

R−1 = R−1
l ∩ R−1

r ⊆ R−1
l ∩ CL(R−1

r )

and the containment follows. Hence we have proved that both containments hold,
and so the result follows. 2

In words the above says that a nearly invertible element with one sided inverse has
to be invertible.

The fact that the collection of sets {UJ : J ⊆ R, J finite} are all neighbourhoods of
zero allows us to define a concept of convergence that applies to a general ring, as
follows.
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Definition 3.3.0.8 Let R be a ring and let (xn) be a sequence with xn ∈ R for all
n ∈ N. Then we say (xn) converges to 0 if there exists a family (NJ) of natural
numbers, indexed by finite J ⊆ R, for which n ⩾ NJ =⇒ 1 + Jxn ⊆ R−1.

✠
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Chapter 4

Quasinilpotents in general rings

4.1 Introduction
In this chapter, we introduce concepts generally associated with Banach algebras,
suitably extended to general rings by means of the spectral closure and we explore
some consequences.

4.2 Quasinilpotent elements in a ring
Proposition 4.2.0.1 ([20], p. 255) If A is a normed algebra, then a necessary and
sufficient condition for a ∈ A to be quasinilpotent is the following (n ∈ N):

for all m ∈ N and for any {c, d} ⊆ Am the sequence cn
m · · · cn

2 cn
1 andn

1 dn
2 · · · dn

m
∞−−→
n

0. 2

The above proposition relaxes the requirement for the structure A to be a Banach
algebra and merely stipulates that A should have a topology defined by a norm ∥ · ∥.

R. Harte and D. Cvetković-Ilić generalize this a step further, by defining a concept
of quasinilpotence on a general ring equipped with the spectral topology, so we take
the following as definition of a quasinilpotent element in a general ring:

Definition 4.2.0.2 ([9], p. 272) Let R be a ring and let m, n ∈ N. Let c =
(c1, c2, ..., cm) ∈ Rm. We define

c(n) = cn
1 cn

2 · · · cn
m and c(n) = cn

m · · · cn
2 cn

1
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Definition 4.2.0.3 ([9], p. 272) An element a of a ring R is said to be quasinil-
potent if for all m ∈ N and for any {c, d} ⊆ Rm the sequence c(n)a

nd(n) ∞−−→
n

0. We
use QN(R) to represent the set of quasinilpotent elements of the ring R.

It is easy to see that if R is a Banach (more generally, a normed) algebra, then we
recover the concept of quisinilpotence via Proposition 4.2.0.1.

Theorem 4.2.0.4 ([9], p. 272) Let R be a ring, a, b ∈ R. The set QN(R) satisfies:

(a) 0 ∈ {ak : k ∈ N} =⇒ a ∈ QN(R),

(b) a ∈ QN(R), ab = ba =⇒ ab ∈ QN(R),

(c) 1 − QN(R) ⊆ R−1,

(d) Rad R ⊆ QN(R).

Proof: To prove that (a) holds, suppose a is nilpotent. Then ak = 0 for some k ∈ N.
Let J ⊆ R, J finite. Let NJ = k and let {c, d} ⊆ Rm. Then, if n ⩾ NJ we have that
1 − Jcn

m · · · cn
2 cn

1 andn
1 dn

2 · · · dn
m = {1} ⊆ R−1. Hence cn

m · · · cn
2 cn

1 andn
1 dn

2 · · · dn
m

∞−−→
n

0, so
that a ∈ QN(R).

To prove (b), suppose that ab = ba and a ∈ QN(R). It is easy to see that if ab = ba
then (ab)n = anbn. Let {c, d} ⊆ Rm. Then

cn
m · · · cn

2 cn
1 (ab)ndn

1 dn
2 · · · dn

m = cn
m · · · cn

2 cn
1 · 1 · anbndn

1 dn
2 · · · dn

m

We have that {(c1, · · · , cm, 1), (b, d1, · · · , dm)} ⊆ Rm+1, and since a ∈ QN(R) we have
that cn

m · · · cn
2 cn

1 · 1 · anbndn
1 dn

2 · · · dn
m

∞−−→
n

0, hence cn
m · · · cn

2 cn
1 (ab)ndn

1 dn
2 · · · dn

m
∞−−→
n

0,
and so ab ∈ QN(R).

To prove (c), suppose that a ∈ QN(R), a arbitrary. We show that 1 − a ∈ R−1. We
define xn = an. Since a ∈ QN(R) and (1, · · · , 1) ∈ Rn we have that an ∞−−→

n
0. Let

J = {1}. By Definition 3.3.0.8, we know that for the set J there exists NJ ∈ N with
the property that n ⩾ NJ =⇒ 1 − Jxn ⊆ A−1. So let m ∈ N, m > NJ . Then
1 − Jxm = 1 − {1}am ⊆ A−1, hence 1 − am ∈ A−1. Now we write:

(1 − a)(1 + a + a2 + · · · + am−1) = 1 − am = (1 + a + a2 + · · · + am−1)(1 − a).
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Since 1 − am ∈ R−1, we know there exists b ∈ R with the property that (1 − am)b =
1 = b(1 − am). Hence, we have (1 − a)(1 + a + a2 + · · · + am−1) · b = 1, hence
1−a ∈ R−1

r . Also, we have b · (1+a+a2 + · · ·+am−1)(1−a) = 1, hence 1−a ∈ R−1
l .

Since 1 − a is then left and right invertible, it must be invertible, as discussed in the
paragraph preceding equation (1.1).

