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Analyses of heat and mass transfer between different materials and phases are essential in 

numerous fundamental scientific problems and practical engineering applications, such as 

thermal and chemical transport in porous media, design of heat exchangers, dendritic growth 

during solidification, and thermal/mechanical analysis of additive manufacturing processes. In 

the numerical simulation, interface treatment can be further divided into sharp interface schemes 

and diffuse interface schemes according to the morphological features of the interface. This work 

focuses on the following subjects through computational studies: (1) critical evaluation of the 

various sharp interface schemes in the literature for conjugate heat and mass transfer modeling 

with the lattice Boltzmann method (LBM), (2) development of a novel sharp interface scheme in 

the LBM for conjugate heat and mass transfer between materials/phases with very high transport 

property ratios, and (3) development of a new diffuse-interface phase-field-lattice Boltzmann 

method (PFM/LBM) for dendritic growth and solidification modeling. 

For comparison of the previous sharp interface schemes in the LBM, the numerical 

accuracy and convergence orders are scrutinized with representative test cases involving both 

straight and curved geometries. 



 

 

The proposed novel sharp interface scheme in the LBM is validated with both published 

results in the literature as well as in-house experimental measurements for the effective thermal 

conductivity (ETC) of porous lattice structures. Furthermore, analytical correlations for the 

normalized ETC are proposed for various material pairs and over the entire range of porosity 

based on the detailed LBM simulations. In addition, we provide a modified correlation based on 

the SS420-air and SS316L-air metal pairs and the high porosity range for specific application.  

The present PFM/LBM model has several improved features compared to those in the 

literature and is capable of modeling dendritic growth with fully coupled melt flow and 

thermosolutal convection-diffusion. The applicability and accuracy of the PFM/LBM model is 

verified with numerical tests including isothermal, iso-solutal and thermosolutal convection-

diffusion problems in both 2D and 3D. Furthermore, the effects of natural convection on the 

growth of multiple crystals are numerically investigated. 
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1 

CHAPTER I 

INTRODUCTION 

1.1 Background 

In almost all practical science and engineering applications involving heat and mass 

transfer, such as heat exchangers, thermochemical reactors, thermal and mass transport in porous 

media and particulate systems, dendritic growth, and the formation of interfacial patterns in 

solidification [1–11], conjugate conditions at the interface of different phases or materials with 

different properties are encountered. When using the computational fluid dynamics (CFD) 

method for heat and mass transfer, one of the major problems is the accurate and effective 

treatment of complex and/or moving boundaries. In general, interface schemes can be further 

divided into sharp and diffuse interface schemes. Sharp interfaces are characterized by a zero-

width interface between materials/phases. This interface scheme that tracks the explicit local 

geometry is most often used, such as the aforementioned heat and mass transfer in porous media, 

and is most easily handable [12]. The basic and most famous conjugate conditions at the sharp 

interface include the continuity of temperature (concentration) and heat (mass) flux at the 

interface [13–16] . In contrast, the liquid-solid morphological features in the solidification of 

pure materials and alloys are extremely complex. Several numerical methods attempt to 

accurately calculate the interface normals and curvatures [17–20], but due to the problem of 

tracking sharp boundaries and solving small anisotropy, it is generally very difficult to produce 

reliable results [21]. Diffuse interface schemes are based on the idea that the phase interface is 
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not a thin/sharp interface, but instead a finite width with rapid yet smooth transitions in density, 

viscosity, and other physical properties. In the diffuse interface scheme, a phase-field variable is 

introduced to describe the bulk phases varies smoothly from zero to unity. Due to the complete 

avoidance of interface tracking, topology changes can be processed naturally without any special 

procedures [22].  

The Lattice Boltzmann method (LBM) has become a powerful numerical method for 

simulating complicated geometric fluid flow and heat and mass transfer problems [23–26] with 

its advantages such as convenient boundary and interface processing. In the sharp interface 

scheme, the distribution functions (DFs) on the lattice node are determined by interpolation. The 

phase-field method (PFM), which employs the concept of a diffuse interface and introduces a 

phase-field variable has become a widely accepted technique for computational modeling of 

dendritic growth and interfacial pattern formation [27–29]. The inherent advantages of LBM (for 

example, simple and clear algorithms, convenient boundary/interface processing, and 

compatibility with parallelization) make it attractive to effectively simulate complex dendritic 

morphological evolution and all phase fields and flows. Therefore, more and more publications 

[30–33] have focused on coupling the PFM and LBM for dendrite growth during solidification.  

The objective of this dissertation is to investigate the heat and mass transfer between 

different materials and phases computationally. The following topics have been studied: 

Chapter II compares the accuracy and convergence orders of various popular interface 

schemes for conjugate heat and mass transfer modeling using the lattice Boltzmann method 

(LBM). The investigated sharp interface schemes are recognized to three groups and numerically 

tested by both straight and curved interfaces. It is important to understand the accuracy and 
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applicability of various interface schemes due to the wide involvement of conjugate conditions in 

heat and mass transfer in engineering applications. 

In Chapter III, an LBM-based computational model for predicting the effective thermal 

conductivity (ETC) of lattice structures with different topologies was proposed and validated 

with published results and in-house experiments. Based on the LBM simulation results, 

analytical correlations for the normalized ETC are proposed. 

Chapter IV presents a phase-field-lattice Boltzmann method (PFM/LBM)-based model 

for solidification and dendritic growth simulations with fully coupled melt flow and 

thermosolutal convection-diffusion. The proposed PFM/LBM model can be an attractive and 

powerful tool for large-scale dendritic growth simulations given the high scalability of the LBM. 

1.2 Literature review 

1.2.1 Conjugate heat and mass transfer modeling 

Conjugate conditions at the interface of different phases or materials of distinct properties 

are encountered in almost all practical science and engineering applications involving heat and 

mass transfer, such as cooling of turbine blades and electronic devices, insulation for pipes, heat 

exchangers and thermochemical reactors, and thermal and mass transport in porous media and 

particulate systems, to name a few [1–11]. The basic and most well-known conjugate conditions 

include the continuity of both the temperature (concentration) and the heat (mass) flux at the 

interface [13–16]. Other conjugate conditions, such as with temperature (concentration) jumps 

and flux discontinuities [34–36], the Henry’s law relationship [37], and the Kapitza resistance in 

heat transfer [38], are also noticed. Theoretical analysis for conjugate heat and mass transfer is 

limited as analytical solutions are only available to simple transport problems with regular 

geometry. Experimental measurement of interfacial values is often a challenge as the interfaces 
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are usually inaccessible to probing devices in most cases. Substantial research effort, as a result, 

has been devoted to numerical simulation of conjugate heat and mass transfer problems with 

effective interface treatment. 

The common approach in dealing with conjugate conditions is to treat them as boundary 

conditions for the adjacent domains, and the heat and mass transfer in each domain can be solved 

separately using typical numerical methods for the convection-diffusion equations (CDE). Since 

the conjugate conditions are implicit (i.e., with given relationships between the scalar and its 

fluxes in the adjacent domains rather than the explicit interfacial values) and with both Dirichlet 

and Neumann type conditions, a popular approach for their implementation is applying iterative 

schemes, e.g., a predictor-corrector based Dirichlet condition is imposed for one domain and 

with that a Neumann condition can be constructed for the other; and the conjugate conditions at 

the interface can be satisfied after multiple iterations. Extrapolation is usually required in these 

iterative schemes to obtain the interfacial temperature (concentration) and fluxes. Conventional 

numerical methods, such as the finite difference and finite volume methods, therefore generally 

require substantial computational effort in order to satisfy the conjugate conditions with iterative 

schemes [39–42]. Moreover, introducing complex geometry or dynamic movement of the 

interface would further complicate the problem, for which effective and efficient numerical 

methods are needed. 

1.2.2 Determination of effective thermal conductivity of porous lattice structures 

The distinctive flow and thermal properties of the open-cell metal foams make them ideal 

candidates for the fabrication of lightweight and energy-efficient heat exchangers. The three-

dimensionally (3D) interconnected metal-fiber skeleton offers high effective thermal 

conductivity (ETC) and surface area density. The tortuosity provided by the fiber network to the 
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flow assists in enhanced thermal dispersion. There have been extensive investigations on flow 

and thermal transport characteristics of high-porosity metal foams, where permeability (K), 

inertial coefficient (cf), interstitial heat transfer coefficient (hsf), effective thermal conductivity 

(keff) relationships were established with respect to pore density (pores per inch, ppi), pore- and 

fiber-diameter (dp and df), porosities etc. For a comprehensive summary of such investigations, 

the reader is referred to [43–45]. For volume-averaged simulations, the steady-state energy 

transport equation with local thermal non-equilibrium between solid- and fluid-phases is given 

by ( ) ( ) 0eff s sf sf s fk T h a T T  − − = , where Ts and Tf are solid and fluid phase temperatures, 

respectively. To accurately model the energy transport, the keff and hsf are the critical quantities.  

The keff determination studies can be broadly categorized into (a) experimental 

measurements performed on commercially procured metal foams, (b) estimation from 

theoretically developed empirical or semi-empirical models where the unknown 

coefficients/parameters were derived by juxtaposing the correlations with the experimental data, 

and (c) numerical predictions by simulating idealized, near-identical or exact geometries 

(obtained through µCT imaging). Several asymptotic equations to determine the lower and upper 

bounds of keff exist in the literature. The simplest one was obtained considering the conduction 

through series-mode and parallel-mode structures consisting of the solid and fluid phases, 

11
( )

f s

k
k k

  −

⊥

−
= + , and (1 )f sk k k = + − , respectively, where kf and ks are the respective fluid- 

and solid-phase thermal conductivities. Asymptotic solutions for keff of heterogeneous mixtures 

were provided by Hadley [46] and Miller [47]. Later, authors including [48–50] suggested 

modifications to the relatively simple asymptotic models to extend their applicability to 

reticulated foams.  
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Experimental approaches have also been undertaken to determine keff of open-cell metal 

foams with different solid-fluid phase combinations, e.g. aluminum-air, aluminum-water. 

Calmidi and Mahajan [49] measured the ETC of aluminum metal foam samples of porosity (ε)  

values greater than 0.9 with both air and water as the saturated fluid. A simplified 2D hexagonal 

network with square-shaped intersection nodes was used to develop a theoretical expression for 

keff comprising one unknown geometrical parameter, the values of which was deduced by 

mapping the theoretical predictions with the experimental data. Bhattacharya et al. [51] extended 

the work presented in [49] by replacing square intersection nodes with circular metal blobs to 

derive modified analytical expressions. Paek et al. [52] experimentally determined the keff  of 

aluminum metal foams with ε in the range of 0.89 to 0.96 for three different cell sizes. The ETC 

was strongly dependent on the porosity but was found to be independent of pore size. Yao et al. 

[53] measured keff  of copper foams saturated with air, water and paraffin. The keff decreased with 

increase in porosity and showed negligible dependence on pore density. The copper foams 

yielded higher keff than aluminum foams at the same porosity because of the significantly higher 

thermal conductivity of the solid phase in case of copper foams. The ETC of nickel foams 

saturated with paraffin was measured experimentally by Xiao et al. [54], following which a 

theoretical model was developed which depicted good agreement with the measured values.  

Representative idealized unit cells are generally used by the researchers to obtain analytical 

expressions for keff. Two-dimensional (2D) hexagonal unit cell, representative cubic unit cells 

with square intersection nodes, 3D tetrakaidecahedron structure was used in several studies 

including [49,51,55–59] to derive analytical expressions for keff. Numerical simulations on 

idealized unit cells and microtomography-based images were conducted in [60–63] to obtain keff. 

A critical comprehensive review comparing several existing models with experimental data 
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including the above-mentioned references was provided by Ranut [43]. The author concluded 

that correlations including fitting constants provide satisfactory predictions and numerical 

simulations employing real µCT images or near-identical unit cells could provide accurate 

results.  

Recently, additively manufactured (AM) cellular lattices have been investigated 

extensively due to the advantages they offer over the conventional metal foams, e.g. the 

morphological parameter design freedom while ensuring their repeatability and the benefit of 

zero thermal contact resistance between the substrate and the fibers in its contact. Commercially 

procured foams when used in cooling applications are typically brazed on the substrate to be 

cooled or glued on the substrate with the help of high thermal conductivity thermal interface 

materials (TIMs). The TIMs are usually in the form of pastes where high thermal conductivity 

particles are loaded at fairly low volume fraction (typically <5%) in a base epoxy. Due to 

inherent challenges with loading high volume fraction of filler materials, the ETC of TIMs are 

usually low (~1-5 W/mK), which imposes significant thermal resistance towards heat flow from 

the substrate to the heat sink.  

Although AM related uncertainties in the realization of exact fiber and pore dimensions 

and unit cell topologies exist with the current state-of-the-art methods, the fact that complex 

reticulated structures can be fabricated opens up a new design space. From the perspective of keff 

determination for AM foams, numerical simulations of accurate model and experimental 

investigation of the same could yield results which are more consistent and universal for a given 

topology for a wide range of parameters, as the starting point is a CAD model of a unit cell with 

precise topology reticulated, in contrast to the previous approach of modeling a representative 

unit cell of randomly organized pores in metal foams made through foaming process. Qu et al. 
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[64] proposed a theoretical model to solve the ETC of the octet-truss structure based on 1D heat 

conduction analysis. By comparing with the experimental data, the prediction accuracy of the 

model was higher for ε > 0.8. Krishnan et al. [65,66] investigated the ETC of octet unit cell and  

the reported results are in good agreement with the expression of keff proposed by Gu et al. [67]. 

Bai et al. [68] considered the vertical heat conduction and simplified the model by neglecting the 

heat conduction between the air and the outer surface of the rod, and obtained a general 

expression of keff for stochastic and periodic structures.  

The literature review suggests that most of the previous studies on the ETC analysis were 

based on semi-empirical correlations which determine the parameters from experimental data 

and pore-scale simulations of idealized unit cell or structures obtained from µCT imaging. The 

experimental investigation of the ETC of periodic cellular matrices with preserved geometry is 

relatively scarce (e.g., [65,66]), although several theoretical models have been reported [68,69]. 

In addition, the accuracy and applicability of the previous correlations for the ETC of AM 

structures need to be verified and improved, especially at relatively lower porosities (e.g., in 

[69], significant ETC deviation from the theoretical “one-third solidity law” can be observed at 

0.8 < ε < 0.9 for the Cube, Octet and TKD structures). Furthermore, future design and innovation 

in AM porous structures require general and reliable correlations to predict the ETC. Those 

considerations motivate the present study to develop accurate and convenient correlations for the 

ETC of AM structure based on an effective computational model that is able to preserve the 

geometry and considers heat condition in both phases and will be validated with experimental 

measurement of the same structures. 

Numerical modeling of heat transfer in open-cell metal foams and prediction of transport 

properties including the ETC becomes a challenging task when the relative size of the strands is 
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very small and/or the intrinsic transport property ratio of the different materials is very high. 

When applying traditional numerical methods, a large number of grids/elements is typically 

required to resolve the conjugate heat transfer at the fluid-solid interface, and the computational 

time can be rather long due to the implementation of iterative interface schemes. For instance, in 

[65] for heat conduction simulation and ETC prediction for the octet structure, 0.86 million 

tetrahedral elements were needed following a mesh independence study. 

1.2.3 PFM/LBM model for dendritic growth 

Quantification and prediction of the evolution of the microstructure and segregation 

patterns of solidified pure materials and alloys are of great scientific and technological interest. 

The dendritic growth during solidification is a complex multiscale phenomenon that involves 

phase transition, melt flow, heat and solute convection-diffusion that are fully coupled at the 

evolving liquid-solid interface of complex morphology. In addition to the nature of multiphysics 

coupling, large transport property ratios are also encountered in the solidification process, for 

instance, the solutal diffusivity in the liquid state is generally two to four orders of magnitude 

smaller than the thermal diffusivity, and the solutal diffusivity in the solid state is typically two 

to four orders of magnitude smaller than that in the liquid [70]. It is also well known that 

solidification of alloys differs in many respects from solidification of pure substances, e.g., pure 

metals solidify at their definite melting point temperatures, while most alloys start to solidify at 

their liquidus temperatures and complete solidification at the solidus temperatures with the latter 

lower than the former; and undercooling related microstructure can only be produced by thermal 

means in pure metals, while in alloys it can be produced by changes in both temperature and 

composition. Direct simulation of solidification and crystal growth on the scale that captures the 
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local liquid-solid interface geometry (sharp interface) has thus experienced only limited progress 

[70]. 

The phase-field method (PFM), which employs the concept of a diffuse interface and 

introduces a phase field variable (with constant values in the bulk phases and varying steeply yet 

smoothly in the diffuse interface region), has become a widely accepted technique for 

computational modeling of dendritic growth and interfacial pattern formation. Several detailed 

reviews on phase-field modeling of dendritic growth can be found in [27–29]. While the present 

study focuses on solidification modeling, it should be noted that the PFM has broad applications 

in modeling and predicting mesoscale morphological and microstructure evolution in materials 

such as solid-state phase transformations, grain growth and coarsening, domain evolution in thin 

films [71], morphological evolution of multicomponent vesicles and solving nonlinear high-

order PDEs [72–74], among others. In the early works, the PFM was only employed to model 

solidification controlled by pure diffusion, and the effects of thermal and solutal diffusion were 

mostly separately studied. The first coupled thermosolutal PFM was proposed in [70] where it 

was also demonstrated that the coupled model can reduce to the isothermal and iso-solutal cases. 

The effect of fluid flow and melt convection on the crystal growth was well recognized [75–78], 

but little work was reported mainly due to the lack of effective and reliable coupled models. 

Beckermann et al. [79] reported the first phase-field simulations including melt convection, in 

which the mass, momentum, energy, and species conservation equations in the diffuse interface 

region were formulated based on volume averaging; and a dissipative interfacial stress term 

(momentum sink) was introduced in the momentum equation to deal with the interaction at the 

liquid-solid interface. All the conservation equations were solved with traditional computational 
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fluid dynamics (CFD) schemes in [79]. Since then, a great number of publications on PFM 

modeling of dendritic growth under melt convection has been reported (e.g., [32,33,80–82]). 

In the CFD and heat and mass transfer communities, the lattice Boltzmann method 

(LBM) has become a powerful and alternative numerical method for modeling fluid flows and 

thermal/mass transport problems with complex geometry due to its attractive features including 

simple algorithm, easy implementation, convenience in boundary and interface treatment, and 

compatibility with parallel computing [14,23,25,26,83–87]. It is no surprise that a growing 

number of publications have focused (e.g., [30–33]) on coupling the PFM and LBM for dendritic 

growth simulations. Most of those PFM-LBM models can be considered as hybrid models in 

which finite-difference- or finite-volume-based PFM was applied to simulate the phase field 

evolution, while the LBM was implemented to model the melt flow and heat and solute transfer. 

