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Abstract

In this paper, we construct a novel normalized B-spline-like representation for C2-continuous cubic spline space defined
n an initial partition refined by inserting two new points inside each sub-interval. The basis functions are compactly
upported non-negative functions that are geometrically constructed and form a convex partition of unity. With the help of the
ontrol polynomial theory introduced herein, a Marsden identity is derived, from which several families of super-convergent
uasi-interpolation operators are defined.
2021 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
eywords: Bernstein–Bézier representation; Hermite interpolation; Normalized B-splines; Super-convergent quasi-interpolants; Control
olynomials

1. Introduction

Nowadays, high smoothness splines have widespread applications in many fields, including approximation theory,
omputer-aided geometric design, the entertainment industry, etc. The highest regularity with the lowest degree is
commonly used option. In particular, C2 cubic splines are very attractive since they fulfill this feature and allow

o deal efficiently with many different problems.
As shown in [8], C2 cubic splines on a partition endowed with a specific refinement are obtained if all values

nd derivative values up to order two at the break-points of the initial partition are given. More specifically, to get
lobal C2 cubic splines, the initial partition should be refined by inserting two new knots inside each sub-interval
nduced by the primary partition (for the general case, see [5]).

The idea of introducing a split knot was introduced for the first time by L. L. Schumaker in [16] to address
he case of quadratic splines. Adopting the same procedure, C. Manni in [10] has investigated interpolation by

eans of C1 quadratic and C2 cubic many-knot splines with shape parameters. More recently, the same idea has
een used in [8,12] when addressing the problem of Hermite interpolation with C2 cubic splines with the aid of
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lossoming. Unfortunately, the strategies outlined in these papers have some drawbacks. In fact, the B-spline-like
ases constructed in [8] are non-positive, while the strategy developed in [12] is somewhat complicated. The latter
ay be seen as a special case of the approach proposed here.
The strategy of refining a given partition is commonly used in multivariate approximation by splines [7]. In

act, in order to construct smooth splines of low degree, the given partition must be refined to a number of smaller
implices. The construction of bases to properly represent the spline functions defined on the refined triangulation
s essential (see for instance [4,11] for Clough–Tocher and Powell–Sabin refinements, respectively). The methods
eveloped to deal with these issues in the bivariate case (see [6]) have inspired the construction in [1], where
plines of any degree and appropriate smoothness defined on an arbitrary partition refined by adding a knot in each
ub-interval are constructed and used to define quasi-interpolants. Super-convergent quasi-interpolants defined on
owell–Sabin triangulations have also been discussed in the literature (see [14]).

As mentioned above, in this paper we consider a refinement of the initial partition by inserting two split knots
nside each initial sub-interval and define a space of C2 cubic splines. Each spline in this space is uniquely
etermined by its value and that of those of its derivatives up to order 2 at each knot of the initial partition.
ince the C2 cubic spline space is characterized by an interpolation problem, a B-spline-like basis is constructed by
efining its basis functions as duals of the interpolation functionals. This will be done in a completely geometric
orm in order to get compactly supported non-negative B-spline-like functions forming a convex partition of unity.

The solution of a Hermite interpolation problem in this space gives rise to a many-knot spline, which can be
onsidered as a differential quasi-interpolant. Therefore, the notion of control polynomial allows us to obtain a
arsden identity from which we define quasi-interpolants that reproduce the cubic polynomials.
Super-convergence is a phenomenon that appears when the order of convergence at some particular points is

igher than the order of convergence over the whole domain of definition [2,3,15]. It is an advantageous theoretical
roperty that can be exploited successfully in practice. The theory of control polynomials used here, allows to define
family of super-convergent quasi-interpolation operators.
The rest of the paper is organized as follows: In Section 2, we review some notions related to Bernstein–Bézier

epresentation and polar forms. In Section 3, we introduce the space of many-knot C2 cubic splines, and we describe
he geometric approach used to construct B-spline-like bases with interesting properties. In Section 4, we develop a
eneral theory of super-convergent quasi-interpolants based on control polynomials. In Section 5, the construction of
everal families of quasi-interpolants is addressed. Section 6 is devoted to illustrate the theoretical results obtained
y some numerical tests. A section of conclusions is also included.

. Preliminaries

Bernstein–Bézier representation and blossoming are the basic tools to deal with the construction addressed in
his paper, so we recall some results about them and establish some others.

Each x ∈ R can be written with respect to a given interval I := [a, b] as x = (1 − t) a + t b, being (1 − t, t)
the corresponding barycentric coordinates. They are non-negative when x belongs to I .

Polynomials of degree less than or equal to d can be conveniently represented on the interval I from the Bernstein
polynomials Bd

β, I of degree d , defined as

Bd
β, I (t) :=

d!

β!
tβ1 (1 − t)β2 ,

where t :=
x−a
b−a , β := (β1, β2), β! := β1!β2! and |β| := β1 + β2 = d . They form a convex partition of unity on

I , and provide a basis for the space Pd (I ) of polynomials of degree less than or equal to d defined over I . Each
pd ∈ Pd (I ) can be uniquely expressed as

pd (x) =

∑
|β|=d

bβ B
d
β, I (t) =: bd (t) , x ∈ I, (1)

or some values
{
bβ

}
|β|=d which will be referred to as Bernstein–Bézier (BB-) coefficients or Bézier (B-) ordinates

f pd with respect to I . Equality (1) is said to be the Bernstein–Bézier (BB-) representation of pd .
The B-ordinates

{
bβ

}
|β|=d of pd can be neatly expressed in terms of blossoms or polar forms. The blossom or

olar form B [pd ] of a given polynomial pd of degree less than or equal to d is the unique, symmetric, multi-affine
ap from Rd to R fulfilling the following property [13]:

B p A[d] = p A ,
[ d ] ( ) d ( )
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here A[d] marks that the point A is repeated d times as a blossom argument. When d = 1, A will be used instead
of A[1].