To prove (d), we show that Rad R ⊆ QN(R):
To see that Rad R ⊆ QN(R) suppose that a ∈ Rad R. We show that a ∈ QN(R).
So let m ∈ N, m arbitrary, and let {c, d} ⊆ Rm, c, d also arbitrary. We show that
c(n)a

nd(n) ∞−−→
n

0. To show this, let J ⊂ R, J finite and arbitrary. Let J ′ = −J .
Then J ′ is also finite. Let j ∈ J ′, j also arbitrary. Then, since a ∈ Rad R, for
n ∈ N \ {0} we have that 1 − a[an−1d(n)jc(n)] ∈ R−1. From Lemma 1.2.0.15 this
means that 1 − jc(n)a[an−1d(n)] ∈ R−1, which means that 1 − jc(n)a

nd(n) ∈ R−1.
Hence 1 − J ′c(n)a

nd(n) ⊆ R−1. Finally, this means that 1 + Jc(n)a
nd(n) ⊆ R−1, hence

a ∈ QN(R). 2

✠
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Chapter 5

Idempotents and
generalized inverses

5.1 Introduction
In this chapter we discuss ring homomorphisms in connection with generalized in-
verses (relatively Fredholm & relatively Weyl) as well as indempotent elements.

5.2 Relatively Fredholm and relatively Weyl ele-
ments

Definition 5.2.0.1 ([20], p. 246 & [9], p. 272) Let R be a ring. The relatively
Fredholm (regular) elements of R are the elements of R belonging to the set

R∩ = {a ∈ R : a ∈ aRa}.

Definition 5.2.0.2 ([20], p. 246 & [9], p. 272) Let R be a ring. The relatively
Weyl (decomposably regular) elements of R are those elements belonging to the set

R∪ = {a ∈ R : a ∈ aR−1a}.

Definition 5.2.0.3 ([20], p. 247 & [9], p. 272) Let R be a ring. The idempotent
elements R• of R are those elements of R belonging to the set

R• = {p ∈ R : p2 = p}.
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Lemma 5.2.0.4 ([20] - Theorem 7.3.4, p. 248) Let R be a ring. Then R∪ =
R−1R•.

Proof: We prove that R−1R• ⊆ R∪ and R∪ ⊆ R−1R•. To prove the first inclusion
let a ∈ R−1R•. Then there exists b ∈ R−1 and p ∈ R• such that a = bp. Now
a = bp = bpp = bpb−1bp = ab−1a ∈ R∪. Hence R−1R• ⊆ R∪. Next, suppose
a ∈ R∪. Then there exists b ∈ R−1 such that a = aba. Then ba = baba, so that
ba ∈ R•. Then a = b−1ba ∈ R−1R•. Hence R∪ ⊆ R−1R• and the proof is complete. 2

Remark 5.2.0.5 Let R be a ring. We briefly discuss the following observations
relating invertible, idempotent, regular and decomposably regular elements in R:

(a) R−1 ⊆ R∪,

(b) R∪ ⊆ R∩,

(c) R• ⊆ R∪.

Proof: To prove that (a) holds, let a ∈ R−1. Then there exists b ∈ R−1 such that
ab = 1 = ba. So from 1 = ba we get a = aba, hence a ∈ R∪.

To prove that (b) holds, let a ∈ R∪. Then there exists b ∈ R−1 such that a = aba.
Since A−1 ⊆ A, we have that a ∈ R∩, and the result follows.

To see that (c) holds, let p ∈ R•. Then p = p · 1 ∈ R•R−1 = R∪ 2

Theorem 5.2.0.6 ([9], p. 272) Let R be a ring. Nearly invertibles with general-
ized inverses in R have invertible generalized inverses:

(a) There is inclusion R∩ ∩ CL(R−1) ⊆ R∪.

(b) Necessary and sufficient for equality in (a) is that R• ⊆ CL(R−1).

Proof: Let a ∈ R∩ ∩ CL(R−1). We show that a ∈ R∪ by using Lemma 5.2.0.4.
a ∈ R∩ ∩ CL(R−1) means that a ∈ R∩ and a ∈ CL(R−1). Since a ∈ R∩, there exists
a′ ∈ R such that a = aa′a. Hence we have a′a = a′aa′a = (a′a)2 hence p = a′a ∈ R•.
Notice that ap = aa′a = a. Now, since a ∈ CL(R−1), there exists b ∈ R−1 such that
1 − (a − b)a′ ∈ R−1. Let c−1 = 1 − (a − b)a′. Then 1 = cc−1 = c + c(b − a)a′, so
left-multiplying by a gives a = ca + c(b − a)a′a. But p = a′a so a = ca + c(b − a)p.
Hence a = ca + cbp − cap. Since ap = a we have that a = ca + cbp − ca, hence
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a = cbp. Since c, b ∈ R−1 we have that cb ∈ R−1 (Lemma 1.2.0.4) and since p ∈ R•,
from Lemma 5.2.0.4, we have that a ∈ R∪ thus proving (a).

To prove (b), suppose that R∪ ⊆ R∩ ∩ CL(R−1) and let a ∈ R•. We show that
a ∈ CL(R−1). From part 3 of Remark 5.2.0.5 we have that R• ⊆ R∪, so a ∈ R• =⇒
a ∈ R∪ =⇒ a ∈ CL(R−1), by assumption.