In addition, fully coupled PFM models considering all the effects of melt flow and thermosolutal 

convection-diffusion in the literature are very rare (e.g., [88]) due to the lack of general, 

convenient, and efficient numerical schemes.  
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CHAPTER II 

ACCURACY OF SHARP INTERFACE SCHEMES FOR CONJUGATE HEAT AND MASS 

TRANSFER IN THE LATTICE BOLTZMANN METHOD* 

This chapter presents a comparison of the popular interface schemes proposed in the 

literature with the focus on their numerical accuracy and convergence orders. The various 

interface schemes examined include the geometry-considered interpolation-based treatment that 

constructs second-order accurate corrections to the distribution functions across the interface by 

treating the interface as a shared boundary for the adjacent domains, as well as representative 

modified schemes that bypass the local geometry and topology consideration by either 

reformulating the macroscopic governing energy equation with additional source terms, or 

proposing modified microscopic equilibrium distribution functions in the lattice Boltzmann 

model. It is recognized that for the interface schemes based on governing equation reformulation, 

approximation of the discontinuous heat capacitance gradient at the interface is required to 

account for the interfacial heat flux continuity. Through analysis and numerical tests including 

both straight and curved interfaces, it is shown that in order to preserve the second-order 

accuracy in the LBM, the local interface geometry must be considered; and the modified 

geometry-ignored interface schemes result in degraded convergence orders – at most first order 

for general cases and only zeroth order is achieved for the schemes requiring discontinuous heat 

* This chapter is based on work published in the International Journal of Heat and Mass Transfer 

in 2020 [89] 
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 capacitance gradient approximation. In addition, much higher error magnitude is observed for 

the numerical solutions obtained from using these modified schemes without considering the 

interface geometry. 

The structure of the remaining portions of this Chapter is as follows: Section 2.2 presents 

the governing equations for thermal and mass transfer, and the formal definition of the conjugate 

conditions. Section 2.3 briefly reviews the general lattice Boltzmann models for the convection 

diffusion equation for heat and mass transfer. Section 2.4 presents a comparison of the interface 

treatments for conjugate conditions, including those that require consideration of the local 

geometry and the three groups mentioned above. Benchmark test cases and numerical analysis 

are provided in Section 2.5. And Section 2.6 concludes the Chapter. 

2.1 Introduction 

The lattice Boltzmann method (LBM), which has emerged as an effective and powerful 

numerical method for complex flow simulations [23], [24], [25], [26], has also witnessed 

growing interest and success in heat and transfer modeling involving complex geometry and 

hydrodynamics-transport coupling [85], [87], [90], [91], [92], particularly with the development 

of lattice Boltzmann (LB) models that introduce two sets of distribution functions (DFs) to 

recover the Navier-Stokes equations for fluid flow and the CDE for heat and mass transfer, 

respectively. One of the main advantages of using the LBM for heat and mass transfer is the 

capability to formulate analytical relationships between the microscopic DFs and the 

macroscopic physical quantities in (1) the Dirichlet, Neumann and mixed boundary condition 

implementations, and (2) the evaluation of boundary temperature (concentration) and flux values 

and the interior thermal (mass) gradients [85,86,93]. This also makes the LBM an attractive 

numerical method for conjugate heat and mass transfer modeling, i.e., with appropriate interface 
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schemes, the conjugate conditions can be satisfied analytically during each time step without 

nested iterations [14,34]. A brief review of the various interface schemes for conjugate 

conditions is thus presented in the following, and the readers are referred to [85], [87], [86] for 

detailed reviews of LB models and boundary conditions in heat and mass transfer modeling. 

The first work on conjugate heat transfer in LBM was due to Wang et al. [13], in which a 

“half lattice division” (HLD) scheme was originally proposed to account for the interfacial 

continuity, however the HLD scheme without correction to the DFs streamed to different 

domains was only applicable to steady cases with the interface located halfway in the lattice 

links. Since then, a number of other schemes have been proposed with the objective to satisfy the 

interfacial conjugate conditions [see 32 and refs therein]. In particular, with the interface treated 

as a shared boundary between the adjacent domains, the Dirichlet and Neumann boundary 

condition treatments by Li et al. [86] were combined and applied to interface conditions, and 

specific interface schemes were proposed in [14] for standard conjugate conditions, and in [34] 

for conjugate heat and mass transfer with interfacial jump conditions. Second-order accuracy of 

those interface schemes were verified for both steady and transient problems with straight 

interfaces located in arbitrary locations in the lattice, and their application to curved interfaces 

was also studied in [14,34], showing first-order convergence in general. This idea of constructing 

analytical relationships to modify the DFs across the interface to satisfy the conjugate conditions 

was also applied in [94] for a counter-extrapolation interface scheme. Moreover, it was also 

extended to handle general interface conditions in [35,36]. Specifically, Hu et al. [35] 

constructed interface schemes based on their boundary schemes for the mixed (Robin) conditions 

[95] for general interfacial conditions, including conjugate conditions with or without jumps in 

heat and mass transfer, continuity of macroscopic variables and normal fluxes in ion diffusion in 
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porous media with different porosity, and the Kapitza resistance in heat transfer. Mu et al. [36] 

further extended the works of Li et al. [14,34] and presented general interface schemes for the 

comprehensive conjugate conditions with and without interfacial jumps. Consistent with that in 

[14,34], second-order accuracy for straight interfaces and first-order accuracy for curved 

interfaces were also verified in [35,36]. Two key notes regarding the interface treatments 

presented in [14,34–36,94] are that: (1) there is no change in the LB models for the interior in the 

adjacent domains, i.e., only the DFs across the interface are modified, and (2) the local geometry, 

as denoted by the lattice link fractions at the interface, must be taken into account in constructing 

the interface schemes to preserve the second-order accuracy, which requires additional effort and 

computational resource compared to the simple HLD scheme, especially for curved interfaces or 

those with complex geometry such as heat and mass transfer in porous media. 

Driven by the motivation to bypass the aforementioned consideration of the local 

geometry or topology at the interface, other methods have also been developed in the LBM 

community [16,96–107] to model conjugate heat and mass transfer problems. In those 

approaches, either the macroscopic governing CDE or the microscopic DF in the LB models is 

modified. We categorize them into three groups with representative examples briefly reviewed. 

In Group 1, additional source terms were introduced in the reformulated CDE for conjugate heat 

transfer and their implementation follows the standard source term treatment in LB models. For 

example, Karani and Huber [96] used the conservative form of the energy equation to formulate 

an additional source term to correct for the difference in heat capacitance between the two 

materials. Their method demonstrated only first-order accuracy for the diffusion in a 3-layered 

stratified medium and the convection diffusion in a horizontal channel. They attributed the 

degradation in the order-of-accuracy to the 1st-order finite-difference approximation of the heat 
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capacitance gradient at the interface. Hu et al. [100] also formulated a modified CDE that 

contains a source (correction) term utilizing the Dirac function and a heat flux jump function 

across the interface, following their previous work in [101]. Only first-order accuracy was 

obtained in [100,101] even for straight interfaces and the degraded convergence order was 

attributed to the utilization of discrete delta functions in the formulation. 

In Group 2, enthalpic formulations were applied to convert the energy conservation 

equation for temperature to a CDE for the enthalpy-like quantity with additional source terms 

[102,103]. Similar to the model presented by Karani and Huber [96], this formulation also 

requires an approximation of the gradient in heat capacitance at the interface. The authors in 

[102] showed near second-order convergence for a simple diffusion problem, however, no 

detailed error analysis was presented for convection and diffusion problems or for general 

interface geometry. 

In Group 3, modified microscopic DFs were defined in the LB models for conjugate 

conditions [16,97–99,104–107]. In [16], it was assumed that the interface is always located at the 

halfway point between the lattice nodes in the two adjacent domains. Second-order accuracy for 

straight interfaces located halfway in the lattice and first-order accuracy for curved interface are 

demonstrated in [16]. The alternative interface schemes in [97–99,104–107] aimed at avoiding 

the modification of the local DFs at the lattice links across the interface, rather by modifying the 

LB model over the full domain so that the local interface geometry could be ignored. The 

expressions for the modified DFs in those models are similar to each other, with higher-order 

terms neglected in some models. It was claimed in the LB models [97,104–107] that the 

conjugate conditions between different materials are “automatically satisfied” with the modified 

DFs. While general agreement between LBM simulations and the analytical or previously 
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published results is shown, a detailed order-of-accuracy analysis for general conjugate heat and 

mass transfer problems with both straight and curved interfaces is lacking in these models. 

Lastly, it should be noted that the above group classification is not exclusive and there 

can be overlap between the three groups. For instance, the enthalpy-based energy equation 

formulation in Group 2 was also implemented in [98,99] for conjugate heat transfer problems 

involving solid-liquid phase change, and modified DFs similar to those in Group 3 were used in 

their interface treatment. 

2.2 Formulation of conjugate heat and mass transfer 

2.2.1 Governing equations 

The energy equation can be written as 

   [ ( )] ( )p p T

DT T
c c T k T S

Dt t
 


= +  =   +


u ,

  
(2.1) 

where ρ is the density, cp the specific heat, T the temperature, t the time, u the velocity vector, k 

the thermal conductivity, and ST the source term. It is worth noting that Eq. (2.1) is the correct 

conservation form and it should not follow the form of 
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as used in [96], since from the control volume analysis for energy conservation 
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 for low speed incompressible flows with h the specific 

enthalpy, i.e., Dh = cpDT, rather than h = cpT, should be used in deriving Eq. (2.2). One can 

rewrite Eq. (2.3) as 
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with the modified source term 
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For mass transport, the governing equation is 
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where C is the concentration, Dm the mass diffusivity, and SC the source term. It is easily seen 

that both the energy and mass transport equations (2.3) and (2.5) follow the standard form of the 

convection diffusion equation (CDE) with source terms that can be written as 

   ( ) ( )D G
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(2.6) 

2.2.2 Conjugate conditions at the interface 

The generalized conjugate conditions at an interface for the interfacial scalar variable (ϕ) 

and fluxes can be expressed as 

   jumpf s  = + ,
  

(2.7) 
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   jump( ) ( ) C
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(2.9) 

where the subscripts denote the two adjacent domains such as those for fluid-solid conjugate 

conditions. Physical interpretation of the conjugate heat and mass transfer conditions includes 

the continuity (or prescribed resistance) of the scalar variable and the normal fluxes at the 

interface of the adjacent domains. It is noted that the normal fluxes in Eqs. (2.8, 2.9) include both 

the diffusive and convective components [32,38], and 𝜙jump and 𝑞jump are possible jump 

conditions at the interface [16-18] to account for thermal or mass transport resistance. Additional 

treatment at the interface is required to recover the conjugate conditions with scalar or flux 
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jumps in Eqs. (2.8, 2.4); however, to show a clear comparison of the various interface schemes 

for conjugate conditions, we consider only in this paper the transport problems with no jumps. In 

addition, when the normal component of the velocity is zero at the interface, Eqs. (2.7-2.5) 

reduce to the basic conjugate conditions as 

   f s = ,
  

(2.10) 
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where 𝐷 =
𝑘

𝜌𝑐𝑝
, 𝜎 =

(𝜌𝑐𝑝)
𝑠

(𝜌𝑐𝑝)
𝑓

 at the interface in heat transfer, and 𝐷 = 𝐷𝑚 , σ = 1 in mass transfer 

problems [14,34]. 

 It is emphasized that for conjugate heat transfer between different materials with distinct 

heat capacitance, i.e., σ ≠ 1 at the interface, the treatment of the first term on the right side of Eq. 

(2.4) requires caution. When the CDE in each domain is solved separately with the geometry-

considered interface treatment implemented, there is no need to deal with this term across the 

sharp interface. However, when using the geometry-ignored interface treatment as in Groups 1 

and 2, finite-difference type schemes are required to discretize the heat capacitance gradient at 

the lattice nodes next to the interface, which is assumed to be located in the middle of the lattice 

link. Importantly, even for the most basic situation with constant and distinct heat capacitances in 

the two domains (σ = const ≠ 1), a discontinuity shows up in the profile of 𝜌𝑐𝑝 across the 

interface, for which the discretization of the heat capacitance gradient 
𝜕

𝜕𝑥𝑖
(

1

𝜌𝑐𝑝
) at the adjacent 

lattice nodes would introduce significant numerical errors. This will be demonstrated in Chapter 

2.4 with numerical examples.  
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2.3 Lattice Boltzmann model for the convection-diffusion equation (CDE) 

The evolution equation in the standard LB model that recovers the CDE in Eq. (2.6) can be 

written as [85,87] 
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x e x L g g x x ,
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where the microscopic distribution function, gα(x, t) ≡ g(x, ξα, t), is defined in the discrete 

velocity space, ξ is the particle velocity vector that is discretized to a small set of discrete 

velocities {ξα|α = 0, 1, …, m - 1}, eα the αth discrete velocity vector, δt the time step, L the 

collision operator, ( )eq ,g t x

 

the equilibrium distribution function, and ωα the weight coefficient. 

The macroscopic scalar variable is obtained from 
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A comparison of the different lattice structures was studied by Li et al. [87], and the 

D2Q5 model by Yoshida and Nagaoka [85] will be used in this work, for which the equilibrium 

DF is 
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Regarding the collision operator L, there are three popular models in the literature. The 

earliest and simplest one is the BGK [108] or single-relaxation-time (SRT) model 
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where τ

 

is the relaxation coefficient/parameter. 

In addition, the TRT model [109] has also been successfully applied in various situations. 

In the most general multiple-relaxation-time (MRT) model, a transformation matrix M is 
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introduced to map the DFs to the moment space: m = M∙g and meq = M∙geq, and the collision 

operator is 

   ( ) ( ) ( )eq -1 eq -1 eq
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where S is a matrix of relaxation time coefficients following 
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in order to recover the CDE. For the D2Q5 model, εD = 1/3, and the equilibrium moments are 

    
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More details for the D2Q5 LB model, including the matrices M and S, can be found in [85,87]. 

The standard “collision-streaming” procedure is also used in this work for efficient 

computational implementation, with 

collision step: 
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streaming step: 

   ( ) ( )ˆ, ,g t t t g t   + + =x e x ,
  

(2.20) 

where ĝ  
represents the post-collision state. 

2.4 Interface treatment for conjugate conditions 

2.4.1 Interface schemes considering local geometry 

In the earlier interface treatment [13,14,34] the DFs at the lattice nodes next to the 

interface are updated in each time-marching step to satisfy the conjugate conditions. In 

particular, in the interface treatment proposed by Li et al [14], second-order accurate schemes 

were derived by constructing a system of equations with the sharp interface considered as a 

shared boundary for the adjacent domains. With the local link fraction included in the interface 
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schemes, the second-order accuracy is preserved for parallel straight interfaces located in 

arbitrary locations within the lattice. Furthermore, the extension of the interface schemes to 

curved geometry was also studied in [14,34,36] by coupling the interfacial fluxes in the discrete 

lattice velocity directions using the “Cartesian decomposition method” originally developed in 

[86]. For brevity, only the decoupled interface scheme, i.e., when the normal of the straight 

interface is in parallel with one of the discrete velocity vectors in the LB model, is given below; 

one can refer to [14,34] for more details regarding the coupled interface schemes for inclined or 

curved interfaces. 
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where 
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with 
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where xff and xss are the second closest lattice nodes to the interface in the respective two 

domains, i.e., xff = xf + e
δt and xss = xs + 

e δt, cd1-cd4 and cn1-cn4 are the coefficients related to 

the local link fraction ∆ = ||xf − xw||/||xf − xs|| in Domain 1 for the second-order accurate Dirichlet 

and Neumann boundary conditions, respectively [86], and the coefficients *

dic  and *

nic (i = 1, 2, 3 

and 4) are related to cdi and cni as 

   ( ) ( )* * 1di di dic c c=  = −  ,
  

(2.25) 

   ( ) ( )* * 1ni ni nic c c=  = −  ,
  

(2.26) 

since the intersection fraction in Domain 2 is ∆* = ||xs − xw||/||xf − xs|| = 1 − ∆ [14]. 

There is one adjustable parameter in the second-order Dirichlet scheme and three 

particular schemes were proposed in [86] as 

   1

2 ,(0 0.5),

Scheme 1: 1
, ( 0.5),

2

dc

−    


= 
−  

 
  

(2.27) 

   1Scheme 2: 2(1 )dc = − −  , and
  

(2.28) 

   1Scheme 3: 1dc = − ,
  

(2.29) 

and the other coefficients are related to cd1 as  

   
1 1 1

2 3 4

2 1 2 1
, ,

2 1 2 1 2 1

d d d
d d d

c c c
c c c

 + +  − +
= − = =

 +  +  +   
(2.30) 

thus three particular interface schemes corresponding to those in Eq. (2.27-2.29) were obtained 

[14]. For the second-order Neumann scheme, the coefficients are uniquely determined with 

   1 2 3 4

2 1 2 1 2
1, , ,

2 1 2 1 2 1
n n n nc c c c

 −  −
= = − = =

 +  +  +   
(2.31) 

Clearly, for straight interfaces located “halfway” between the lattice nodes (∆ = 0.5), the 

decoupled interface scheme in Eqs. (2.21, 2.22) reduces to 
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(2.33) 

In this half lattice division (HLD) scheme, only the local DFs at xf and xs are required. It 

is worth noting that single-node second-order accurate interface schemes were also proposed in 

[35]; however, those schemes use complex coefficients that are dependent not only on the local 

link fraction, but also the relaxation coefficients in the two domains [35,95]. The conclusion on 

the order-of-accuracy of those geometry-considered interface schemes in [14,34–36,94] is 

consistent, and thus only the original scheme proposed in [14] is implemented in this work for 

numerical tests. 

2.4.2 Modified geometry-ignored interface schemes 

The details for the various modified interface schemes for conjugate heat and mass 

transfer are presented in this section. These schemes were constructed with the objective to 

bypass the consideration of the local geometry at the interface and eliminate the update or 

correction of the DFs across the interface. The implementation of the modified schemes is 

applied to the entire domain for efficient computation especially for complex geometry. This 

study focuses on the analysis of their numerical accuracy compared to the original geometry-

considered interpolation-based interface schemes [14,34–36,94]. As discussed in the 

Introduction, we categorize them into three groups for convenience according to the formulation 

of the governing equations and the LB model modification. Most of those schemes were 

formulated for conjugate heat transfer problems with σ ≠ 1 in Eq. (2.11), and for conjugate mass 

transfer σ = 1, the interface treatment becomes much simpler. 
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2.4.2.1 Group 1: introduction of additional source terms in the energy equation 

In the first group, the governing CDE for temperature was reformulated with additional source 

terms to account for the conjugate conditions. Representative examples include those in 

[96,100,101]. While those formulations were demonstrated to preserve the continuity of 

interfacial temperature and heat flux for the standard conjugate conditions from a theoretical 

point of view; their numerical implementation can be problematic or incapable of preserving the 

second-order accuracy in the LBM due to the treatment of the gradient of the heat capacitance 

(see Eq. (2.4)). Specifically, in [96], a one-sided finite-difference approximation was directly 

used for the gradient; and in [100,101], Dirac and discrete delta functions were applied and much 

more complicated formulations were presented. For brevity, the modified interface treatment in 

[96] is selected and summarized below to represent the Group 1 schemes. 

Following the source term treatment in [96], the heat capacitance gradient at the lattice 

nodes with indices k and k + 1 next to the interface is approximated as (assuming the interface is 

located halfway between nodes k and k + 1) 
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with ( ) ( ) ( )
avg 1

2p p pk k
c c c  

+

 = +
 

 the averaged value at the interface, and ni the unit normal 

vector in xi-direction. Thus the additional source term, i.e., the first term in Eq. (2.4), is obtained 

from 
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where ( ) ( )
1p pk k

c c  
+

= . Since (xi)k and (xi)k+1 are the interior nodes, the temperature 

gradient in Eq. (2.36) can be conveniently obtained from the moment of the non-equilibrium DFs 

[85–87,110], yielding 
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(2.37) 

As pointed out in [96], the treatment of the source term in Eq. (2.37) can be applied to the 

entire computational domain as its value will be zero everywhere except at the nodes (xi)k and 

(xi)k+1 next to the interface where the heat capacitance experiences a jump. It is worth noting that 

such a statement is only valid for the simplest case where the heat capacitance is constant in each 

domain. More importantly, finite-difference type approximation of the gradient of a jump 

function, such as the first-order scheme in Eq. (2.34, 2.35) or any higher-order schemes, could 

result in substantial numerical errors. It is noted that the above source term treatment in Eq. 

