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We study the quasinormal frequencies of three effective geometries of nonrotating regular black holes
derived from loop quantum gravity. Concretely, we consider the Ashtekar-Olmedo-Singh and two Gambini-
Olmedo-Pullin prescriptions. We compute the quasinormal frequencies of axial and polar perturbations
adopting a WKB method. We show that they differ from those of classical general relativity and, more
importantly, that isospectrality is broken. Nevertheless, these deviations are tiny, even for microscopic black
holes, and they decay following an inverse power lawof the size of themass of the black holes. For the sake of
completeness, we also analyze scalar and vector perturbations, reaching similar conclusions.
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I. INTRODUCTION

Quasinormal modes are one of the most interesting
physical aspects of black hole space-times. They describe
the behavior of these compact objects when they are
perturbed, for instance, during the last stages of the ring-
down regime after merging. These perturbations produce
ripples in the fabric of space-time that propagate with a
complex frequency outwards to infinity and inwards to the
horizon of the black hole. The real part of these frequencies
corresponds to time oscillations, while the imaginary one
produces an exponential dissipation of the perturbations in
time. Furthermore, in classical general relativity, these
complex frequencies only depend on the mass, charge,
and angular momentum of the black hole. In this way, they
provide a way to test the validity of this classical descrip-
tion, as well as the consistency of modified theories of
gravity and models motivated by quantum gravity theories.
The direct detection of these frequencies is expected to be
possible with sufficient precision in current gravitational
wave detectors, such as LIGO and Virgo [1].
Perturbation theory of (nonrotating) spherically sym-

metric vacuum black holes was initially discussed by
T. Regge and J.A. Wheeler [2], for axial perturbations.
Later on, Zerilli [3] provided a similar formulation of polar
perturbations. In both cases, they correspondingly derived a

second order differential equation for the radial part, which
can be understood as a Schrödinger-like equation with a
potential. Quasinormal modes were then discussed by
Chandrasekhar and Detweiler [4]. But more interestingly,
they proved the isospectrality of axial and polar perturba-
tions, namely, that they share the same quasinormal
frequencies, despite each perturbation obeys a different
radial equation. Actually, isospectrality has been also
shown in Reissner-Nordström metric, and recently, this
question was clarified for Schwarzschild-(anti)-de-Sitter
geometries in [5]. Moreover, recent work states that
isospectrality of perturbations of Schwarzschild black holes
has actually its origin in the Darboux covariance of the
infinite set of possible master equations [6].
Interestingly, in some modified theories of gravity,

isospectrality is violated (see for instance [7–9]), and
general analyses show that isospectrality is actually very
fragile [10,11]. It has also been shown to be the case, for
instance, in some effective geometries within loop quantum
gravity [12] (see [13] for a review of this quantization
program). Recently, other analysis [14–16] that calculated
quasinormal frequencies of scalar, vector, and (axial) tensor
perturbations for effective geometries in loop quantum
gravity did not discuss if isospectrality remains unbroken.
This is an interesting question given that recent works on
the instability of quasinormal modes [17,18] show that the
quasinormal mode spectrum of black holes is unstable
under quite generic perturbations. On the other hand, a
number of authors have suggested that quasinormal modes

*corral.martinez@ubi.pt
†javolmedo@ugr.es

PHYSICAL REVIEW D 105, 064053 (2022)

2470-0010=2022=105(6)=064053(10) 064053-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6776-561X
https://orcid.org/0000-0002-8722-0262
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.064053&domain=pdf&date_stamp=2022-03-28
https://doi.org/10.1103/PhysRevD.105.064053
https://doi.org/10.1103/PhysRevD.105.064053
https://doi.org/10.1103/PhysRevD.105.064053
https://doi.org/10.1103/PhysRevD.105.064053


play a central role in the understanding of the black hole
area spectrum [19–21]. All this indicates that quasinormal
mode physics might be a window to probe observationally
fundamental high-frequency (even Planck scale) physics in
the near future.
In this paper we compute the fundamental and some few

overtones of quasinormal frequencies of scalar, vector and
tensor perturbations (axial and polar), of three effective
geometries of regular black holes in loop quantum gravity.
In particular, we will focus on the Ashtekar-Olmedo-Singh
(AOS) effective geometries [22,23] and, on the other hand,
on the Gambini-Olmedo-Pullin (GOP) prescriptions sug-
gested in [24,25]. We show that isospectrality of axial and
polar quasinormal modes of these prescriptions is violated.
However, this violation is tiny, as well as deviations from
general relativity, even for very small black hole masses (a
few thousands of the Planck mass), very close to the
limiting regime of validity of those effective models.1

Actually, we see that quantum corrections to the quasi-
normal frequencies decay universally with a given power of
the mass of the black hole.
The paper is organized as follows. In Sec. II we introduce

the effective geometries that will be studied in this manu-
script. Section III contains the main findings about the
computation of quasinormal frequencies (fundamental
mode and a few overtones) of axial and polar perturbations,

and discusses if isospectrality is broken. We conclude in
Sec. IV. For the sake of completeness, we added
Appendix Awhere we compute a few quasinormal frequen-
cies of scalar and vector perturbations; Appendix B sum-
marizes the implementation of Padé approximants in the
WKB method in order to improve its accuracy; and
Appendix C contains tables of quasinormal frequencies
of scalar, vector, and tensor (axial and polar) perturbations,
as well as an error estimation of the WKB method.

