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Dear Editor,
During the past years, considerable efforts have been made to

uncover the genetic component of chronic lymphocytic leukemia
(CLL) susceptibility. To date, several genome-wide association
studies (GWAS) and their meta-analysis have identified not only
single-nucleotide polymorphisms (SNPs) associated with CLL risk
[1] but also patient survival [2]. However, despite these noticeable
results, it becomes evident that both validation and functional
characterization of the genetic variations identified are still
required before they can be used in a clinical setting. Hence, we
decided to validate the association of 41 GWAS-identified hits for
CLL in 1158 CLL cases and 1947 controls ascertained through the
Consortium for Research in Chronic lymphocytIc Leukemia
(CRuCIAL) and to investigate their impact on modulating host
immune responses and their utility to predict disease onset. Study
participants were of European ancestry and gave their written
informed consent to participate in the study, which was approved
by the ethical review committee of participant institutions. CLL
patients had often Binet stage A and Rai stage I (67.00% and
79.83%) and, compared to controls, had a higher mean age
(66.19 ± 12.66 vs. 55.60 ± 11.50) and an increased male/female
ratio (1.54 vs. 0.91). SNPs selection was based on published GWAS,
functionality according to HaploReg data, and linkage disequili-
brium between the SNPs. Genotyping of genetic variants was
performed using KASPTM and Taqman® assays. Hardy–Weinberg
equilibrium was assessed in the controls (P > 0.001) and the
association between CLL and SNPs was tested using a multivariate
unconditional logistic regression analysis adjusted for age, sex,
and country of origin. A meta-analysis of the CRuCIAL results with
those from previous GWAS was conducted to validate genetic
associations and the I [2] statistic was used to assess statistical
heterogeneity between the studies (PHet > 0.01). The pooled OR
was computed using the fixed-effect model and the significance
threshold for the meta-analysis was set to 5.0 × 10−8. Mechan-
istically, we evaluated the correlation of the GWAS-identified SNPs
with a production of nine cytokines after in vitro stimulation of
whole blood, peripheral mononuclear cells, and monocyte-derived
macrophages from 408 healthy subjects of the Human Functional
Genomic Project (HFGP) with LPS, PHA, Pam3Cys, CpG and Borrelia
burgdorferi and Escherichia coli. In parallel, we also tested the
correlation between selected SNPs and circulating concentrations
of 103 serum and plasmatic inflammatory proteins, 7 plasma
steroid hormones, and absolute numbers of 91 blood-derived
immune cell populations. The HFGP study was approved by the
Arnhem-Nijmegen Ethical Committee (42561.091.12) and biologi-
cal specimens were collected after informed consent was
obtained. A detailed description of the study population and

participating centers, selected SNPs and protocols and reagents
used in the functional experiments are included in the Supple-
mentary Material available on the Blood Cancer Journal website. In
order to account for multiple comparisons, we used a significance
threshold of 2.3 × 10−5, 1.2 × 10−5, 1.34 × 10−5, and 1.74 × 10−4 for
the cytokine quantitative trait loci, proteomic, blood cell counts,
and steroid hormone analyses, respectively.
Logistic regression analyses confirmed the association of 21