The blossom B [pd ] of pd ∈ Pd allows to write

pd (x) =

∑
|β|=d

B [p] (a[β1], b[β2]) Bd
β, I (τ ) , x ∈ I . (2)

It also leads to simple expressions for directional derivatives. The derivative of pd ∈ Pd at the point v in the
directions u1, u2, . . . , uq is given as,

Dq
u1, ..., uq

pd (v) :=
d!

(d − q)!
B[pd ]

(
v[d − q], u1, . . . , uq

)
. (3)

Regularity of a piecewise polynomial function can be easily described in terms of B-ordinates with respect to
he intervals. Let I1 = [a, c] and I2 = [c, b] be two adjacent intervals, and let p and p̃ be two polynomials of
otal degree d defined on I1 and I2, with B-ordinates b1,β and b2,β , respectively. Assume that τ̂ :=

(
τ̂1, τ̂2

)
are the

arycentric coordinates of b with respect to I1. Then, the piecewise function defined as p on I1 and p̃ on I2 is of
lass Cr at c if, for β1 = 0, . . . , r , and β2 = d − r , it holds

b2,β =

∑
|α|=β1

b1,α+β2e2B
r
α,I1

(
τ̂
)
,

here e2 := (0, 1).
In order to express the blossom of a product in terms of blossoms of its factors, we use the following result

ntroduced in [9].

roposition 1. Let ℓ1, . . ., ℓm be m polynomials in P1. If p =
∏m

i=1 ℓi , then, we have

B [p] (u1, . . . , um) =
1

m!

∑
π∈σm

m∏
i=1

ℓi (uπ (i)),

where σm stands for the symmetric group of all permutations of the set {1, . . . , m}.

Now, by using the relationship between polynomials and their blossoms, we will obtain a result that will allow
to define the so-called control polynomials, which will be the main tool for establishing a Marsden identity which
is the key for building super-convergent quasi-interpolation schemes based on C2 cubic splines space.

Let us recall the following result [9].

Lemma 2. Let d1 and d2 be two positive integers, with d2 ≤ d1. Then, for any polynomial p ∈ Pd1 and any set
of values x1, . . . , xd1−d2 in R, the function

q (x) := B [p]
(
x1, . . . , xd1−d2 , x[d2]

)
is a polynomial of degree less than or equal to d2. Moreover, for any set of values y1, . . . , yd2 in R, it holds

B [q]
(
y1, . . . , yd2

)
= B [p] (x1, . . . , xd1−d2 , y1, . . . , yd2 ).

The behavior of the controlled spline function at any knot can be detected from the behavior of control
olynomials at the same knot. The following result, that defines the control polynomial of degree d2 at the knot x1
f a polynomial p of degree d1, is an alternative way to establish Marsden’s identity.

roposition 3. Let d1 and d2 be two positive integers, with d2 ≤ d1. Let p ∈ Pd1 and x1 ∈ R. For any real number
θ , the polynomial q of degree d2 defined by

q(x) := B[p](x1[d1 − d2], (θx + (1 − θ )x1)[d2]), (4)

satisfies

D j p (x1) =
1
θ j

(d1
j

)(d2
j

) D j q(x1)
for all 0 ≤ j ≤ d2.
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Fig. 1. Schematic representation of domain points corresponding to the BB-representation of a C2 cubic spline. The points depicted by (•)
represent the degree of freedom, while, the points represented by (◦) mark the B-ordinates computed from imposed C2 smoothness at the
nserted split points.

roof. We prove the result by induction on d2. As polar forms are multi-affine, then q can also be written as

q (x) =

d2∑
i=0

(
d2

i

)
θ i (1 − θ)d2−i B [p] (x1[d1 − i], x[i]) .

rom Lemma 2, q is a polynomial of degree less than or equal to d2. Define the polynomial qi of degree i as

qi (X) := B [p] (x1[d1 − i], x[i]) ,

nd let ξ = e⃗, i.e. a unit vector in R.
Since qi ∈ Pi , we consider only the case when a ≤ i to derive the equality

D j qi (x1) =
i !

(i − j)!
B [qi ] (x1[i − j], ξ [a]) =

i !
(i − j)!

B [p] (x1[i − j], ξ [ j]) .

hen,

D j q(x1) =

d2∑
i= j

d2!

(d2 − i)! (i − j)!
θ i (1 − θ)d2−i B [p] (x1[i − j], ξ [ j])

=

d2− j∑
ℓ=0

d2!

(d2 − j)!ℓ!
θ ℓ+ j (1 − θ)d2− j−ℓ B [p] (x1[d1 − j], ξ [ j])

= θ j d2!

(d2 − j)!
B [p] (x1[d1 − j], ξ [ j]) ,

and the proof is complete. □

When θ :=
d1
d2

, q is said to be control polynomial of degree d2 at x1 of the polynomial p.

3. A space of C2 many-knot splines

For a given n ≥ 2, let Xn := {x0 < x1 < · · · < xn} be a subset of knots providing a partition of I into sub-
intervals Ii = [xi , xi+1], 0 ≤ i ≤ n − 1. A refinement X ref

n of the initial partition Xn is defined by inserting two
split points ξi,1 :=

1
3 (2xi + xi+1) and ξi,2 :=

1
3 (xi + 2xi+1) in each sub-interval Ii that defines the micro-intervals

Ii,1 := [xi , ξi,1], Ii,2 := [ξi,1, ξi,2] and Ii,3 := [ξi,2, xi+1].
In this work, we focus on the spline space

S2
3

(
X ref

n

)
:=
{
s ∈ C2 (I ) : s|Ii, j ∈ P3, j = 1, 2, 3, 0 ≤ i ≤ n − 1

}
.