II. SPHERICALLY SYMMETRIC EFFECTIVE
GEOMETRIES

We will focus on static spherically symmetric (effective)
geometries described by the line element

ds2 ¼ −GðrÞdt2 þ FðrÞdr2 þHðrÞdΩ2; ð1Þ

with dΩ2 ¼ dθ2 þ sin2 θdφ2 the standard line element of
the unit round sphere. Among several effective geometries
within loop quantum gravity, we will focus here on three
recent proposals:

(i) Ashtekar-Olmedo-Singh (AOS): The effective
geometries proposed in [22] (see [23] for additional
details) are characterized by a space-time line
element as in (1) where

GAOSðrÞ ¼
�
r
rS

�
2ϵ ð1 − ðrSr Þ1þϵÞð2þ ϵþ ϵðrSr Þ1þϵÞ2ðð2þ ϵÞ2 − ϵ2ðrSr Þ1þϵÞ

16ð1þ δ2cL2
0
γ2r2S

16r4 Þð1þ ϵÞ4
;

FAOSðrÞ ¼
�
1þ δ2cL2

0γ
2r2S

16r4

� ðϵþ ð rrSÞ1þϵð2þ ϵÞÞ2
ðð rrSÞ1þϵ − 1Þðð rrSÞ1þϵð2þ ϵÞ2 − ϵ2Þ ;

HAOSðrÞ ¼ r2
�
1þ γ2L2

0δ
2
cr2S

16r4

�
; ð2Þ

with r ∈ ½rS;∞�, rS ¼ 2Gm is the Schwarzschild
radius in the radial coordinate r,

Loδc ¼
1

2

�
γΔ2

4π2m

�
1=3

;

ϵþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

� ffiffiffiffi
Δ

p
ffiffiffiffiffiffi
2π

p
γ2m

�2=3
s

; ð3Þ

are quantum parameters, with L0 playing the role of
an infrared regulator, γ ¼ 0.2375 is the Immirzi
parameter, and Δ ¼ 5.17l2

Pl is the area gap (mini-
mum nonzero eigenvalue of the area operator in loop
quantum gravity). This effective geometry was

shown to be valid for macroscopic black holes,
namely, at least black holes with masses a few orders
of magnitude larger than the Planck mass MPl ¼ffiffiffiffiffiffiffiffiffi
ℏ=G

p
or larger.

(ii) Gambini-Olmedo-Pullin (GOP): These effective
geometries were given in [24,25] (see [29–31] for
additional details). Their space-time line element of
the form (1) is characterized by

Gα
GOPðrÞ¼

�
1−

rS
rþ r0

þα
Δ̃
4π

r4S
ðrþ r0Þ6ð1þ rS

rþr0
Þ2
�
;

Fα
GOPðrÞ¼

ð1þ δx
2ðrþr0ÞÞ2

ð1− rS
rþr0

þα Δ̃
4π

r4S
ðrþr0Þ6ð1þ rS

rþr0
Þ2Þ

;

HGOPðrÞ¼ ðrþ r0Þ2; ð4Þ
1A more realistic description of Planckian black holes in loop

quantum gravity requires additional ingredients from the full
theory [26–28].
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with r ∈ ½rH;∞� where rH represents the radial
position of the black hole horizon on these effective
geometries (for instance, if α ¼ 0 then rH ¼ rS − r0
with rS ¼ 2Gm), and

r0 ¼
�
2GmΔ̃
4π

�
1=3

; ð5Þ

where Δ̃ ¼ 21.77l2
Pl is the area gap in loop quantum

gravity with unit Immirzi parameter (γ ¼ 1) and
δx ∈ ½l2

Pl=ð2r0Þ; r0� is a quantum parameter that
codifies the discreteness of the radial coordinate.
Here, we choose δx ¼ r0, as oppose to the choice
δx ¼ l2

Pl=ð2r0Þ that would give the smoothest ef-
fective geometry (we will also discuss this choice in
Sec. III). Besides, α is a parameter that takes the
values 0 or 1. If α ¼ 1, the resulting effective
geometry corresponds to the one initially proposed
in [24] (see also Ref. [32] for a similar proposal).
However, in [25], the choice α ¼ 0was suggested in
order to alleviate some undesirable slicing depend-
ence emerging in these effective geometries.2 Here,
we will consider both proposals, since the slicing
dependent corrections in the prescription α ¼ 1 are
negligible outside the horizon.

