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Abstract: This paper presents an N warm standby system under shocks and inspections governed by
Markovian arrival processes. The inspections detect the number of down units, and their replacement
is carried out if there are a minimum K of failed units. This is a policy of the type (K, N) used in
inventory theory. The study is performed via the up and down periods of the system (cycle); the
distribution of these random times and the expected costs for each period comprising the cycle
are determined on the basis of individual costs due to maintenance actions (per inspection and
replacement of every unit) and others due to operation or inactivity of the system, per time unit.
Intermediate addressed calculus are the distributions of the number of inspections by cycle and the
expected cost involving every inspection, depending on the number of replaced units. The system
is studied in transient and stationary regimes, and some reliability measures of interest and the
cost rate are calculated. An optimization of these quantities is performed in terms of the number
K in a numerical example. This general model extends to many others in the literature, and, by
using the matrix-analytic method, compact and algorithmic expressions are achieved, facilitating its
potential application.

Keywords: markovian arrival process; warm standby system; availability; costs; optimization
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1. Introduction

Systems with units in standby are common in industry. With units in reserve, the life
of the machines enlarges. In reliability, this is a frequent structure. A warm standby is
necessary in some cases in which access to the system is not immediate or difficult, as in
meteorologic stations in remote locations. In these cases, an inspection allows for failed
units to be detected and replaced. The alternative methods are to replace every unit when
it fails or to replace all the units when they are nonoperational. In the first case, the number
of replacements is greater than in the case we propose, and this increases the expected cost.
In the second case, when the last operational unit fails, the system is nonoperational. This
causes a stop in production until new units arrive. We propose an intermediate case in
which the performance measures and the long-run cost rate can be optimized in terms of
the number K.

Standby systems are common redundant structures, widely addressed in different
domains. In reliability literature, they are often studied under several maintenance policies,
repair modes, inspections and replacements. In [1], a redundant system performing phased
missions exposed to random shocks was developed. Random inspections are considered in
a redundant k-out-of-n: G system studied in [2], where potential loss of units is assumed,
and [3] additionally incorporates multiple vacations on a cold standby system. Replacement
policy K has been widely used as a useful tool to improve the availability of the system
and the long-run cost rate. In [4,5], optimal repair–maintenance policies were applied to
single systems. In the first one, repairable and nonrepairable failures are distinguished, the
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system is replaced at the Nth repairable failure or at the arrival of nonrepairable failures,
whichever occurs first, and two replacement models were compared. In the second one,
the system is periodically inspected every T units of time, and two types of preventive
replacements are provided, deterministic after M inspections and opportunity-based after
N minor failures. The optimal policy is formulated as a function of these parameters. The
Markov process has been applied in the study of reliability systems due to its versatility and
the analytic expressions of the main reliability measures. The limitation of these processes
is that the staying times in states are exponentially distributed. A variety of shock and wear
systems with different repair and replacement criteria have been studied in [6–9]. Authors
in [10] considered preventive maintenance of items under a Poisson random shock process,
with double effect. A stochastic network was constructed for studying a warm standby
n-system with dissimilar components using a Markov process, and the structure of minimal
paths was performed in [11,12]. In [13] this technique was used, considering inspections
at random times defining a renewal process. In [14], an expression for the joint interval
reliability was obtained using the Markovian methodology for a general system that can be
applicable to standby systems. This measure is of interest in the power transmission line
reliability. The replacement policy K was applied in [15], where a system with a limited
number of repairs before a replacement is presented. Phase-type distributions and Markov
renewal processes are used more and more in the literature due to their generality in
applications and the versatility of the calculations. The following papers are related to
these methods [16–19], among others. In [16], a repairable system under the influence of
environment conditions was modeled, in which replacement policy K was performed so
that after the (K + 1)-th failure, the system is not repaired but replaced. The renewal process
due to the replacements of the system was studied. In addition, under this methodology,
a warm standby system submitted to shocks was studied in [17]. The replacement of
the system occurred when it was down, and the number of replacements of the system
with time was determined. Other papers deal with standby systems with repair under
multiple vacations. For instance, in [18], a repairable warm standby system undergoing
shocks is addressed, where a repairman takes multiple vacations based on the N-policy.
Phase-type distributions and MAPs play an important role in that model, and performance
measures of interest are obtained for the system in transient and stationary regimes. Other
related work is [19], concerning a cold standby repairable system which incorporates
working vacations and vacation interruptions. The existing literature on reliability and
maintenance modeling is extensive, and many works related to this one in some respect can
be found under different methodologies, approaches and application domains. For instance,
in [20], a model is proposed to determine the inspection and opportunistic maintenance
strategies of floating offshore wind turbines. In [21], multiple failures and simultaneous
replacements after inspection are considered in a complex system, while authors in [22]
focused on the maintenance of the server system. In this case, a single server stands
Markovian arrivals and random shocks. As mentioned before, replacement policy K has
demonstrated to play an important role when availability system and cost-optimal decision
problems are investigated, as discussed in [23,24]. These papers determined the number of
preventive maintenance before the system replacement or the planned replacement time to
minimize the expected cost rate, respectively. Meanwhile, authors in [15] pointed out the
optimal number of corrective repairs prior to the reposition of the system; other studies of
effectiveness are [25–29], and so on.