Conversely, suppose that R• ⊆ CL(R−1). We show that R∪ ⊆ R∩ ∩ CL(R−1). Let
a ∈ R∪. From part b of Remark 5.2.0.5, we have that a ∈ R∩. We show that
a ∈ CL(R−1), which will prove the statement. Since a ∈ R∪ there exists b ∈ R−1

such that a = aba. This gives ab = abab = (ab)2, hence ab ∈ R•. By assumption
R• ⊆ CL(R−1) thus ab ∈ CL(R−1) which means that for all finite J ⊆ R, there exists
c ∈ R−1 such that 1−J(ab−c) ⊆ R−1. Let J = {b−1}. Then 1−(ab−c){b−1} ⊆ R−1

equivalently 1 − (a − cb−1) ∈ R−1. Since c ∈ R−1 and b ∈ R−1 we have (by part a,
Lemma 1.2.0.4) that cb−1 ∈ R−1. Thus a ∈ CL(R−1) proving part b. 2

Theorem 5.2.0.7 ([9], p. 273) Let A be a Banach algebra. Then 0 ̸∈ int(σ(a)) =⇒
a ∈ cl∥·∥(A−1) ⊆ CL(A−1).

Proof: If 0 /∈ int σ(a) then 0 ∈ A \ σ(a) or 0 ∈ ∂σ(a).

Suppose 0 ∈ A \ σ(a). Then 0 ̸∈ σ(a) =⇒ −a ∈ A−1 =⇒ a ∈ A−1 ⊆ cl∥·∥(A−1).

Suppose 0 ∈ ∂σ(a). From the fact that σ(a) is compact (Theorem 1.5.1.3), hence
closed and bounded, there exists a sequence (λn) with λn ∈ C for all n ∈ N with the
properties that λn → 0 and a − λn ∈ A−1. Since λn → 0 we have that a − λn → a.
Hence every neighbourhood of a (in the norm topology) will contain an element
from A−1, hence a ∈ cl∥·∥(A−1). The fact that cl∥·∥(A−1) ⊆ CL(A−1) follows from
Proposition 3.3.0.1. The result follows.

2

✠
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Chapter 6

Fredholm and Weyl elements

6.1 Introduction
Motivated by Atkinson’s Theorem, Harte in [17], uses the concept of a Fredholm
operator to define for a an element of a Banach algebra, what it means for a to be
Fredholm relative to a Banach algebra homomorphism. He then develops a theory
called Fredholm Theory relative to a Banach algebra homorphism. In this chapter
we illustrate how the spectral closure interfaces with that theory.

6.2 T-Fredholm and T-Weyl elements
Definition 6.2.0.1 ([20], p. 261) Let R1 and R2 be rings and T : R1 → R2 be
a ring homomorphism. An element a of the ring R1 is said to be T-Fredholm if
Ta ∈ R−1

2 .

Definition 6.2.0.2 ([20], p. 261) Let R1 and R2 be rings and T : R1 → R2 be
a ring homomorphism. An element a of the ring R1 is said to be T-Weyl if a ∈
R−1

1 + T −1({0}).

Definition 6.2.0.3 ([20], p. 356) Let R1 and R2 be rings.
A homomorphism T : R1 → R2 is said to have the Gelfand property if for all a ∈ R1,

Ta ∈ R−1
2 =⇒ a ∈ R−1

1 .

Definition 6.2.0.4 ([9], p. 273) Let R1 and R2 be rings.
A homomorphism T : R1 → R2 is called relatively open if and only if
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K ⊆ R1 =⇒ T (R1) ∩ CLR2(T (K)) ⊆ T (CLR1(K)).

Definition 6.2.0.5 ([9], p. 273) Let R1 and R2 be rings. A homomorphism T :
R1 → R2 has inverse closed range if and only if T (R1) ∩ R−1

2 ⊆ T (R1)−1.

Remark 6.2.0.6 ([20] - Theorem 9.6.5, p. 358) Necessary and sufficient for the
Gelfand homomorphism T : R1 → R2 on R1 to be one-to-one, is that R1 is semisimple.

Theorem 6.2.0.7 ([9], p. 273) Let R1, R2 be rings and let T : R1 → R2 be a ring
homomorphism from R1 onto R2. Then we have:

R−1
1 ⊆ R−1

1 + T −1({0}) ⊆ T −1(R−1
2 ). (6.1)

Proof: Suppose a ∈ R−1
1 . Then we can write a = a + 0 ∈ R−1

1 + T −1({0}). Since
a was arbitrary we have that R−1

1 ⊆ R−1
1 + T −1({0}), i.e. invertible elements are

T -Weyl.

Next, we show that T -Weyl elements are also T -Fredholm by showing R−1
1 +T −1({0}) ⊆

T −1(R−1
2 ). Suppose that a ∈ R−1

1 + T −1({0}). Then there exists a1 ∈ R−1
1 and

a2 ∈ T −1(0) such that a = a1 + a2. Since T is a ring homomorphism we have that

Ta = T (a1 + a2) = Ta1 + Ta2 = Ta1 + 0 = Ta1.

Hence a ∈ T −1(R−1
2 ) ⇐⇒ a1 ∈ T −1(R−1

2 ). Since a1 ∈ R−1
1 , there exists a−1

1 ∈ R1
with the property that a1a

−1
1 = a−1

1 a1 = 1. Since T is onto we have (by Proposition
1.2.3.3) that

T (a1)T (a−1
1 ) = T (a1a

−1
1 ) = T (1) = 1 and T (a−1

1 )T (a1) = T (a−1
1 a1) = T (1) = 1.

Hence a1 ∈ T −1(R−1
2 ), which means that a ∈ T −1(R−1

2 ), and so a is T -Fredholm. 2

Lemma 6.2.0.8 Let R1, R2 be rings. If T : R1 → R2 is a homomorphism, then
T −1(0) + T −1(0) ⊆ T −1(0).