III. QUASINORMAL MODES

Besides the original studies of Refs. [2,3], gauge
invariant perturbations in spherically symmetric space-
times have been studied under the canonical framework
[33] (see also [34,35] for the nonvacuum case), and
adopting a 2þ 2 decomposition [36–39].3 They satisfy
second order differential hyperbolic equations. Their
time-dependence, since the background is static, can be
factorized out. Similarly, the background is spherically
symmetric. Hence, perturbations can be expanded in a basis
of scalar, vector and tensor spherical harmonics. Within this
decomposition, tensor modes can be classified in two
groups according to the tensor harmonics polarity: there
are axial (also denoted as odd, magnetic, or toroidal)
harmonics and polar (or also known as even, electric, or
poloidal) harmonics. At the end of the day, one is left with
the radial part of the second order differential equation,
which takes the form

∂2ψω̃;l

∂r2� þ ½ω̃2 − VlðrÞ�ψω̃;l ¼ 0; ð6Þ

with ω̃ the (dimensionful) frequency and VlðrÞ an effective
potential. Besides, r� is the tortoise coordinate defined as4

dr� ¼
ffiffiffiffiffiffiffiffiffiffi
FðrÞ
GðrÞ

s
dr: ð7Þ

For instance, in the Schwarzschild classical space-time, it
takes the form

r� ¼ rþ rS ln

�
r
rS

− 1

�
; ð8Þ

with r ∈ ðrS;∞Þ.
Quasinormal modes are solutions to Eq. (6) with

boundary conditions

ψn;lðrÞ ∝ e−iω̃n;lr� r� → þ∞;

ψn;lðrÞ ∝ eiω̃n;lr� r� → −∞; ð9Þ

which actually require that frequencies ω̃n;l belong to a
discrete subset of imaginary numbers, with the imaginary
part of ω̃n;l being positive. In order to compute these
quasinormal frequencies, we will adopt a WKB method. It
allows one to find approximate solutions to Eq. (6). Here,
one studies the solutions in three regions: the two covering
the intervals where the potential is negligible, namely, at
spatial infinity and close to the horizon, which amounts to
r� → �∞, and the central one, where the effective potential
reaches its peak. In the asymptotic regions, the solutions to
Eq. (6) are approximated by a linear combination of
exponential functions which are matched with the solutions
in the central region. Here, the potential is approximated by
a Taylor expansion. The corresponding solutions to this
approximated equation can be computed approximately.
Once the matching is performed, one relates the ingoing
and outgoing amplitudes, obtaining a pair of connection
formulas. Then, applying the boundary conditions (9) one
finally finds the following formula (see [40] for details) that
allows us to compute the complex quasinormal frequencies

ω̃2
n;l¼Vlðr̃Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

lðr̃Þ
q ��

nþ1

2

�
þ
XN
i¼2

ΛðiÞ
n;lðr̃Þ

�
: ð10Þ

The functions ΛðiÞ
n;lðr̃Þ codify high-order WKB corrections,

which depend exclusively on the derivatives of the potential
evaluated at the peak r̃ (the effective potentials considered
here have a single peak located at r̃ ≃ 3=2rS).

5 They have a

2Reference [16] takes into account α ¼ 1 for the computa-
tion of quasinormal frequencies.

3Despite [39] adopts the Regge-Wheeler gauge in their study,
the master equations derived there can be cast into a gauge
invariant formulation (see also [38]).

4Its definition is such that the 1þ 1 part of the space-time
metric, after ignoring the angular one, is conformal to a 1þ 1
Minkowski metric.

5The concrete value of r̃ not only depends on the type of
perturbation but also on the multipole l, and for the effective
geometries AOS and GOP, there is also an extra dependence on
the mass of the black hole.
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rather complicated expression but explicit formulas are
given in [40] up to third order and in [41] up to sixth order.
In addition to these high-order approximations, we consider
Padé approximants in order to increase the accuracy of our
computations (see Appendix B for details). We found that a
10th WKB order combined with Padé approximants gives
enough accuracy for our purposes. All the quasinormal
frequencies and error estimations have been computed
using the Mathematica code given in [42]. Moreover, we
report our numerical results in terms of dimensionless
frequencies defined as ωn;l ¼ ðrS=2GÞω̃n;l.