1.1. Contributions

We present a standby system with multiple components submitted for shocks affecting
the online component and the standby one in a different ways and maintained by inspection
and replacement using policy K. The procedure for studying these systems is based on
the matrix-analytic methods (MAMs) that have proven to be useful in complex systems
and that allow the results to be presented in a well-structured form. Moreover, the staying
times in states are not necessarily exponentially distributed. This technique based on the



Mathematics 2022, 10, 1918 3 of 21

state–space model seems to be appropriate for studying the reliability and maintenance of
systems. In [30], different models are studied, discussed and compared. The arrival of the
failures and inspections are governed by Markovian arrival processes (MAPs) that present
two important properties: the interarrival times are not independent, and they extend many
other arrival processes such as the Poisson process, the Markov-modulated Poisson process
and the Phase-type renewal process. The replacement of the components occurs when an
inspection arrives, and the number of down units reaches or surpasses a fixed number K.
Extreme values in K, K = 1 and K = N are of frequent use in maintenance modeling. The
dynamic of the system establishes consecutive operational and nonoperational periods, the
cycles. Explicit expressions for the expected costs associated to the cycles are calculated by
considering the random number of inspections in each period, the mean number of replaced
units in every inspection and the expected length of the operational and nonoperational
periods. For the system, the availability, the rate of failure and the mean number of
replacements are obtained in a transient regime. A study of the optimization of the long-
run cost rate and the availability in terms of the values of K and the mean time of inspections
are performed in a numerical application.

This reliability system can also be applied to inventory control and risk analysis;
failure, inspection, replacement and survival until time t can be substituted by demand,
revision, shortage, reinstatement and no shortage until time t in inventory control and
by claim, control of the number of claims, bankruptcy, and all claims until time t in risk
analysis. In inventory control, this model is assimilated to a (K, N) one; there is a total of N
units to be sold, there is demand, and when the number in stock is less than K, an order is
requested to the store to complete the stock to S units; in any other case, there is no order.
This model is useful when the size of the stock is necessarily limited by the capacity of the
available space, as is the case for cars and large machines. Under this policy, the costs of
the transport of the units from the store to the shop can be cheaper if the requests include
several units. The standby structure is appropriate for material degrading with time. The
failures (demands), the inspections (revisions), and the replacements (requests) are random,
and we consider probabilistic structures with dependence among the interarrival time of
the occurrences.

The general hypotheses established for the proposed model and the compact expres-
sions achieved by using the MAM methodology expand its application possibilities. Many
particular models previously addressed in the literature can be derived from it.

1.2. Organization

The paper is organized as follows. The model is constructed in Section 2. In Section 3,
the stationary distribution and some performance measures are calculated first. Second,
the up and down periods in the cycles and the involved costs are carried out. Finally,
the performance measures of the system are calculated in a transient regime. In Section 4,
a numerical example illustrates the optimization model in terms of K, some reliability
measures and the long-run cost rate.

2. The Model

Before describing the model, we give the definition of elements that play an important
role in the application of the matrix-analytic method: the Kronecker operators, the Phase-
type distributions and the Markovian arrival processes.

2.1. Definitions

Definition 1. If A and B are rectangular matrices of orders m1 ×m2 and n1 × n2, respectively,
their Kronecker product A ⊗ B is the matrix of order m1n1 × m2n2, written in compact form
as (aijB).

The Kronecker sum of the square matrices C and D of orders p and q, respectively, is defined
by C⊕ D = C⊗ Iq + Ip ⊗ D, where Ik denotes the identity matrix of order k.
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For more details about these operations see References [31,32].

Definition 2. The distribution function H(·) on [0, ∞) of a phase-type distribution is

H(x) = 1− α exp(Tx)e, x ≥ 0 (1)

It is associated with a finite Markov process with one absorbent state. The initial vector
of the process is α. Matrix T is the submatrix of the generator of the process restricted to the
transient states; it is nonsingular. Vector e is a column vector of 1’s. The absorption column
vector is denoted by T0, and it satisfies −Te = T0 ≥ 0. The order of the matrix and vectors
involved are the same. It is said that the distribution has representation (α, T), and it is
written PH(α, T). H(x) is the distribution function of the first passage time of the Markov
process for the absorbent state given the initial vector α. The order of the distribution is the
order of matrix T. A PH-renewal process is a renewal process whose distribution function
is given by a PH-distribution.

Definition 3. Let D be an irreducible infinitesimal generator of a Markov process. Let a sequence
of matrices Dk, k = 1, 2, . . . , n, be non-negative and the matrix D0 with non-negative off-diagonal
entries. The diagonal entries of D0 are strictly negative, and it is nonsingular. All the matrices are
square and have the same order. It is assumed that

D = D0 +
n

∑
k=1

Dk (2)

associated with this Markov process, there is a renewal Markov process performing an
arrival process to real line operating as follows. Matrix D0 governs the interarrival times,
and matrix Dk governs the arrival of type k. This is the MAP associated with the initial
Markov process. The order of the MAP is the order of the involved matrices, and it is
written MAP(D0, D1, . . . Dn).