SNPs with CLL risk at P < 0.05 level in the CRuCIAL cohort. The
strongest association was found for SNPs located in the GRAMD1B
locus (P= 6.2 × 10−16 and 6.0 × 10−4) that was further validated
through meta-analysis (Table 1). The GRAMD1B locus (11q24.1)
encodes for a transporter mediating the non-vesicular transport of
cholesterol from the plasma membrane to the endoplasmic
reticulum. Our experiments revealed that carriers of the
GRAMD1Brs35923643G allele had increased numbers of transitional
CD24+CD38+ B cells (P= 4.25 × 10−5; Fig. 1A), which have an IL10-
dependent immunosuppressive effect on pro-inflammatory
responses against cancer cells. We also found that carriers of the
GRAMD1Brs35923643G allele had increased serum concentrations of
IL18R1 (P= 0.00085; Fig. 1B), a receptor found to be dysregulated
in CLL and that contributes to tumor escape from the immune
system [3]. In support of the association of the GRAMD1Brs35923643
SNP with CLL risk, we found that this genetic variant is located
among histone marks for primary B cells and it determines altered
motifs for PU1, MEF2A, POU2F2, NKFB, OCT2 and IRF4, which is
linked to CLL onset [1]. Moreover, we observed that carriers of the
GRAMD1Brs2953196G allele had decreased circulating concentrations
of SIRT2 and ADA (P= 0.00037 and 0.00079; Fig. 1C, D). SIRT2 is
overexpressed in primary CLL cells and plays a key role in
determining cell survival [4]. Recent studies have shown that
increased serum levels of SIRT2 were associated with longer
overall survival [5] whereas SIRT2 inhibitors induced cell death in
leukemic cell lines [6]. Similarly, ADA, an enzyme of the purine
metabolism related to lymphoid T cell differentiation and tumor
cellular responses, has been found to be overexpressed in CLL
patients and correlates with longer survival [7]. Another study
showed that blockade of A2A adenosine receptors made CLL cells
more susceptible to pharmacological treatments while restoring
immune competence and T cell proliferation [8]. Serra and
coworkers also showed that activation of the ADO receptors
inhibited chemotaxis and limited drug-induced apoptosis of CLL
cells [9]. Finally, we found that carriers of the GRAMD1Brs2953196G
allele had decreased serum concentrations of STAMBP protein
(P= 0.00033; Fig. 1E), a key protein involved in the control of
autophagy flux and the NLRP3 inflammasome. These results suggest
that the GRAMD1B locus might exert its biological function on CLL
by modulating SIRT2, STAMBP, and ADA, which is a diagnostic
biomarker for CLL that has been included in a new prognosis score
designed to optimize the patient risk stratification [7].
Besides these findings, the meta-analysis confirmed the

association of 29 additional SNPs with the risk of developing the

Received: 20 February 2022 Revised: 26 April 2022 Accepted: 4 May 2022

www.nature.com/bcjBlood Cancer Journal

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00676-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00676-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00676-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00676-8&domain=pdf
https://doi.org/10.1038/s41408-022-00676-8
https://doi.org/10.1038/s41408-022-00676-8


Ta
bl
e
1.

Va
lid

at
io
n
o
f
G
W
A
S-
id
en

ti
fi
ed

va
ri
an

ts
fo
r
C
LL
.

SN
P

C
h
r.

N
ea

rb
y
g
en

e
R
is
k
al
le
le

C
R
uC

IA
L
co

n
so
rt
iu
m

(n
=
31

05
;

11
58

C
LL

ca
se
s
an

d
19

47
co

n
tr
ol
s)

Pr
ev

io
us
ly

p
ub

lis
h
ed

G
W
A
Sb

M
et
a-
an

al
ys
is

O
R
(9
5%

C
I)
a

P
O
R
(9
5%

C
I)

P
O
R
(9
5%

C
I)

