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Submarine Groundwater Discharge (SGD) through seafloor sediments is gaining 

recognition as an important component of coastal water quality. Stratigraphic features creating 

geologic heterogeneity, such as incised paleochannels, may influence preferential pathways for 

SGD. The central Mississippi Sound is underlain by paleochannels that were incised into 

Pleistocene sediments while the area was subaerially exposed during the last glacial maximum 

and are now buried by transgressive Holocene deposits. In this thesis, newly collected chirp, 

previously published seismic reflection, and sediment core data are used to characterize the 

three-dimensional structure of the Holocene-Pleistocene contact. Results indicate that 

Pleistocene paleochannels cross-cut the study area, exhibiting depths from 7.3–23.4 m, widths 

from 0.2–2.5 km, infilling with higher acoustic impedance fluvial sediments, and burial by 

transgressive Holocene sediments. Results suggest that this shallow subsurface stratigraphy may 

mediate locations of SGD and aid in predicting SGD pathways and associated contaminant 

loading into the coastal ocean.
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CHAPTER I 

INTRODUCTION 

The hydrogeological research community has seen major advances in the last several 

decades in understanding the interaction of groundwater and ocean water through submarine 

groundwater discharge (Beusen et al., 2013; Rabouille et al., 2001; Taniguchi et al., 2019; 

Zektser and Loaiciga, 1993). Submarine groundwater discharge (SGD) is considered both the 

input of fresh groundwater from land derived sources into the ocean and the mixing and 

recycling of ocean-derived groundwater that infiltrates and returns to the surface water (Burnett 

et al., 2003). In locations where the water table in a coastal unconfined aquifer is higher than the 

mean sea level, the hydraulic gradient will result in terrestrial fresh groundwater discharging into 

the ocean. Seawater also intrudes into the aquifer, creating a zone where freshwater and saltwater 

mix (Breier et al., 2005; Robinson et al., 2018). Submarine groundwater discharge has been 

identified as a key source of continent-derived nutrients, solutes, and subsequent contaminants in 

marine environments (Kroeger and Charette, 2008; Moore, 1999; Taniguchi et al., 2019; Zhao et 

al., 2021).  

While rivers are an obvious and easily gauged input into the ocean, submarine 

groundwater discharge has not been recognized until recently, due to the difficulty of observation 

and assessment as no exact gauging method exists. With recent advancements in techniques used 

to trace submarine groundwater and estimate discharge rate, there is greater recognition that 

terrestrial recharge and recycling of ocean-derived submarine groundwater results in substantial 



 

2 

flow through coastal sediments and delivery of solutes to the coastal ocean (Taniguchi et al., 

2019). Because submarine groundwater discharge is now recognized as an important source of 

nutrients and contaminants, there is substantial interest in understanding and predicting where it 

occurs. This effort is complicated by the fact that groundwater transport through submarine 

aquifers is often spatially and temporally variable due to non-uniform hydraulic conductivity 

largely resulting from geologic heterogeneity (Bratton, 2007; Robinson et al., 2018; Russoniello 

et al., 2013; Sawyer et al., 2013). As recognition of the importance of submarine groundwater 

discharge has grown in the scientific community, so too has recognition that site-specific 

subsurface surveys are necessary to characterize shallow geologic heterogeneity and its potential 

influence on submarine groundwater conductivity (Taniguchi et al., 2019). Beneath Holocene 

sediments, ancient fluvial channel, or paleochannel, networks have been incised into the once 

exposed continental shelf, eroding and replacing sediments with coarse-grained channel deposits, 

which are then covered by finer-grained transgressive deposits. These finer-grained sediments 

act as a confining layer which may aid in preventing nearshore discharge and extend discharge 

further from shore, exposing marine life in these locations to contaminants that may be carried 

by the discharge. 

 Although several studies of coastlines and continental shelves have been successful in 

connecting paleochannel networks to SGD (Russoniello et al., 2013; Spalt et al., 2018; Viso et 

al., 2010), not all locations have been examined. To address this knowledge gap, this thesis 

investigates and maps the spatial heterogeneity of shallow sedimentary deposits in the central 

Mississippi Sound study area (Figure 1.1), with emphasis on understanding how shallow 

subsurface lithologic variability influences hydrologic conductivity and submarine groundwater 

discharge in the study area. Previous research efforts (Gal, 2018; Hollis, 2018; Adcock, 2019) 
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have successfully generated maps of Quaternary sedimentary paleovalley fill in adjacent areas of 

the Mississippi Sound. 