2.2. Asumptions of the Model

Let a system be with N units. Initially one unit is online, and the other N − 1 units are
in warm standby. When the unit online fails, one of the units in standby, if any, becomes
the online unit . Online and standby units are subject to shocks governed by two different
and independent Markovian arrival processes. A shock cannot produce multiple failures
to the standby units. The system is operational if at least one unit is up. The maintenance
of the system is performed by inspection and replacement. The maintenance follows a
K-policy: in every inspection, the number j of failed units is observed, 0 ≤ j ≤ N. If the
number of failed units is j ≥ K, all these units are replaced; in any other case, there is no
action. Particular well-known cases are K = 1, in which all the failed units are replaced
in every inspection, and K = N, in which all the units have failed and are replaced. Once
the units are replaced, they return to standby if there is one operating online. In any other
case, one of the new units goes online. The costs associated with the maintenance are: cI :
cost per inspection; cR: cost per replacement of every unit; cD: cost per unit of time that
the system is nonoperational; cU : cost per unit of time that the system is operational and
cS : cost for starting up the system after a failure. In advance, positive values in costs are
interpreted as benefits, while negative values are interpreted as losses.

The assumptions of the system are the following:

1. The online unit is submitted to shocks governed by the MAP(c, C0, C1), with initial
vector c and order m.

2. The standby units are submitted to shocks governed by the MAP(d, D0, D1), with
initial vector d and order s.

3. The inspections occur following the MAP(h, H0, H1), with initial vector h and order l.
4. All the MAPs are independent.
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2.3. Macro-States of the System

Macro-state i is the number of nonoperational units, 0 ≤ i ≤ N. Three types of
macro-states are distinguished: (1) i = 0, 1, . . . , N − 2, the online unit and at least one of
the standby units are operational if they are determined by the phases of the MAPs in the
assumptions 1, 2, 3, in this order, and the associated vector is (i1, i2, i3), with i1 = 1, . . . , m,
i2 = 1, . . . , s, i3 = 1, . . . , l; (2) the only operational unit is the online one, i = N − 1, the
associated vector is (i1, i3), and (3) all the units are nonoperational; i = N, the associated
vector is i3.

To construct the generator, policy K allows for the grouping of the macro-states
as follows: (1) i = 0, 1, . . . , K − 1, when an inspection occurs and the system occupies
any of these macro-states, no unit is replaced; in the rest of the macro-states, there is
replacement, and two types of macro-states are differentiated, (2) i = K, K + 1, . . . , N − 2,
and (3) i = N − 1, N, these are the border macro-states. The generator is constructed by
blocks calculating the transition among these groups of macro-states.

2.3.1. Transition {0, 1, . . . , K− 1} → {0, 1, . . . , K− 1}
Transition 0→ 0 is governed by C0 ⊕ D0 ⊕ H = Ã1; no shock arrives, and an inspec-

tion has no effect on the units. In Transition 0→ 1, if a failure occurs to one unit (online or
standby), the phase of the inspection cannot change; it is governed by (C1 ⊕ D1)⊗ I = A0.
The rest of transitions i → i and i → i + 1 are identical, respectively, to 0→ 0 and 0→ 1.
No other transitions are possible.

Transitions from {0, 1, . . . , K− 1} to any other macro-state are null, except K− 1→ K
that occurs when a shock arrives and it is governed by A0.

2.3.2. Transition {K, K + 1, . . . , N − 2} → {K, K + 1, . . . , N − 2}
Transition K → K is similar to 0 → 0, but now an inspection cannot occur; it is

governed by C0 ⊕ D0 ⊕ H0 = A1. The same occurs for the rest of diagonal blocks i → i,
i = K + 1, . . . , N − 2. Transition K → K + 1 is like 0 → 1, A0; it is the same for i → i + 1,
i = K + 1, . . . , N − 3. Transition N − 2 to N − 1 occurs if there are two operational units,
the online and the standby ones, and a shock arrives; then one of the two units fails: (a) if
the online fails (governed by C1), the MAP governing the arrival of shocks to the standby
units can occupy any phase, and the standby unit becomes the online one; the inspection
does not change (governed by I); and (b) similarly, the failure of the standby unit from any
phase is governed by D1e, the MAPs corresponding to the online unit and the inspection
do not change. Taking into account the order of the macro-state vectors, the transition is
governed by BN−2,N−1 = C1 ⊗ e⊗ I + I ⊗ D1e⊗ I. Other upper transitions cannot occur
since there are no multiple shocks.

2.3.3. Transition {K, K + 1, . . . , N − 2} → {0, 1, . . . , K− 1}
Transition i → 0, i = K, . . . , N − 2, occurs when an inspection arrives (governed by

H1), and all the units are replaced. The MAPs related to the units do not change; it is
governed by I ⊗ I ⊗ H1 = A2. No other transitions are possible.

2.3.4. Transition {N − 1, N} → {0, 1, . . . , N}
Transition N − 1 → 0 occurs when an inspection arrives (governed by H1), and the

system reinitiates; it is governed by I ⊗ d⊗ H1 = BN−1,0. Transition N − 1 → N − 1 is
governed by C0⊕H0 = BN−1,N−1. Transition N− 1→ N is governed by C1e⊗ I since there
is only one unit operating, and a failure occurs while the MAP governing the inspection
does not change; the system fails. Transition N → 0 occurs when an inspection arrives, and
all the units are down; it is governed by c⊗ d⊗ H1 = BN,0. Transition N → N is governed
by H0. There are no more transitions.