P
P H

e
t

rs
43

68
25

3
18

A
C1

07
99
0.
1|
|N
FE
2L
3P
1

C
1.
30

(1
.1
3–

1.
49

)
2.
0E

−
04

1.
18

(1
.1
1–

1.
26

)
8.
00

E−
07

1.
20

(1
.1
3–

1.
27

)
5.
55

E−
10

0.
21

2

rs
58

05
56

74
2

A
CO

XL
C

1.
17

(1
.0
1–

1.
35

)
0.
03

2
1.
44

(1
.3
3–

1.
56

)
5.
00

E−
20

1.
37

(1
.2
8–

1.
47

)
7.
01

E−
19

0.
01

4

rs
14

39
28

7
2

A
C
O
X
L

T
1.
26

(1
.1
1–

1.
41

)
0.
00

02
1.
37

(1
.2
6–

1.
47

)
5.
00

E−
15

1.
34

(1
.2
5–

1.
43

)
1.
62

E−
18

0.
24

9

rs
79

44
00

4
11

A
SC

L2
||C

11
or
f2
1

T
1.
10

(0
.9
7–

1.
24

)
0.
12

1.
20

(1
.1
3–

1.
27

)
2.
00

E−
10

1.
18

(1
.1
2–

1.
25

)
6.
44

E−
10

0.
20

9

rs
49

87
85

5
18

BC
L2

G
1.
42

(1
.1
5–

1.
76

)
0.
00

12
1.
47

(1
.3
2–

1.
61

)
3.
00

E−
12

1.
46

(1
.3
4–

1.
60

)
1.
50

E−
16

0.
77

3

rs
26

51
82

3
11

C1
1o

rf
21
|T
SP
A
N
32

A
1.
09

(0
.9
7–

1.
23

)
0.
15

1.
18

(1
.1
3–

1.
25

)
5.
00

E−
11

1.
17

(1
.1
1–

1.
22

)
9.
62

E−
11

0.
22

8

rs
14

76
56

9
4

CA
M
K2
D

G
0.
97

(0
.8
6–

1.
10

)
0.
66

1.
18

(1
.1
2–

1.
25

)
6.
00

E−
10

1.
14

(1
.0
9–

1.
20

)
2.
01

E−
07

0.
00

4

rs
37

69
82

5
2

CA
SP
8

T
1.
05

(0
.9
3–

1.
19

)
0.
40

1.
19

(1
.1
2–

1.
25

)
3.
00

E−
09

1.
17

(1
.1
1–

1.
23

)
2.
12

E−
09

0.
06

9

rs
75

58
91

1
2

CF
LA
R

A
1.
02

(0
.9
1–

1.
16

)
0.
71

1.
18

(1
.1
2–

1.
24

)
5.
00

E−
11

1.
16

(1
.1
0–

1.
21

)
1.
94

E−
09

0.
03

0

rs
10

36
93

5
18

CX
XC

1
A

1.
20

(1
.0
5–

1.
38

)
0.
00

91
1.
15

(1
.1
0–

1.
21

)
3.
00

E−
08

1.
16

(1
.1
0–

1.
21

)
3.
02

E−
10

0.
56

4

rs
13

59
74

2
9

D
M
RT
A
1

G
1.
18

(1
.0
4–

1.
32

)
0.
00

78
1.
20

(1
.1
2–

1.
28

)
7.
00

E−
09

1.
20

(1
.1
3–

1.
27

)
1.
98

E−
09

0.
80

9

rs
65

46
14

9
2

D
TN

B
G

1.
05

(0
.9
2–

1.
20

)
0.
46

1.
09

(1
.0
1–

1.
17

)
2.
14

E−
02

1.
08

(1
.0
1–

1.
15

)
0.
01

8
0.
62

9

rs
98

80
77

2
3

EO
M
ES
|L
IN
C0

19
80

T
1.
27

(1
.1
3–

1.
43

)
5.
97

E−
05

1.
19

(1
.1
3–

1.
25

)
2.
55

E−
11