Proof: Suppose that a ∈ T −1({0}) + T −1({0}). Then there exist a1, a2 ∈ T −1({0})
such that a = a1 + a2. Then

Ta = T (a1 + a2) = Ta1 + Ta2 = 0 + 0 = 0

Hence a ∈ T −1({0}), and the result follows. 2
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Lemma 6.2.0.9 Let R1 and R2 be rings and let T : R1 → R2 be a ring homo-
morphism onto R2. Let L ⊆ R2, L finite. There exists J ⊆ R1, J finite such that
T (J) = L.

Proof: Let T, R1, R2 and L be as described, and let l ∈ L. Since T is onto the set
T −1({l}) is not empty. The set J is constructed as follows. For each l ∈ L, pick one
element from T −1({l}) to go into J . Then it is clear that T (J) = L and that J is
finite. 2

Theorem 6.2.0.10 ([9], p. 273) Let R1 and R2 be rings and T : R1 → R2 a
homomorphism from R1 onto R2. Then T is continuous with respect to the spectral
topology.
Proof: We use again part (d) of Proposition 1.3.4.2. So we will show that K ⊆
R1 =⇒ T (CLR1(K)) ⊆ CLR2(T (K)). So let y ∈ T (CLR1(K)) and let L ⊆ R2, L
finite and arbitrary. Then, by Lemma 6.2.0.9 there exists J ⊆ R1, J finite such that
L = T (J). Since y ∈ T (CLR1(K)) there exists x ∈ CLR1(K) such that y = Tx.
Hence there exists x′ ∈ K with the property that 1R1 − J(x − x′) ⊆ R−1

1 . Next we
show that a ∈ R−1

1 =⇒ Ta ∈ R−1
2 . To see this, let a ∈ R−1

1 . Then
T (a)T (a−1) = T (aa−1) = T (1) = 1 and T (a−1)T (a) = T (a−1a) = T (1) = 1

prove the point. Hence 1R1 − J(x − x′) ⊆ R−1
1 =⇒ T (1R1 − J(x − x′)) ⊆ R−1

2 . By
the linearity of T , we have

T (1R1 − J(x − x′)) = T (1R1) − T (J)(Tx − Tx′)) = 1R2 − L(y − y′) ⊆ R−1
2

Since L was finite and arbitrary, the last line proves that y ∈ CLR2(T (K)) as re-
quired. 2

Theorem 6.2.0.11 ([9], p. 273) Let R1, R2 be rings and let T : R1 → R2 be a
homomorphism. If T has the Gelfand property then:

K ⊆ R1 =⇒ T (R1) ∩ CLR2(T (K)) ⊆ T (CLR1(K)).

Proof: Suppose K ⊆ R1. Let y ∈ T (R1) ∩ CLR2(T (K)). We show that y ∈
T (CLR1(K)), i.e. we show that there exists x ∈ CLR1(K) with the property that
y = Tx. First, y ∈ T (R1) means there exists x ∈ R1 such that y = Tx. We will
show that x ∈ CLR1(K). To do so, let J ⊂ R1, J finite and arbitrary. Since J is
finite, we have that L = T (J) is also finite and y ∈ CLR2(T (K)) means that there
exists y′ ∈ T (K) such that 1R2 − L(y − y′) ⊆ R−1

2 . Since y′ ∈ T (K) this means there
exists x′ ∈ K with the property that y′ = T (x′). So we have that
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T (1R1) − T (J)(Tx − Tx′) ⊆ R−1
2 or T (1R1 − J(x − x′)) ⊆ R−1

2 .

Since T has the Gelfand property we have 1R1 −J(x−x′) ⊆ R−1
1 and so x ∈ CLR1(K)

as required. 2

Theorem 6.2.0.12 ([9], p. 273) Let R1, R2 be rings and T : R1 → R2 a ring
homomorphism onto R2. If T has inverse closed range then:

K ⊆ R1 =⇒ CLR1(K) ∩ T −1(R−1
2 ) ⊆ T −1({0}) + R−1

1 K.

Proof: Assume that T : R1 → R2 is a ring homomorphism and suppose that T has
inverse closed range. Let K ⊆ R1 and let a ∈ CLR1(K) ∩ T −1(R−1

2 ). We show that
a ∈ T −1({0}) + R−1

1 K.

We have that a ∈ CLR1(K) ∩ T −1(R−1
2 ) so a ∈ CLR1(K) and a ∈ T −1(R−1

2 ). Since
a ∈ T −1(R−1

2 ) we know that Ta ∈ R−1
2 . Since T has inverse closed range we have

that there exists d ∈ R1 such that (Ta)−1 = Td. Since T is onto we have that

TaTd = 1 =⇒ T (ad) = T (1) =⇒ T (1 − ad) = 0

and

TdTa = 1 =⇒ T (da) = T (1) =⇒ T (1 − da) = 0.

Hence {1 − ad, 1 − da} ⊆ T −1({0}). Since a ∈ CLR1(K) there exists c ∈ K such that
1 − d(a − c) ∈ R−1

1 , or equivalently, by Lemma 1.2.0.15, 1 − (a − c)d ∈ R−1
1 .