A spline s ∈ S2
3

(
X ref

n

)
can be uniquely characterized by three specific values at each knot xi [5].

heorem 4. Given values fi,0, fi,1, fi,2, 0 ≤ i ≤ n, there exists a unique spline s ∈ S2
3

(
X ref

n

)
such that

s(xi ) = fi,0, s ′(xi ) = fi,1, s ′′(xi ) = fi,2, (5)

Fig. 1 shows a graphical representation relative to Theorem 4. The B-ordinates of s corresponding to xi and
ts neighboring domain points depicted by dark bullets (•) are computed from interpolation conditions (5). The
emaining B-ordinates are determined from the C2 smoothness conditions at the inserted split points.

In what follows, we will look for a normalized representation of the spline s ∈ S2
3

(
X ref

n

)
of the form

s =

n∑
i=0

∑
|α|=2

ci,α Bi,α, (6)
n which the basis functions Bi,α are non-negative, have local supports and form partition of unity.
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Fig. 2. B-ordinates of the B-spline-like Bi,α associated with the break-point xi .

.1. Setting up a normalized B-spline-like representation

This subsection is devoted to construct suitable B-spline-like functions Bi,α , i = 0, . . . , n, |α| = 2, such that (6)
olds for any spline s ∈ S2

3

(
X ref

n

)
.

The construction used herein is entirely geometric. For every knot xi , 1 ≤ i ≤ n − 1, define

Wi,1 :=
4
3
ξi−1,2 −

1
3

xi , Wi,2 :=
4
3
ξi,1 −

1
3

xi , (7)

and the interval Wi :=
[
Wi,1, Wi,2

]
. From Wi we introduce nine parameters relative to xi . Let B2

Wi , α
, |α| = 2,

denote the Bernstein polynomials of degree 2 w.r.t. Wi , and define, for 0 ≤ j ≤ 2, |α| = 2 and a given integer
m ≥ 3, the values

γ
j

i,α :=

(
j

m

)
(

j
2

) (
2
m

) j

D j B2
Wi , α

(xi ). (8)

The B-spline-like functions for S2
3

(
X ref

n

)
are defined in terms of conditions (5) provided in Theorem 4. The definition

of those associated with xi , i.e. Bi,α , |α| = 2, is based entirely on parameters γ
j

i,α . Indeed, Bi,α is the unique function
in S2

3

(
X ref

n

)
such that

Bi,α(xi ) = γ 0
i,α, B′

i,α(xi ) = γ 1
i,α, B′′

i,α(xi ) = γ 2
i,α,

nd Bi,α(xℓ) = B′

i,α(xℓ) = B′′

i,α(xℓ) = 0 at any knot xℓ different from xi .
A schematic representation of the B-ordinates corresponding to the B-spline-like Bi,α associated with the break-

oint xi of Xn is depicted in Fig. 2. By definition, the B-ordinates at the domain points in a neighborhood of xi−1

nd xi+1 are equal to zero. Because of C2 smoothness at xi , B-ordinates d−2, d−1, d0, d1 and d2 are completely
etermined by the value γ

j
i,α . They are given explicitly as follows:

d0 = γ 0
i,α,

d1 = γ 0
i,α + γ 1

i,α
ξi,1 − xi

3
, d2 = γ 0

i,α + 2γ 1
i,α

ξi,1 − xi

3
+ γ 2

i,α
(ξi,1 − xi )2

6
,

d−1 = γ 0
i,α + γ 1

i,α
ξi−1,2 − xi

3
, d−2 = γ 0

i,α + 2γ 1
i,α

ξi−1,2 − xi

3
+ γ 2

i,α
(ξi−1,2 − xi )2

6
.

Since Bi,α is C2 continuous at ξi−1,1, ξi−1,2, ξi,1 and ξi,2, then

d3 =
1
6 (7d2 − 2d1) , d4 =

1
3 (4d2 − 2d1) , d5 =

1
3 (2d2 − d1) , d6 =

1
6 (2d2 − d1) ,

d−3 =
1
6 (7d−2 − 2d−1) , d−4 =

1
3 (4d−2 − 2d−1) , d−5 =

1
3 (2d−2 − d−1) , d−6 =

1
6 (2d−2 − d−1) .

emark 1. Boundary B-spline-like functions for S2
3

(
X ref

n

)
are constructed according to the same procedure

ighlighted in Section 3.1, with a particular choice of points in (7), namely W0,1 := x0 and Wn,2 := xn .

Fig. 3 shows the graphs of the vertex B-spline-like functions for interior and boundaries vertices.

.2. Properties of B-spline-like basis functions

In many practical applications, especially in the area of computer aided geometric design, bases with compactly
upported non-negative functions that form a partition of unity are desired. In what follows, we are going to prove

hat the B-spline-like basis functions constructed here meet these properties.
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Fig. 3. B-spline-like functions for interior and boundary knots.

Property 5. The B-spline-like functions Bi,α , i = 0, . . . , n, |α| = 2, form a partition of unity, i.e.

1 =

n∑
i=0

∑
|α|=2

Bi,α.

roof. It follows from the definition of Bi,α that only three basis functions have non-zero function and derivative
alues at xi . Moreover, the Bernstein polynomials in (8) form a partition of unity on Wi . Then, it holds∑

|α|=2

γ 0
i,α = 1,

∑
|α|=2

γ 1
i,α =

∑
|α|=2

γ 2
i,α = 0, (9)

and the claim follows by considering interpolation problem (5) and (9). □

Property 6. The B-splines Bi,α , i = 0, . . . , n, |α| = 2, are non-negative.