1.
20

(1
.1
5–

1.
26

)
7.
39

E−
15

0.
31

9

rs
13

01
57

98
2

FA
M
12
6B

A
0.
98

(0
.8
6–

1.
13

)
0.
82

1.
20

(1
.1
4–

1.
30

)
3.
00

E−
08

1.
15

(1
.0
9–

1.
23

)
1.
76

E−
06

0.
00

9

rs
65

86
16

3
10

FA
S

A
1.
29

(1
.1
4–

1.
46

)
4.
50

E−
05

1.
23

(1
.1
7–

1.
29

)
1.
00

E−
15

1.
24

(1
.1
8–

1.
30

)
3.
20

E−
20

0.
48

3

rs
22

67
70

8
7

G
PR

37
T

1.
22

(1
.0
8–

1.
37

)
0.
00

12
1.
16

(1
.1
0–

1.
22

)
9.
00

E−
09

1.
17

(1
.1
2-
1.
23

)
1.
04

E−
10

0.
44

6

rs
35

92
36

43
11

G
RA

M
D
1B

G
1.
93

(1
.6
6–

2.
24

)
6.
20

E−
16

1.
66

(1
.5
4-
1.
79

)
2.
00

E−
40

1.
71

(1
.6
0–

1.
83

)
2.
76

E−
55

0.
07

8

rs
29

53
19

6
11

G
RA

M
D
1B

G
1.
29

(1
.1
2–

1.
49

)
6.
00

E−
04

1.
30

(1
.2
2–

1.
38

)
5.
00

E−
16

1.
30

(1
.2
3–

1.
37

)
1.
45

E−
19

0.
92

2

rs
38

00
46

1
6

IL
RU

N
C

1.
12

(0
.9
0–

1.
38

)
0.
32

1.
20

(1
.1
3–

1.
28

)
1.
97

E−
08

1.
19

(1
.1
2–

1.
27

)
6.
80

E−
09

0.
54

4

rs
93

92
50

4
6

IR
F4

A
1.
46

(1
.2
9–

1.
64

)
1.
75

E−
09

1.
33

(1
.2
6–

1.
40

)
1.
00

E−
28

1.
35

(1
.2
9–

1.
42

)
3.
14

E−
34

0.
16

3

rs
39

18
55

16
IR
F8

A
1.
20

(1
.0
6–

1.
36

)
0.
00

31
1.
37

(1
.2
8–

1.
45

)
1.
00

E−
22

1.
33

(1
.2
6–

1.
41

)
3.
94

E−
24

0.
06

2

rs
89

85
18

4
LE
F1

A
0.
95

(0
.8
4–

1.
08

)
0.
41

1.
20

(1
.1
4–

1.
27

)
4.
00

E−
10

1.
15

(1
.1
0–

1.
21

)
1.
16

E−
08

0.
00

1

rs
34

67
62

23
1

M
D
S2

C
1.
17

(1
.0
3–

1.
33

)
0.
01

5
1.
19

(1
.1
4–

1.
25

)
5.
04

E−
13

1.
19

(1
.1
4–

1.
24

)
7.
23

E−
15

0.
80

7

rs
57

21
42

77
4

M
YL
12
BP

2|
|L
IN
C0

23
63

T
1.
06

(0
.9
2–

1.
23

)
0.
43

1.
13

(1
.0
8–

1.
18

)
3.
69

E−
08

1.
12

(1
.0
8–

1.
17

)
6.
50

E−
08

0.
40

9

rs
10

93
65

99
3

M
YN

N
C

1.
12

(0
.9
6–

1.
29

)
0.
14

1.
26

(1
.1
7–

1.
35

)
1.
74

E−
09

1.
22

(1
.1
6–

1.
31

)
2.
11

E−
10

0.
16

0

rs
11

71
56

04
3

N
C
K
1

T
0.
98

(0
.8
4–

1.
14

)
0.
80

N
A
(N
A
-N
A
)

1.
97

E−
08

N
A
(N
A
-N
A
)