The generator for 1 ≤ K ≤ N − 2, N ≥ 3 is given by
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Q = QK =



0 1 K− 1 K K + 1 N − 2 N − 1 N
0 Ã1 A0
1 Ã1 A0
...

...
K− 1 Ã1 A0
K A2 A1 A0

K + 1 A2 A1
. . .

...
...

. . . A0
N − 2 A2 A1 BN−2,N−1
N − 1 BN−1,0 BN−1,N−1 BN−1,N
N BN,0 H0



(3)

For K = N − 1 and K = N, we have, respectively,

QN−1 =



0 1 N − 2 N − 1 N
0 Ã1 A0
1 Ã1 A0

N − 2 Ã1 BN−2,N−1
N − 1 BN−1,0 BN−1,N−1 BN−1,N
N BN,0 BN,N


(4)

QN =



0 1 N − 2 N − 1 N
0 Ã1 A0
1 Ã1 A0

...
N − 2 Ã1 BN−2,N−1
N − 1 B∗N−1,N−1 BN−1,N
N BN,0 BN,N


(5)

with B∗N−1,N−1 = C0 ⊕ H.
In Section 3, performance measures in a transient regime will be calculated in terms of

the transition probability functions; these depend on generator Q.

3. Cycles of the System, Performance Measures and Costs

The system is first studied in a steady state. The stationary probability block vector is
denoted by

π = (π0, π1, . . . , πK−1, πK, πK+1, . . . , πN−2, πN−1, πN) (6)

The components πi are vectors associated with the macro-states. This is calculated
from the equations πQ = 0, πe = 1. We assume that 1 ≤ K ≤ N − 2, N ≥ 3.

Operating in these previous expressions, we have

πi = π0(R̃)i, i = 1, . . . , K− 1

πi = π0(R̃)K−1Ri−K+1, i = K, . . . , N − 2

πN−1 = π0(R̃)K−1RN−K−1RN−1

πN = π0(R̃)K−1RN−K−1RN−1RN

(7)

with
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R̃ = −A0

[
Ã1

]−1
R = −A0[A1]

−1

RN−1 = −BN−2,N−1[BN−1,N−1]
−1 RN = −BN−1,N [BN,N ]

−1
(8)

The final expression for vector π0 can be calculated from the following equations:

π0

[
Ã1 + (R̃)K−1

(
N−2

∑
i=K

Ri−K+1 A2 + RN−K−1RN−1(BN−1,0 + RN BN,0)

)]
= 0

π0

[
e +

K−1

∑
i=1

(R̃)ie + RK−1

(
N−2

∑
i=K

Ri−K+1e + RN−K−1RN−1(I + RN)e

)]
= 1

(9)

For K = N − 1, the equations and the solution are, respectively,

πi = π0(R̃)i, i = 1, . . . , N − 2

πN−1 = π0(R̃)N−2RN−1

πN = π0(R̃)N−2RN−1RN

(10)

π0

[
Ã1 + (R̃)N−2RN−1(BN−1,0 + RN BN,0)

]
= 0

π0

[
e +

N−2

∑
i=1

(R̃)ie + (
v
R)N−2RN−1(I + RN)e

]
= 1

(11)

and for K = N,

πi = π0(R̃)i, i = 1, . . . , N − 2

πN−1 = π0(R̃)N−2R∗N−1

πN = π0(R̃)N−2RN−1RN

(12)

π0

[
Ã1 + (

v
R)N−2RN−1RN BN,0

]
= 0

π0

[
e +

N−2

∑
i=1

(
v
R)ie + (

v
R)N−2RN−1(I + RN)e

]
= 1

(13)

with R∗N−1 = −BN−2,N−1

[
B∗N−1,N−1

]−1
.

Once this distribution is obtained, the following performance measures are calculated.
The availability of the system is given by

A =
N−1

∑
i=0

πie (14)

The rate of occurrence of failures of the online unit is

vo =
N−2

∑
i=0

πi(C1e⊗ e⊗ e) + πN−1(C1e⊗ e) (15)

The rate of occurrence of failures of the units in standby is

vst =
N−2

∑
i=0

πi(e⊗ D1e⊗ e) (16)
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For the system, the rate of failure has the expression

v = πN−1(C1e⊗ e) (17)

3.1. Distribution of the Up and Down Periods

We carry out a study of the system via the up and down periods. The system is
operational while occupying the macro-states {0, 1, . . . , N − 1}, and it is down in macro-
state N. The evolution of the system is an alternating sequence of up and down periods. A
cycle is the time span of two consecutive up and down periods. The cycle initiates when
the system occupies macro-state N, an inspection occurs (all the units are replaced) and
the system reinitiates. From this point, the system is in the up period until all the units
fail. Then it occupies a down period that finishes when a new inspection arrives. The
cycles are of industrial interest; in some cases, the lifetime of the machines is expressed
in terms of the completed cycles. The aging and the costs increase with the number of
cycles. We consider the system with 1 ≤ K ≤ N− 2, N ≥ 3, in stationary regime. The other
cases can be studied in a similar way. The up period of the system is denoted by XU ; it
follows a PH(φU , TU)-distribution. We calculate φU and TU . The system reinitiates from the
macro-state 0 after an inspection, so φU = (αU , 0, . . . , 0). The occurrence of an inspection is
governed by H1e. Then, hdiag−1(H0)H1e denotes the probability of the occurrence of an
inspection and hdiag−1(H0)(c⊗ d⊗ H1) the probability of initiating the operational period
given an inspection occurred. Vector αU is