(2.37) is equivalent to the flux source terms in Eqs. (41, 42) of [100] where the Dirac function 

was used. For simple heat transfer problems with small capacitance ratios, first-order 

convergence could be obtained with a coarse grid, which was also observed in [96,100]; 

however, for large σ values, the effect of the jump condition becomes crucial and zeroth-order 

convergence is expected. This will be demonstrated with detailed numerical tests in Chapter 2.5. 
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2.4.2.2 Group 2: enthalpy-based formulation for the energy equation 

In this group, enthalpic formulations were applied to convert the energy equation to a 

CDE for an enthalpy-like quantity [102,103]. For instance, with (ρcp)0 as the reference heat 

capacitance, h* = (ρcp)0T was introduced in [102] and the energy equation (assuming ST = 0 in 

Eqs. (2.1, 2.2)) was transformed to 

   ( )
*

* *
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(2.38) 

where 
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(2.39) 

It should be noted that Eq. (2.38) was derived based on Eq. (2.2). As discussed in Section 

II, when the formulation of the energy equation in Eq. (2.1) is used, the second term in the 

expression of SH would disappear. It was argued in [102] that the conjugate heat transfer 

conditions are satisfied with the above formulation. The standard LBM in Section III can be 

applied to the modified CDE in Eq. (2.38) if SH is properly dealt with. Similar to that in the 

Group 1 schemes, the challenge for this enthalpic formulation and LBM implementation is also 

the approximation of the gradients 
*

1


  and *,  both related to the heat capacitance profile 

that experiences a jump at the interface. In [102], the following approximation, as proposed in 

[24] for computing the gradient of a continuous function, was applied for both 
*

1



=  and 

* =  

   ( )2
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j j
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t e
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

   


 = +    x e x
  

(2.40) 
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When the D2Q5 LB model is used, the above gives 
, 1 , 1

2

i j i j

jx x

 



+ −−
=


. Such central-difference 

type approximations are second-order accurate for continuous functions, however, they would 

result in large errors for discontinuous or jump functions. It is expected that the interface 

treatment in Group 2 would give similar error behavior as that in Group 1. This will also be 

demonstrated in Chapter 2.5 with numerical examples. 

2.4.2.3 Group 3: modified equilibrium distribution function in the LBM 

Recognizing the challenge in approximating the gradient of the discontinuous heat 

capacitance in Groups 1 and 2, there is another group of alternative LB models [16,97–99,104–

107] for conjugate heat transfer problems with modification of the microscopic equilibrium DF 

eqg . Their expressions are quite similar and the main idea was incorporating the heat capacitance 

into eqg  so that the LBE recovers the energy equation and the diffusion coefficient is related to 

the thermal conductivity rather than the diffusivity as in Eq. (2.3). In such a manner, the 

conjugate condition with the heat flux continuity at the interface can be satisfied. We point out in 

this work that such a treatment is analogous to the HLD scheme and it is able to preserve the 

second-order accuracy only for the special situation with the straight interface located halfway in 

the lattice links, i.e., ∆ = 0.5 for all the interface nodes and with the interface parallel to one of 

the discrete velocity vectors. For all other cases, it degrades to a first-order scheme. 

When neglecting the higher-order terms, the modified equilibrium DF in [97–99,104–

107] can be written as 
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where (ρcp)0 is also a constant reference heat capacitance. The standard LBE in Section III can 

still be used for the above modified eqg , with the temperature in each domain obtained from 

( )
1

0

m

pT g c



−

=

=  , and the relationship in Eq. (2.17) replaced by the following between the 

thermal conductivity and the relaxation coefficient 
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When the MRT-LBM is used, the modified meq in the D2Q5 model becomes 
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This D2Q5 MRT-LBM will be used in the next section for numerical tests. For stable 

computation, (ρcp)0 = 1, and (ρcp)1 = 1, (ρcp)2 = σ are used for σ ≥ 1, and (ρcp)1 = 1/σ, (ρcp)2 = 1 are 

used for σ ≤ 1. In addition, it will also be verified that for the Group 3 LB models, the order-of-

accuracy of the LB solution can be improved from the 1st-order to 2nd-order if the geometry-

considered interpolation-based interface scheme in [14,34–36,94] is implemented for ∆ ≠ 0.5. 

2.5 Numerical tests and discussion 

Three tests are studied in this section to compare the numerical accuracy of the various 

interface schemes in Chapter 2.4. The first test is for one-dimensional (1D) diffusion in a slab 

consisting of two different materials. The other test case is for 2D diffusion within a circular 

domain of two different materials to further demonstrate the effect of interface geometry on the 

accuracy of the various interface schemes. All examples are at steady state and exact solutions 
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are available. With the focus on the comparison of the interface schemes, second-order boundary 

schemes in [86] for all the outer boundaries are applied for all cases. The following relative L2-

norm error is defined for the LB solution of the scalar field in the whole domain 

   ( )
1 2

2 2

2 LBE ex ex

/

x ,y x,y

E   
 

= − 
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(2.44) 

Furthermore, the interfacial scalar value, int , and interfacial flux, intq k n= −   , can 

also be obtained from the DFs at the lattice nodes in each domain next to the interface using the 

evaluation schemes in [14,34]. The numerical accuracy of those interfacial quantities are 

valuable additional metrics to compare the performance of the interface schemes. It was verified 

in [14,34] that when the interpolation-based interface schemes were implemented, the interfacial 

scalar and flux values obtained from the different domains are exactly the same with the second-

order accuracy preserved; however, when the HLD interface scheme was applied for ∆ ≠ 0.5, 

only first-order accuracy is obtained for both the interfacial scalar and flux values. In this work, 

the evaluation schemes for Groups 1-3 can also be constructed as 

   ( ) ( )int_1 f f D
ˆg ,t t g ,t    = + +

 
x x ,

  
(2.45) 

   ( ) ( )int_2 s s D
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(2.46) 

   ( ) ( )int_1 1 1 1 f f
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(2.47) 

   ( ) ( )int_2 2 2 2 s s
ˆq k n g ,t t g ,t x t    = −   = + −  x x ,

  
(2.48) 

Since the regular streaming step in Eq. (16b) is used for Groups 1-3, 

( ) ( )f s
ˆg ,t t g ,t + =x x  and ( ) ( )s f

ˆg ,t t g ,t + =x x  are noted and the respective interfacial 

scalar and flux values obtained from the two domains in Eqs. (2.45, 2.46) and (2.47, 2.48) are 

also consistent, i.e., 
int_1 int_2 =  and 

int_1 int_2q q= − . With the above, the following relative L2-
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norm errors for the interfacial quantities are thus defined for Groups 1-3 and the interpolation-

based interface scheme in Eq. (2.21, 2.22) 
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1 2
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2.5.1 One-D diffusion in a slab of two materials 

First, the incapability of the geometry-ignored interface schemes in Groups 1-3 to 

preserve the second-order accuracy of the LB solutions can be simply understood from the 

comparison of the two cases in Figure 2.1 (a) and (b). When the same outer boundary conditions 

are imposed for (a) and (b), each of the interface schemes in Groups 1-3 would give the same LB 

solutions for the two cases as they do not consider the actual location of the interface within the 

link. However, the exact solutions for these two cases are clearly different (the difference is of 

the first-order of the grid spacing). Thus, the interface schemes in Groups 1-3 can at most 

preserve the first-order accuracy for ∆ ≠ 0.5 at the interface. 
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Figure 2.1 Schematic depiction of the lattice for 1D diffusion in a two-solid slab with the 

intersection link fraction at the interface (a) ∆ia < 0.5, and (b) ∆ib > 0.5. 

 

Specifically, one can consider the simplest steady-state test with ϕ(x = 0) = 0, ϕ(x = L) = 

1, ∆1 = ∆2 = 0.5, and σ = 1 so that Groups 1-3 all reduce to the simplified HLD scheme in Eq. 

(2.32, 2.33). The comparison of both the LB solutions from using the HLD scheme and the 

geometry considered interpolation-based scheme in [14] (see Eq. (2.21, 2.22)) with the exact 

solutions is shown in Figure 2.2, where very coarse grid (L = 8δx) was used and the other 

simulation parameters are τ1 = 0.55, τ2 = 1.0 (k2/k1 = D2/D1 = 10), ∆ia = 0.01, and ∆ib = 0.99. 

Excellent agreement is observed between the LB solutions using the interface scheme in [14] and 

the exact solution; while the solutions based on the HLD scheme for ∆ia = 0.01 and ∆ib = 0.99 are 

irresponsive to the variation of the exact solutions due to the interface location change, and large 

discrepancy between the LB solution and the exact solution is noticed. The first-order 

convergence for the HLD scheme is clearly seen in Figure 2.3 for the interior field and Figure 

2.4 for the interfacial scalar and flux values. It is worth noting that for this linear diffusion 

problem, the LB solution based on the interface scheme in Eq. (2.21, 2.22) and all three 
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boundary schemes in Eq. (2.27-2.29) is almost exact for all ∆ values at the interface and the outer 

boundaries, with machine epsilon errors achieved in the present numerical test. 

 

Figure 2.2 Profiles of the scalar variable ϕ(x) for the 1D diffusion problem in Fig. 2.1 with σ 

= 1. 

 

Figure 2.3 Relative L2 norm error, E2, for the interior scalar field versus the grid resolution, 

1/L, for the 1D diffusion problem. 
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Figure 2.4 Relative L2 norm errors, (a) E2_tint, for the interfacial scalar, and (b) E2_qint, for the 

interfacial flux, versus 1/L for the 1D diffusion problem. 

 

Next, we consider the cases with 
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performance of the various interface schemes in Groups 1-3. For brevity, the boundary and 

interface link fractions are all fixed at ∆ = 0.5 and the two adjacent domains with different 

materials are assumed to have the same length so that the exact solution is fixed. Since 1   is 

applied, and also with different boundary conditions ϕ(x = 0) = 0 and ϕ(x = L) = 1, the present 

solution as shown below is slightly different from that in [34] for the same heat source 
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where 
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Figures 2.5 and 2.6 show the scalar ϕ profiles with the different interface schemes 

implemented for varying heat capacitance ratio and diffusivity ratio, respectively, where in 

Figures 2.5b and 2.6b a quadratic source term with a = 1 and b = c = 0 in Eq. (2.51, 2.52) is 

applied. It is observed that the results using the interface schemes from Group 3 and Li et al. [14] 

match the exact solutions extremely well for all cases, close examination of the data for these 

two schemes at ∆ = 0.5 reveals that their LB solutions are almost identical, with very slight 

difference noticed only at large heat capacitance ratios (e.g., when σ = 0.2). Furthermore, both 

Group 1 and Group 2 yield large errors, especially when σ is far away from 1, e.g., with σ = 0.2 

and 5; of these two schemes, Group 1 shows larger errors in Figure 2.6 and Group 2 has larger 

errors in Figure 2.5. Only when σ is very close to 1 (σ = 0.99 in Figure 2.5) Groups 1 and 2 are 

able to match the exact solutions. The finite-difference type approximation of the discontinuous 

heat capacitance gradient at the lattice nodes next to the interface in Groups 1 and 2 are the main 

reason for their large errors in this 1D diffusion problem. In the next test, more detailed error 

analysis will be presented for a 2D convection-diffusion problem. 
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Figure 2.5 Profiles of the scalar variable ϕ(x) for the 1D diffusion problem with different σ 

values and a fixed diffusivity ratio D21 = 2: (a) without heat source, and (b) with a 

quadratic source. 

 

 

Figure 2.6 Profiles of the scalar variable ϕ(x) for the 1D diffusion problem with different 

diffusivity ratios D21 and a fixed σ = 2: (a) without heat source, and (b) with a 

quadratic source. 
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2.5.2 Two-D diffusion in a circular domain 

In this test, scalar diffusion in a circular domain of two different materials is simulated to 

verify the effect of curved geometry on the accuracy of the various interface schemes. The 

computational domain is illustrated in Figure 2.7 following [14]. The same exact solution given 

in [14] for the case with an outer boundary condition ϕ2(r = R2) = cos(4θ) and the standard 

conjugate conditions at the interface (r = R1) is used here while σ ≠ 1 is applied. The procedures 

for implementation of the interface schemes in Groups 1-3 and the coupled scheme in [14] are 

the same as those in the previous test for the inclined interface. In addition, an improved Group 3 

scheme which combines the modified equilibrium DFs in Group 3 and the coupled interface 

scheme in [14] is also included for comparison. 

 

Figure 2.7 Schematic depiction of the lattice in a circular domain for 2D conjugate scalar 

diffusion.  

 

Using the parameters σ = 2, D21 = 5, (τ1, τ2) = (0.55, 1.0) for the Group 3 and improved Group 3 

schemes and (τ1, τ2) = (0.55, 0.75) for the other schemes, the results for E2, E2_tint, and E2_qint are 
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shown in Figures 2.8 and 2.9 (a, b), respectively. For the cases where the interpolation-based 

schemes are applied, the particular Scheme 2 in Eq. (2.28) for the coefficient cd1 is used. 

 

Figure 2.8 Relative L2 norm error, E2, for the interior scalar field versus the grid resolution, 

1/R1, for the 2D diffusion in a circular domain.  
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Figure 2.9 Relative L2 norm errors, (a) E2_tint, for the interfacial scalar, and (b) E2_qint, for the 

interfacial flux, versus 1/R1 for the 2D diffusion in a circular domain. 

 

As expected, zeroth-order accuracy is observed for all three quantities of interest for 

Groups 1 and 2. The original Group 3 scheme yields first-order convergence for the interior and 

interfacial scalar values and zeroth-order for the interfacial flux. For both the improved Group 3 

scheme and the coupled scheme in [14], near second-order convergence at low resolution and 

eventually first-order convergence at high resolution are obtained for all three quantities, which 

is consistent with that reported in [14,34]. It is also noticed that the results from using these two 

geometry-considered interface schemes are almost identical, which is consistent with that 

observed in Figures 2.5 and 2.6 for the 1D diffusion problem. Lastly, it should be emphasized 

that even though the same first-order convergence rate is obtained for the original Group 3 and 

the two coupled schemes for the interior and interfacial scalar values in Figures 2.8 and 2.9a, the 
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error magnitude for the cases with coupled interface schemes is much lower than that for the 

geometry-ignored Group 3 scheme. 

2.6 Conclusions 

A detailed comparison with theoretical analysis and numerical tests was conducted for 

the popular interface schemes for conjugate heat and mass transfer modeling using the lattice 

Boltzmann method (LBM). The various interface schemes considered include the second-order 

accurate interpolation-based treatments in [14,34–36,94] that consider the interface geometry and 

arrangement in the lattice, and several modified schemes that bypass the local geometry and 

topology consideration by utilizing other corrections, such as adding source terms (Group 1), 

reformulating the transport problem with an alternative governing equation for an enthalpy-like 

quantity (Group 2), and using modified equilibrium distribution functions in the LB model 

(Group 3). While the Group 3 scheme can be considered an alternative for the first-order 

accurate “half-lattice-division” (HLD) scheme discussed in [14], Groups 1 and 2 require 

approximation of the heat capacitance gradient at the interface to account for the heat flux 

continuity for conjugate heat transfer problems. The gradient approximation in Groups 1 and 2 

results in persistent numerical errors even for the simple cases with constant yet different heat 

capacitances in different materials as the gradient of a discontinuous function is encountered. 

Compared to the second-order accuracy obtained in [14] for straight parallel interfaces located in 

arbitrary locations in the lattice, both the analysis and numerical tests confirm that without 

considering the local geometry and topology at the interface, the accuracy of the LB results with 

the modified schemes in Groups 1–3 is at most of the first-order for general cases. More 

importantly, while the Group 3 scheme can be improved to preserve second-order accuracy by 

also including the interpolation-based interface scheme, Groups 1 and 2 always yield zeroth-
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order accuracy at moderate to high resolution due to the discontinuity effect in the heat 

capacitance gradient approximation, and there is no convenient approach to improve that. When 

the various sharp interface schemes are applied to more complex situations involving curved 

interfaces, the effect of the interface geometry on the accuracy of the LB results becomes more 

obvious. In particular, the interpolation-based interface schemes, including that proposed in [14] 

and the improved Group 3, are capable of retaining first-order accuracy; and their error 

magnitude is also much smaller than that obtained from using the basic Group 3 scheme; 

however, the schemes in Groups 1 and 2 always yield zeroth-order accurate results with large 

error magnitude. 
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CHAPTER III 

PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF POROUS LATTICE 

STRUCTURES AND VALIDATION WITH ADDITIVELY  

MANUFACTURED METAL FOAMS*  

After examining the accuracy of various sharp interface schemes, this Chapter focuses on 

developing an accurate lattice Boltzmann method (LBM) model and convenient correlation for 

effective thermal conductivity (ETC) of four periodic unit cell topologies, viz. Cube, FD-Cube, 

TKD and Octet, over the entire range of porosities 0 ≤ ε ≤ 1.0. Since the Cube and Octet 

demonstrate the simplest and most complex fiber network, respectively, these four structures 

were deliberately chosen for investigating the ETC of cellular lattices of various topologies and 

over a wide range of porosities. The correlations for the ETC of different unit cell topologies are 

proposed with critical discussion on the porosity range in which each of them is valid. The ETC 

predictions of those structures at high porosities ε > 0.9 are consistent with published 

experimental and theoretical/computational data, while those at lower porosities ε < 0.9 are 

validated with our in-house experimental data as well as with the available reported data in the 

recent literature. The correlations developed for the normalized ETC, keff/ks, based on the high-

fidelity LB simulations are simple 2nd-order polynomials as a function of the porosity only for 

each unit cell topology, thus they are extremely convenient to use for future metal foams design 

* Part of this chapter is based on work published in Applied Thermal Engineering in 2021 [111] 
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 and innovation with different materials and structures. 

The remaining of this chapter is organized as follows: Chapter 3.2 illustrates the 

topologies of the four different porous lattice structures. Chapter 3.3 introduces the experimental 

setup for measuring the ETC of those structures. The details of the LB-based numerical method 

and model verification are provided in 3.4 Numerical method, 3.5 Model verification, 

respectively. Chapter 3.6 presents and discusses the present experimental data and the 

computational results for the ETC of those structures of interest, where the comparison and 

validation of the computational results as well as the ETC correlations are given in detail. And 

conclusions are summarized in Chapter 3.7. 

3.1 Introduction 

The feasibility and attractiveness of using the lattice Boltzmann method (LBM) to 

simulate conjugate heat transfer and predict the ETC of porous media have been demonstrated in 

previous studies (e.g., [15,112,113]) with the advantages of simple and explicit algorithm and 

convenience in boundary condition treatment with complex geometry in the LBM. As 

demonstrated in [113] with the LBM and an effective interface scheme, a 50 × 50 × 50 grid was 

sufficient to represent the complex random open-cell porous foams and obtain the ETC. 