Let e−1 = 1 − (a − c)d. Then we have

a = ee−1a = e(1 − (a − c)d)a
= e(1 − ad + cd)a
= e(1 − ad)a + ecda

= e(1 − ad)a + ec(da − 1 + 1)
= e(1 − ad)a + ec(da − 1) + ec

∈ T −1({0}) + T −1({0}) + R−1
1 K

⊆ T −1({0}) + R−1
1 K (from Lemma 6.2.0.8)

2
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Example 6.2.0.13 Let R be a ring and let J be a two sided ideal in R. The canon-
ical map πJ : R → R/J is a homomorphism onto. Hence Theorem 6.2.0.10 says that
the spectral topology for R/J is weaker than or equal to the quotient of the spectral
topology of R. 2

Example 6.2.0.14 Let R1 be a subring of a ring R2 and T : R1 → R2 be a ho-
momorphism such that T −1(R−1

2 ) ⊆ R−1
1 . Then Theorem 6.2.0.11 tells us that the

spectral topology on R1 is weaker than or equal to the restriction of the spectral
topology of R2. 2

6.3 Nearly invertible Fredholm, Weyl
and weakly Riesz elements

Definition 6.3.0.1 Let R1, R2 be rings and T : R1 → R2 be a homomorphism.
Then a ∈ R1 is a nearly invertible Fredholm element if a ∈ CL(R−1

1 ) ∩ T −1(R−1
2 ).

Definition 6.3.0.2 ([11], p. 14) Let R be a ring and I a two sided ideal of R.
Then I is weakly Riesz if 1 + I ⊆ CL(R−1).

Lemma 6.3.0.3 Let R1, R2 be rings and T : R1 → R2 be a ring homomorphism.
Then

R−1
1 + T −1({0}) = R−1

1 (1 + T −1({0})).

Proof: Suppose that a ∈ R−1
1 + T −1({0}). Then a = a1 + a2 with a1 ∈ R−1

1
and a2 ∈ T −1({0}). So a = a1(1 + a−1

1 a2) showing, using Lemma 1.2.3.4, that
a ∈ R−1

1 (1 + T −1({0})). Hence R−1
1 + T −1({0}) ⊆ R−1

1 (1 + T −1({0}))

Conversely, suppose that a ∈ R−1
1 (1+T −1({0})). Then a = a1(1+a2) with a1 ∈ R−1

1
and a2 ∈ T −1({0}). Then a = a1 + a1a2. Since a2 ∈ T −1({0}), using Lemma 1.2.3.4,
we have that a1a2 ∈ T −1({0}) also. Hence we have that a ∈ R−1

1 + T −1({0}). Hence
R−1

1 (1 + T −1({0})) ⊆ R−1
1 + T −1({0}), and the result follows. 2

Theorem 6.3.0.4 ([9], p. 274) Let R1, R2 be rings and let T : R1 → R2 be a ring
homomorphism. Then
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(a) If T has inverse closed range then

CL(R−1
1 ) ∩ T −1(R−1

2 ) ⊆ R−1
1 + T −1({0}).

(b) R−1
1 +T −1({0}) ⊆ CL(R−1

1 )∩T −1(R−1
2 ) if and only if T −1({0}) is weakly Riesz.

Proof: To prove part (a), we apply Theorem 6.2.0.12 with K = R−1
1 to get

R−1
1 ⊆ R1 =⇒ CLR1(R−1

1 ) ∩ T −1(R−1
2 ) ⊆ T −1({0}) + R−1

1 R−1
1

⊆ T −1({0}) + R−1
1 .

The last inclusion above follows from part (a) of Lemma 1.2.0.4.

To prove part (b), suppose that

R−1
1 + T −1({0}) ⊆ CL(R−1

1 ) ∩ T −1(R−1
2 ).

Then

1 + T −1({0}) ⊆ R−1
1 + T −1({0})

⊆ CL(R−1
1 ) ∩ T −1(R−1

2 ) (by assumption)
⊆ CL(R−1

1 ),

hence T −1({0}) is weakly Riesz, as required.

Conversely, suppose that T −1({0}) is weakly Riesz. Then

R−1
1 + T −1({0}) = R−1

1 (1 + T −1({0})) from lemma 7.2.0.4
⊆ R−1

1 CL(R−1
1 ) by assumption

= CL(R−1
1 ) from Proposition 2.2.2.2.

From (6.1) we have that R−1
1 +T −1({0}) ⊆ T −1(R−1

2 ). Combined with the above con-
tainment, R−1

1 + T −1({0}) ⊆ CL(R−1
1 ) gives R−1

1 + T −1({0}) ⊆ CL(R−1
1 ) ∩ T −1(R−1

2 )
2

✠
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Chapter 7

Closure operations and Bass stable
rank

7.1 Introduction
In this chapter we look at two additional operators. The first of these is just a simple
extension of the spectral closure operation to n tuples. The second is a different idea
proposed and studied by a different team of authors - Ara, Pedersen and Perera in
[1, 2]. Both of these operations appear to be useful in the study of the concepts of
Bass stable rank of a ring.

7.2 The spectral closure in n dimensions
We extend the notion of spectral closure to tuples as follows.

Definition 7.2.0.1 ([9], p. 275) Let R be a ring and n ∈ N. Let a, a′ ∈ Rn. We
define a′ ∗ a as

a′ ∗ a =
n∑

j=1
a′

jaj ∈ R.

We use this dot product type operation to define the spectral closure of a subset of
Rn.

Definition 7.2.0.2 ([9], p. 275) Let R be a ring and n ∈ N. Let K ⊆ Rn. We
define:
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CL(n)
left(K) = {x ∈ Rn : ∀J ⊆ Rn ∃ x′ ∈ K, 1 − J ∗ (x − x′) ⊆ A−1},

and similarly

CL(n)
right(K) = {x ∈ Rn : ∀J ⊆ Rn ∃ x′ ∈ K, 1 − (x − x′) ∗ J ⊆ A−1}.

We also define left and right invertible tuples as follows.