Proof. It suffices to prove that the B-ordinates of Bi,α are all non-negative. Let

u :=
ξi,1 − xi

|ξi,1 − xi |
.

quadratic polynomial p defined on the interval [P1, P2] with P1 = xi and P2 =
1
3 xi +

2
3ξi,1 has B-ordinates d0,

1 and d2 if and only if

p(x ) = B (x ) = d ,
i i,α i 0
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Du p(xi ) =
1
3

DuBi,α(xi ) =
d1 − d0

|ξi,1 − xi |
,

1
2

(
2
3

)2

D2
u p(xi ) =

1
6

D2
uBi,α(xi ) =

d0 − 2d1 + d2

|ξi,1 − xi |
.

From (8), it follows that p must be equal to a certain Bernstein polynomial of degree 2 w.r.t. Wi .
Since P1, P2 can be written as

P1 = xi , P2 =
1
2

xi +
1
2

Wi,2,

hem P1 and P2 lie in Wi , which means that the barycentric coordinates of P1 and P2 w.r.t. Wi are non-negative.
Suppose they are σ 1

=
(
σ 1

1 , σ 1
2

)
and σ 2

=
(
σ 2

1 , σ 2
2

)
, respectively. Then, we get,

d0 = B[p]
(
σ 1, σ 1) , d1 = B[p]

(
σ 1, σ 2) , d2 = B[p]

(
σ 2, σ 2) .

Since polar forms are multi-affine, we get

d6 =
1
6

(2d2 − d1) =
1
6

B[p]
(
2σ 2

− σ 1, σ 2) ,
nd the barycentric coordinates 2σ 2

− σ 1 corresponding to 2P2 − P1 w.r.t Wi , i.e.,

2P2 − P1 =
(
2σ 2

1 − σ 1
1

)
Wi,1 +

(
2σ 2

2 − σ 1
2

)
Wi,2.

ince Wi,2 =
4
3ξi,1 −

1
3 xi = 2P2 − P1, then, 2σ 2

− σ 1 are the barycentric coordinates corresponding to the point
Wi,2 ∈ Wi , which means that 2σ 2

− σ 1 are non negative.
Then, it follows that 2d2 − d1 ≥ 0, and therefore, d3 =

1
6 (3d2 + 2 (2d2 − d1)), d4 =

1
3 (2 (2d2 − d1)) and

5 =
1
3 (2d2 − d1) are all non-negative. Following the same strategy, we can prove also that d−3, d−4, d−5, d−6

0. □

Any B-spline-like Bi,α is related to a quadratic Bernstein polynomial, and the coefficients ci,α , |α| = 2,
orresponding to Bi,α are B-ordinates of a quadratic polynomial defined on the interval Wi called control polynomial
.r.t. the knot xi and defined as

Ti (x) :=

∑
|α|=2

ci,α B
2
Wi ,α

(x), x ∈ Wi .

he following result justifies the name.

roperty 7. The polynomial Ti is tangent to the spline s ∈ S2
3

(
X ref

n

)
at xi .

roof. For s ∈ S2
3

(
X ref

n

)
and a = 0, 1, it holds

s( j) (xi ) =

∑
|α|=2

ci,α γ
j

i,α =

∑
|α|=2

ci,α D jB2
Wi ,α

(x) = T ( j)
i (xi ),

nd the claim follows. □

.3. B-spline-like representation

This subsection aims to derive the coefficients of (6) for an interpolation spline.
Suppose that s ∈ S2

3

(
X ref

n

)
is determined by the Hermite interpolation problem (5). The evaluation of s( j),

≤ j ≤ 2, at xi yields the linear system⎛⎝γ 0
i,(2,0) γ 0

i,(1,1) γ 0
i,(0,2)

γ 1
i,(2,0) γ 1

i,(1,1) γ 1
i,(0,2)

2 2 2

⎞⎠⎛⎝ci,(2,0)
ci,(1,1)

⎞⎠ =

⎛⎝ fi,0
fi,1

⎞⎠ .
γi,(2,0) γi,(1,1) γi,(0,2) ci,(0,2) fi,2
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he definition of the parameters γ
j

i,α in (8) involves the values of Bernstein polynomials and those derivatives. Since
they are linear independent, the solution of the linear system is then unique, and given by

ci,(2,0) = fi,0 + fi,1
(
Wi,1 − xi

)
+

m
4(m − 1)

fi,2
(
Wi,1 − xi

)2
,

ci,(1,1) = fi,0 +
1
2

fi,1
(
Wi,1 + Wi,2 − 2xi

)
+

m
4(m − 1)

fi,2
(
Wi,1 − xi

) (
Wi,2 − xi

)
, (10)

ci,(0,2) = fi,0 + fi,1
(
Wi,2 − xi

)
+

m
4(m − 1)

fi,2
(
Wi,2 − xi

)2
.

With hi−1 := xi − xi−1 and hi := xi+1 − xi , they can be simplified to get

ci,(2,0) = fi,0 +
4

81
hi−1

(
−9 fi,1 +

m
m − 1

hi−1 fi,2

)
,

ci,(1,1) = fi,0 +
2
9

fi,1 (hi − hi−1) +
−4m

81(m − 1)
hi−1hi fi,2,

ci,(0,2) = fi,0 +
4

81
hi

(
9 fi,1 +

m
m − 1

hi fi,2

)
.

ny cubic spline s ∈ S2
3

(
X ref

n

)
can be uniquely expressed in the form (6). Thus, in the BB-representation of a

olynomial p, the coefficients ci,α of s can be expressed in terms of polar form values of a polynomial obtained
y restricting s to a specific sub-interval.

roposition 8. For m = 3, let s ∈ S2
3

(
X ref

n

)
. Denote by s|[xi ,ξi,1] the restriction of s to the interval [xi , ξi,1]. Then,

he coefficients ci,α in the B-splines representation (6) of s can be expressed as

ci,(2,0) = B
[
s|[xi ,ξi,1]

] (
xi , W̃i,1, W̃i,1

)
,

ci,(1,1) = B
[
s|[xi ,ξi,1]

] (
xi , W̃i,1, W̃i,2

)
,

ci,(0,2) = B
[
s|[xi ,ξi,1]

] (
xi , W̃i,2, W̃i,2

)
,

here W̃i,1 :=
3
2 Wi,1 −

1
2 xi and W̃i,2 :=

3
2 Wi,2 −

1
2 xi .