αU =
−hdiag−1(H0)(c⊗ d⊗ H1)

−hdiag−1(H0)H1e
(18)

Matrix TU is obtained from matrix Q suppressing the row and column of the nonoper-
ational macro-state, N. The operational mean time is µU = E[XU ] = −φUT−1

U e.
Let XD be the nonoperational period. It follows a PH(φD, TD)-distribution with

TD = H0, derived from generator Q eliminating the rows and columns corresponding
to the operational macro-states. The initial vector of this period is the probability of the
occurrence of a failure of the system. This event occurs when the last operational unit fails,
it is online. The initial macro-state for this event is N − 1 following the vector (c⊗ d), the
failure is governed by (C1e⊗ e), and then, it enters macro-state N. Then, the probability of
occurrence of a down period is−(c⊗ h)diag−1(C0⊕H0)(C1e⊗ e), since the MAPs affecting
to shocks to the online and inspections do not change. Once it has occurred, the period
initiates in any phase of macro-state N, then vector φD is

φD =
−(c⊗ h)diag−1(C0 ⊕ H0)(C1e⊗ I)
−(c⊗ h)diag−1(C0 ⊕ H0)(C1e⊗ e)

(19)

An alternative initial vector is φD = πN/πNe. The mean time of the down period
is µD = E[XD] = −φDT−1

D e. The time span of a cycle is µC = E[XC] = E[XU + XD] =
µU + µD, and XC follows a PH-distribution whose representation is well-known. The
fraction of time that the system is up each cycle is given by ρC = µU/µC.

3.2. Costs by Cycles

The costs involved in the system are: by inspection (cI), by replacement (cR), by
operational unit of time (cU), by nonoperational unit of time (cD) and by the starting up of
the system after a failure (cS). We centered on the costs involved in the cycles. The expected
costs during an up and down period are denoted by E[ΨU ] and E[ΨD], respectively. The
expected total cost per unit of time in a cycle is given by

CT =
Expected cost of the cycle
Expected time of the cycle

=
E[ΨU ] + E[ΨD]

E[XC]
(20)

The expected cost in a nonoperational period is E[ΨD] = cDµD.
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In advance, we also refer to CT as the long-run cost rate. Note that a positive value
implies a benefit, while a negative value means a loss.

For calculating the expected cost during an operational period, we must know the
number of inspections that occurred in this period and the expected cost of every inspection
that depends on the number of replaced units. Let NI be the number of inspections during
an operational period. We calculate the distribution of this random variable considering
how the inspections arrive to the system during this period. The events that must have
been taken into account are the following:

(a) There is neither inspection nor failure of the system;
(b) There is an inspection, and the system does not fail: the operational period continues;
(c) There is no inspection, and the system fails: the up period finishes.
Every event of these has an associated submatrix derived from generator Q collecting

the transitions describing its occurrence. Given that the system is in an operational period,
macro-state N is not included.

Matrix G0 is associated with event (a):

G0 =



0 1 K− 1 K K + 1 N − 2 N − 1
0 A1 A0
1 A1 A0

. . . . . .
K− 1 A1 A0
K A1 A0

K + 1 A1
. . .
. . . A0

N − 2 A1 BN−2,N−1
N − 1 BN−1,N−1



(21)

Note that this matrix is obtained from Q eliminating the macro-state N, and replacing
the blocks Ã1 by A1, since inspections cannot occur in this event.

Matrix G1 is associated with event (b):

G1 =



0 1 K− 1 K K + 1 N − 2 N − 1
0 A2
1 A2

. . .
K− 1 A2
K A2
K + 1 A2

...
N − 2 A2
N − 1 BN−1,0



(22)

This matrix includes the blocks associated with transitions involved in the occurrence
of inspections without failure of the system. Therefore, blocks A0 are eliminated since
there is no failure; blocks Ãi are replaced by A2 for 0, 1, . . . , K − 1 (inspections without
effect), maintained in column 0 and eliminated for i = K, K + 1, . . . , N − 1 because an
inspection occurs.
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Matrix G2 is associated with event (c):

G2 =



N
0 0
1 0

...
K− 1 0
K 0
K + 1 0

...
N − 2 0
N − 1 BN−1,N



(23)

In this matrix, the transition blocks are collected, taking into account that there is no
inspection, and the system fails.

From these matrices are calculated the probability of the occurrence of inspections,
matrix F, and the probability of failure of the system, matrix F0, given by

F = (−G0)
−1G1

F0 = (−G0)
−1G2e

(24)

These are, respectively, the matrices of the embedded Markov chain associated with
the transitions due to inspections and failures of the system. The system fails from any
phase, governed by G2e. Note that transition N− 1→ N is governed by BN−1,N = C1e⊗ Il ;
so the last block of G2e is (C1e⊗ Il)e is a column vector of order ml formed by the absorption
rates to macro-state N for the different phases of the inspection. Given that there are only
inspections and failures of the system, we have Fe+ F0 = e. Matrix F collects the probability
of inspections and F0 the probability of failures.