Definition 7.2.0.3 ([9], p. 275) Let R be a ring, n ∈ N. We define the set of left
invertible n-tuples as

R−n
left = {a ∈ Rn : 1 ∈ Rn ∗ a =

n∑
j=1

Raj,

and the set of right invertible n-tuples as

R−n
right = {a ∈ Rn : 1 ∈ a ∗ Rn =

n∑
j=1

ajR.

Definition 7.2.0.4 ([9], p. 276) Let R be a ring and n ∈ N. We say that R has
left (Bass) stable rank ⩽ n provided that the following condition holds:

If (a, b) ∈ Rn ×R and (a, b) ∈ R−n−1
left then there exists c ∈ Rn with the property that

a − cb ∈ R−n
left.

Remark 7.2.0.5 The operations CLn
right and CLn

left are Kuratowski closure opera-
tions - see [9], p. 275. We do not include the proof that they are, because the
arguments are largely a repeat of those in Theorem 2.3.0.1. 2

Using the closure operation defined in Definition 7.2, Harte is able to construct a
sufficient condition for a ring to have Bass stable rank ⩽ n. We state the result
without proof.

Theorem 7.2.0.6 ([9], p. 276) Let R be a ring and suppose that

Rn ⊆ CL(n)
right(R−1

right).

Then R has stable rank ⩽ n. 2
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7.3 A second operation
In [1, 2] the authors construct and analyse a different closure operator which is of
interest to us. Below, we first define the operation and discuss and prove some of
its interesting properties. Then we look at how it is connected to the main closure
operator we have been discussing so far.

Definition 7.3.0.1 Let R be a unital ring, and let K ⊆ R, a ∈ R.
Then a ∈ Cl1(K) if and only if the following condition holds:

If xa + b = 1 for some x, b ∈ R then there exists y ∈ R such that a + yb ∈ K.

As in the case of the spectral closure, we have an alternative definition, which we
give next.

Definition 7.3.0.2 Let R be a unital ring, and let K ⊆ R, a ∈ R.
Then a ∈ Cl2(K) if and only if the following condition holds:

Ra + Rb = R =⇒ (a + Rb) ∩ K ̸= ∅.

Next we show that the two definitions above are in fact equivalent.

Lemma 7.3.0.3 Let R be a ring and K ⊆ R. Then Cl1(K) = Cl2(K).

Proof: We show that Cl1(K) ⊆ Cl2(K) and Cl2(K) ⊆ Cl1(K).

To see the first inclusion, suppose that a ∈ Cl1(K), and that b ∈ R is such that

Ra + Rb = R. (7.1)

We show that (a + Rb) ∩ K ̸= ∅. From (7.1) we have that there exist r1, r2 ∈ R such
that r1a + r2b = 1. By assumption there exists y ∈ R such that a + yr2b ∈ K. Hence
(a + Rb) ∩ K ̸= ∅. Hence a ∈ Cl2(K), which shows that Cl1(K) ⊆ Cl2(K).

To see the second containment, let a ∈ Cl2(K). Also, suppose that there exists
x, b ∈ R with the property that

xa + b = 1. (7.2)
We will show that Ra + Rb = R. Since R is a ring we always have Ra + Rb ⊆ R. Let
r ∈ R. Then from (7.2) we have that rxa + rb = r, hence r ∈ Ra + Rb. This means
that R ⊆ Ra + Rb. By assumption this means that (a + Rb) ∩ K ̸= ∅. So there exists
y ∈ R such that a + yb ∈ A, as required. This means that Cl2(K) ⊆ Cl1(K) and the
result follows. 2
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Remark 7.3.0.4 Lemma 7.3.0.3 means we can now refer to the closure of a set with
a single symbol. For K ⊆ R, R a ring, we will simply write Cl(K). In what follows
we will alternate between the two definitions. 2

The operation Cl(·) has some interesting properties, which we list and prove in the
following proposition.
Proposition 7.3.0.5 Let R be a ring, A, B ⊆ R. Then

(a) Cl(∅) = ∅,

(b) A ⊆ B =⇒ Cl(A) ⊆ Cl(B),

(c) A ⊆ Cl(A),

(d) Cl(R) = R,

(e) Cl(A) = Cl(Cl(A)),

(f) If A ̸= ∅ then Rad R ⊆ Cl(A),

(g) Cl({0}) = Rad R.
Proof: Property (a) is trivial to see.

To see that (b) holds, suppose A ⊆ B and that a ∈ Cl(A). To see that a ∈
Cl(B), suppose that b ∈ R is such that Ra + Rb = R. Since a ∈ Cl(A) we have
(a + Rb) ∩ A ̸= ∅. Since A ⊆ B, we also have (a + Rb) ∩ B ̸= ∅. Hence a ∈ Cl(B),
and so Cl(A) ⊆ Cl(B).

To see that (c) holds, suppose that A ⊆ R, and that a ∈ A. Suppose that b ∈ R is
such that Ra + Rb = R. Notice that a = a + 0b ∈ (a + Rb) ∩ A. Hence a ∈ Cl(A).
Hence A ⊆ Cl(A).

From (c) we have that R ⊂ Cl(R). By definition of Cl(·) we have that Cl(R) ⊆ R.
Hence (d) holds.

To see that (e) holds, we first notice that from (b) and (c) we have that Cl(A) ⊆
Cl(Cl(A)). To see the reverse inclusion, let a ∈ Cl(Cl(A)), and suppose that xa+b =
1 for some x, b ∈ R. By definition of Cl(·) there exists y ∈ R with the property that
a + yb ∈ Cl(A). Next we have

x(a + yb) + (1 − xy)b = xa + xyb + b − xyb

= xa + b = 1
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Hence a + yb + z(1 − xy)b ∈ R for some z ∈ R. Hence a + (y + z − zxy)b ∈ A. This
means that a ∈ Cl(A).