Proof. From (3), the values of the above blossoms are expressed in terms of function and derivative values up to
order 2 of s at xi as

B
[
s|[xi ,ξi,1]

] (
xi , W̃i,1, W̃i,1

)
= B

[
s|[xi ,ξi,1]

] (
xi ,

3
2

Wi,1 −
1
2

xi ,
3
2

Wi,1 −
1
2

xi

)
= B

[
s|[xi ,ξi,1]

] (
xi ,

3
2

(
Wi,1 − xi

)
+ xi ,

3
2

(
Wi,1 − xi

)
+ xi

)
=

9
4

B
[
s|[xi ,ξi,1]

] (
xi , Wi,1 − xi , Wi,1 − xi

)
+ 3B

[
s|[xi ,ξi,1]

] (
xi , Wi,1 − xi , xi

)
+ B

[
s|[xi ,ξi,1]

]
(xi , xi , xi )

=
9
4

1
6

D2
Wi,1−xi

s(xi ) + 3
1
3

DWi,1−xi s(xi ) + s(xi )

=
3
8

s ′′(xi )
(
Wi,1 − xi

)2
+ s ′(xi )

(
Wi,1 − xi

)
+ s(xi ).

y the same technique, we can get

B
[
s|[x ,ξ ]

] (
xi , W̃i,2, W̃i,2

)
=

3
s ′′(xi )

(
Wi,2 − xi

)2
+ s ′(xi )

(
Wi,2 − xi

)
+ s(xi ),
i i,1 8
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nd,

B
[
s|[xi ,ξi,1]

] (
xi , W̃i,1, W̃i,2

)
=

3
8

s ′′(xi )
(
Wi,1 − xi

) (
Wi,2 − xi

)
+

1
2

s ′(xi )
(
Wi,1 + Wi,2 − 2xi

)
+ s(xi ).

he expressions obtained are the same as the ones in (10) for m = 3, which completes the proof. □

After this result, a Marsden identity is obtained: any spline s ∈ S2
3

(
X ref

n

)
can be expressed compactly as

s =

n∑
i=0

∑
|α|=2

B
[
s|[xi ,ξi,1]

] (
xi , W̃i,1 [α1] , W̃i,2 [α2]

)
Bi,α. (11)

. Super-convergent quasi-interpolants

In what follows, we aim to construct some super-convergent quasi-interpolation operators that map an element
f the linear space of polynomials of degree less than or equal to m ≥ 3 to an element of S2

3

(
X ref

n

)
.

Define

Qi,ℓ :=
m
2

Wi,ℓ + (1 −
m
2

)xi , ℓ = 1, 2,

Then, we have the following result.

Theorem 9. For any integer m ≥ 3 and p ∈ Pm , let Qm p be defined as

Qm p =

n∑
i=0

∑
|α|=2

B [p]
(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
Bi,α. (12)

hen, Qm p ∈ S2
3

(
X ref

n

)
and Qm p = p for all p ∈ P3.

roof. We will prove that

D j Qm p(xi ) = D j p(xi ), i = 0, . . . , n, 0 ≤ j ≤ 2, for all p ∈ Pm .

e have

Qm p(xi ) =

∑
|α|=2

B [p]
(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
Bi,α(xi ).

efine

qxi (x) :=

∑
|α|=2

B [p]
(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
Bi,α(x).

hen,

D j qxi (x) =

(
2
m

) j ( j
m

)( j
2

) ∑
|α|=2

B [p]
(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
B2

Wi ,α
(x).

sing Proposition 3, we define

q̃(x) := B [p]
(

xi [m − 2],
(m

2
x +

(
1 −

m
2

)
xi

)
[2]
)

,

Function q̃ can be written on Wi as

q̃(x) =

∑
|α|=2

B
[
q̃
] (

Wi,1[α1], Wi,2[α2]
)
B2

Wi ,α
(x)

=

∑
B [p]

(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
B2

Wi ,α
(x).
|α|=2
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herefore,

D j p(xi ) =

(
2
m

) j ( j
m

)( j
2

) D j q̃(xi ) = D j qxi (xi ) = D j Qm p(xi ),

and the proof is complete. □

Remark 2. To get the expression of W̃i,ℓ, ℓ = 1, 2, it suffices to choose m = 3.

Next, we define from (12) several quasi-interpolation operators Qm : F (I ) −→ S2
3

(
X ref

n

)
giving quasi-

interpolants Qm ( f ) = Qm f having the form

Qm f :=

n∑
i=0

∑
|α|=2

µm
i,α ( f ) Bi,α, (13)

here µm
i,α are linear functionals such that

Qm p = p for all p ∈ P3. (14)

Here F (I ) stands for an appropriate space of functions defined on I that includes polynomials of any degree.

.1. Differential quasi-interpolation operator

Let u, v, w be three points in R. Consider a polynomial p ∈ Pm , m ≥ 3. By using (3), we have

B [p] (u [m − 2] , v, w) := p (u) +
1
m

(Dv−u p (u) + Dw−u p (u)) +
1

m (m − 1)
D2

(v−u)(w−u) p (u) .

hen, we extend these results to the space F (I ) = C2 (I ) to get

N [ f ] (u [m − 2] , v, w) := f (u) +
1
m

(Dv−u f (u) + Dw−u f (u)) +
1

m (m − 1)
D2

(v−u)(w−u) f (u) ,

from which we define linear functionals providing differential quasi-interpolation operators.