A. Axial perturbations

The potential of axial perturbations can be expressed in
terms of the metric components of the line element in
Eq. (1) as

ðaÞVlðrÞ ¼ GðrÞ
�
lðlþ 1Þ
HðrÞ − RðrÞ

�
; ð11Þ

where

RðrÞ ¼ 2

HðrÞ þ
1

FðrÞ
�
G0ðrÞH0ðrÞ
4GðrÞHðrÞ −

F0ðrÞH0ðrÞ
4FðrÞHðrÞ

−
3½H0ðrÞ�2
4H2ðrÞ þ H00ðrÞ

2HðrÞ
�
: ð12Þ

The primes denote derivative with respect to r.
This potential agrees with expressions given, for instance,
in [14,34,43] (however it differs from the one adopted
by [15]). For the Schwarzschild geometry, that we
denote in the following by GR, it agrees with the
standard result

ðaÞVGR
l ðrÞ ¼

�
1 −

2Gm
r

��
lðlþ 1Þ

r2
−
6Gm
r3

�
. ð13Þ

Here, we focus on generic static spherically symmetric
space-times. We ignore contributions from the (possibly
effective) matter sector that could modify the potential
ðaÞVlðrÞ and/or induce couplings with polar perturbations.
We expect that those contributions will be negligible with
respect to the ones already incorporated in our effective
description.
In Table I we show the dimensionless quasinormal

frequencies for the axial perturbations of GR, AOS and
GOP metrics. We denote them by the symbol ðaÞωn;l. In
both AOS and GOP metrics we take a black hole with
Schwarzschild radius rS ¼ 103lP. In the AOS geometry
this corresponds to a value of the characteristic parameter of
ϵ ≅ 2.848 × 10−3. For GOP we consider the two prescrip-
tions (α ¼ 0 and α ¼ 1). Both show a similar spectrum of
quasinormal frequencies. These values of the horizon
radius lay in the limiting regime where we expect that

these effective geometries still provide a reliable descrip-
tion. In all cases, our findings have enough accuracy to
show deviations from GR. Depending on the multipole l
and n, this deviation barely exceeds one part in one
thousand in the best case, even for these tiny black holes.
We also observe that these deviations decrease with
the mass of the black hole. For instance, in Fig. 1 we show,
for axial perturbations, the absolute differences
ΔðaÞωAOS

n;l ¼ððaÞωGR
n;l−ðaÞωAOS

n;l Þ and ΔðaÞωGOP;α¼0
n;l ¼ððaÞωGR

n;l −
ðaÞωGOP;α¼0

n;l Þ, of a given overtone, as functions of the
horizon radius of the black holes. Here we consider black
holes with rS ∈ ½1000lPl; 32000lPl�. We observe that
deviations from general relativity actually decrease with
the power ðrS=lPlÞ−2=3. Therefore, they are negligible for
macroscopic (i.e., solar mass) black holes. It is worth
mentioning that for the GOP prescriptions this behavior
depends on the choice of the quantum parameter δx. We
have also analyzed the choice δx ¼ l2

Pl=ð2r0Þ, which
amounts to smoother geometries and hence smaller quan-
tum corrections. Although here we do not show the results,
we checked that in this case quantum corrections in the
quasinormal frequencies decrease as ðrS=lPlÞ−4=3. For the
fundamental mode and other overtones we have observed
the same behavior discussed above.

B. Polar perturbations

For polar perturbations, the potential has a more
complicated expression than the axial ones. It takes the
form

FIG. 1. In this plot we show the deviation of the real (black) and
imaginary (red) parts of the quasinormal frequency n ¼ 0 and
l ¼ 4 of AOS (dashed line) and GOP with α ¼ 0 (solid line)
effective geometries with respect to general relativity. For this
frequency our numerical methods give good enough accuracy.
We do not show the GOP prescription with α ¼ 1 since it gives
qualitatively similar results than GOP one with α ¼ 0.
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ðpÞVlðrÞ¼
GðrÞðl−1Þ2ðlþ2Þ2

λlðrÞ2
�ðl−1Þðlþ2Þþ2

HðrÞ þRðrÞ

þ HðrÞRðrÞ2
ðl−1Þ2ðlþ2Þ2

�
ðl−1Þðlþ2ÞþHðrÞRðrÞ

3

��
;

ð14Þ

where RðrÞ is again given by (12) and λlðrÞ by
λlðrÞ ¼ ðl − 1Þðlþ 2Þ þHðrÞRðrÞ: ð15Þ

One can see that the expression above agrees with the one
obtained by [39] (but it disagrees with the potential of polar
perturbations derived in [12]). By direct inspection, one can
also check that it reduces to the standard one in the case of
the Schwarzschild classical geometry given by

ðpÞVGR
l ðrÞ¼

�
1−

2Gm
r

��
lðlþ1Þ

r2

−
6Gm
r3

r2ΛlðΛlþ2Þþ3Gmðr−GmÞ
ðrΛlþ3GmÞ2

�
; ð16Þ

with Λl ¼ ðl − 1Þðlþ 2Þ=2. In Table II we provide a few
dimensionless quasinormal frequencies for polar perturba-
tions of GR, AOS, and GOP metrics. We denote them by
ðpÞωn;l. We adopt the same choice of parameters than for
quasinormal frequencies of axial perturbations, namely, a
Schwarzschild radius rS ¼ 103lP and the two GOP pre-
scriptions (α ¼ 0 and α ¼ 1). Again, we see quantitative
deviations with respect to the Schwarzschild geometry, but
they barely exceed one part in one thousand. Their behavior is
very similar to the one of axial perturbations shown in Fig. 1.
Up to a small percent, their deviation with respect to general
relativity is of the same order of magnitude and it decays as
ðrS=lPlÞ−2=3. Again, for the GOP prescriptions, if instead we
choose δx ¼ l2