To see that (f) holds, suppose that A ̸= ∅, and let z ∈ Rad R. We show that
z ∈ Cl(A). Suppose that xz + b = 1 for some x, b ∈ R. Then xz = 1 − b ∈ Rad R.
Hence b ∈ R−1. Then (a − z)b−1 ∈ R. Let a ∈ R. Then

a = z + (a − z)b−1b ∈ z + Rb.

Hence z ∈ Cl(A). Hence Rad R ⊆ Cl(A) and (f) holds.

Finally, to see that (g) holds, notice first that from (f) we have that Rad R ⊂ Cl({0}).
To see that Cl({0}) ⊆ Rad R, suppose that a /∈ Rad R. Then there exists a maximal
ideal L such that a /∈ L. Then Ra + L is also a left ideal and L ⊆ Ra + L. Since L is
maximal, we have that Ra+L = R. So there exists x ∈ R, l ∈ L such that xa+l = 1.
Suppose that a ∈ Cl({0}). Then a + yl = 0 for some y ∈ R, so that a = −yl. But
this would mean that a ∈ L, contradicting our initial assumption. Hence we have
proved that a /∈ Rad R =⇒ a /∈ Cl({0}). This means that Cl({0}) ⊆ Rad R. The
result follows. 2

Remark 7.3.0.6 Let R be a ring, E, F ⊆ R. For non-commutative rings the equa-
tion Cl(E ∪ F ) = Cl(E) ∪ Cl(F ) is not true in general (see Example 1.10 in [2]),
so that Cl(·) is not a closure operation in the sense of Kuratowski, even though the
conditions (a), (c) and (e) strongly suggest that. 2

✠
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Chapter 8

Conclusion

8.1 Introduction
In this final chapter we summarize what was discussed and briefly indicate some
questions raised by the study.

8.2 Overview
Suppose A is a Banach algebra, and a ∈ A. A cornerstone of the theory of Banach
algebras is the fact that

∥a∥ < 1 =⇒ 1 − a ∈ A−1.

This is a deep result in Banach algebra theory since it connects the algebraic and
analytic foundations of the subject. A similarly deep result in spectral theory is the
fact that if a, b ∈ A, then

1 − ab ∈ A−1 ⇐⇒ 1 − ba ∈ A−1.

This last fact holds in a general ring as well. Using mainly these two facts as motiv-
ation, the authors of [9], in the same article, define a set valued mapping that is to
generate a topology on a ring.

In Chapter 2 we focused on proving that the set valued mapping is a Kuratowski
closure operation. We discussed some basic properties of the closure operation. We
also looked at how the closure of a product of sets is related to the product of
the closure of the sets. These relationships were needed to prove that the closure
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operation is in fact a Kuratowski closure operation, hence generates a topology, called
the spectral topology, on the ring. We also proved that a ring with the spectral
topology is a topological ring. In this chapter we also looked at some examples of
the spectral topology on different types of rings.

In Chapter 3 we compare the closure of a set in a Banach algebra relative to the
spectral topology with its closure relative to the norm topology. From this we see
that the spectral topology on a Banach algebra is coarser than the norm topology.
In this chapter we also showed that the set of invertibles in the ring is open in the
spectral topology. This fact enabled us to analyse what neighbourhoods of 0 look
like in the spectral topology.

In Chapter 4 we look at how the spectral closure and its topology allows us to define
a concept of quasinilpotent that applies to a general ring.

In Chapter 5 we looked at how the spectral closure intervenes in concepts of gener-
alized invertibility.

In Chapter 6 we look at how the spectral closure intervenes with Fredholm Theory
relative to a Banach algebra homomorphism.

Finally, in Chapter 7, we look at how the spectral closure intervenes in the concepts
of Bass Stable Rank of a ring. In this chapter we discuss a variant of the main closure
operator, specifically defined on n tuples of elements from a ring. We also discussed
an alternative operation studied by a different team of researchers.

8.3 Open Quesions
We briefly list some questions that are either described in [9] as being unknown, or
seem to us to be unknown facts, and could potentially lead to research questions or
simply a deeper understanding of the spectral topology.

In Theorem 3.3.0.4 we proved that if R is a ring and J is a finite subset of R then
the set

UJ = {a ∈ R : 1 − Ja ∈ R−1}

is a neighbourhood of 0. We notice that each such set is a superset of Rad R, ie
Rad R ⊂ UJ for each J a finite subset of R. This raises the question as to whether
there are rings R for which Rad R is an open set in the spectral topology. If such
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rings do exist, what would be the consequences of this fact? For example, if the ring
was also semisimple, then the spectral topology would necessarily be discrete.

In Theorem 2.3.0.2, we see that the spectral topology on a ring R is T1 if and only
if the ring is semisimple. From Example 2.3.0.5 we have that on Z the spectral
topology is discrete, hence T2. This raises the question as to whether the following
implication always holds. If R is a ring, let τ be the spectral topology. Is it the case
that:

⟨R, τ⟩ is T2 =⇒ ⟨R, τ⟩ is discrete?

In Definition 4.2.0.3, we defined a general notion of quasinilpotent, one that can be
applied to any ring with the spectral topology. In [9], the authors mention that it is
not known whether the following implication holds, for R a ring:

a, b ∈ QN(R), ab = ba =⇒ a + b ∈ QN(R).