Theorem 10. Define

µm
i,α ( f ) := N [ f ]

(
xi [m − 2] , Qi,1 [α1] , Qi,2 [α2]

)
. (15)

Then, the operator Qm defined by (13) satisfies (14).

roof. It is enough to notice that

N [p]
(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
= B [p]

(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
or all p ∈ Pm , m ≥ 3. □

.2. Quasi-interpolation based on point values

In order to construct a super-convergent discrete quasi-interpolation operator based on point values, let tm
i,α,k ,

= 0, . . . , m, be m + 1 distinct points in the support of each Bi,α , i = 0, . . . , n, and let Lm
i,α,k ∈ Pm , k = 0, . . . , n,

he associated Lagrange polynomials, i.e. they satisfy the conditions Lm
i,α,k

(
tm
i,α, j

)
= δk, j , j, k = 0, . . . , m, δk, j

eing the Kronecker’s delta. The polynomial

Im ( f ) :=

m∑
k=0

f
(
tm
i,α,k

)
Lm

i,α,k

nterpolates f at those points. In the following theorem, we give an explicit formula of the coefficients µm
i,α ( f ) in(

m
)

erms of f ti,α,k .
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heorem 11. For i = 1, . . . , n, k = 0, . . . , m, define

tm
i,(2,0),k := βm

i,(2,0),k Qi,1 +
(
1 − βm

i,(2,0),k

)
xi ,

tm
i,(1,1),k := βm

i,(1,1),k Qi,1 +
(
1 − βm

i,(1,1),k

)
Qi,2,

tm
i,(0,2),k := βm

i,(0,2),k Qi,2 +
(
1 − βm

i,(0,2),k

)
xi ,

where xi := β̄i Qi,1 + (1 − β̄i )Qi,2. Then, the quasi-interpolation operator Qm defined by (13) with

µm
i,α ( f ) :=

m∑
k=0

qm
i,α,k f

(
tm
i,α,k

)
(16)

satisfies (14), if and only if

qm
i,(2,0),k =

1
m

∑m
s1,s2=0
s1̸=s2̸=k

(
1 − βm

i,(2,0),s1

) (
1 − βm

i,(2,0),s2

)∏m
n=0

n ̸=s1,s2,k
−βm

i,(2,0),n∏m
j=0
j ̸=k

(
βm

i,(2,0),k − βm
i,(2,0), j

) ,

qm
i,(1,1),k =

1
m(m − 1)

∑m
s1,s2=0
s1̸=s2̸=k

(
1 − βm

i,(1,1),s1

)
− βm

i,(1,1),s2

∏m
n=0

n ̸=s1,s2,k

(
β̄i − βm

i,(1,1),n

)
∏m

j=0
j ̸=k

(
βm

i,(1,1),k − βm
i,(1,1), j

) ,

qm
i,(0,2),k =

1
m

∑m
s1,s2=0
s1̸=s2̸=k

(
1 − βm

i,(0,2),s1

) (
1 − βm

i,(0,2),s2

)∏m
n=0

n ̸=s1,s2,k
−βm

i,(0,2),n∏m
j=0
j ̸=k

(
βm

i,(0,2),k − βm
i,(0,2), j

) .

roof. According to (12), we have

µm
i,α ( f ) = B [Im ( f )]

(
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
,

=

m∑
k=0

f
(
tm
i,α,k

)
B
[
Lm

i,α,k

] (
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
.

hen, qm
i,α,k = B

[
Lm

i,α,k

] (
xi [m − 2], Qi,1[α1], Qi,2[α2]

)
.

The values to qm
i,α,k , k = 0, . . . , m, follow from Proposition 1, and the proof is complete. □

Next, we provide an example of discrete quasi-interpolation operator based on point values for a uniform partition.
ssociated with the knot x0,

µ3
0,(2,0) ( f ) = f (x0) ,

µ3
0,(1,1) ( f ) = −

2
9

f (x0) +
2
9

f (x0 + h0) + 2 f
(

x0 +
1
3

h0

)
− f

(
x0 +

2
3

h0

)
,

µ3
0,(0,2) ( f ) = −

1
9

f (x0) −
2
9

f (x0 + h0) +
2
3

f
(

x0 +
1
3

h0

)
+

2
3

f
(

x0 +
2
3

h0

)
.

For the interior knots,

µ3
i,(2,0) ( f ) =

4
27

f (xi−1) +
47
27

f (xi ) −
32
27

f
(

xi + xi+1

2

)
+

8
27

f (xi+1) ,

µ3
i,(1,1) ( f ) =

−2
27

f (xi−1) +
31
27

f (xi ) −
2

27
f (xi+1),

µ3
i,(0,2) ( f ) = −

1
27

f (xi ) +
32
27

f
(

xi + xi+1

2

)
−

4
27

f (xi+1).

inally, the coefficients of the functionals µm
n,α associated with the boundary knot xn are symmetric to those
ssociated with x0.
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.3. Discrete quasi-interpolation operator based on polarization

Polarization with constant coefficients can be used to obtain functions in the form of combination of discrete
alues. The polarization formula is given by

B [p] (u1, . . . , um) =
1

m!

∑
S⊂{1,..., m}

k=|S|

(−1)m−k km p

(
1
k

∑
i∈S

ui

)
.

We extend it to F (I ) = C (I ) in order to define

M [ f ] (u1, . . . , um) :=
1

m!

∑
S⊂{1,..., m}

k=|S|

(−1)m−k km f

(
1
k

∑
i∈S

ui

)
.

From Marsden’s identity, we have the following result.