Pl=ð2r0Þ, quantum corrections decrease as
ðrS=lPlÞ−4=3. We also checked that several overtones and
the fundamental mode share all those properties.
Interestingly, our results also allow us to probe the

isospectrality of axial and polar quasinormal modes of these
effective geometries. Within our accuracy, we see isospec-
trality of quasinormal frequencies in the Schwarzschild
classical metric. This is not surprising, since it is well
known that quasinormal frequencies of Schwarzschild
classical geometries are isospectral. In our findings, for
these classical geometries, any differences between axial
and polarmodes are always someorders ofmagnitude below
our error estimation.However, this is not the case of theAOS
andGOP regular black holes.Here, isospectrality is broken.6

Although the violation is very weak, even for these micro-
scopic black holes, the lowest multipole n ¼ 0 and l ¼ 2

shows the strongest deviation from isospectrality, which
happens well above our numerical errors. In Fig. 2, as an
example, we show the deviation from isospectrality codified
in ðisoÞΔωAOS

n;l ¼ ððaÞωAOS
n;l − ðpÞωAOS

n;l Þ, for a given overtone,
as a function of the horizon radius of the black holes, and
similarly for the GOP (α ¼ 0) prescription—the GOP one
for α ¼ 1 shows qualitatively similar results. We consider
the radius to be in the interval rS ∈ ½1000lPl; 32000lPl�. We
observe that the violation of isospectrality also decreases
with the power ðrS=lPlÞ−2=3. This behavior seems to be
universal regardless of the choice of n and l within the
modes that we have been able to probe. Hence, for macro-
scopic black holes, isospectrality is expected to be preserved
except for very tiny deviations. In the case of the GOP
prescriptions, these corrections decrease as ðrS=lPlÞ−4=3 if
one chooses instead δx ¼ l2

Pl=ð2r0Þ.

IV. CONCLUSIONS

In this manuscript we study the quasinormal frequencies
of axial and polar perturbations of several black hole
effective geometries in loop quantum gravity. Concretely,
we consider the AOS prescription proposed in [22], as well
as the GOP prescriptions derived in [24,25]. The effective
spacetime line elements are characterized by the functions
given in (2) and (4), respectively. We compare them with
the Schwarzschild classical space-time. We provide expres-
sions for the effective potential of the radial equations of
axial and polar modes valid for general spherically sym-
metric geometries. Moreover, we complement our study
with a similar calculation of scalar and vector perturbations
in Appendix A.

FIG. 2. In this plot we show the deviation from isospectrality of
the (absolute value of the) real (black) and imaginary (red) parts
of the quasinormal frequency n ¼ 0 and l ¼ 4 of AOS (dashed
line) and GOP with α ¼ 0 (solid line) effective geometries. Our
numerical methods give good enough accuracy for this frequency.
The GOP prescription with α ¼ 1 gives qualitatively similar
results than α ¼ 0. Hence, we do not show it here.

6We estimate the error of our calculations in Table V. These
errors are qualitatively smaller than the isospectrality violation of
these effective geometries.
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In order to compute the quasinormal frequencies,
we adopt a high-order WKB approach supplemented
with Padé approximants that allow us to increase consid-
erably the accuracy of our calculations. We compare
classical and quantum corrected black holes with the same
black hole horizon radius. On the one hand, the difference
of the quasinormal frequencies between the classical and
effective geometries decays always for AOS and GOP
prescriptions as ðrS=lPlÞ−2=3 if, for the latter, one chooses
the quantum parameter δx ¼ r0 in the GOP prescriptions.
However, for theGOPone, these quantum corrections decay
as ðrS=lPlÞ−4=3 if one chooses δx ¼ l2

Pl=ð2r0Þ. Besides, we
have also demonstrated numerically that these effective
geometries break isopectrality. Namely, quasinormal
frequencies of axial and polar perturbations disagree, unlike
in the classical theory. However, this violation also dilutes
with the radius (i.e., ADM mass) of the black hole as
ðrS=lPlÞ−2=3 (for AOS andGOP prescriptions if δx ¼ r0), or
as ðrS=lPlÞ−4=3 (for the GOP prescriptions if δx¼l2