In macro-states u = {0, 1, ..., K − 1}, only inspections occur, and in macro-states
v = {K, K + 1, . . . , N − 1}, there are inspections and replacements. It is a partition of the
set of operational macro-states. The costs associated with the macro-states are assigned in
the following two matrices, where matrix Ii denotes the identity matrix associated with
macro-state i, i = 0, 1, . . . , K, K + 1, . . . , N − 1:

−
ΨI =


I0cI

I1cI
. . .

IK−1cI


−

ΨR =


IK(cI + KcR)

IK+1(cI + (K + 1)cR)
. . .

IN−1(cI + (N − 1)cR)


(25)

The new diagonal block matrix Ψ summarizes the costs associated with the macro-
states in which the inspections occur:

−
Ψ =

 −
ΨI 0

0
−

ΨR

 (26)

The up period initiates in macro-state 0 with initial probability vector φU . The inspec-
tions occur in the macro-states with probabilities given by φU(−G0)

−1G1 = φU F.
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The expected cost due to the inspections and replacements during an up period in the

different macro-states is given by matrix φU(−G0)
−1
−
ΨG1, and the total expected cost is

CMIU = φU(−G0)
−1
−
ΨG1e (27)

To clarify this result, we write matrices (−G0)
−1 and G1 in terms of the blocks of the

partition {u, v} of the set of macro-states; the arrival of an inspection without replacement
occurs in the macro-states in u, and the ones including replacement after an inspection are
in v. We can write

(−G0)
−1 =

(
V0(u, u) V0(u, v)
V0(v, u) V0(v, v)

)
(28)

G1 =

(
V1(u, u) V1(u, v)
V1(v, u) V1(v, v)

)
=

(
V1(u, u) 0
V1(v, u) 0

)
(29)

These blocks of matrix (−G0)
−1 can be calculated by computational methods in

practical cases. Note that V1(u, u) = I ⊗ diag(A2) and V(v, u) is a rectangular matrix with
all the blocks null except the ones of the first column, as can be seen above.

We have, formally,

(−G0)
−1
−
ΨG1 =

 V0(u, u)
−

ΨIV1(u, u) + V0(u, v)
−

ΨRV1(v, u) 0

V0(v, u)
−

ΨIV1(u, u) + V0(v, v)
−

ΨRV1(v, u) 0

 (30)

We interpret the block

V0(u, u)
−

ΨIV1(u, u) + V0(u, v)
−

ΨRV1(v, u) (31)

The factors of the first summand indicate that the up period initiates in an element of

u (really is 0), and an inspection occurs. The associated cost is given by
−

ΨI , and after, the
inspection returns to a macro-state in u. The second summand indicates that the up period
initiates in an element of u, a failure occurs and there is a transition to v,. An inspection

arrives later with associated cost given by
−

ΨR and returns again to set u (really enters 0).
The other block can be interpreted in a similar way.

Taking into account the initial conditions φU = (αU , 0), the other block of the previous
matrix is not used, and the mean cost per inspection in the up period is given by

CMIU = φU(G0)
−1
−
ΨG1e = αU

[
V0(u, u)

−
ΨIV1(u, u) + V0(u, v)

−
ΨRV1(v, u)

]
e (32)

Once the cost per inspection is calculated, we must calculate the number of inspections
occurring in an up period, denoted by NI . Previously matrices F and F0 have been defined.
In terms of them, we have

P(NI = 0) = φU F0

P(NI = 1) = φU FF0

...

P(NI = n) = φU FnF0

(33)

This is the expression of a discrete PHd( f , F)-distribution with f = φU F, being

P(NI = n) = f Fn−1F0 and E[NI ] = f (I − F)−1e (34)
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The cost in the up period is denoted by ΨU , and the total mean cost in this period is

E[ΨU ] = cS + CMIU · E[NI ] + cUµU = cS + CMIU · f (I − F)−1e + cUµU (35)

Taking into account the mean cost of the down period by cycle, the long-run cost rate
is given by

CT =
E[ΨU ] + E[ΨD]

E[XC]
=

cS + CMI · f (I − F)−1e + cUµU + cDµD

−φDT−1
D e

(36)

3.3. Performance Measures

The system is studied in a stationary regime, but from matrix Q it is possible to calculate
the transition probability matrix P(t) = Pij(t), with Pij(t) = P{X(t) = j|X(0) = i} and
0 ≤ i, j ≤ N macro-states, from the matrix equation P′(t) = QP(t) under the initial
condition P(0) = I. It is well-known that P(t) = exp(Qt), and this expression is calculated
using computational methods. The performance measures of the system in a transient
regime can be deduced from this expression. Particularly, we calculate the availability A(t),
the failure rate of the system r(t) and the expected number of renewals of the system in the
interval (0, t], denoted by N(t). These measures will be determined later, along this section.
The initial macro-state is assumed to be 0.