Theorem 12. The quasi-interpolation operator Qm defined by (13) with

µm
i,α ( f ) = M [ f ]

(
xi [m − 2], Qi,1[α1], Qi,1[α1]

)
(17)

atisfies (14).

.4. Error estimate of super-convergent quasi-interpolation operators

The exactness on P3 of the differential and discrete operators Qm , m ≥ 3, defined above ensures for functions
f in C4 (I ) the existence of constants Ck independent of m and f such thatQ(k)

m f − f (k)


∞, I ≤ Ck h̄4−k
 f (4−k)


∞, I ,

where, ∥·∥∞, I stands for the infinity norm on the interval I and h̄ := maxi hi .
The following result claims the super-convergence of Qm at the break-points of Xn .

Proposition 13. For all i = 0, . . ., n, and for any function f in Cm+1 (I ) it holds⏐⏐Q(k)
m f (xi ) − f (k) (xi )

⏐⏐ = O
(
h̄m+1−k) , k = 0, 1, 2.

roof. Let m be an integer greater than or equal to 3. Let f be a function in Cm+1 (I ). The Taylor expansion of
f at a point xi,0 in the neighborhood of xi , i = 0, . . . , n, is given by

f (x) =

m∑
j=0

f ( j)(xi,0)
j !

(
x − xi,0

) j
+ O

((
x − xi,0

)m+1
)

.

he operator Qm is exact on the space of cubic polynomials, then,

Qm f (x) =

3∑
j=0

f ( j)(xi,0)
j !

(
x − xi,0

) j
+

m∑
j=4

f ( j)(xi,0)
j !

Qm

((
x − xi,0

) j
)

+ O
((

x − xi,0
)m+1

)
.

herefore,

Qm f (x) − f (x) =

m∑
j=4

f ( j)(xi,0)
j !

(
Qm

((
x − xi,0

) j
)

−
(
x − xi,0

) j
)

+ O
((

x − xi,0
)m+1

)
.

f we denote g j =
(
x − xi,0

) j , j = 4, . . . , m, and using Theorem 9, we get

Q(k)
m g j (xi ) = g(k)

j (xi ), k = 0, 1, 2.
hich concludes the proof. □
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Fig. 4. Plots of the tests functions: f1 (left), f2 (middle) and f3 (right).

Table 1
Estimated errors of the differential QI (15) for functions f1, f2 and f3 and NCOs with n = 10ℓ, ℓ = 1, . . . , 9.

n Ed f,3,n( f1) NCO Ed f,3,n( f2) NCO Ed f,3,n( f3) NCO

10 3.5239 × 10−3 – 1.2861 × 10−3 – 5.5739 × 10−3 –
20 2.8618 × 10−4 3.6222 9.5743 × 10−5 3.7477 4.0099 × 10−4 3.7970
30 7.1933 × 10−5 3.4056 1.9565 × 10−5 3.9163 8.9648 × 10−5 3.6946
40 2.3741 × 10−5 3.8533 6.2143 × 10−6 3.9866 3.2991 × 10−5 3.4748
50 9.7510 × 10−6 3.9876 2.5611 × 10−6 3.9723 1.3853 × 10−5 3.8884
60 5.0067 × 10−6 3.6560 1.2503 × 10−6 3.9325 6.6813 × 10−6 3.9998
70 2.7104 × 10−6 3.9809 6.6895 × 10−7 4.05763 3.7777 × 10−6 3.6989
80 1.6092 × 10−6 3.9044 3.9255 × 10−7 3.9919 2.1791 × 10−6 4.1202
90 9.0493 × 10−7 4.8874 2.4106 × 10−7 4.1396 1.3219 × 10−6 4.2438

5. Numerical tests

This section provides some numerical results to illustrate the performance of the above quasi-interpolation
perators. To this end, we will use the test functions

f1(x) =
3
4

e−2(9x−2)2
−

1
5

e−(9x−7)2
−(9x−4)2

+
1
2

e−(9x−7)2
−

1
4 (9x−3)2

+
3
4

e
1

10 (−9x−1)− 1
49 (9x+1)2

,

f2(x) = e−x sin(5πx),

nd,

f3(x) =
1
2

x cos4 (4 (x2
+ x − 1

))
whose plots appear in Fig. 4.

Let us consider the interval I = [0, 1]. The tests are carried out for a sequence of uniform mesh In associated
with the break-points ih, i = 0, . . ., n, where h =

1
n .

The quasi-interpolation error is estimated as

Em,n := max
0≤ℓ≤200

|Qm f (xℓ) − f (xℓ) |, m = 3, 4, 5.

here xℓ, ℓ = 0, . . ., 200, are equally spaced points in I . Ed f,m,n , Edi,m,n , Edp,m,n represent the estimated error
Em,n for the differential quasi-interpolant (15), the discrete quasi-interpolant (16) and the discrete one based on
polarization (17), respectively. The estimated numerical convergence order (NCO) is given by the rate

NC O :=

log
(
Em,n1
Em,n2

)
log

(
n2
n1

) .

he estimated errors relative to the differential quasi-interpolant (15) and the NCOs for f1, f2 and f3 are shown in

able 1. They confirm the theoretical results.
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Table 2
Estimated errors of the discrete QI (16) for functions f1, f2 and f3 and NCOs with n = 10ℓ, ℓ = 1, . . . , 9.