N
A

N
A

rs
64

89
88

2
12

O
A
S3

G
1.
09

(0
.9
6–

1.
23

)
0.
19

1.
16

(1
.1
0–

1.
22

)
5.
00

E−
08

1.
15

(1
.1
0–

1.
21

)
1.
13

E−
08

0.
36

4

rs
14

05
22

22
O
D
F3
B

T
1.
17

(1
.0
3–

1.
32

)
0.
01

6
1.
15

(1
.1
0–

1.
20

)
2.
70

E−
09

1.
15

(1
.1
1–

1.
20

)
1.
35

E−
11

0.
79

7

rs
22

36
25

6
6

O
PR

M
1|
|IP
CE

F1
C

1.
20

(1
.0
6–

1.
35

)
0.
00

37
1.
23

(1
.1
5–

1.
30

)
1.
50

E−
10

1.
22

(1
.1
6–

1.
29

)
4.
49

E−
13

0.
72

1

rs
11

63
75

65
15

PC
A
T2

9|
LO

C
10

79
84

78
8

G
1.
20

(1
.0
6–

1.
36

)
0.
00

40
1.
35

(1
.2
8–

1.
42

)
2.
00

E−
31

1.
33

(1
.2
7–

1.
39

)
6.
19

E−
31

0.
08

7

rs
17

24
64

04
7

PO
T1

C
1.
28

(1
.1
2–

1.
46

)
3.
68

E−
04

1.
22

(1
.1
4–

1.
31

)
3.
40

E−
08

1.
23

(1
.1
6–

1.
31

)
2.
71

E−
11

0.
53

0

rs
25

11
71

4
8

PO
U
5F
1P
2|
|O
D
F1

G
1.
08

(0
.9
5–

1.
22

)
0.
23

1.
19

(1
.1
1–

1.
27

)
2.
00

E−
07

1.
16

(1
.1
0–

1.
24

)
4.
89

E−
07

0.
18

1

rs
11

08
38

46
19

PR
KD

2
A

1.
17

(1
.0
1–

1.
33

)
0.
03

0
1.
35

(1
.2
2–

1.
49

)
3.
96

E−
09

1.
29

(1
.1
9–

1.
39

)
1.
24

E−
09

0.
09

9

rs
88

80
96

2
Q
PC

T|
|R
N
U
6-
11
16
P

A
1.
09

(0
.9
7–

1.
24

)
0.
16

1.
15

(1
.0
9–

1.
21

)
5.
00

E−
08

1.
14

(1
.0
9–

1.
20

)
5.
37

E−
08

0.
43

1

rs
41

27
14

73
1

RH
O
U

G
0.
95

(0
.8
0–

1.
12

)
0.
52

1.
19

(1
.1
3–

1.
26

)
1.
06

E−
10

1.
17

(1
.1
1–

1.
23

)
7.
76

E−
09

0.
01

3

rs
73

71
87

79
6

SE
RP

IN
B6

A
0.
93

(0
.7
6–

1.
14

)
0.
47

1.
26

(1
.1
6–

1.
36

)
1.
97

E−
08

1.
21

(1
.1
2–

1.
30

)
4.
51

E−
07

0.
00

6

Correspondence

2

Blood Cancer Journal           (2022) 12:79 



disease (ORMeta= 1.15–1.71; Table 1), which suggested a func-
tional role of these markers in modulating CLL risk. In this regard,
our experiments revealed that carriers of the IRF8rs391855A allele
showed increased numbers of class-switched CD27-IgM−IgD−

memory B cells (P= 3.39 × 10−5; Fig. 1F) and central memory
CD4+CD45RA−CD27+ T cells (P= 0.0001; Fig. 1G), whereas carriers
of the CXXC1rs1036935A allele had decreased numbers of
CD19+CD20+ B cells (P= 0.00075; Fig. 1H), a subset of cells
poorly expressed in CLL patients [10]. The IRF8 locus encodes for a
transcription factor exclusively expressed in immune cells that
regulate B cell-activating factor (BAFF)-mediated B cell activation,
cell survival, adaptative NK cell responses, and CD8/CD4 T cell
differentiation. In line with these findings, we also found that
carriers of the PRKD2rs11083846A allele showed decreased numbers
of transitional CD24+ CD38+ B cells (P= 0.00046; Fig. 1I), whereas
carriers of the ILRUNrs3800461C allele had decreased levels of HLA-
DR+ T regulatory and conventional CD4+ T cells. Finally, we also
observed that carriers of the POU5F1P2rs2511714G allele showed
increased numbers of CD8+ effector memory (CD45RA−CD27−)
T cells. The POU5F1P2rs2511714G SNP is located among histone
marks in primary B cells whereas the PRKD2rs11083846 SNP is an
eQTL for the PRKD2 gene in whole blood but also SLC1A5, CALM3,
and FKRP genes that have been associated with CLL onset [11]. We
hypothesize that the IRF8, CXX1, ILRUN, and POU5F1P|ODF1 loci
might influence CLL risk by modulating specific subsets of B and
T cells and regulatory T cells that play critical roles in the
pathogenesis of the disease [12] and influence prognosis. In fact, it
is known that peripheral regulatory T cell populations expressing
CD4+ in CLL are associated with disease progression and exhibit a
prognostic value [13]. In addition, we found a correlation between
the TERTrs7705526A allele and decreased serum concentrations of
TRAIL and TWEAK (P= 5.23 × 10−5 and 0.0001; Fig. 1J, K), which
are involved in the regulation of key cell functions including
immune responses, inflammation, proliferation, differentiation,
and apoptosis. These results are in agreement with those showing
that CLL patients exhibit reduced serum TRAIL both before and
after treatment [14] and that its aberrant expression in CLL
promotes cell survival [15]. Similarly, we found a correlation of the
TSBP1-AS1rs926070G allele with decreased concentrations of IL12
and TWEAK proteins (P= 0.00023 and 0.00050; Fig. 1L, M), which
reinforced the idea of an implication of TWEAK and TWEAK-
mediated immune responses in CLL. In support of this finding, it
has been reported that TWEAK attenuates the transition from
innate to adaptive immunity, which might affect blood cell
populations, immune responses, and, consequently, influence the
susceptibility to CLL. On the other hand, we found that carriers of
the ILRUNrs3800461C allele had decreased numbers of conventional
CD4+ T cells and HLA-DR+ T regulatory cells (P= 0.00041 and
0.00058), whereas carriers of the POU5F1P2rs2511714G allele showed
increased numbers of CD8+ effector memory CD45RA-CD27- cells
(P= 0.00053; Supplementary Material). No functional effect for the
rest of SNPs was observed.
Considering the number of variants that showed significant