Moreover, with effective interface treatments as in [14,34,89], for conjugate heat and mass 

transfer problems using the LBM, the conjugate interface conditions are satisfied up to 2nd-order 

accuracy during each time step without iterations. However, the LB models proposed in the 

previous studies still suffer numerical instability and degraded accuracy when simulating 

transport between materials or phases with very high transport property ratios (e.g., the thermal 

conductivity ratio of the most extensively studied aluminum-air pair with ks/kf = 8303). 

Specifically, the relaxation coefficient, τ, in the LB model is directly related to the diffusion 
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coefficient and the magnitude of τ has a significant effect on both the numerical stability and 

accuracy [14,86,110]: the typical τ values are chosen within the range of (0.5, 2.0), and large 

numerical errors are expected when τ is close to or >2.0, while numerical stability becomes an 

issue when τ is very close to 0.5. This poses a practical dilemma in choosing τs and τf to satisfy 

(τs – 0.5)/(τf – 0.5) = ks/kf when ks/kf is extremely large. In this paper, we propose a novel 

interface scheme to tackle this problem by decoupling the relaxation coefficients τs and τf in the 

LB model while satisfying the conjugate conditions (details given Chapter 3.4.3). Hence the LB 

model is very efficient in computationally determine the ETC of various structures with large 

property ratios. 

3.2 Configurations of porous lattice structures 

In this chapter, four types of porous structures are considered in the open-cell metal 

foams family with Cube, face diagonal (FD)-Cube, Tetrakaidecahedron (TKD), and Octet unit 

lattice, as shown in Fig. 3.1. The Cube and FD-Cube are the simplest 3D structures. The TKD 

structure has been extensively studied in the literature and is considered the basic structure for 

most commercial metal foams typically made from foaming process [114], [115], [116]. The 

Octet structure has recently attracted great interest and seen promising applications in developing 

lightweight high-strength structures [117], [118], [119] and multi-functional heat sinks where a 

robust mechanical performance in addition to heat dissipation is required [65], [66], [120], [121]. 
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Figure 3.1 Geometry of the periodic unit cells of the porous (a) Cube, (b) FD-Cube, (c) TKD, 

and (d) Octet structures.  

 

It should be noted that all 4 structures in Figure 3.1 are designed for convenient additive 

manufacturing processes: all fibers in each cell are of the same size with a cylindrical shape, and 

the porosity of the structures can be conveniently controlled by varying the unit cell length L and 

the fiber diameter d. In particular, the TKD structure in Figure 3.1 is constructed in an “additive” 

manner that is different from the traditional TKD structures obtained through “subtractive” 

procedures [122], [123], [124], [125], where the strand (fiber) thickness could become extremely 

small. It is clear in Figure 3.1 that all four unit cells are periodic in geometry along the three 

main axis directions [1, 0, 0], [0, 1, 0] and [0, 0, 1]. It should also be mentioned that thermal 

hysteresis and convection are not considered in this study for the ETC prediction, and the 

magnitude of the temperature on each surface and their difference are not very high. With those 

assumptions, the ETC in each of the three axis directions is the same for each structure shown in 

Figure 3.1. 
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3.3 Experimental setup 

The ETC of porous blocks made from Octet and TKD unit cells were measured from 

steady-state heat transfer experiments. The experimental setup is shown in Figure 3.2 and the 

samples are shown in Figure 3.3. The samples were first insulated from the four faces to 

minimize the heat loss. Further, a patch heater was glued on the top face of the sample and 

Styrofoam insulation was glued on the backside of the patch heater as well. This assembly was 

attached to a copper slab which was placed such that it was partially submerged in the chilled 

thermal reservoir with the help of a pair of supporting legs. Copper slab of 25.4 mm thickness 

and 100 mm × 100 mm was chosen due to its marked high thermal mass. The thermal reservoir 

held the ice-water slurry for the duration of heat transfer experiments. Water in the reservoir was 

periodically circulated to mix the heat transferred from the copper slab. Such an experiment is 

desired to maintain an effectively 1D heat transfer along the thickness of the porous block. 

 

 

Figure 3.2 Experimental setup for keff determination.  
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Figure 3.3 (a) Depiction of the TKD sample for keff experiments with thermocouple locations, 

and illustration of the (b) Octet and (c) TKD test samples.  

 

The 3D printed porous block comprised of top and bottom plates, each of thickness 3.175 

mm, between which an array of 5 × 5 unit cells was placed. The unit cells were an integral 

component of the top and bottom plates with zero thermal contact resistance. This is a 

requirement for accurate measurement of keff of the porous samples. Both Octet and TKD 

samples were tested together under the same thermal boundary conditions. Heat transfer 

experiments were carried out at three different heat flux inputs from a DC power source. The top 

and bottom plates of the porous blocks featured slots for thermocouple measurements and the 

respective locations are shown in Figure 3.3a; also, both the Octet and TKD test samples are 

presented in Figures 3.3b and 3.3c, respectively. 

The ETC was calculated using Eq. (3.1), 
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where 𝑞𝑡𝑜𝑡𝑎𝑙 is the total heat supplied by patch heater, ∑ 𝑞𝑙𝑜𝑠𝑠 is the total heat lost from the four 

side faces and the top face, 𝑇̃𝑡𝑜𝑝 and 𝑇̃𝑏𝑜𝑡𝑡𝑜𝑚 are the average temperatures at the top and bottom 

plates, 𝐴𝑏 is the cross-sectional area through which heat is being transferred, and 𝑡𝑓 is the 

thickness of the unit cell. 

The total heat supplied was measured through the current output in the DC power source 

and the resistance across the patch heater measured via. a multimeter (𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑖2𝑅ℎ𝑡𝑟). The heat 

loss through each face was calculated by measuring the temperature difference between the inner 

and outer sides of the Styrofoam insulations (𝑞𝑙𝑜𝑠𝑠 = 𝑘𝑖𝑛𝑠𝐴𝑖𝑛𝑠(𝑇𝑖𝑛𝑠,𝑖𝑛 − 𝑇𝑖𝑛𝑠,𝑜𝑢𝑡) 𝑡𝑖𝑛𝑠⁄ ). Separate 

experiments were conducted for the measurement of solid-phase thermal conductivity. The 

principle was same as the one described above, where a sample of dimensions 25.4 mm × 25.4 

mm × 50.8 mm was additively manufactured through the same process as the porous blocks. The 

𝑘𝑒𝑓𝑓 results are presented in normalized form of 𝑘𝑒𝑓𝑓 𝑘𝑠⁄ . The porosity of each sample was 

determined using 𝜀 = 1 − (𝑚𝑠 𝜌𝑠⁄ ) ∀𝑡𝑜𝑡𝑎𝑙⁄ , where 𝑚𝑠 is the mass of the porous structure 

(excluding the mass of top and bottom plates) which was measured by a chemical balance, 𝜌𝑠 is 

the density of solid which was determined by the mass and volume measurement of the 3D 

printed solid block mentioned above, and ∀𝑡𝑜𝑡𝑎𝑙 is the total volume between the top and bottom 

plates. 

3.4 Numerical method 

In this Chapter, the D3Q7 LB model [85], [86], [87] is applied to simulate the conjugate 

heat transfer within the porous lattice structures. In particular, a novel decoupled interface 
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treatment that is suitable for transport simulation between materials and phase of very large 

property ratios is proposed. For completeness, the LB model and boundary schemes are briefly 

reviewed, then followed by the explanation of the proposed interface scheme and the efficient 

ETC evaluation within the LBM framework. 

3.4.1 Lattice Boltzmann model 

To numerically predict the ETC, the heat conduction through the porous structures is 

simulated. The conjugate conditions at the interface without temperature or flux jumps can be 

expressed as 

   f s = ,
  

(3.2) 

   
f s

f s

f s

k k
n n

  
− =

 
,
  

(3.3) 

where ϕ is the scalar variable of temperature, k is the thermal conductivity, n represents the 

outward normal direction, and the subscripts f and s denote the fluid and solid phases, 

respectively. 

The multiple-relaxation-time (MRT) D3Q7 LB model [14,122,123] is applied to simulate 

the 3D heat conduction, for which the evolution equation of the microscopic distribution 

functions (DFs) is written as 

   1 (eq)( , ) ( , ) [ ( ( , ) ( , ))]g t t t g t t t G t       −+ + − = − − +x e x M S m x m x ,
  

(3.4) 

where the DF gα(x, t) ≡ g(x, ξα, t), x is the special vector, ξ is the particle velocity vector 

discretized to a small set of discrete velocities {ξα|α = 0, 1, …, m − 1}, t  is the time step, G is 

the source term, the discrete velocity set is defined as 
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the weight coefficients ωα are 

   
1/ 4, ( 0),

1/ 8, ( 1,2,3,4,5,6),







=
= 

=
,
  

(3.6) 

and the equilibrium moments eqm  are 

   ( )eq 0, , , , ,0,0
T

u v w a   =m ,
  

(3.7) 

where u, v, and w are the macroscopic velocity components that can be set to zero for pure 

conduction, and a is a constant related to the weight coefficients with 𝑎 = 7(𝜔0 − 1) =
3

4
. 

In Eq. (3.4), the transformation matrix M relates the DFs gα(x, t) to their moments mα(x, 

t), m = Mg, and S is the relaxation matrix in which the relaxation coefficients ij  are related to 

the diffusion coefficient as 

   2

1

2
ij ij ij

D

t
k

x


 

 
= + ,

  
(3.8) 

where ij  is the Kronecker delta, and the constant 𝜀𝐷 =
1

4
 in D3Q7. The detailed matrices M and 

S for the D3Q7 LB model can be found in [86,126]. 

For efficient computations, the evolution equation (3.4) is usually solved in two 

consecutive steps: 

Collision step: 

   1 (eq)ˆ ( , ) ( , ) [ ( ( , ) ( , ))]g t g t t t G t    −= − − +x x M S m x m x ,
  

(3.9) 

Streaming step: 

   ˆ( , ) ( , )g t t t g t   + + =x e x ,
  

(3.10) 

where ĝ  is the post-collision state.  

3.4.2 Boundary schemes 

In the LB model for scalar convection-diffusion such as the heat conduction in this work, 

the given physical boundary conditions including prescribed temperature (Dirichlet condition 
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d =  ) and heat flux (Neumann condition 
nk

n


− = 


) can be conveniently converted to 

corresponding boundary conditions for the DFs. Following [86] the general boundary schemes 

are 

   ( ) ( ) ( ) ( )1 2 3 4
ˆ ˆ ˆ, , , ,f d f d ff d f d D dg t t c g t c g t c g t c    + = + + + x x x x ,

  
(3.11) 

   ( ) ( ) ( ) ( ) ( )1 2 3 4
ˆ ˆ ˆ, , , , /f n f n ff n f n ng t t c g t c g t c g t c t x      + = + + + x x x x ,

  
(3.12) 

where cdi and cni (i = 1 ~ 4) are coefficients related to the local intersection link ∆ denoted by ∆ = 

||xf − xw|| / ||xf − xe|| with 0 1   , xw the boundary node, xe the exterior node, xf and xff the 

respective first and second interior nodes in the lattice structure, and 
n  is the flux component 

in the lattice velocity direction (see Figure 3.4a).  

 

Figure 3.4 Illustrations of the (a) straight and (b) curved interface geometry in the lattice 

(solid circles, lattice nodes in Domain 1; solid squares, interface nodes; open 

circles, lattice nodes in Domain 2). In (b), the curved interface (solid curve) is 

approximated as zigzagged segments (dashed line) with intersection links all at Δ 

= 0.5. 

 

It was shown in [86] that the second-order scheme in Eq. (3.12) for the Neumann 

condition is unique, while for the Dirichlet condition, there is an adjustable parameter in Eq. 



 

52 

(3.11). Here we use the Scheme 3 in [86] for the Dirichlet condition; and the explicit boundary 

schemes become 

   ( ) ( ) ( ) ( )
2 1 2 1 2

ˆ ˆ ˆ, , , ,
2 1 2 1 2 1
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(3.14) 

 

3.4.3 Decoupled interface scheme 

Various interface schemes have been proposed in the literature and their applicability and 

accuracy have been verified for conjugate heat and mass transfer with the LB method (see 

[14,34,89] and refs therein). The improved interface scheme proposed in this work is particularly 

attractive and powerful in modeling heat and mass transfer between domains with very large 

transport property ratios. For brevity, we consider here the cases with either straight interface 

geometry (see Figure 3.4a) or approximated zigzagged interface geometry for curved interfaces 

(Figure 3.4b). When Δ = 0.5 was chosen for all the interface nodes, the “half-lattice division” 

(HLD) scheme [14,112] becomes 

   ( ) ( )ˆ, ,f sg t t g t + =x x ,
  

(3.15) 

   ( ) ( )ˆ, ,s fg t t g t + =x x
  

(3.16) 

It should be noted that for the above HLD scheme to satisfy the conjugate conditions, the 

relaxation coefficients in the two domains must follow the relationship 
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Only isotropic diffusion is considered here in both domains for brevity to yield Eq. (3.17, 

3.18) (see Eq. (3.8)). The relationship in Eq. (3.17, 3.18) clearly shows that only one of the 

relaxation coefficients can be selected as adjustable, and the other is determined accordingly for 

given domain properties [124]. This poses a critical challenge when simulating conjugate heat 

and mass transfer between materials or phases of very large property ratios. Following the idea in 

[124], where two different time scales were introduced for the adjacent domains, we introduce 

here a decoupling scaling factor, λ, for the two relaxation coefficients, 
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(3.20) 

Comparing Eq. (3.20) with (3.18), one can clearly see that the choice of the relaxation 

coefficient, τ2λ, in Domain 2 becomes adjustable by selecting different λ values. Appropriate λ 

values can be chosen such that both τ1 and τ2λ will satisfy the stability and accuracy requirements. 

This will be verified with numerical tests in Chapter 3.5. 

With the rescaled τ2λ in Eq. (3.20), the flux continuity at the interface in Eq. (3.3) can be 

rewritten as 

   1 2
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(3.21) 

to derive the present decoupled HLD interface scheme 
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Obviously, the above scheme reduces to that in Eq. (13) when λ = 1. It should also be 

emphasized that the scheme in Eq. (3.22, 3.23) is 1st-order accurate in general, and can preserve 

2nd-order accuracy only for the special case with straight interfaces located halfway in the lattice 

with Δ = 0.5 for all the interface nodes [14,34,89]. One can also follow the process in [14,34,89] 

to construct interpolation-based decoupled interface schemes to preserve the 2nd-order accuracy 

for straight interfaces with arbitrary Δ values; and for curved interfaces, even though only 1st-

order accuracy can be obtained, the interpolation-based interface scheme could render much 

more accurate results. Considering the complex geometry of the open-cell metal foams, 

preserving the exact geometry of the porous structure and finding the local Δ values is a rather 

tedious task; thus the zigzagged interface approximation as shown in Figure 3.1b is applied and 

only the interface scheme in Eq. (3.22, 3.23) is implemented. 

 

3.4.4 Effective thermal conductivity evaluation 

By applying constant Dirichlet boundary conditions in the y-direction, T(y = 0) = TL and 

T(y = H) = TH, and insulated boundary conditions in the x- and z-directions, the ETC, keff, of the 

cubic unit lattice structure of length L in each direction can be evaluated from 
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eff
w w

xz

Q Q
k

T L A TL
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 
,
  

(3.24) 

where 
wQ  is the heat transfer rate. In the LBM, 

wQ  can be conveniently computed using the 

scheme proposed in [93], and the ETC evaluation becomes 
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(3.25) 

It should be noted that in Eq. (3.25) the diffusion coefficient is rescaled in Domain 2, i.e., 

ksλ = ks/λ, thus λ is multiplied by the flux evaluated in the LBM. 
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3.5 Model verification 

In this section, we first verify the applicability and accuracy of the decoupled interface 

scheme in the LB model. The simulated results for the ETC are compared with the analytical 

solutions for the 3D parallel and the series mode structures (see Figure 3.5). Then the accuracy of 

the model is also verified by comparing the predicted ETC of the Cube structure with square 

cross-section fibers (SQ-Cube) and the Octet structure with circular cross-section fibers with the 

theoretical and computational results reported in the previous studies [60,64,65,127,128]. 

 

 

Figure 3.5 The schematic illustration of the computation domain in 3D for (a) parallel mode 

and (b) series mode. 

3.5.1 3D parallel and series mode structures 

The 3D parallel and series mode configurations are shown in Figure 3.5. Constant 

temperature boundary conditions are applied on the top and bottom walls in the y-direction, and 

insulated boundary conditions are on all the other walls. Considering the simplest situation with 
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volumes Vs = Vf thus ε = 0.5, the analytical solutions of the ETC for the parallel and series mode 

structures are 

   eff, parallel
2

f sk k
k

+
= ,

  
(3.26) 
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(3.27) 

In the LBM simulations, the parameters used are 1h = , 0c = , τf = 0.51, and τsλ was 

determined by the ratio ks/kf and the decoupling scaling factor λ according to Eq. (3.19, 3.20). 

Coarse meshes were used with L = 30δx in all three directions for the cases with λ = 10 and λ = 

100 and L = 60δx for λ = 1000 and λ = 5000. The simulated results for the normalized ETC, 

keff/kf, are compared with the exact solutions at various λ values as listed in Tables 3.1 and 3.2 for 

the respective thermal conductivity ratios ks/kf = 103 and 104. The comparison clearly confirms 

the accuracy of the proposed decoupled interface scheme: near machine-epsilon errors were 

achieved at λ = 10, 100 for both the parallel and series mode structures; while the effect of λ on 

the numerical results becomes more noticeable at λ = 1000, 5000 the error magnitude on the 

order of 10-4 can be considered extremely low. 

Table 3.1 Comparison of LBM prediction of the normalized effective thermal conductivity, 

(keff)LBM/kf, with the analytical solution at ks/kf = 103.  

λ 
Parallel mode¶ 

 (keff/kf)LBM 

Relative 

error 

Series mode§ 

 (keff/kf)LBM 

Relative 

error 

10 500.500000 1.2310-10 1.998002 5.1410-8 

100 500.500000 1.3710-10 1.998002 8.7610-8 

1000 500.499953 -9.4010-8 1.998135 6.6810-5 

5000 500.499722 -5.5510-7 1.998717 3.5810-4 

¶ (keff/kf)analytical = 500.5 for the parallel mode 

§ (keff/kf)analytical = 1.998002 for the series mode 
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Table 3.2 Comparison of LBM prediction of the normalized effective thermal conductivity, 

(keff)LBM/kf, with the analytical solution at ks/kf = 104.  

λ 
Parallel mode¶ 

 (keff/ks)LBM 

Relative 

error 

Series mode§ 

 (keff/ks)LBM 

Relative 

error 

10 5000.500000 1.2210-11 1.99980012 4.8810-8 

100 5000.500000 1.2210-11 1.99980012 4.9910-8 

1000 5000.500000 1.3710-11 1.99980020 8.9110-8 

5000 5000.499949 -1.0110-8 2.0003495 2.7510-4 

¶ (keff/kf)analytical = 5000.5 for the parallel mode 

§ (keff/kf)analytical = 1.99980002 for the series mode 

 

3.5.2 Structure with square cross-section fibers 

Heat conduction simulation in the Cube structure with square cross-section fibers (SQ-

Cube, see Figure 3.6) is considered in this test as the geometry can be exactly preserved in the 

LBM and all the boundary and interface schemes have second-order accuracy.  To the best of the 

authors’ knowledge, the exact analytical solution for the 3D temperature field is not available 

and thus the existing approximate models (typically assuming 1D conduction) for the ETC are 

used for verification.  
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Figure 3.6 Schematic of SQ-Cube unit cell structure. 