The reliability R(t) is the complementary of the distribution function of the first
passage time of the Markov process Q for the absorbent state N. Eliminating the last
row and column blocks in Q, and denoting this new matrix by Q∗, it is a PH-distribution
given by

R(t) = α exp(Q∗t)e (37)

The availability has the expression

A(t) = α0

N−1

∑
i=0

P0i(t)e (38)

with α0 = c⊗ d⊗ h and α = (α0, 0, . . . , 0).
The failure rate of the system is

r(t) =
α exp(Q∗t)(−Q∗e)

α exp(Q∗t)e
(39)

The mean number of replacements to the system in (0, t] is calculated introducing new
matrices derived from the ones of the MAPs and taking into account the arrivals of the
event of interest. The transitions can be classified in two: those not producing a renewal of
the system, governed by M0(K), and those producing a renewal of the system, denoted by
M1(K). The expressions of these matrices for 1 ≤ K ≤ N − 2, N ≥ 3, are

M0(K) =



0 1 K− 1 K K + 1 N − 2 N − 1 N
0 Ã1 A0
1 Ã1 A0
...

...
K− 1 Ã1 A0
K A2 A1 A0

K + 1 A2 A1
. . .

...
...

. . . A0
N − 2 A2 A1 BN−2,N−1
N − 1 BN−1,0 BN−1,N−1 BN−1,N
N 0 H0



(40)
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M1(K) =



0 1 K− 1 K K + 1 N − 2 N − 1 N
0
1
...
K− 1
K
K + 1
...
N − 2
N − 1
N BN,0



(41)

It can be seen that M0(K) + M1(K) = M(K) is a generator for any value of K.
The mean number of replacements in (0, t] is

E(N(t)) = λt + α exp(M(K)t− I)(M(K)− eθ)−1M1(K)e, t ≥ 0 (42)

θ being the stationary vector associated with M(K) and λ = θM1(K)e.
The variance is

Var(λN(t)) = (λ− 2λ2 − 2θM1(K)(M(K)− eθ)−1M1(K)e)t

+ 2θM1(K)(M(K)− eθ)−1(exp(M(K)t− I)(M(K)− eθ))−1
(43)

For K = N − 1 and K = N, the calculations are similar.
Some other measures can be calculated following the present procedure, including

measures referred to the cycles defined before.

4. Numerical Example

A numerical and graphical study of the optimization of the maintenance (policy K) is
applied to a system with N = 5. The unit time is denoted by u.t. The matrix parameters of
the MAPs governing the arrival of shocks are

Arrival of shocks to online unit c = (1, 0) C0 =

(
−4 1
2 −7

)
C1 =

(
0 3
2 3

)
Arrival of shocks to the standby units d = (1, 0) D0 =

(
−9 0
1 −1

)
D1 =

(
8 1
0 0

)
Occurrence of an inspection h = (1, 0) H0 =

(
−2.4 0
2.4 −6

)
H1 =

(
2.4 0
2.4 1.2

)
The assigned costs are

cU = 1.5 cD = −1.58 cI = −0.05 cR = −0.10 cS = −0.07
The study of this system comprises: (1) the performance reliability measures and

the long-run cost rate, including values and graphics for the system with K = 3; (2) a
comparison of the measures for different values of K, tables and graphics; (3) a selection of
the optimal policy given the performance measures and costs; and (4) an analysis of the
frequency of the inspection in the measures for different values of K in the exponential case.

• Performance measures for K = 3

For K = 3, the values of the performance measures previously defined in a transient
regime are given in Table 1.
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Table 1. Performance measures in transient regime for K = 3.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A(t) 1 0.9974 0.9688 0.9073 0.8388 0.7843 0.7487 0.7281 0.7171 0.7113 0.7084
r(t) 0 0.1107 0.5745 1.0341 1.2833 1.3605 1.3556 1.3282 1.3016 1.2804 1.2636
N(t) 0 0 0.0034 0.0178 0.0484 0.0940 0.1504 0.2134 0.2802 0.3488 0.4185

The transient measures are plotted in Figure 1.

Figure 1. Plot of A(t), r(t), N(t) for K = 3.

Figure 1 shows that the point t = 0.5 is a singular point. The availability reaches the
equilibrium at t = 0.5 with a value close to 0.7. The failure rate of the system increases until
t = 0.5 and then decreases slowly. The number of replacements increases, as expected, and
the rate seems to be linear.

In Table 2 the performance measures and costs by cycle are given.

Table 2. Peformance measures and costs by cycle for K = 3.

Policy A µU µC ρC CT

K = 3 0.7055 0.9983 1.415 0.7055 0.3120

The system is operational 70.55% of the time of the cycle, the operational mean time
by cycle is 0.9983, and the mean time of the down period is 0.4167. Therefore, the expected
length of the cycle is 1.415. The long-run cost rate is 0.3120.

• Comparing performance measures

In Figure 2, the availability of the system for all the values of K is plotted. The way in
which the availability decreases with K is shown; the point in which all the curves approach
to a constant is between 0.5 and 1, nearer to 1. There is a significant difference between
K = 5 and the others.
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Figure 2. Availability function for systems K = 1, 2, 3, 4, 5.

In Figure 3 the failure rate of the system for all the values of K is plotted. Up to
t = 0.5, the curves increases then, tends to be constant between 1 (exponential) and 1.5 for
K = 1, 2, 3, 4, but for K = 5, the rate increases slowly and takes values greater than 3.

Figure 3. Rate of system failure function for systems K = 1, 2, 3, 4, 5.