Pl=
ð2r0Þ). Hence, one should expect large deviations only
for microscopic black holes. Nevertheless for macroscopic
black holes, our study shows that they are negligible.
It is worth mentioning that we adopt an effective approach

that assumes a continuous background geometry and also a
particular choice for the effective potentials of the radial
equations of axial and polar perturbations that ignores
quantum fluctuations of the geometries and couplings origi-
nated from other quantum corrections. We must note that
GOP effective geometries were derived from a quantum
theory, for a particular family of semiclassical states. For
instance, they neglect superpositions in themass and the basis
of spin networks. These superpositions will add additional
corrections on these effective geometries that are worth to be
explored in the future. Besides, these potentials actually suffer
from regularization and quantization ambiguities. Despite all
that, we expect that our results are robust regarding the
breaking of isospectrality, which is the main result of this
manuscript. Besides, although we have considered just a few
effective geometries, we expect that isospectrality will also be
broken in other black hole models [32,44–48].
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APPENDIX A: QUASINORMAL MODES OF
SCALAR AND VECTOR PERTURBATIONS

In this Appendix we also compute the quasinormal
frequencies of scalar and vector (electromagnetic) pertur-
bations. We follow the same methodology adopted for the
axial and polar modes. Expressions for the corresponding
potentials can be derived straightforwardly (see for in-
stance [49]).
The effective potential for scalar (massless) perturbations

can be obtained in terms of the metric components as:

ðsÞVlðrÞ¼GðrÞ
�
lðlþ1Þ−2

HðrÞ þ ½H0ðrÞ�2
2FðrÞH2ðrÞþRðrÞ

�
;

ðA1Þ
where we must recall that the primes denote derivatives
with respect to r. For the classical Schwarzschild solution,
one obtains

ðsÞVGR
l ðrÞ ¼

�
1 −

2Gm
r

��
lðlþ 1Þ

r2
þ 2Gm

r3

�
: ðA2Þ

For vector (massless) perturbations the potential takes a
simple form:

ðvÞVlðrÞ ¼ GðrÞlðlþ 1Þ
HðrÞ : ðA3Þ

This expression reduces to

ðvÞVGR
l ðrÞ ¼

�
1 −

2Gm
r

�
lðlþ 1Þ

r2
; ðA4Þ

for the classical Schwarzschild geometry.
In Tables III and IV we show some quasinormal

frequencies for the scalar ðsÞωn;l and vector ðvÞωn;l pertur-
bations of GR, AOS, and GOP metrics. Again, we have
considered black holes with horizon radius equal or
close to rS ¼ 103lP. As in the axial and polar cases, the
deviations from GR are small, but still the accuracy of our
method is good enough to show this corrections. In Fig. 3
we see that the differences ΔðvÞωAOS

n;l ¼ ððvÞωGR
n;l − ðvÞωAOS

n;l Þ
and ΔðvÞωGOP;α¼0

n;l ¼ ððvÞωGR
n;l − ðvÞωGOP;α¼0

n;l Þ, for vector
perturbations, and ΔðsÞωAOS

n;l ¼ ððsÞωGR
n;l − ðsÞωAOS

n;l Þ and
ΔðsÞωGOP;α¼0

n;l ¼ ððsÞωGR
n;l − ðsÞωGOP;α¼0

n;l Þ, for scalar perturba-
tions, weaken with the mass of the black holes
as ðrS=lPlÞ−2=3.

APPENDIX B: PADÉ APPROXIMANTS AND
ACCURACY OF THE WKB METHOD

In order to increase the accuracy of theWKBmethod it is
possible to make use of the Padé approximants. Let us
summarize the procedure (for details see [50,51]). Here,
one starts with the polynomial
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PkðξÞ ¼ Vlðr0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

lðr0Þ
q �

ξ

�
nþ 1

2

�
þ
XN
n¼2

ξnΛn

�
;

ðB1Þ
from the formula (10) where the parameter ξ is introduced
to allow us to keep track of the order of the polynomial, so
that ω̃2

n;l ¼ Pkð1Þ, where k is the WKB order. Then, we
approximate PkðξÞ around ξ ¼ 0 with the family of the
Padé approximants

Pñ=m̃ðξÞ ¼
Q0 þQ1ξþ � � � þQñξ

ñ

R0 þ R1ξþ � � � þ Rm̃ξ
m̃ ; ðB2Þ

where ñþ m̃ ¼ k and Qi, Ri are determined such that

Pñ=m̃ðξÞ − PkðξÞ ¼ Oðξkþ1Þ: ðB3Þ
Once an approximation Pñ=m̃ðξÞ has been chosen, to com-
pute the quasinormal frequencies, one takes ω̃2

n;l¼Pñ=m̃ð1Þ.
For example, at first order, the WKB formula admits two
expressions

ω̃2
n;l ¼ P1=0ð1Þ ¼ P1ð1Þ ¼ Vlðr0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00

lðr0Þ
q �

nþ 1

2

�
;

ω̃2
n;l ¼ P0=1ð1Þ ¼

Vlðr0Þ
Vlðr0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00

lðr0Þ
p ðnþ 1

2
Þ : ðB4Þ

For higher orders, it has been observed [50,51] that the Padé
approximants Pñ=m̃ with ñ ≈ m̃ usually give better results
than the standard WKB formula Pm̃=0. Also, as the WKB
order increases, all the alternative approximations give
similar results.
We use [42] to compute the quasinormal frequencies

togetherwith an estimation of their error. The procedure is as
follows. If we consider, for instance, the 10th WKB order,
there are 11 Padé approximants (P0=10; P1=9; ...; P10=0). The
criterion we adopt to select the most accurate approximants
is the same as in [51]. Here, one computes all the mean
values of two closest frequencies