 

Dul’nev [129] proposed the following expression for the ETC of the SQ-Cube structure 
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(3.28) 

where /t b L=  with b the thickness of the fiber (beam), and Fu et al. [59] developed an analytical 

model for the same SQ-Cube structure based on the thermal-circuit analogy 
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(3.29) 

Figure 3.7 compares the LBE results for the normalized ETC of SQ-Cube with Dul’nev 

and Fu et al.’s models. In LBE simulations, L = 180δx was used for all cases and the porosity 

was characterized by /t b L= . The porosity calculated in the LBE is exact with the SQ-Cube 

structure. The other parameters used are τf = 0.525, λ = 250 (thus rescaled τsλ = 1.33) for the 

aluminum-air, and τf = 0.55, λ = 75 (τsλ = 0.74) for the aluminum-water case. The present 

simulation results are in good agreement with the two analytical models for both cases. It is also 

observed that the ETC results of the aluminum-air and aluminum-water cases are very close, 
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indicating that the effect of the ratio ks/kf on the normalized ETC keff/ks is small, especially at 

high porosity. This will be further discussed in the Results and Discussion section. 

 

Figure 3.7 Comparison of normalized effective thermal conductivity (keff/ks) for SQ-Cube 

structures (a) aluminum-air, and (b) aluminum-water cases.  

 

3.5.3 Octet structure with circular cross-section fibers 

The LB model with the decoupled interface scheme is further applied to predict the ETC 

of the Octet truss structure with circular cross-section fibers of radius r, and the results are 

compared with the direct simulations and experimental data in the present study as well as in 

previous research [65,66,69] to verify the accuracy of the model for the curved-interface 

structure. In present LB simulations for all porous structures, the zigzagged interface as shown in 

Figure 3.4b is used to approximate the curved interface, and the porosity is conveniently 

computed using 
3

3
1

fiber xN

L


 = −  with Nfiber the total number of solid fiber nodes. Table III shows 

  
(a) (b) 
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the porosity comparison at L = 180δx with those in Ekade et al. [65] obtained with commercial 

software. 

Table 3.3 Porosity comparison between present calculations and those in [127] for the Octet 

structure. 

L/r Ekade et al. [65] Present Relative deviation 

10 

13.333 

15 

20 

30 

0.62 

0.765 

0.809 

0.886 

0.946 

0.6213 

0.7692 

0.8089 

0.8843 

0.9465 

0.210% 

0.549% 

-0.012% 

-0.192% 

0.053% 

 

 

The comparison in Table 3.3 confirms the reliability in the porosity calculation of the 

zigzagged interface approximation with the LB mesh of L = 180δx. Furthermore, a grid 

independence study was conducted to ensure that the resolution is sufficient to compute the ETC. 

Table 3.4 shows the results for both the AM TKD and Octet structures with material pair of 420 

stainless steel with 40% bronze infiltration-air (ks/kf = 792.7) at different grid resolution. The 

simulation parameters include τf = 0.55, λ = 150 for both, and L/dfiber = 6 for the TKD and L/dfiber 

= 7.5 for the Octet structures, respectively. The present measurement data for those structures at 

similar porosities are also included for comparison (more details can be found in Chapter 3.6.1). 

The data in Table 3.4 confirms that the resolution with L = 180δx is sufficient and this will be 

used for all the results presented in Chapter 3.6. 
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The normalized ETC results, keff/ks, for the Octet structure at different porosities are 

compared with the present experimental data and those previous published data in [66], [65], 

[69] in Figure 3.8. 

 

Figure 3.8 Comparison of normalized effective thermal conductivity (keff/ks) for the Octet 

structure.  

 

The LB results are close to both the experimental measurement in [66] and simulation 

results in [69] at high porosities ε > 0.85. Good agreement is also noticed between the LB results 

and the present measurement at ε = 0.81 (details in Chapter 3.6.1). More importantly, excellent 

agreement is observed between the LB results and those by Ekade and Krishnan [65] from direct 

numerical simulation for the entire range of 0.6 < ε < 1. This test further verifies the numerical 

accuracy of the present LB simulations for predicting the ETC of the AM structures with 

complex geometry. 
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3.6 Results and discussion 

In this section, we first report the experimental results of the ETC of the TKD and Octet 

structures. Then detailed computational results are presented, including the interior temperature 

contours for all four lattice structures, and the ETC results for the TKD and Octet structures 

validated using present and previously published experimental results. Lastly, the detailed results 

for the ETC of the four structures (Cube, FD-Cube, TKD and Octet) are presented, and practical 

correlations for the ETC as a function of porosity are provided. In particular, the results 

presented in this paper demonstrate that at high porosities (ε > 0.9), the present LB simulation 

results for the ETC are consistent with all experimental, analytical, and computational results in 

the literature for metal foams; however, at lower porosities, the effect of the structure on the ETC 

becomes more obvious, and the additively manufactured structures provide a feasible way to 

examine the structural effect. The practical and accurate correlations developed in this work 

based on detailed LB simulations are valuable for future structural design and optimization. 

3.6.1 Experimental results 

The temperature measurements of the solid sample (ks determination) is presented 

in Figure 3.9. The solid thermal conductivity was calculated using 𝑘𝑠 = 𝑞"𝑤 (𝑑𝑇𝑤 𝑑𝑥⁄ )⁄ , 

where 𝑞"𝑤 is the net heat conducted through the solid in one direction (x). Experiments were 

conducted at three different heat flux values ranging from ~5,400 to 9,600 W/m2 to ensure that 

the reported ks is independent of the thermal boundary condition and is solely a function of 

material properties. A linear variation in the centerline temperature was observed for all three 

heat flux values, from where the temperature gradient was determined. The different heat input 

experiments essentially yielded in similar values of ks with a mean value of 20.8 W/mK. This 

value of ks will be considered in further experimental presentation of keff. 
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Figure 3.9 Centerline temperature variation along the direction of net heat flow.  

 

The keff experiments for porous blocks were also conducted at three different inputs such 

that the reported value is only a function of material property and unit cell topology. 

The keff experimental results for Octet and TKD samples are presented in Figure 3.10 with an 

uncertainty analysis carried out following the “sequential perturbation method” [130]. The 

respective porosities of Octet and TKD samples were 0.81 and 0.86. 



 

64 

 

Figure 3.10 𝑘𝑒𝑓𝑓 𝑘𝑠⁄  variation with conduction heat flux 𝑞"𝑐𝑜𝑛𝑑. Porosities of the TKD and 

Octet samples were 0.86 and 0.81, respectively.  

 

The results indicate that the keff/ks values for both samples were independent of the 

supplied heat flux and the average values were 0.079 and 0.066 for Octet and TKD samples 

respectively. The keff/ks results of the Octet sample were slightly higher than that of TKD and this 

difference is primarily attributed to the difference in their porosities. This factor will be further 

discussed in 3.6.3 Validation of LB simulation results, 3.6.4 Comparison of LBM results with 

previous models and correlations. 

3.6.2 Temperature contours within lattice structures from LB simulations 

For illustration purposes, representative steady-state temperature contours in the 

central x-z and x-y planes of all four structures are shown in Figure 

3.11 with L = 180δx, L/dfiber = 15, and ks/kf = 8307.9 (aluminum-air). The temperature 

distribution demonstrates that the LB model and simulations were able to preserve the fiber 

structural geometry and symmetry of different structures. The effect of the high thermal 

conductivity ratio between the solid fiber and air on conjugate heat conduction at the interface is 



 

65 

clearly seen in the temperature contours. For instance, in Figure 3.11 (c, d) it can be observed 

that the temperature gradient in the gas phase is much higher than that in the solid phase along 

the normal direction of the fiber interface (see Eq. (3.3)). 

 

Figure 3.11 Temperature contours for different lattice structures with (a) Cube, (b) FD-Cube, 

(c) TKD, and (d) Octet unit cells. Simulation parameters 

are dfiber = 12δx, L/dfiber = 15, ks/kf = 8307.9, τf = 0.525, and λ = 250.  

 

In all the results shown here and the remaining sections in 3.5.3 to 3.5.5 for steady LBM 

simulations for the various porous lattice structures, the main simulation parameters 
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include L = 180δx, (τf, λ) = (0.525, 250) for aluminum-air (ks/kf = 8307.9), (τf, λ) = (0.55, 75) for 

aluminum-water (ks/kf = 355.6), and (τf, λ) = (0.55, 150) for the 420 stainless steel with 40% 

bronze infiltration-air (ks/kf = 792.7) material pairs. By choosing different fiber diameter dfiber the 

porosity of the AM structures can be conveniently manipulated. 

3.6.3 Validation of LB simulation results 

Figure 3.12, Figure 3.13 show the comparison of LBM simulation results for the 

normalized ETC, keff/ks, of the AM TKD and Octet structures with our experimental 

measurement (averaged from Figure 3.10) as well as the experimental results reported in [49], 

[52], [53], [56], [66], [131]. It should be noted that in Figure 3.12a, b, all the structures were 

additively manufactured thus the porosity can be well controlled over a wide range; while in 

Figure 3.13 the experimental results for conventional metal foams obtained from foaming 

processes with high porosity (ε > 0.88) were used for comparison. Furthermore, the fluid–solid 

pairs considered include aluminum-air, aluminum-water, copper-air, copper–water, copper-

paraffin, as well as the 420 stainless steel with 40% bronze infiltration-air (denoted as SS/B-air) 

used in our in-house experiment. 
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Figure 3.12 Comparison of the simulated results for the normalized effective thermal 

conductivity, keff/ks, of the TKD and Octet structures with present and previous 

experimental results for additively manufactured structures. (a) Results shown in 

the wide range of 0.1 < ε < 1.0, and (b) results in the range of 0.6 < ε < 1.0. 

 

Figure 3.13 Comparison of the simulated results keff/ks of the TKD and Octet structures with 

previous experimental results of conventional high-porosity metal foams.  

 

First of all, the overall agreement between the LBM simulations and all the experimental 

results confirms the accuracy and reliability of the LB model and the proposed decoupled 

  
(a) (b) 
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interface treatment. Second, it is observed that at high porosities ε ≥ 0.9, the ETC of various 

metal foams, including conventional and AM structures as well as different fluid–solid pairs, can 

all be well presented in terms of keff/ks versus the porosity, i.e., they almost all fall into an 

overlapped narrow band with porosity as the controlling parameter. Considering the wide ranges 

of structural variations and ks/kf ratios included in those data, this implies that the normalized 

ETC result can be applied to various metal foams of interest. Third, when the porosity decreases, 

the effect of the structure on the normalized ETC becomes more obvious from the LB 

simulations. Specifically, the excellent agreement in Figure 3.12b between our simulation and in-

house experimental results for both TKD and Octet structures provides the confidence in the 

LBM results for AM structures; moreover, the overall agreement between the LBM simulations 

and the results in [131] for AM structures in the wide range of 0.2 ≤ ε < 1.0 further confirms the 

validity of the present simulation results. 

3.6.4 Comparison of LBM results with previous models and correlations 

The validated LB model and decoupled interface scheme can be used as an effective tool 

to study the dependence of the ETC on the structural geometry and porosity. It is thus of 

particular interest to compare the simulation results with the ETC correlations in the literature. 

As reviewed in [43], a comprehensive comparison of the various models and correlations is 

clearly out of the scope of this study and thus only a few popular ETC correlations were selected 

for comparison. It should be noted that most of those correlations were developed to match the 

available experimental data for conventional metal foams at high porosities. 

Based on their experimental data, Calmidi and Mahajan [49] developed an empirical correlation 

   (1 )n

eff f sk k A k = + − ,
  

(3.30) 

with A = 0.181 for air and 0.195 for water, and n = 0.763. 
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Bhattacharya et al. [51] proposed an empirical correlation with weighted contributions 

from the parallel and series mode limits, and the weighting constant was determined by matching 

the experimental data 
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where A = 0.35 was recommended. 

 Chaudhari et al. [66] also constructed a similar correlation to Eq. (3.30), and by fitting 

with their aluminum-air experimental data, A = 0.2781 and n = 0.8406 was proposed. 

It is also noted that the Lemlich theory [132] for ETC prediction based on the analogy 

between electrical and thermal conductivities was widely used due to its simple expression 
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(3.32) 

Furthermore, Belcher and Schunk [131] proposed a second-order polynomial for the ETC 

as a function of porosity in the entire range of 0 ≤ ε ≤ 1: 

   
2

0 1 2effk a a a = + + ,
  

(3.33) 

The coefficients were determined by fitting with their experimental results for additively 

manufactured porous structures. Using the ks = 204.90 W m−1 K−1 and coefficients given in [57], 

Eq. (3.23) can be rewritten as 

   
2eff 0.7313 1.7188 0.9922

s

k

k
 = − + ,

  
(3.34) 

The comparison in terms of keff/ks between the present LBM results and those obtained 

from the correlations in Eqs. (3.30)–(3.34) proposed in [49], [51], [66], [131], [132] is shown in 

Figure 3.14 (a, b) where the respective material pairs are Al-air and Al-water. Obviously, good 

agreement is observed between the present LBM simulations and all the ETC results obtained 
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from the correlations in Eqs. (3.30)–(3.34) at high porosities (ε > 0.9); however, when extended 

to lower porosity cases, all the correlations in Eqs. (3.30)–(3.32) developed based on 

conventional metal foams seem to significantly underestimate the ETC compared to the LBM 

simulation results. Furthermore, it should be highlighted that the second-order polynomial in Eq. 

(3.34) yields ETC results very close to the LBM results for the Octet structure. Combining with 

the agreement also observed in Figure 3.12a, this indicates that the second-order polynomials can 

be suitable fitting correlations for the normalized ETC. Lastly, the difference in the ETC between 

the TKD and Octet structures from LBM simulations implies that the effect of topology on the 

ETC becomes important at lower porosities. Individual second-order polynomials can thus be 

developed for the various AM structures. The details will be given in the next section. 

 

Figure 3.14 Comparison of the effective thermal conductivity, keff/ks, between LBM 

simulations and those from previous correlations for the AM TKD and Octet 

structures with (a) Al-air, and (b) Al-water material pairs.  

 

  
(a) (b) 
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3.6.5 Development of ETC correlations for porous lattice structures 

A thorough investigation based on systematic LB simulations into the dependence of the 

ETC on the porosity was conducted for all four structures and for the three material pairs, i.e., 

aluminum-air, aluminum-water and SS/B-air. When presented in terms of the normalized 

ETC, keff/ks, it was observed that all the data can be well captured using second-order 

polynomials for the entire range of 0 ≤ ε ≤ 1. Therefore, the following correlation is proposed for 

each lattice structure 
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where ast is the only constant coefficient and assumed to be structure dependent. The correlation 

proposed in (3.35) includes the two limits at ε = 0 (keff = ks) and ε = 1 (keff = kf); it also has the 

quadratic dependence on ε similar to the polynomial proposed by Belcher and Schunk [131] in 

Eqs. (3.33) and (3.34). Using all three data sets at different ks/kf ratios, ast can determined from 

the least squares method 
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(3.36) 

Based on the LBM simulations, the coefficients for the four lattice structures are 

   Cube FD-Cube TKD Octet0.6577, 0.7231, 0.6390, 0.7397a a a a= = = = ,
  

(3.37) 

and the normalized ETC can be explicitly rewritten as 
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(3.38) 

It is also of interest to present an averaged correlation based on the 4 structures examined. 

Thus a general correlation is also proposed in this work as 
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(3.39) 

The deviation of the coefficients for the four specific structures in Eq. (3.38) is within 

7.4% of that in the general correlation (3.39). 

Figure 3.15 (a-d) shows the respective comparison between the LBM simulations and the 

correlation results for the normalized ETC of the four structures. The plots clearly show that the 

correlation results match extremely well with all the direct LBM simulations, and the normalized 

ETC keff/kf is insensitive to the ks/kf ratios for the three cases examined with the ratio ks/kf up to 

8307.9, i.e., the correlations are applicable to various material pairs. Furthermore, Figure 

3.16 shows the comparison of the particular correlations in Eq. (3.38) with the general 

correlation in Eq. (3.39) for the Al-air case. The overall agreement is good and deviation can be 

noted particularly in the porosity range of 0.3 < ε < 0.8. Nevertheless, the general correlation in 

Eq. (3.39) can serve as a useful and convenient prediction tool for future AM structures design 

and optimization for specific applications. 
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Figure 3.15 Normalized effective thermal conductivity of the (a) Cube, (b) FD-Cube, (c) TKD, 

and (d) Octet structures obtained from LBM simulations and proposed 

correlations.  
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Figure 3.16 Comparison of the specific and general correlations in Eqs. (3.37, 3.38) for the 

effective thermal conductivity of porous lattice structures (Al-air material pair used 

for demonstration). 

 

The correlations in Eq. (3.39) can also be used to predict the effective thermal conductivity 

of those structures when packed with solid particles. However, the correlation is proposed for the 

entire porosity range of 0 ≤ ε ≤ 1, while the in-house measured porosity range of the metal foam 

structure is 0.7 ≤ ε ≤ 0.9. Therefore, to improve the accuracy of ETC prediction, here we provide 

a modified correlation based on the high porosity range and the two metal pairs, i.e., SS420-air 

and SS316L-air, 
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The comparison of ETC between the in-house measurement, the correlation proposed by 

[111] and the modified correlation is shown in Fig. 3.17. It can be seen that the modified correlation 
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is generally more consistent with in-house measurement. To quantify the comparison with 

experimental results, Fig. 3.18 shows the relative errors of the two correlations. Obviously, the 

modified correlation improves the accuracy of ETC prediction, especially at high porosity. 

 

Figure 3.17 Comparison of the effective thermal conductivity between in-house measurement 

and correlations for the AM Octet structure with (a) SS420-air, and (b) SS316L-air 

material pairs. 

 

Figure 3.18 Comparison of the relative errors for the keff correlations for the AM Octet 

structure with (a) SS420-air, and (b) SS316L-air material pairs. 

 
(a) (b) 

 

 
(a) (b) 
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Figure 3.19 Comparison of the predicted keff with the modified correlations for the AM Octet 

structure with (a) SS420 Fiber-CARBO packed bed, and (b) SS316L Fiber-

CARBO packed bed of particles. 

 

Figure 3.20 Comparison of the relative errors for the keff correlations for the AM Octet 

structure with SS420 Fiber-, and SS316L Fiber-CARBO packed bed of particles. 

 

Fig. 3.19 (a, b) shows the predicted keff of the AM Octet structure when the void space is 

occupied by packed bed of CARBO particles. The correlation proposed by Wang et al. [111] and 

  

(a)  (b)  
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the modified correlation in Eq (3.40) are used to compare with the in-house measurement. It can 

be observed that those models are able to predict the overall keff of the whole structure with good 

agreement with the in-house measurement. The comparison of the relative errors for the keff 

correlations for the AM Octet structure with different material and packed solid particles are shown 

in Fig. 3.20. The results show that a low relative error between the predicted value and the in-

house measurement when the porosity is approximately 0.8. 