Figure 4 represents the mean number of replacements in the system for different values
of K. As expected, all the plots increase with time and are approximately linear for t > 1.5
for systems K = 1, 2, 3, 4. The system K = 5 has an expected number significantly different
to the others.
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Figure 4. Mean number of replacements for systems K = 1, 2, 3, 4, 5.

In Table 3, the stationary distribution A, the mean operational time µU , the mean time
of the cycle µC, the proportion of the operational time ρC, and the long-run cost rate CT are
given for all the values of K.

For an optimal policy K in terms of the operational time and costs, the values of ρC
and CT in terms of K are plotted in Figure 5. In both cases, the values decrease with K in a
similar way.

Figure 5. Fraction of operational time by cycle and the long-run cost rate versus K.
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Table 3. Performance measure and the long-run cost rate for systems K = 1, 2, 3, 4, 5.

Policy A µU µC ρC CT

K = 1 0.7395 1.1826 1.5993 0.7395 0.3404
K = 2 0.7274 1.1123 1.529 0.7275 0.3326
K = 3 0.7055 0.9983 1.415 0.7055 0.3120
K = 4 0.6731 0.8579 1.2746 0.6731 0.2677
K = 5 0.6057 0.6401 1.0568 0.6057 0.1672

• Availability and the long-run cost rate in terms of the inspection times

We consider the mean time of inspections a parameter and determine the performance
measures in terms of it. This is a quantity that can be established by the researcher, and it
allows us to optimize some performance measures. It is assumed that the inspection times
are exponentially distributed. In Figure 6, the long-run cost rates in terms of the different
values of K = 1, 2, 3, 4, 5 are given for the inspection mean time (IMT) µI = 0.10, µI = 0.30,
µI = 0.50. For K = 1, the benefits increase when the mean time between inspections
increases. For K > 1, the behavior is different. For K = 2, the long-run cost rates for
µI = 0.10 and µI = 0.50 are identical and less than for µI = 0.30. For µI = 0.10, the optimal
long-run cost rate is reached for K = 4. Until this value, the long-run cost rate is notably
increasing; then it decreases shortly for K = 5.

Figure 6. The long-run cost rate versus K for µI = 0.10, µI = 0.30, µI = 0.50.

In Figure 7, the long-run cost rates in terms of the mean time of inspections for different
values of K are plotted. It is observed that the behavior of the graphics are very similar. It
is optimum when the mean time between inspections is 0.10 and K = 5.

In Figure 8, the availability is plotted in terms of the mean time between inspections
for different values of K. For K = 5, the availability is less than in the other cases, and for
K = 1 it reaches the greatest value. The availability decreases in all cases with the mean
time between inspections increasing; the decreasing is affected by the number of units.
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Figure 7. The long-run cost rate in terms of µI for different values of K.

Figure 8. Availability in terms of the mean time between inspections for different values of K.

5. Conclusions

A major novelty in the present paper is the inclusion of the MAMs for the study of
complex systems. The generality of the assumptions extends the application of the model
to other systems. We can see that by handling the matrix calculations, it is possible to
express quantities algorithmically since the operations in the formulae involving matrices
are presented in a well-structured form. This is highlighted in the study of the costs and in
the calculation of the performance measures. These measures have been calculated for the
cycles and for the total system, since the aging of a system can be measured by the time or
by the number of cycles. Applying the methods to the study of a system and varying the
parameters depending on the researcher reveals that complete information onthe quantities
affecting the performance of the system can be obtained. By adding new assumptions to the
system, such as lifetime of the units, repairs and others, the study can be extended to more
complex systems. Moreover, this methodology is suitable for the extension of the model in
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other ways. For instance, considering an appropriate MAP, simultaneous failures in units
can be incorporated, and a natural continuation takes place when units in the system are
K-grouped, following a modular structure. Many industrial systems have this structure;
it can allow time and cost reductions when analysis of failures and maintenance, such as
replacements, are set by blocks.
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Notation
The following abbreviations are used in this manuscript:

MAP(c, C0, C1) shock arrival process for online unit
MAP(d, D0, D1) shock arrival process for standby units
MAP(h, H0, H1) inspection arrival process
Ir identity matrix of order r
er column vector of 1’s of order r
QK , K = 1, 2, . . . , N generator of the process under policy K
πi steady state vector associated with the macro-state i
π steady state vector
A steady state availability
vo rate of occurrence of failures for online unit
vst rate of occurrence of failures for standby units
v rate of occurrence of failures for the system
PH(φU , TU) distribution of the up period of the system, (XU)

PH(φD, TD) distribution of the down period of the system, (XD)

XC length of a cycle of the system
µU expected length of the up period of the system
µD expected length of the down period of the system
µC expected length of a cycle of the system
cI cost per inspection
cR cost per every unit replacement
cU cost by operational unit time
cD cost by nonoperational unit time
cS cost due to the starting-up of the system
E[ΨU ] expected cost during an up period
E[ΨD] expected cost during a down period
CMIU expected cost per inspection, depending on the number of replacements,

in the up period
E[NI ] expected number of inspections in the up period
CT long-run cost rate
A(t) availability of the system in time t
R(t) reliability of the system in time t
N(t) mean number of replacements of the system (0, t]
r(t) failure rate of the system in time t
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