ω̄ðpÞ
ñ=m̃ ¼ ω̃ðñþpÞ=ðm̃−pÞ þ ω̃ñ=m̃

2
; ðB5Þ

forp a given set of integers that will be selected by theWKB
approximation. For instance, for the 10th WKB order
p ¼ 1;…; 4. Then for each value of p, we select the two

estimations ω̄ðpÞ
ñ=m̃ for which the relative difference between

the corresponding Padé approximants (or frequencies) is
minimum.Eventually, the final quasinormal frequency is the
mean of these eight Padé approximants and its absolute error
given by the standard deviation of this set of estimations.We
denote them by σaxial and σpolar for the axial and polar
quasinormal frequencies, respectively. The code [42] fol-
lows this criterion, providing mean values and errors (see
[51] for details) as we just explained.
The estimations of the errors given in Table V are

calculated in the following way: given σaxial and σpolar,
we define the total error as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2axial þ σ2polar

q
: ðB6Þ

We then compute the percentage relative error over the
absolute value of the mean between the axial and polar
quasinormal frequencies.

APPENDIX C: TABLES

In this appendix we provide numerical values of some of
the dimensionless quasinormal frequencies, namely, we
show ωn;l ¼ ðrS=2GÞω̃n;l, as is customary in the literature.

FIG. 3. In this plot we show the deviation of the real (black) and
imaginary (red) parts of the quasinormal frequency n ¼ 0 and
l ¼ 4 of AOS (dashed line) and GOP with α ¼ 0 (solid line)
effective geometries with respect to general relativity. In the upper
panel we show this difference for vector perturbations. In the
lower panel for scalar perturbations. In both cases, our compu-
tations give good enough accuracy for this frequency. We do not
show the GOP prescription with α ¼ 1 since it gives qualitatively
similar results than GOP one with α ¼ 0.
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TABLE I. Quasinormal frequencies for the first overtones of the
axial perturbations.

Axial Perturbations

(n,l) Schwarzschild AOS (rS ¼ 103lP)

(0,2) 0.74733225–0.17792806i 0.74771876–0.17787563i
(1,2) 0.69322645–0.54811740i 0.69360839–0.54794196i
(0,3) 1.19888658–0.18540612i 1.19942465–0.18535672i
(1,3) 1.16528891–0.56259764i 1.16581711–0.56244359i
(0,4) 1.61835676–0.18832792i 1.61905472–0.18828092i
(1,4) 1.59326305–0.56866870i 1.59395164–0.56852466i
(0,5) 2.02459062–0.18974103i 2.02544902–0.18969535i
(1,5) 2.00444206–0.57163476i 2.00529218–0.57149586i
(0,6) 2.42401964–0.19053169i 2.42503820–0.19048680i
(1,6) 2.40714795–0.57329985i 2.40815924–0.57316390i

GOP (α ¼ 0, rS ¼ 103lP) GOP (α ¼ 1, rS ¼ 103lP)
(0,2) 0.74736483–0.17720680i 0.74736491–0.17720674i
(1,2) 0.69401982–0.54578773i 0.69401995–0.54578751i
(0,3) 1.19894618–0.18468114i 1.19894629–0.18468108i
(1,3) 1.16577313–0.56034440i 1.16577326–0.56034419i
(0,4) 1.61841428–0.18758921i 1.61841442–0.18758914i
(1,4) 1.59363598–0.56640627i 1.59363614–0.56640607i
(0,5) 2.02464204–0.18899367i 2.02464221–0.18899361i
(1,5) 2.00474707–0.56936206i 2.00474725–0.56936186i
(0,6) 2.42406539–0.18977889i 2.42406539–0.18977889i
(1,6) 2.40740646–0.57101967i 2.40740646–0.57101967i

TABLE II. Quasinormal frequencies for the first overtones of
the polar perturbations.