 

3.7 Conclusions 

An effective and accurate lattice Boltzmann method (LBM)-based computational model 

was developed to predict the effective thermal conductivity (ETC) of lattice structures based on 

different topologies. The novelty of the model includes a decoupled interface scheme that is 

particularly attractive to satisfy the conjugate heat transfer conditions between different materials 

or phases of very high transport property ratios. This model can be conveniently extended to 

simulate coupled flow and thermal transport in porous structures such as metal foams. The 

applicability and accuracy of the LBM model and the interface scheme in terms of ETC 

prediction were numerically verified and experimentally validated with in-house measurement 

on additively manufactured (AM) metal foam samples with those topologies as well as 

previously published results. The predicted ETC results of the representative Cube, FD-Cube, 

TKD and Octet structures show good agreement with both previous experimental and 

analytical/computational results for conventional high-porosity metal foams with ε > 0.9. At 

lower porosities, the effects of the structure porosity and topology on the ETC were investigated 

using the proposed LBM model; and the simulation results demonstrated that the popular 
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correlations in the literature would substantially underestimate the ETC of those structures. 

Hence, systematic simulations for all four structures and for different solid–fluid material pairs 

have been conducted, and analytical correlations as second-order polynomials of the porosity for 

the entire range of 0 ≤ ε ≤ 1 were developed. The correlations for the ETC normalized by the 

solid thermal conductivity keff/ks are applicable to various material pairs. The modified 

correlation based on the high porosity range and the two metal pairs can improve the accuracy of 

ETC prediction for specific application. They can serve as valuable evaluation and prediction 

tools for future design and innovation in AM structures as lightweight and compact heat 

sinks/exchangers. In this chapter, only heat conduction within the unit cells is considered to 

predict the ETC. With the attractiveness also in simulating fluid flow and handling complex 

geometry, the coupled LBM model (e.g., with one set of distribution functions for the fluid flow 

and another for the temperature convection–diffusion) is well poised to be an alternative and 

powerful computational tool in predicting and characterizing the various flow and thermal 

transport properties in porous lattice structures. Results from the above investigations will be 

communicated in future publications. 

 

 

 

 

 

 

 



 

79 

CHAPTER IV 

PHASE-FIELD-LATTICE BOLTZMANN METHOD FOR DENDRITIC GROWTH WITH 

MELT FLOW AND THERMOSOLUTAL CONVECTION-DIFFUSION* 

The previous chapters focused on conjugate heat and mass transfer modeling using the 

lattice Boltzmann method with sharp interface scheme in theoretical/numerical tests and 

engineering applications, respectively. In this Chapter a new phase-field model is proposed, 

which employs the concept of a diffuse interface, formulated within the system of lattice 

Boltzmann (LB) equation for simulating solidification and dendritic growth with fully coupled 

melt flow and thermosolutal convection-diffusion. With the evolution of the phase field and the 

transport phenomena all modeled and integrated within the same LB framework, this method 

preserves and combines the intrinsic advantages of the phase-field method (PFM) and the lattice 

Boltzmann method (LBM). Particularly, the present PFM/LBM model has several improved 

features compared to the existing phase-field models including: (1) a novel multiple-relaxation-

time (MRT) LB scheme for the phase-field evolution is proposed to effectively model 

solidification coupled with melt flow and thermosolutal convection-diffusion with improved 

numerical stability and accuracy, (2) convenient diffuse interface treatments are implemented for 

the melt flow and thermosolutal transport which can be applied to the entire domain without 

tracking the interface, and (3) the evolution of the phase field, flow, concentration, and  

* Part of this chapter is based on work published in Computer Method in Applied Mechanics and 

Engineering in 2021 [133] 
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temperature fields on the level of microscopic distribution functions in the LB schemes is 

decoupled with a multiple-time-scaling strategy (despite their full physical coupling), thus 

solidification at high Lewis numbers (ratios of the liquid thermal to solutal diffusivities) can be 

conveniently modeled. The applicability and accuracy of the present PFM/LBM model is 

verified with four numerical tests including isothermal, iso-solutal and thermosolutal convection-

diffusion problems, where excellent agreement in terms of phase-field and thermosolutal 

distributions and dendritic tip growth velocity and radius with those reported in the literature is 

demonstrated. The proposed PFM/LBM model can be an attractive and powerful tool for large-

scale dendritic growth simulations given the high scalability of the LBM. 

This rest of this Chapter is organized as follows. The governing equations for the phase 

field, melt flow, concentration (solute) field, and temperature field and their coupling are 

described in Section 4.2. The specific LBM-based numerical schemes in the proposed 

PFM/LBM model for solving those governing equations are presented in Section 4.3. Model 

verification and discussion are then detailed in Section 4.4. And concluding remarks are 

provided in Section 4.5. Lastly, the Chapman-Enskog analysis for the MRT-LBM scheme to 

recover the phase-field evolution equation is presented in Appendix A, and Appendix B briefly 

explains the algorithms used to compute the dendritic tip growth velocity and radius. 

4.1 Introduction 

In the CFD and heat and mass transfer communities, the lattice Boltzmann method 

(LBM) has become a powerful and alternative numerical method for modeling fluid flows and 

thermal/mass transport problems with complex geometry due to its attractive features including 

simple algorithm, easy implementation, convenience in boundary and interface treatment, and 

compatibility with parallel computing [14,23,25,26,83,84,86,87,126]. It is no surprise that a 
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growing number of publications have focused (e.g., [30–33]) on coupling the PFM and LBM for 

dendritic growth simulations. Most of those PFM-LBM models can be considered as hybrid 

models in which finite-difference- or finite-volume-based PFM was applied to simulate the phase 

field evolution, while the LBM was implemented to model the melt flow and heat and solute 

transfer. In addition, fully coupled PFM models considering all the effects of melt flow and 

thermosolutal convection-diffusion in the literature are very rare (e.g., [88]) due to the lack of 

general, convenient, and efficient numerical schemes.   

4.2 Phase-field equation and conservation equations 

4.2.1 Phase field 

In the phase field methods, a continuous dimensionless phase-field variable, ϕ, is defined 

with ϕ = −1 in the liquid phase, ϕ = 1 in the solid phase, and varying smoothly in the diffuse 

interface (−1 ≤ ϕ ≤ 1). To determine the governing equation for the phase field in thermosolutal 

convection-diffusion problems, the following dimensionless concentration (also called 

supersaturation) and temperature (also called undercooling) variables are defined for the entire 

domain [70,134] 

 
( ) ( )

2 /
1

1 1

1

c c

k k
U

k


 −

+ − −
=

−
,
  

(4.1) 

 m

h p

T T mc

L C
 − −

= ,
  

(4.2) 

where c∞ is the far-field concentration that equals the initial concentration of the alloy, k = cs/cl 

the partition coefficient that relates the compositions of solid and liquid in contact with each 

other at the interface, Tm the melting temperature, m the slope of the liquidus line in the phase 

diagram, Lh the latent heat, and Cp the specific heat. Following the formulations in 
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[33,70,79,134–136], the governing equation for ϕ during solidification and dendritic growth can 

be written as 

   ( ) ( ) ( )2 2

0( , ) ( )tU W W f Mc U g      
   =   +  − − + n n Ν ,

  
(4.3) 

where the relaxation time τ(n, U) and the anisotropic interface width 0( ) ( )sW W a=n n  are both 

functions of the local normal vector n that can be calculated as
 

 = − n , W0 is the 

characteristic width, λ is a dimensionless parameter that controls the coupling between the phase 

field and the concentration and temperature fields, ( )f   and ( )g   are interpolating functions 

associated with the double-well potential and the free energy of the bulk, respectively, with a 

popular choice of ( ) 3f    = − + , ( ) 2 2(1 )g   = −  [33,134], M is the scaled magnitude of the 

liquidus slope ( )(1 ) /h pM m k L C= − − , and N is the anisotropic vector defined as 

   
( ) ( ) ( )

T

2 ( ) ( ) ( )
( ) , ,s s s

s

x zy

a a a
a

 

   
=   

      

n n n
Ν n .

  
(4.4) 

In most previous PFM models, τ is considered as a function of n only [134–138], and 

2

0( ) ( )sa =n n  was applied with τ0 a constant and ( )sa n  defined as the crystalline anisotropy 

function [134–136] 

 
44 4

, , , ,

( ) 1 3 4 1 3 4 ( )s s s s s

x y z x y z

a n 
 

     
= =

= − + = − +   n ,
  

(4.5) 

where εs is the anisotropic strength. As pointed out by Ramirez et al. [70] and later also 

implemented in [88,139–141], for coupled thermosolutal transport problems, τ should also be 

dependent on the concentration field, i.e., 

 2

0( , ) ( ) ( )sU a F U =n n ,
  

(4.6) 

and  
1

( ) 1 (1 )F U Mc k U
Le

= + + − ,
  

(4.7) 
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where Le = α/Dl is the Lewis number denoting the ratio between the thermal diffusivity α and 

solutal diffusivity Dl in the liquid phase. This work also implements the generic definition of τ(n, 

U) in Eq. (6) for thermosolutal convection-diffusion problems. It should be noted that most of 

the previous PFM models for solidification and dendritic growth considered only the effect of 

heat transfer (i.e., ϕ and θ coupled only, see e.g., [32,135,136]) or solute transfer (i.e., ϕ and U 

coupled only, e.g., [30,31,33,82,137,138,142]); fully coupled thermosolutal diffusion (without 

convection) problems were studied in [70,134,139–141], while the dependence of τ on U was not 

taken into account in [134]. The present PFM model (details presented in Chapter 4.3) is 

applicable to more general solidification processes involving fully coupled thermosoltual 

convection-diffusion. It is also worth noting that the present general PFM model reduces to that 

for (1) ϕ and θ coupled thermal/iso-solutal transport problems with the selection of Le = 1, 

0Mc = , and (2) ϕ and U coupled solutal/iso-thermal transport problems with Le → ∞, 

1 (1 )Mc k = − −   and 
1 (1 )

U
k


=

− − 
, where Ω is the imposed solutal “undercooling” relating 

c∞ to the equilibrium liquidus concentration at the system temperature 0

lc , i.e., 

 
0

0(1 )

l

l

c c

k c

−
 =

−
,
  

(4.8) 

It is clear that for both simplified versions, τ(n, U) in Eq. (4.6, 4.7) reduces to 2

0( ) ( )sa =n n . 

 With the above expressions, Eq. (3) can be rewritten in the explicit form as 

 ( ) ( )( )
2

2 2 2 2 3 2

0 0 0( ) ( ) ( ) 1s t sa F U W a W Mc U       
  =   +  + − − + − n n Ν .

  
(4.9) 

4.2.2 Melt flow 

The melt is assumed to be incompressible Newtonian fluid and the flow is governed by 

the continuity and Navier-Stokes equations 
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 0 =v ,
  

(4.10) 

 2

t p   +  = − + v v v v ,
  

(4.11) 

where v is the flow velocity, p the pressure, ρ the density, and ν the viscosity. For sharp 

interfaces, the no-slip boundary condition should be used. For diffuse interfaces, however, a 

volume-averaged momentum equation can be formulated, as shown in [79] in the diffuse 

interface domain; and with the introduction of the phase field, convenient boundary schemes can 

be implemented at the diffuse interface, such as treating the interfacial flow as a flow in a porous 

medium [136].  In this work, the latter approach is applied and the specific interface treatment 

for flow simulation will be presented in the context of the PFM/LBM model (see Chapter 4.3.2 

below). 

4.2.3 Concentration field 

The governing equation for the concentration field can be written as 

[31,33,70,134,141,143]  

 ( ) ( )
( )1 1

2
t at t

k U
p U U D U  

+ −
 +  =   −  +  − v j J ,

  
(4.12) 

where 
( )11

2 2

kk
p 

−+
= − , the interpolated diffusivity 

1 1

2 2
s lD D D

 + −
= + , atj  is the 

phenomenological anti-trapping current term defined as [134] 

 ( )0

1
1 1

2 2
at W k U

t

 



 
= − + −    

j ,
  

(4.13) 

and J is the flux term associated with fluctuation [33]. The third term on the RHS of Eq. (4.12) is 

due to the rearrangement of ∂tU as U is related to ϕ (see Eq. (4.1)). In this work, the flux J is 

neglected following the setups in [70,134,136,137,144] for direct quantitative comparison with 

results reported therein. It should be stressed that in this work, the solute diffusion within the 
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solid phase is also taken into account as in [31,33]. This is different from the models in 

[70,134,141,143] where solute diffusion in the solid was neglected with 
1

2
lD D

−
= . 

4.2.4 Temperature field 

The governing equation for the dimensionless temperature considering convection is 

[70,134,136,141,144] 

 2 1

2
t t     +  =  + v ,

  
(4.14) 

where α is the thermal diffusivity, the last term in Eq. (4.14) is related to the latent heat of fusion 

(see Eq. (4.2)) during phase change, and the coefficient ½ shows up in Eq. (4.14) since the bounds 

for the phase field variable are ϕ = ±1. 

4.3 Present phase-field/lattice-Boltzmann model (PFM/LBM) 

4.3.1 LB scheme for phase field 

By treating the phase-field equation as a transient pseudo-convection-diffusion equation 

with source terms, and following the idea originally demonstrated in [145] for solute and heat 

transfer in heterogeneous porous median, an LB scheme was proposed in [134,135] for the phase 

field with a modified single-relaxation-time (SRT, also called BGK [146]) collision operator: 
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n x e x n x e

x x x
x

,
  

(4.15) 

where gα(x, t) ≡ g(x, ξα, t), ξ is the microscopic particle velocity vector in the LB model and it is 

discretized to a small set of discrete velocities {ξα|α = 0, 1, …, m - 1}, eα the αth discrete velocity 

vector, δt the time step, and ωα the weight coefficient. The distribution function ( ),g t t +x e
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evaluated at the adjacent nodes is necessary to recover the correct governing equation for ϕ 

[134,135]. The macroscopic phase-field variable can be obtained from 

( ) ( )
1

0

, ,
m

t g t



−

=

= x x ,       (4.16) 

 and the equilibrium distribution was defined as [134,135] 

( ) ( )
2

eq 0

0

1
, ,

W t
g t t

x
  


 

  

 
= −  

 
x x e N ,    (4.17) 

with ξ a constant related to the lattice structure (ξ = 1/3 in D2Q5 and ξ = 1/4 in D3Q7 LB 

models), and the relaxation time coefficient needs to satisfy 

( )
2

2 0

2

0

1 1
, ( )

2
s

W t
t a

x





  
= +x n .     (4.18) 

The BGK-LB scheme in Eq. (4.15) was also implemented in [136,137], where the authors 

introduced an “interface advancing velocity” evoked by the interfacial surface energy and it can 

be expressed as 

2

0

0

n

W t

x



 
 −v N .       (4.19) 

It is noted that the 2nd-order terms of O( 2

nv ) were also included in the equilibrium distribution 

in [136,137] – a practice generally considered necessary for modeling fluid flow but not for 

scalar convection-diffusion [85,87]. 

 Based on the modified BGK scheme in Eq. (4.15) and the discussion in [145] regarding 

the numerical stability of the modified LB scheme, we present an improved PFM/LBM model in 

this work for the phase field coupled with thermosolutal convection-diffusion. 

 First, the phase-field governing equation in (8) is rewritten as 
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(4.20) 

where ( ) ( )( )
2

3 21G Mc U     = − − + − . Clearly, in obtaining Eq. (4.20), the assumption of 

“semi-explicit” coupling was applied, i.e., the coupling of U into the phase-field is mainly 

through the last source term in Eq. (8), while its coupling in the remaining transient, diffusion 

and pseudo-convection terms in Eq. (8) is assumed to be weak so that 1/F(U) was directly moved 

into the divergence terms. Such an assumption is acceptable for LB simulations with small 

enough time steps as demonstrated in Section 4 with numerical examples. For problems with 

strong coupling between U and ϕ, the present model can still be applicable, one just needs to add 

those originally neglected terms (related to U ) to the combined source term. 

  The present LB evolution scheme is written as 
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(4.21) 

where M is a transformation matrix to map the distribution functions to the moment space 

through m = M∙g and meq = M∙geq, and S is related to the matrix of relaxation time coefficients 

with the multiple-relaxation-time (MRT) collision operator applied in Eq. (4.21). We choose the 

matrices as in [85] and the equilibrium moments can be explicitly obtained as in [86,87]. 

Specifically, for the D2Q5 MRT-LB model 

M = 

1 1 1 1 1

0 1 1 0 0

0 0 0 1 1

4 1 1 1 1

0 1 1 1 1

 
 

−
 
 −
 

− − − − 
 − − 

, S-1 = ( )00diag , , , ,p p      , and  (4.22) 
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while for the D3Q7 MRT-LB model, the following can be similarly obtained 

M = 

1 1 1 1 1 1 1

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1
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, S-1 = ( )00diag , , , , , ,p p p         , and  (4.24) 
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m , in D3Q7. (4.25) 

Remark 1. It should be emphasized that in deriving meq in Eqs. (4.23, 4.25), the 

equilibrium distribution function is rescaled in the present model as 
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where 
( )

n
n

F U


v
u  with vn defined in Eq. (4.19). Additionally, in the relaxation matrices in Eqs. 

(4.22, 4.24), the relaxation coefficient τϕ related to the diffusion coefficient also needs rescaling 

to satisfy the following 
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2 2
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,
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sa W t
t

F U x
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
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= +

n
x .      (4.27) 

The other relaxation coefficients do not affect the leading-order numerical solutions and thus τ00 

= τP = 1 is used for consistency [14,86,87].  
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Remark 2. The proposed MRT-LB model for the phase field evolution is able to 

significantly improve the numerical stability with two combined features. First, it is well known 

that the LB models with an MRT collision operator generally have better numerical accuracy and 

stability compared to those with the BGK operator in both fluid flow and scalar transport 

simulations [25,85,87,147,148]. Therefore, the present MRT-LB scheme in Eq. (4.21) is 

considered an improvement from the BGK-LB scheme in Eq. (4.15). Second, the rearrangement 

of the governing equation in Eq. (4.20) and the rescaling of the corresponding equilibria, 

relaxation coefficients and source term (see Eqs. (4.21, 4.23, 4.25, 4.26, 4.27)) are crucial in 

ensuring the numerical stability especially for high Lewis number (Le) problems. While one 

could keep the original governing equation in (4.9), combine F(U) with 2 ( )sa n , and construct 

similar LB scheme as in Eq. (4.15) such as 
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n x e x n x e

x x x
x

,
  

(4.28) 

in Eq. (4.28) no rescaling is needed for eqg ,   or G , and it can be verified to recover Eq. (4.9) 

up to 2nd-order accuracy; the LB scheme in Eq. (4.28) would become unstable when the 

magnitude of F(U) is small (noting that 2 ( )sa n  is of O(1) and F(U) ~ 1/Le in Eq. (4.7)) since the 

RHS of Eq. (4.28) will be divided by 2 ( ) ( )sa F Un  when updating ( ),t tg t  + +x e . This 

phenomenon was also reported in detail in [145] for low-porosity simulations. Furthermore, it 

should be noted that as pointed out in [70], in typical solidification of alloys the solutal 

diffusivity in the liquid state is generally much smaller than the thermal diffusivity (i.e., Le = α/D 

>> 1). Thus small F(U) is encountered in typical alloy solidification processes. Overall, the 

present PFM/LBM model is well-poised to simulate solidification and dendritic growth with both 
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high- and low-Lewis numbers with improved numerical stability compared to those previous 

PFM-LBM models. 