n Edi,3,n( f1) NCO Edi,3,n( f3) NCO Edi,3,n( f2) NCO

10 1.8646 × 10−2 – 2.9778 × 10−2 – 5.2251 × 10−3 –
20 1.1630 × 10−3 4.0030 1.9875 × 10−3 3.9052 3.2841 × 10−4 3.9918
30 2.3050 × 10−4 3.9916 3.9273 × 10−4 3.9991 7.0841 × 10−5 3.7828
40 8.5906 × 10−5 3.4308 1.2000 × 10−4 4.1211 2.0878 × 10−5 4.2468
50 3.3864 × 10−5 4.1717 4.5507 × 10−5 4.3454 8.1204 × 10−6 4.2319
60 1.7205 × 10−5 3.7140 2.4659 × 10−5 3.3605 4.1315 × 10−6 3.7062
70 9.5539 × 10−6 3.8160 1.3593 × 10−5 3.8634 2.2698 × 10−6 3.8856
80 5.3656 × 10−6 4.3206 7.3688 × 10−6 4.5859 1.3000 × 10−6 4.1737
90 3.1927 × 10−6 4.4074 4.9837 × 10−6 3.3203 8.6994 × 10−7 3.4104

Table 3
Estimated errors of the discrete QI (17) for function f1 and NCOs with n = 10ℓ, ℓ = 1, . . . , 9, and m = 3, 4, 5.

n Edp,3,n( f1) NCO Edp,4,n( f1) NCO Edp,5,n( f1) NCO

10 4.2245 × 10−3 – 6.3612 × 10−3 – 1.9123 × 10−3 –
20 3.6695 × 10−4 3.2213 1.4630 × 10−4 5.4423 5.1646 × 10−5 5.2105
30 7.9143 × 10−5 3.7832 1.3716 × 10−5 5.8379 6.0072 × 10−6 5.3061
40 2.5806 × 10−5 3.8953 2.4968 × 10−6 5.9216 1.1658 × 10−6 5.6989
50 1.0717 × 10−5 3.9380 6.6135 × 10−7 5.9535 3.1758 × 10−7 5.8280
60 5.2073 × 10−6 3.9589 2.2273 × 10−7 5.9692 1.0855 × 10−7 5.8880
70 2.8234 × 10−6 3.9708 8.8626 × 10−8 5.9781 4.3575 × 10−8 5.9210
80 1.6598 × 10−6 3.9781 3.9862 × 10−8 5.9836 1.9710 × 10−8 5.9412
90 1.0383 × 10−6 3.9830 1.9692 × 10−8 5.9872 9.7747 × 10−9 5.9545

Table 4
Estimated errors of the discrete QI (17) for function f2 and NCOs with n = 10ℓ, ℓ = 1, . . . , 9, and m = 3, 4, 5.

n Edp,3,n( f2) NCO Edp,4,n ( f2) NCO Edp,5,n( f2) NCO

10 2.1886 × 10−3 – 5.6590 × 10−4 – 2.3397 × 10−4 –
20 1.4931 × 10−4 3.8735 9.3265 × 10−6 5.9230 4.4871 × 10−6 5.7043
30 2.9963 × 10−5 3.9610 8.2685 × 10−7 5.9758 4.0812 × 10−7 5.9127
40 9.5327 × 10−6 3.9809 1.4766 × 10−7 5.9880 7.3529 × 10−8 5.9575
50 3.9145 × 10−6 3.9886 3.8771 × 10−8 5.9929 1.9384 × 10−8 5.9747
60 1.8904 × 10−6 3.9924 1.2995 × 10−8 5.9952 6.5114 × 10−9 5.9832
70 1.0212 × 10−6 3.9946 5.1563 × 10−9 5.9966 2.5870 × 10−9 5.9881
80 5.9895 × 10−7 3.9959 2.3149 × 10−9 5.9974 1.1624 × 10−9 5.9911
90 3.7406 × 10−7 3.9968 1.1421 × 10−9 5.9980 5.7384 × 10−10 5.9931

In Table 2, the estimated errors of discrete quasi-interpolants (16) for the functions f1, f2 and f3 are shown, as
ell as the corresponding NCOs.
In Tables 3–5, the errors and NCOs relative to f1, f2 and f3, respectively, given by the polarization-based

iscrete spline quasi-interpolant (17) for different values of m are shown. The results are in good agreement with
he theoretical ones.

. Conclusion

In this paper, we dealt with the space of C2-continuous cubic splines defined on a partition endowed with a
pecific refinement. We have constructed a B-spline basis, having the usual properties required for its use in CAGD
nd developed a theory of control polynomials which is used to establish a Marsden identity, from which various
amilies of super-convergent quasi-interpolation operators have been defined. The numerical tests show the good

erformance of the defined quasi-interpolants.
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Table 5
Estimated errors of the discrete QI (17) for function f3 and NCOs with n = 10ℓ, ℓ = 1, . . . , 9, and m = 3, 4, 5.

n Edp,3,n( f3) NCO Edp,4,n( f3) NCO Edp,5,n( f3) NCO

10 2.8071 × 10−3 – 5.8048 × 10−3 – 2.3020 × 10−3 –
20 2.0400 × 10−4 3.7824 1.5420 × 10−4 5.2343 4.6572 × 10−5 5.6272
30 4.4729 × 10−5 3.7426 1.4793 × 10−5 5.7812 6.1440 × 10−6 4.9955
40 1.5111 × 10−5 3.7722 2.7143 × 10−6 5.8940 1.2327 × 10−6 5.5833
50 6.3742 × 10−6 3.8682 7.2158 × 10−7 5.9372 3.4059 × 10−7 5.7645
60 3.1227 × 10−6 3.9136 2.4349 × 10−7 5.9584 1.1728 × 10−7 5.8473
70 1.7015 × 10−6 3.9388 9.7005 × 10−8 5.9703 4.7288 × 10−8 5.8925
80 1.0035 × 10−6 3.9544 4.3664 × 10−8 5.9778 2.1450 × 10−8 5.9201
90 6.2909 × 10−7 3.9647 2.1582 × 10−8 5.9827 1.0658 × 10−8 5.9383
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