Polar Perturbations

(n,l) Schwarzschild AOS (rS ¼ 103lP)

(0,2) 0.74734291–0.17792545i 0.74770137–0.17786831i
(1,2) 0.69337238–0.54785794i 0.69371455–0.54766125i
(0,3) 1.19888656–0.18540609i 1.19941686–0.18535615i
(1,3) 1.16528740–0.56259608i 1.16580600–0.56243957i
(0,4) 1.61835675–0.18832792i 1.61905147–0.18828080i
(1,4) 1.59326306–0.56866870i 1.59394788–0.56852416i
(0,5) 2.02459062–0.18974103i 2.02544735–0.18969532i
(1,5) 2.00444206–0.57163476i 2.00529032–0.57149572i
(0,6) 2.42401964–0.19053169i 2.42503722–0.19048679i
(1,6) 2.40714795–0.57329985i 2.40815818–0.57316385i

GOP (α ¼ 0, rS ¼ 103lP) GOP (α ¼ 1, rS ¼ 103lP)
(0,2) 0.74749081–0.17733983i 0.74749089–0.17733977i
(1,2) 0.69407330–0.54597173i 0.69407343–0.54597152i
(0,3) 1.19897954–0.18471131i 1.19897964–0.18471125i
(1,3) 1.16577795–0.56043389i 1.16577808–0.56043369i
(0,4) 1.61842820–0.18759958i 1.61842834–0.18759952i
(1,4) 1.59364290–0.56643745i 1.59364305–0.56643725i
(0,5) 2.02464917–0.18899817i 2.02464934–0.18899811i
(1,5) 2.00475176–0.56937559i 2.00475194–0.56937540i
(0,6) 2.42406933–0.18978122i 2.42406953–0.18978115i
(1,6) 2.40740936–0.57102668i 2.40740957–0.57102648i

TABLE III. Quasinormal frequencies for the first overtones of
the scalar perturbations.

Scalar Perturbations

(n,l) Schwarzschild AOS (rS ¼ 103lP)

(0,0) 0.22106137–0.20937335i 0.22140540–0.20925624i
(1,0) 0.18850053–0.70053554i 0.18859010–0.70054267i
(0,1) 0.58587217–0.19532140i 0.58621916–0.19527153i
(1,1) 0.52916747–0.61270000i 0.52946242–0.61254038i
(0,2) 0.96728773–0.19351755i 0.96775106–0.19347264i
(1,2) 0.92770066–0.59120829i 0.92813871–0.59106793i
(0,3) 1.35073247–0.19299926i 1.35133550–0.19295544i
(1,3) 1.32134299–0.58456958i 1.32192959–0.58443479i
(0,4) 1.73483128–0.19278338i 1.73558221–0.19273997i
(1,4) 1.71161607–0.58175204i 1.71235477–0.58161967i

GOP (α ¼ 0, rS ¼ 103lP) GOP (α ¼ 1, rS ¼ 103lP)
(0,0) 0.22065868–0.20832678i 0.22065871–0.20832671i
(1,0) 0.18841088–0.69652318i 0.18841087–0.69652280i
(0,1) 0.58574403–0.19449923i 0.58574409–0.19449915i
(1,1) 0.52965894–0.60989852i 0.52965911–0.60989817i
(0,2) 0.96721207–0.19273001i 0.96721215–0.19272994i
(1,2) 0.92812583–0.58870416i 0.92812594–0.58870394i
(0,3) 1.35067881–0.19222161i 1.35067892–0.19222154i
(1,3) 1.32166241–0.58216341i 1.32166254–0.58216321i
(0,4) 1.73478970–0.19200982i 1.73478985–0.19200976i
(1,4) 1.71186939–0.57938690i 1.71186954–0.57938670i

TABLE IV. Quasinormal frequencies for the first overtones of
vector perturbations.

Vector Perturbations

(n,l) Schwarzschild AOS (rS ¼ 103lP)

(0,1) 0.49652620–0.18497687i 0.49677857–0.18493659i
(1,1) 0.42896489–0.58735295i 0.42917124–0.58722013i
(0,2) 0.91519104–0.19000886i 0.91559456–0.18996650i
(1,2) 0.87308476–0.58142022i 0.87346490–0.58128680i
(0,3) 1.31379734–0.19123244i 1.31435699–0.19118977i
(1,3) 1.28347488–0.57945680i 1.28401884–0.57932526i
(0,4) 1.70619039–0.19171987i 1.70690733–0.19167710i
(1,4) 1.68253412–0.57862935i 1.68323922–0.57849884i
(0,5) 2.09582556–0.19196334i 2.09670029–0.19192054i
(1,5) 2.07644178–0.57820772i 2.07730694–0.57807779i

GOP (α ¼ 0, rS ¼ 103lP) GOP (α ¼ 1, rS ¼ 103lP)
(0,1) 0.49512802–0.18174827i 0.49512801–0.18174817i
(1,1) 0.42344855–0.57974580i 0.42344839–0.57974555i
(0,2) 0.91441759–0.18693022i 0.91441764–0.18693012i
(1,2) 0.86956543–0.57304523i 0.86956536–0.57304497i
(0,3) 1.31325754–0.18818198i 1.31325763–0.18818188i
(1,3) 1.28092560–0.57075050i 1.28092561–0.57075023i
(0,4) 1.70577457–0.18867960i 1.70577469–0.18867951i
(1,4) 1.68053934–0.56977960i 1.68053940–0.56977932i
(0,5) 2.09548701–0.18892794i 2.09548717–0.18892784i
(1,5) 2.07480446–0.56928366i 2.07480456–0.56928338i
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