Remark 3. Accurate and efficient computation of the gradient   is essential in the 

PFM as it shows up in several different terms (e.g., the normal vector  = − n , the 

anisotropy function as(n) in Eq. (4.5), and the anisotropic vector N in Eq. (4.4)). As 

demonstrated in [87,110], in the LB framework, the scalar gradient can be conveniently 

computed from the distribution functions. Using the notations in this work, the scheme becomes 

1
neq

1

1 m

i

i

e g
x x

 




 

−

=


= −


 ,       (4.29) 

where neq eqg g g  = −  is the non-equilibrium component of the distribution function. It is 

emphasized that Eq. (4.29) is a local scheme, i.e., it requires only the populations at the local 

lattice node and is thus more efficient than using finite-difference schemes that were used in 

previous PFM models. The second-order accuracy of the scheme in Eq. (4.29) has been verified 

in [87,110].  

The Chapman-Enskog analysis for the LB evolution equation (4.21) to recover the phase-

field governing equation (4.20) is presented in Appendix A. 

For efficient computation and storage, the LB evolution equation (4.21) is solved in two 

steps: 

collision step:    

( )

( ) ( )

( )( )
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2 1 eq
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x n x e

x x
n M S m m x

, and   (4.30) 

streaming step: 
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 ( ) ( )ˆ, ,g t t t g t   + + =x e x ,     (4.31) 

where ĝ  
represents the post-collision state. 

4.3.2 LB scheme for melt flow 

The incompressible melt flow in the liquid phase can be simulated with the widely used 

D3Q19 and D2Q9 MRT-LB models [147,148]. In the diffuse interface, the flow can be 

considered as porous medium flow. To avoid tracking the sharp interface with no-slip boundary 

condition, we adopt the gray LB scheme [149–151] for porous medium flows to handle the 

diffuse interface. The collision-streaming procedure for melt flow becomes 

collision step: 

( ) ( ) ( )( )1 eqˆ , , ,f t f t t 


− = −  −
 

x x M S m m x , and     (4.32) 

streaming step: 

( ) ( ) ( ) ( )
1ˆ ˆ ˆ, , , , ,
2

t t f t tf t f t t f t f t          
   + + = + + + −    

x e x x e x e x , (4.33) 

where the details of the matrices M, S and the equilibrium moments meq can be found in 

[147,148] and are not shown here for brevity, and the subscript 
 
denotes the opposite direction 

of α (i.e.,  = −e e ). The fraction coefficient θf is related to the solid fraction that can be calculated 

from the phase-field variable (θf  = (ϕ+1)/2) and is evaluated at the midpoint of the link in Eq. 

(4.33), i.e., 

( ) ( ) ( ) ( ), , , , 21
,

2 2 4

f f t t

f t

t t t t
t

 



     
 

+ + + + + 
+ = = 

 

x x e x x e
x e . (4.34) 

The LB scheme for melt flow in Eq. (4.32, 4.33) and the calculation of the macroscopic 

variables including density and velocity are applicable to the entire computational domain under 
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the PFM/LBM framework. Specifically, all the terms in Eq. (4.33) are considered within the 

diffuse interface region; additionally, it reduces to the standard LB scheme for fluid flow within 

the melt at θf  = (ϕ+1)/2 = 0, and to the bounce-back scheme which represents the no-slip 

condition within the solid phase at θf  = 1. Similar discussion was also presented by Sun et al. 

[136], however, it should be noted that in [136] the pre-collision distribution functions 

( ),tf t +x e  and ( ),f t x  were used in the last term in Eq. (4.33). To correctly recover the 

governing equations for flow in porous media, post-collision terms as shown in Eq. (4.33) should 

be used. One can refer to [149] for a detailed comparison of the various LB schemes for porous 

media flow and their Chapman-Enskog analyses. 

For dendritic growth modeling with melt flow and dendrite movement under external 

forces (e.g., gravity or buoyance forces as in [33,142,152]), the body forces can be conveniently 

added in the LB scheme in Eq. (4.32, 4.33) using standard body force treatments in the LB 

model. Thus the PFM/LBM model is an attractive and powerful tool for large scale simulations 

of solidification processes with motion of multiple dendrites [142,152]. 

4.3.3 LB scheme for concentration field 

To apply the LB method to solve for the concentration (supersaturation) field, the 

governing equation (4.12) is reorganized to an anisotropic convection-diffusion equation (CDE) 

with a general source term 

 ( )t eff UU U D U G +  =   +v ,
  

(4.35) 

where 
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It is noted that ( )
 

1

2

2(1 )

(1 ) (1 )

k
p

k k
 



− −
 = 

+ − −
 was used in deriving Eq. (4.36). In this work, the 

CDE in (4.35) will be solved with the D2Q5/D3Q7 MRT-LB models [85,87]. By introducing the 

set of distribution functions hα(x, t), the dimensionless concentration is obtained from 

( ) ( )
1

0

, ,
m

U t h t


−

=

= x x , and the collision-streaming procedure for the LB evolution equation 

includes 

collision step: 

( ) ( ) ( )( ) ( )1 eqˆ , , , ,Uh t h t t tG t  


 − = −  − +
 

x x M S m m x x , and   (4.37)
 

streaming step: 

 ( ) ( )ˆ, ,h t t t h t   + + =x e x .      (4.38) 

The matrices M and S are the same as those in Section 3.1 and the details of equilibrium moment 

meq can be found in [85,87]. It is worth noting that the principal relaxation time coefficients are 

related to the effective diffusion coefficient through 3 0.5U effD = + . With the MRT collision 

operator implemented, the present LB model is stable in handling solutal convection-diffusion 

with very large diffusivity ratios. Numerical verification with Dl/Ds = 104 will be presented in 

Section 4.3. Some additional remarks are given below. 

First, the present LB model for solute convection-diffusion is considered much more 

convenient and easier to implement than the LB model proposed in [134], where 

( )

( ) ( )

1

1 1

l

eff

D
D

k k





−
=

+ − −
 was assumed neglecting diffusion in the solid phase. As a consequence, 

in order to apply the LB model to the entire domain for U evolution, the relaxation coefficient τU 

was chosen to be related to the Dl even within the solid phase; and additional rearrangement of 



 

94 

the governing equation for U as well as redefinition of the equilibrium distribution function were 

used in [134]. The present LB model avoids those complex steps and is able to model diffusion 

within the solid as well. 

Second, similar to computing   in the LB model, the gradient U  is also 

conveniently obtained from a local scheme similar to that in Eq. (4.29) based on the distribution 

functions in the LB model. It is also noted that, however, for computing at j  in Eq. (4.36), one 

has to adopt conventional schemes (the central-difference scheme is applied in this work) as in 

all previous PFM models. And the simple forward Euler method, 
( , ) ( , )

t

t t t

t

  




− −
 =

x x
, is 

used for computing t  in the combined source term in Eq. (4.36). 

4.3.4 LB scheme for temperature field 

The energy equation (4.14) can also be considered as a standard CDE with a source term 

(
1

2
tG =  ) and the above D2Q5/D3Q7 MRT-LB models [85,87] will also be implemented for 

the temperature field evolution. For completeness, the collision-streaming procedure is also 

shown below where nα(x, t) is the last set of distribution function defined to yield 

( ) ( )
1

0

, ,
m

t n t



−

=

= x x  

collision step: 

( ) ( ) ( )( ) ( )1 eqˆ , , , ,n t n t t tG t   


 − = −  − +
 

x x M S m m x x , and   (4.39)
 

streaming step: 

 ( ) ( )ˆ, ,n t t t n t   + + =x e x .      (4.40) 
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 The flow chart for the present PFM/LBM model for solidification and dendritic growth 

simulation with fully coupled melt flow and thermosolutal convection-diffusion is depicted in 

Figure 4.1.  

 

Figure 4.1 Flow chart for the proposed fully coupled PFM/LBM model. Here MTS represents 

the multiple-time-scaling (MTS) strategy developed in [40]. 

 

4.4 Numerical verification and discussion 

In this section, we implement the present PFM/LBM model to simulate four 

representative solidification problems with coupled melt flow and thermosolutal convection-
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diffusion. The applicability and accuracy of the proposed model is verified through detailed 

comparison of the simulated results with published data in the literature. In each test, a single 

circular/spherical solid seed of radius Rs is initially placed in the center of a 2D/3D domain with 

an initial phase-field distribution ( )0 tanh / 2s s oR d W  = −
 

, where ds is the distance from the 

seed center; solidification and dendritic grow under various melt flow, heat, and solute transport 

conditions are simulated. Specifically, the first test focuses on iso-solutal solidification in 2D 

with the coupled melt flow, phase field, and temperature field evolution simulated; the second 

test is for isothermal solidification in 2D; fully coupled thermosolutal convection-diffusion in 2D 

is simulated in the third test; and 3D simulations are presented in the fourth test. The evolution of 

the phase field, melt flow, concentration (supersaturation) and temperature fields is checked for 

each case, and quantitative verification of the simulated results in terms of tip velocity and 

radius, and selected concentration/temperature profiles is presented. The details for accurate 

computation of the tip velocity and radius based on the solved phase field are given in Appendix 

B.   

4.4.1 Thermal/iso-solutal dendritic solidification in 2D 

The 2D computational domain is shown in Figure 4.2, where the domain size is set as a 

square with 512δx  512δx grid resolution and the initial seed radius is Rs = 10δx. The 

characteristic parameters for convection-diffusion are 
2

0

0

0.25
W

Pe


= =  and / 23.1Pr  = = , and 

the inlet velocity is set as uin = W0/τ0 for convection and uin = 0 for pure diffusion problems. The 

length and time scales are controlled by selected interface thickness W0 = 2.5δx and reference 

time τ0 = 125δt with unit spatial and time steps (δx = δt = 1) in the LB framework. To simulate 

the coupled thermal/iso-solutal solidification and be consistent with reported simulations in the 
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literature, the parameters in the PFM model are chosen as Le = 1, Mc∞ = 0, εs = 0.05 and λ = 

a1W0/d0 = 6.3826 with constant a1 = 0.8839. Under the above parameter settings, the relaxation 

coefficient in the thermal LB model is τg = 1.1 which results in τf,original = 14.36 in the 

hydrodynamic LB model if the same time scaling is utilized. Such a large relaxation coefficient 

would lead to instability of the model and/or large numerical error. Therefore, we implement the 

multiple-time-scaling (MTS) strategy in [153] and decouple the time steps in the LB models. The 

effect of this scaling factor, 
,original

,scaled

0.5

0.5

f

s

f






−
=

−
, is studied in Figure 4.2 below, and for all the other 

results presented λs = 15 was used, which would render τf,scaled = 1.424. 

 

Figure 4.2 Schematic depiction of the square computational domain for dendritic growth with 

melt convection with boundary conditions specified on all four walls and a circular 

seed located at the center. 

Place all detailed caption, notes, reference, legend information, etc here 

Dendritic solidification under pure diffusion is considered first. Figure 4.3 shows the 

phase field interface (ϕ = 0) at different times with both the BGK- and MRT-LB models for the 

phase-field evolution implemented (see Chapter. 4.2.1). Excellent agreement between the results 

from the two LB models in Fig. 4.3 and also between the present results and those in previous 



 

98 

studies [134,136] is observed, confirming the accuracy of the proposed MRT-LB model for the 

phase field in this work. The results from the MRT-LB model are thus shown throughout this 

paper. Furthermore, the dimensionless temperature contours and the phase-field “advancing 

velocity” (see Eq. (4.19)) components in x- and y-directions are shown in Figures 4.4 and 4.5, 

respectively, at the time of t/τ0 = 128. 

 

Figure 4.3 Interface evolution comparison between the MRT- and BGK-LB models for the 

phase field for 2D dendritic growth with pure diffusion at t/τ0 = 0, 4, 8, 16, 32, 64, 

128. 
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Figure 4.4 Contours of the temperature field for 2D dendritic growth with pure diffusion at 

t/τ0 = 128.  

 

Figure 4.5 Interface advancing velocity contours in (a) x-direction and (b) y-direction for 2D 

dendritic growth with pure diffusion at t/τ0 = 128. 

 

The velocity contours in Figure 4.5 clearly show that the advancing velocities are much 

more significant in the diffuse interface region compared to the rest of the domain. It should be 

noted that the velocity components are evaluated at the LBM nodes with the convenient local 
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scheme in the LBM framework (see Eq. (4.29)); this allows direct and quantitative investigation 

of the diffuse interface growth at different locations of interest in addition to the tip velocities 

that were studied in previous publications. To further verify the present model, Figure 4.6 

compares the tip velocity and radius results with those reported in [134,136]. 

 

Figure 4.6 Evolution of (a) tip velocities, and (b) tip radii for 2D dendritic growth with pure 

diffusion. 

 

The computed values at the four tips are the same for pure diffusion case, confirming the 

self-consistence of the model and simulation results. Good agreement for the tip velocity with 

those in [134,136] and the steady-state analytical value (dashed line) is observed in Figure 4.6a; 

and our simulation shows smoother and more consistent tip radius data in Figure 4.6b compared 

to Sun et al.’s [136], where the tips showed fluctuating results. 

Next, we report the simulation results for the 2D dendritic solidification with both 

thermal convection and diffusion. Figure 4.7 shows the interface comparison at the same times as 

in Figure 4.3. It is clearly observed that convection plays a significant role on the dendrite 

  
(a) (b) 
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growth, with the west (upstream) tip becoming much larger than the other tips. Consistent results 

are obtained from both BGK- and MRT-LB models with some discrepancy noticed at the west 

tip at t/τ0 = 128. The respective contours of the temperature field and the phase-field advancing 

velocity components under convection at t/τ0 = 128 are shown in Figures 4.8 and 4.9, where the 

effect of thermal convection is obvious compared to those in Figures 4 and 5. In addition, the 

evolution of the tip velocities and radii is presented in Figure 10. The tip velocity comparison 

further illustrates the significant influence of the fluid flow and thermal convection on the 

dendrite growth: the upstream west tip has much higher growth velocity and the downstream east 

tip lower velocity compared to the symmetric north and south tips perpendicular to the inlet 

flow; and excellent agreement with those reported in [136] is observed. The evolution of the radii 

of the four tips is close to each other, and also in good agreement with that in [136]. Consistent 

with the comparison in Figure 4.6b, our model and tip radius evaluation scheme (see Appendix 

B) yield improved results compared to those in [136].  

 

Figure 4.7 Interface evolution comparison between the MRT- and BGK-LB models for the 

phase field for 2D dendritic growth with convection-diffusion at t/τ0 = 0, 4, 8, 16, 

32, 64, 128. The melt flow velocity vectors are shown at t/τ0 = 128. 
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Figure 4.8 Contours of temperature field for 2D dendritic growth with convection-diffusion at 

t/τ0 = 128.  

 

Figure 4.9 Interface advancing velocity contours for 2D dendritic growth with convection-

diffusion at t/τ0 = 128.  
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Figure 4.10 Evolution of (a) tip velocities and (b) tip radii for 2D dendritic growth with 

convection-diffusion. 

 

Furthermore, the efficacy of the multiple-time-scaling (MTS) strategy, which is critical in 

decoupling the time steps in the different LB schemes in the coupled PFM/LBM model, is 

demonstrated in Figure 4.11, where the comparison of the tip growth velocities and radii at 

different scaling factor λs values is shown. With the selected Prandtl number Pr = 23.1, the 

rescaled relaxation-time coefficients for the melt flow are τf,scaled = 1.424, 0.962, and 0.731 at λs = 

15, 30, and 60, respectively. In general, very good agreement can be observed in both tip 

velocity and radius results in Figure 4.11, confirming the applicability and accuracy of the MTS 

scheme. 

  
(a) (b) 
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Figure 4.11 Comparison of the (a) tip velocities and (b) tip radii with the multiple-time-scaling 

(MTS) strategy implemented using various λs values for 2D dendritic growth with 

convection-diffusion. 

 

4.4.2 Solutal/iso-thermal dendritic solidification in 2D 

The 2D MRT-LB schemes for the phase field coupled with the concentration field is 

verified in this section with the 2D isothermal solidification problem with pure diffusion that has 

been studied by various authors such as Karma [138] with the finite-difference Euler method, 

Cartalade et al. [134] using the BGK-LB schemes for both fields, and Wang et al. [137] with a 

hybrid BGK-LB/finite-volume method for the respective phase field and concentration field. In 

present simulations, the scaled solute mass diffusivity is selected as 2

0 0/ 2l lD D W= =  with 

interface thickness W0 = 2.5δx and constant time scale τ0 = 50δt. The ratio of the solutal 

diffusivity in solid to liquid is Ds/Dl = 10-4 in all cases considered including the following 

Chapter 4.4.3. Other model parameters include λ = 3.1913, intial dimensionless cocentration Ω0 

= -0.55 (see Eq. (6)), θ = 0, k = 0.15, εs= 0.02, and Mc∞ = 0.5325. The computation domian has a 

1000δx  1000δx uniform mesh and with an initial seed radius Rs = 10δx.  
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Figure 4.12 (a) Phase-field interface evolution at t/τ0 = 0, 40, 120, 200, 400, 600, 800, and 

1000, and (b) concentration field at t/τ0 = 800 for the 2D dendritic growth with 

pure diffusion. 

 

Figure 4.13 (a) Dendritic tip velocity variation and (b) concentration profile in the solid phase 

for the 2D isothermal dendritic growth with solute diffusion.  

The interface morphology of ϕ at different times and the distribution of Ω at t/τ0 = 800 are 

shown in Figure 4.12. The results are consistent with those reported in [70,134,137]. It should be 

noted that different from the previous models [70,134,137] where Dl = 0 was assumed, the 

  
(a) (b) 
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present model also considers the solutal transfer within the solid phase (Ds/Dl = 10-4), therefore 

the concentration gradient on the solid side can be clearly observed in Figure 12b. To quantify 

the comparison with published results, Figure 4.13a shows the variation of simulated tip velocity 

and Figure 4.13b the central solute profiles along the y-axis in the solid at t/τ0 = 800. Due to the 

symmetry of the pure diffusion case, we only present the results of the north tip in Fig. 4.13; and 

the solute profile obtained from the Gibbs-Thomson relation 
0/ [1 (1 ) / ]s l tipC C k k d r= − − , where 

rtip is the dendritic tip radius (rtip = 21.996δx with the present bi-cubic interpolation used), is also 

included in Figure 4.13b. Good agreement with published results is observed for both the tip 

velocity and solute profile in Figure 4.13, confirming the accuracy of the present PFM/LBM 

model for isothermal solidification simulations. The discrepancies in the solute profiles near the 

dendrite center might be caused by (1) different initial seed radii used in the various simulations 

(e.g., Rs  = 10δx = 14.4d0 in present simulation, Rs  = 22d0 in [138], and Rs not specified in 

[137]), and (2) slightly higher relative concentration at the center (Cs/Cl = 0.085 in present) than 

the reference value Cs/Cl = 0.08 in [137,138] since the present model considers non-zero 

diffusity Ds in the solid phase.  

4.4.3 Thermosolutal solidification and dendritic growth in 2D 

In this section, the PFM/LBM model is implemented to simulate the 2D dendritic growth 

of a binary alloy into an undercooled melt with coupled melt flow and thermosolutal convection-

diffusion. The diffusion cases at Le = 1 and 50 studied in [70] are used for model verification; 

and we also report our simulation results under convection at Le = 50. 