As is mentioned in section 7.3 above, the operation defined by Ara, Pedersen and
Perera in Definitions 7.3.0.1 and 7.3.0.2, do not generate a topology on a ring. In
[9], p. 277, the authors make the following suggested modification to the concept of
Ara, Pedersen and Perera:

The concept by Ara, Pedersen and Perera is essentially:

Let R be a ring and K ⊆ R. Then a ∈ cl•left(K) if and only if for arbitrary b ∈ R
there is implication:

(a, b) ∈ R−2
left ⊆ R2 =⇒ (a − Rb) ∩ K ̸= ∅.

As mentioned in Remark 7.3.0.6, the operation does not satisfy all of the Kuratowski
closure conditions. Consider the following definition of an operator:
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Definition 8.3.0.1 Let R be a ring, K ⊆ Rn. Then a ∈ Cl•left(K) ⊆ Rn if and only
if for every finite J ⊆ R

(a, J) ⊆ R−n−1
left =⇒

⋂
b∈J

(a − Rnb) ∩ K ̸= ∅.

Harte et al in [9] say that Definition 8.3.0.1 makes a ‘cosmetic’ change to the concept
in Definition 7.2.0.4 which may or may not actually alter it. The first question here
is whether the change does alter the definition. Harte et al also mention that they
believe that the modified operator will satisfy all the properties of a Kuratowski
closure operator. The second question is whether the new operator does satisfy the
conditions and of course, how to prove that it does, or does not.

✠
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List of Symbols

∅ empty set
℘(A) power set of A

N set of natural numbers
Z set of integers
Q set of rationals
R real number field
C complex number field
R+ positive real numbers
[n], I (finite) index set
G, R, A group/ring/algebra∏

i∈I Ri direct sum (product) of rings
R−1, (R−1

l /R−1
r ) set of (left/right) invertibles

Ml, Mr set of all left/right maximal ideals
R/J quotient ring modulo ideal J

Rad R Jacobson radical of R

(z) principal ideal generated by z

R[[z]] formla power series ring
K0 set of leading coefficients of polynomials
a−1, a (invertible) element
[a] equivalence class of a

̸=, = (non-)equality relation
̸∈, ∈ (non-)membership relation
<, > less/greater-than relation
≤, ≥ less/greater-than-or-equal-to relation
⊂, ⊆ subset relation
⊃, ⊇ superset relation
∼ equivalent/equinumerous
# cardinality
∩ intersection
∪ union
∀ universal quantifier
∃ existential quantifier
=⇒ (one-way) implication
⇐⇒ bi-implication (if and only if)
?==⇒
¿

unverified implication

∞ absolutus infinitus
ϵ, δ infinitesimally small numbers
0 additive identity
1 multiplicative identity
λ, α, β scalars / eigenvalues

77



G + H sum set
G · H product set
K−1 inverses of elements in K

τ , σ topology
τ× product topology
⟨X, τ⟩ topological space
⟨X, τ×⟩ product (topological) space
⟨X, d⟩ metric space
⟨X, ∥ · ∥⟩ metric space
X \ A complement of a set
Nx neighbourhood system at x

D , B (sub)base for a given topology
B(x0, ϵ) ϵ-neighbourhood about x0

A (familiar) closure of a set
∂A boundary of a set
σ(a) spectrum of Banach algebra element a

ρ(a) Gelfand’s spectral radius
T linear operator
T |A restriction of a linear operator
T̃ extension of a linear operator
T × adjoint of a linear operator
D(T ), R(T ) domain/range of a linear operator
G(T ) graph of a linear operator
∂

∂x
, d

dx
(partial) derivative operator w.r.t. x

∇ nabla/del operator∫
(Lebesgue) integral operator

V , V α Voltera/Riemann-Liouville operator

7→ function definition
f−1(·), f(·) (inverse) function/functional
f(·, ·) multivariable (two-argument) function
◦ infix function/operator composition
+ infix binary addition operation
· infix binary multiplication operation
∗ general infix binary operation
α(·, ·) prefix binary addition operation
µ(·, ·) prefix binay multiplication operation
β(·, ·) general prefix binary relation
pj(·) jth projection map
I(·) identity map
0(·) zero map
Γ(·) gamma function
d(·, ·) metric
∥ · ∥ norm
dist(·, K) distance from a point to a set K

int(·) interior operation
der(·) derived set operation
cl(·) topological closure operation
clτ (·) closure operation w.r.t. τ

clX(·) closure operation w.r.t. X

clalg(·) algebraic closure operation
cl∥·∥(·) norm closure operation
CL(·) spectral closure operation
CLτ (·) spectral closure operation w.r.t. τ

CLA(·) spectral closure operation w.r.t. A
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CL(A−1) set of nearly invertibles in A

QN∥·∥(A) norm quasinilpotent elements of A

QN(A) ring quasinilpotent elements of A

bsr(R) bass stable rank of R

(xn) sequence
lim

n→∞
, n−−→

∞
limit (shorthand)

inf, sup infimum/supremum of a set
max maximum value

dim(V ) dimension of a vector space

T (·), ϕ(·) ring/vectorspace homo/epi/isomorphism

T −1(0), ker(ϕ) kernel/null space of a vector space homomorphism

coker(ϕ) cokernel of a vector space homomorphism

α(T ), α(ϕ) kernel index of a vector space homomorphism

β(T ), β(ϕ) deficiency index of a vector space homomorphism

ι(T ), ι(ϕ) index of a vector space homomorphism

BL(X, Y ) set of bounded linear operators from X to Y

Φ(X, Y ) set of Fredholm elements from X to Y

Ω(X, Y ) set of Weyl operators from X to Y

R• set of indempotent elements in R

R∩ regular (relatively Fredholm) elements in R

R∪ decomposably regular (relatively Weyl) elements in R
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séculaires des mouvements des planétes, Exercises de mathématiques 4, in
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