associations with CLL risk, we attempted to establish the clinical
usefulness of genetic biomarkers in predicting disease onset by
using a double approach that consisted of building a predictive
model using demographic variables and SNPs significantly
associated with CLL risk and weighted and unweighted polygenic
risk scores (PRSs; Supplementary Material). The area under the
curve (AUC) of a receiver operating characteristic curve analysis
and −2 log-likelihood ratio (LR) tests showed that a model
including age, sex, and 16 SNPs significantly improved the ability
to predict the onset of the disease when compared with the
reference model including only demographic variables (AUC=
0.809 vs AUC= 0.765; PLRtest= 2.2 × 10−16; Fig. 1N). We also
computed weighted and unweighted PRSs in a subset of 806
CLL cases and 1417 controls from the CRuCIAL cohort and we
found an OR= 6.81, 95% CI 4.65–9.96, P= 2.0 × 10−21 for theTa
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Fig. 1 Functional characterization of GWAS-identified variants for CLL (A–M) and receiver operating characteristic (ROC) curve analysis
(N). Correlation between functional data and GWAS-identified SNPs was evaluated by linear regression analysis adjusted for age and sex. ROC
curve summarizes the accuracy of prediction for each particular model. The model including SNPs significantly associated with the risk of
developing CLL and demographic variables (marked in blue) showed a significantly improved predictive capacity compared with a reference
model including only age and gender as covariates (marked in red). AUC= 0.809 vs. AUC= 0.765; N= 2123 subjects; LR test= 2.2 × 10−16.
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highest vs. lowest quintile of the unweighted score and OR=
10.45, 95% CI 6.96–15.70, P= 2.0 × 10−27 for the highest vs. lowest
quintile of the weighted score. Strong associations were also
observed when weighted scores were built using ORs from the
original GWASs. The best AUC value was observed for the
weighted score computed in the CRuCIAL cohort (AUC= 0.68,
95% CI 0.65–0.70).
In conclusion, this study confirmed the association of 31 GWAS-

identified SNPs with CLL risk and shed some light on the function
of some of these biomarkers in the modulation of TReg, B, and T
cell differentiation and proliferation, blood concentrations of B
cell-related proteins, cell survival, and the expression of immune-
and non-immune-related loci. Though outside the scope of the
current study, it is important to mention that additional functional
studies using blood samples from CLL patients are still required to
validate our findings and to decipher the exact biological
mechanisms behind the observed associations. A potential
limitation of this work was the relatively small population size of
the CRuCIAL cohort that hampered the validation of the SNPs
showing modest associations.
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