First, for the diffusion case with Le = 1, the same parameters as in [70] are used including 

λ = 3.1913, Mc∞ = 0.5325, U0 = 0, θ0 = -0.55, k = 0.15, εs = 0.02, and 2

0 0/ 2l lD D W= = ; 
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addtionally, we choose the reference length and time scales W0 = 2.5δx and τ0 = 55δt, 

respectively, which yield a domain size of 2395δx  2395δx to maintain the same resolution as in 

[70]. And the same initial seed radius is also used (Rs = 65d0 = 45δx). The evolution of the tip 

velocity and radius (results are symmetric for the four tips) is presented in Figure 4.14, where it 

is clear that the tip velocity matches extremely well with the reference data, and although 

persistent discrepancy in the tip radius results is noticed at small times, they both converge to 

close steady results. It is speculated that the initial phase field, ( )( ,0) tanh / 2s s oR d W  = −
 

x  

with ds the distance to the seed center used in the present simulation following [134] could be 

responsible for the early deviation in Figure 4.14b. To further verify the accuracy of the present 

model, Figure 4.15 shows the comparison of the profiles of ϕ, U, and θ along the central dendrite 

axis with those in [70] at tDl/𝑑0
2= 470,000. The present results match very well with the 

published data in general, and the discrepancy in the U profiles near the dendrite center is due to 

the non-zero solid solute diffusivity (Ds/Dl = 10-4) used, as a similar behavior is also noted in 

Figure 4.13b. 
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Figure 4.14 Evolution of (a) tip velocity and (b) tip radius for the 2D thermosolutal dendritic 

growth with pure-diffusion at Le = 1.  

 

Figure 4.15 Simulated ϕ, U, and θ profiles along the central dendrite axis at 2

0/ltD d  = 

470,000.  

 

 
(a) (b) 
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Next, thermosolutal dendritic growth at higher Lewis numbers is simulated. As 

emphasized in Chapter 4.2.1, the present PFM/LBM model is particularly stable in simulating 

high Le cases.  For illustration purposes, Figure 4.16 a-f presents the phase field, concentration, 

and temperature fields at tDl/𝑑0
2= 3500 for both the diffusion-only and convection-diffusion 

cases. The simulation parameters include Le = 50, λ = 1.5957, 
lD  = 1, Mc∞ = 0.1, k = 0.15, εs = 

0.02, W0 = 2δx, and τ0 = 1000δt; initial distributions ( )0 tanh / 2s s oR d W  = −
 

, U0 = 0, and θ0 = 

-0.55 and far-field Dirichlet boundary conditions ϕ = -1, U = 0, and θ = -0.55 are employed; and 

the computational domian size is 1751δx  1751δx with two initial seed radii Rs = 20δx and Rs = 

44δx tested. Similar to the convection test in Section 4.3.1, constant inlet flow condition (uin = 

W0/τ0) and the converged flow field over the circular seed as initial condition are implemented 

for the convection-diffusion case with 
2

0

0

1
0.02

l

W
Pe

D Le



= = =  and Pr = 23.1. The 

distributions in Figure 4.16 are very similar to those reported in [70] for pure diffusion and [88] 

for convection-diffusion dendritic growth. In particular, the complex microsegregation pattern in 

the solid is fully captured; the thermal boundary layer thickness is much larger than that of the 

solutal boundary layer due to the high Le simulated; the concentration variations are mainly 

confined within the solid phase with more complex contours obtained compared to those in [70] 

as a non-zero solid solutal diffusivity is used in the present model; noticeable temperature 

variations in a much larger domain are observed including those in the solid; and the effects of 

the melt flow and convection on the field distributions are also clearly seen in Figure 4.16 b, d, f 

with the upstream primary and secondary tips growing much faster and with significantly higher 

tip temperature compared to the pure diffusion case in Figure 4.16 a, c, e. 
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Figure 4.16 Distributions of (a, b) the phase fields, (c, d) concentration fields, and (e, f) 

temperature fields at 2

0/ltD d  = 3500 for the 2D fully coupled thermosolutal 

dendritic growth. (a, c, e) are simulations for the pure diffusion case and (b, d, f) 

for the convection-diffusion case both at Le = 50.  

 

 
(a) (b) 

 
(c) (d) 



 

111 

 
Figure 4.16 (continued) 

 

To further verify the temporal accuracy of the present model, Figures 4.17 and 4.18 show 

the evolution of the primary tip velocity and tip radius results for the respective diffusion and 

convection-diffusion cases at Le = 50 and with the same parameters described above. The results 

from [70] are also included in Figure 4.17 as references. First, the overall agreement in Figure 

4.17 is encouraging, especially for the excellent agreement of tip velocity at small times and the 

close steady tip radius results. It should be noted that the present work represents the first 

quantitative comparison with the published data in [70] for the dendritic growth with coupled 

thermosolutal transport. Second, the present simulation results with two different Rs values 

confirm the sensitivity of the tip evolution with the initial seed size, which was also examined in 

detail in [140] in terms of interface morphology. Moreover, the results in Figure 4.17 

demonstrate that even though obvious discrepancies are noticed with different initial seed sizes, 

their steady-state (when domain size is large enough) results are almost identical for both tip 

velocity and radius. Compared to the large fluctuations in the data from [70] in Figure 4.17 a, b, 

 
(e) (f) 
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it is believed that the present simulation results are more reliable. Lastly, the effect of the melt 

flow and convection on the evolution of the four primary tips is clearly seen in Figure 4.18 a, b. 

In summary, the present results in Figures 4.17 and 4.18 can serve as benchmark data for 

verification of phase-field models for dendritic growth with fully coupled thermosolutal 

transport.  

 

Figure 4.17 Evolution of (a) the primary tip velocities and (b) tip radii for 2D dendritic growth 

with thermosolutal diffusion at Le = 50. 

 
(a) (b) 
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Figure 4.18 Evolution of (a) the primary tip velocities and (b) tip radii for the 2D dendritic 

growth with thermosolutal convection-diffusion at Le = 50. 

 

4.4.4 Thermal/iso-solutal dendritic solidification in 3D 

In this section, dendritic growth in 3D with pure diffusion is simulated to verify the 

present PFM/LBM model when extended to 3D. The thermal/iso-sloutal diffusion problem in 

Chapter 4.3.1 is directly extended to 3D with the same characteristic parameters Le = 1, Mc∞ = 0, 

εs = 0.05 and λ = 6.3826. A computational domain with 385δx  385δx  385δx grid sizes and a 

spherical seed of initial radius Rs = 10δx are used, and the interface thickness and reference time 

are selected as W0 = 2.5δx and τ0 = 125δt. Figure 4.19 shows the representative phase-field and 

temperature distributions at t/τ0 = 60. The 3D contours in Figure 4.19 a, b can be observed to be 

symmetric across the three central coordinate planes; and the 2D phase-field contours in Figure 

4.19c are similar to those presented in Section 4.3.1. Furthermore, Figure 4.20 compares the 

computed tip growth velocity and radius results with those reported by Jeong et al [144], where 

excellent agreement for the tip velocities are observed in Fig. 4.20a, and similar trends in tip 

radii are shown in Figure 4.20b with slight discrepancies in magnitude. It should be noted that 



 

114 

similar phenomena are observed and discussed in Chapter 4.3.3, the tip radius results are very 

sensitive to the initial seed size, the initial phase-field distribution and the evaluation schemes 

used. 

 

 

Figure 4.19 (a) Dendritic shape at ϕ = 0 and (b) isothermal shape at θ = -0.25 in 3D, and (c) 

phase-field and (d) temperature contours in 2D on the central x-y plane for the 3D 

thermal/iso-solutal dendritic growth problem with pure diffusion. All results are at 

t/τ0 = 60.  
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Figure 4.20 Evolution of (a) tip velocities and (b) tip radii on the central x-y plane for 3D 

dendritic growth with pure diffusion.  

 

4.4.5 Effect of natural convection on multiple crystals growth 

The effect of buoyancy force caused by solute concentration and temperature gradient on 

multiple dendritic growth is studied in this Section. According to the Boussinesq approximation 

[31,154], the total buoyance force can be expressed by 0 0 0[ ( ) ( )]C TC C T T  = − − + −F g . 

Here, g is the gravitational accerlation, ρ0 the reference density at the reference concentration C0 

and reference temperature T0, βC the solutal expansion coefficient, and βT the thermal expansion 

coefficient. In order to simplify model, βT is set as 0 for all test cases. In this study, Al-3wt%Cu 

binary alloy was selected as the test material. The 2D computational domian is set as a rectangle 

with 1024  2048 grid points, ten seeds with Rs = 10δx are placed on the bottom. The initial 

supersaturation is set to be θ0 = -0.7. The material and simulation parameters are summarized in 

Table 4.1. 

  
(a) (b) 
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Table 4.1 Material and simulation parameters for simulation dendritic growth of Al-3wt%Cu 

binary alloy. 

Parameters Symbol Value Unit 

Thermal diffusivity 

Fluid kinematic viscosity 

Partition coefficient 

Anisotropic strength 

Gravitational acceleration 

Interface thickness 

Lattice size 

Time increment 

α 

ν 

k 

εs 

g0 

W0 

δx 

δt 

0.013 

1 × 10-8 

0.15 

0.01 

9.80665 

0.9375 

0.75 

9.375 

m2/s 

m2/s 

- 

- 

m/s2 

µm 

µm 

µs 

 

 

Figure 4.21 Dendrite morphology and temperature field at 1.5  106 time step with g = g0/50.  
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Figure 4.22 Enlarged views around dendrite tips for g = (a) −g0/50, (b) 0, and (c) g0/50, are 

shown in Fig. 4.22. 

 

Figure 4.21 shows the dendrite morphology and temperature field at 1.5  106 time step 

for the 2D simulations, where the gravitational acceleration g was changed as g = g0/50. The 

enlarged views around dendrite tips for g = (a) −g0/50, (b) 0, and (c) g0/50, are shown in Fig. 
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4.22. It can be observed that the number of primary tips of three test cases with different gravity 

acceleration values are (a) 4, (b) 6, (c) 8, respectively. The number of primary dendrite branches 

increases with the increase of gravitational acceleration value (from negative to positive), 

meanwhile, the primary dendrite spacing is decreasing. This observation is consistent with the 

results pointed out in the published study [31].  

4.5 Conclusions 

A new PFM/LBM model for solidification and dendritic growth simulation with fully 

coupled melt flow and thermosolutal convection-diffusion was developed in this chapter based 

on a synergy of the phase-field method (PFM) and the lattice Boltzmann method (LBM). The 

attractive feature of the diffuse interface in the PFM was maintained to effectively simulate the 

complex dendritic morphology evolution; and different from previous hybrid PFM-LBM models 

where the LBM was mainly applied to simulate the flow field, the present coupled PFM/LBM 

model inherits the intrinsic benefits of the LBM (e.g., simple and explicit algorithms, convenient 

boundary/interface treatment, and compatibility with parallelization), and all the evolution of the 

phase field, flow field, solute and thermal fields is simulated in the LB framework with a single 

Cartesian grid system. In addition, effective diffuse interface treatments are proposed in the LB 

schemes, which are directly implemented to the entire computational domain. Moreover, to 

improve the model stability and accuracy, multiple-relaxation-time (MRT) LB schemes are 

applied for all. Furthermore, in order to simulate various dendritic growth problems with wide 

ranges of characteristic parameters, a multiple-time-scaling strategy is employed in the LB 

framework that effectively decouples the times steps in the four LB schemes.  

The efficacy of each of those unique features and the overall accuracy of the coupled 

PFM/LBM model were verified with representative numerical tests involving melt flow and 
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thermosolutal convection-diffusion in 2D and pure diffusion in 3D. It was demonstrated that with 

comparable spatial and temporal resolution, the present model showed more robust and 

consistent results than those in the literature in terms of the dendrite tip growth velocity and 

radius. The reported simulation results for thermosolutal dendritic solidification with and without 

convection can serve as reliable benchmark data. The coupled PFM/LBM model are capable of 

simulating large-scale dendritic growth with natural convection effects. 
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CHAPTER V 

SUMMARY AND FUTURE WORK 

5.1 Summary 

In this dissertation, the heat and mass transfer between different materials and phases 

with different interface schemes were computationally studied in the following aspects: 

conjugate heat and mass transfer modeling with the LBM, novel interface scheme in the LBM 

for conjugate heat and mass transfer between materials/phases with very high transport property 

ratios, and PFM/LBM for dendritic growth and solidification modeling. 

CHAPTER I showed the background of conjugate heat and mass transfer at sharp 

interfaces and diffuse interface schemes for dendritic growth in the solidification of pure 

materials and alloys. 

CHAPTER II compared the accuracy and convergence order of various sharp interface 

schemes for conjugate heat and mass transfer modeling using lattice Boltzmann method (LBM). 

The interface schemes studied were divided into three groups, and numerical experiments were 

carried out through both straight interface and curved interface. For general cases, the accuracy 

of LB results was up to the first order with the schemes by adding source terms (Group 1), 

reformulating the transport problem with an alternative governing equation for an enthalpy-like 

quantity (Group 2), and using modified equilibrium distribution functions in the LB model 

(Group 3). Groups 1 and 2 always yielded zeroth-order accuracy at moderate to high resolution 

due to the discontinuity effect in the heat capacitance gradient approximation, while the Group 3 
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scheme can be improved to preserve second-order accuracy by also including the interpolation-

based interface scheme. The influence of curved interface geometry on the accuracy of LB 

results became more obvious. In particular, the interpolation-based interface schemes, including 

that proposed in [14] and the improved Group 3, were capable of retaining first-order accuracy; 

and their error magnitude was also much smaller than that obtained from using the basic Group 3 

scheme; however, the schemes in Groups 1 and 2 always yielded zeroth-order accurate results 

with large error magnitude. 

CHAPTER III investigated the effective thermal conductivity of porous lattice structures. 

A computational model based on lattice Boltzmann method (LBM) was proposed to predict the 

effective thermal conductivity (ETC) of lattice structures based on different topologies. The 

applicability and accuracy of the LBM model and the interface scheme in ETC prediction was 

verified by numerical tests and validated with in-house measurements of the additively 

manufactured (AM) metal foam samples with these topologies as well as previously published 

results. Systematic simulations was performed for all four structures and different solid-liquid 

material pairs, and analytical correlations was developed as second-order polynomials of 

porosity over the entire range of 0 ≤ ε ≤ 1. The correlations for the ETC normalized by the 

solid thermal conductivity keff/ks are applicable to various material pairs. The modified 

correlation based on the high porosity range and the two metal pairs can improve the accuracy of 

ETC prediction for specific application. They can serve as valuable evaluation and prediction 

tools for future design and innovation in AM structures as lightweight and compact heat 

sinks/exchangers.  

CHAPTER IV developed a phase-field model (PFM) formulated within the system of 

lattice Boltzmann (LB) equation for simulating solidification and dendritic growth with fully 
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coupled melt flow and thermosolutal convection–diffusion. The efficacy of those unique features 

and the overall accuracy of the coupled PFM/LBM model were verified with representative 

numerical tests involving melt flow and thermosolutal convection–diffusion in 2D and pure 

diffusion in 3D. The results showed that, with comparable spatial and temporal resolution, the 

present model showed more robust and consistent results than in the literature in terms of 

dendrite tip growth velocity and radius. The reported simulation results of thermal dendritic 

solidification with and without convection can serve as reliable benchmark data. 

5.2 Future work 

Future studies will focus on applications of the verified PFM/LBM model to simulate 

large-scale dendritic growth such as those with natural and forced convection effects and 

involving dendrite motion driven by melt flow, and model validation with experimental 

measurements available in the literature. The research on the flow and thermal transport 

characteristics of high-porosity metal foams, such as permeability (K), inertial coefficient (cf), 

interstitial heat transfer coefficient (hsf), will be completed in the future work. The interstitial 

heat transfer coefficient in porous structures will be predicted by an effective numerical model 

based on the lattice Boltzmann method. The conjugate heat and mass transfer computational 

study will be carried out in the control volume. A constant temperature and heat flux will be 

applied on the fiber interface to determine the hsf around the fibers. The accuracy of the 

numerical model will be verified by comparing with the experimental data. 
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CHAPMAN-ENSKOG ANALYSIS OF THE MRT-LBM FOR THE PHASE-FIELD 

EQUATION 
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For the Chapman-Enskog expansion analysis, a “small” perturbation parameter ϵ, which is 

defined as the ratio of the lattice spacing δx to a characteristic macroscopic length L, i.e., ϵ ≡ δx/L, 

is applied. The standard spatial scale x1 = ϵx and two time scales t1 = ϵ t and t2 = ϵ2t (hence 1 = ò , 

1 2

2

t t t =  + ò ò ) are considered for the analysis, with also the following expansions introduced 
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where = d e , and  
t




= + 


D e   is the convective derivative. 

Following the similar steps in [134,145,149,155], one can insert the above expansions and rewrite 

the MRT-LB scheme in Eq. (4.21) in the consecutive orders of the parameter ϵ as follows 
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where 1−Λ M SM  and 2

1 1

1

sa
t

 


= + 


D e . 

Since Λ is invertible, Eq. (A.4) simply implies 

 

(0) eqg g = .
  

(A.7) 

Also, the combination of Eqs. (A.5, A.6) gives 
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 From the zeroth-order moments of  
( )1

g   in Eq. (A.5) and 
( )2

g   in Eq. (A.8) one can obtain 
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where the following relations are noted 
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with c = (1, 1, …, 1)   Rm, s0 a constant parameter, S10 a m  1 matrix, and S1 an invertible m  m 

relaxation matrix corresponding to the diffusion matrix [155]. 

 Also from the first-order moment of ( )1
g

 we obtain 
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Eq. (A.12) can be inserted into (A.10) to yield 
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With the appropriate selection of 
(0) eqg g = , 

1

(0) 0t g 



 =e  is noted and thus Eq. (A.13) reduces to 
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Finally, we can combine the terms in ϵ  Eq. (A.9), ϵ2  Eq. (A.14) and the source term of 

O(ϵ2) to obtain 
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Clearly, with eqg  defined in Eq. (4.26), (0)g
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=e e I  can be readily verified; also, recalling the relaxation matrix in Eq. (4.27), Eq. 

(A.15) becomes 
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Eq. (A.16) is identical to the governing equation in (4.20) when preserving the terms up to O(ϵ2). 

It is thus verified that the MRT-LB evolution scheme in Eq. (4.21) recovers the governing 

equation for the phase field up to second-order accuracy.  
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EVALUATION OF THE TIP VELOCITY AND RADIUS
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With the objective of accurately evaluating the tip velocity and tip radius during the 

dendritic growth, bi-cubic interpolation using 16 data points of the phase field variable, ϕij, (i = 1 ~ 

4, j = 1 ~ 4) enclosing each tip is applied. Through the introduction of a local coordinate system (ξ, 

η), the bi-cubic function is constructed as 
3 3

0 0
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= =

=   where Cαβ are constant 

coefficients that can be easily determined with the ϕij values from the phase-field solution.  

In addition, the Newton-Raphson method for root-finding in 2D is employed to accurately 

determine the tip coordinates (ξt, ηt) that satisfy the two conditions of ( , ) 0t t   = , and 
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
 (for west and east tips). After determining 

the tip coordinates, the tip velocity can be readily calculated in the time marching procedure, and 

the tip radius is analytically calculated according to 
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For 3D simulations, the center of the initial spherical seed is placed exactly on a lattice node, 

and the tip velocity and radius are evaluated on the selected 2D planes following the same process 

described above. 
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