 

 

Figure 1.1 Location of study area, outlined in red, in the central Mississippi Sound. 
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CHAPTER II 

BACKGROUND 

2.1 Fluvial Geomorphology 

Fluvial channels are landforms that discharge water and sediment downgradient, scaling 

in size due to variations in slope, velocity, width, depth, climate, tectonic activity, bed material 

grain size and texture, and the presence or absence of bank-stabilizing vegetation (Church, 2006; 

Dade and Friend, 1998; Leopold and Maddock, 1953; Posamentier and Vail, 1988; Williams, 

1978). The balance of these variable conditions determines the propensity for aggradation or 

degradation (Church, 2006); channel beds aggrade when sediment supply exceeds bed load 

transport rates and degrade when transport rates exceed sediment supply (Blum and Törnqvist, 

2000). Since alluvial channels are composed of sediments, the banks are erodible as well as the 

bed, leading to varying degrees of channel instability (Schumm, 1985). Depositional patterns, 

such as braided (shifting multi-channel), anabranching (stable multi-channel), meandering 

(sinuous single-channel), and straight (single-channel), are a function of the channel gradient, 

discharge, and sediment load type and amount (Church, 2006; Dade and Friend, 1998; Schumm, 

1985). Typically, sediment grain size can be correlated to the gradient of the channel; channels 

with steep gradients have a higher water velocity, larger-grain bed loads, and an increase in the 

size of suspended sediments, conversely, near-base-level channels with a shallow gradient have a 

lower water velocity, smaller-grained bed loads, and much finer-grained suspended sediments 

(Leopold and Maddock, 1953; Posamentier and Vail, 1988; Rubey, 1952; Shulits, 1941). 
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Channels that transport suspended sediments with low sand and gravel bed loads through fine-

grained, highly cohesive bank alluvium often exhibit a sinuous meander pattern, while channels 

with abundant, coarse sediment loads and highly unstable banks have a meandering or braided 

pattern (Church, 2006; Lunt and Bridge, 2004; Schumm, 1977, 1985).  

These depositional patterns are dynamic and can shift in response to temporal changes of 

autogenic and allogenic boundary controls, where autogenic refers to internally-imposed 

fluctuations in processes and rates such as water or sediment supply, and allogenic refers to 

externally-imposed changes such as climate change and sea level rise and fall (Blum et al., 1995, 

2013; Blum and Törnqvist, 2000; Starkel, 1991). A change in sea level, whether shortening or 

lengthening the longitudinal profile, has an effect on the channel gradient proportional to the 

magnitude of sea-level change (Posamentier and Vail, 1988); however, this effect is stronger 

near the base level of the profile (Blum, 1993; Shanley and McCabe, 1994; Törnqvist, 1998). Sea 

level rise along a continental margin results in the shortening of the channel, decreasing the 

distance over which sediments can be stored and usually flattening the channel slope (Blum and 

Törnqvist, 2000). However, sea-level decline will lengthen the channel by incising valleys across 

the newly exposed shelf, with subsequent transport of stored sediments seaward as more 

accommodation space is available (Allen and Posamentier, 1993; Blum, 1993, 2013; Dalrymple 

et al., 1994; Posamentier et al., 1992; Zaitlin et al., 1994), bypassing the new shelf (Blum, 1993; 

Talling, 1998) and depositing as a lowstand wedge further basinward (Mitchum, 1985). 

2.2 Paleochannels and Submarine Groundwater Discharge 

In the context of this thesis, geologic heterogeneity is considered the stratigraphic 

differing of Pleistocene units to the morphological effects of fluvial channels and their associated 

alluvium. Although limited work has been conducted to examine the effects of SGD (Beusen et 
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al., 2013; Cable et al., 1997; Essaid, 1990; Portnoy et al., 1998; Rabouille et al., 2001; Robinson 

and Gallagher, 1999; Taniguchi et al., 2019; Wicks and Herman, 1995; Zektser and Loaiciga, 

1993), due to spatial and temporal variances and difficulties in assessment, even less has been 

conducted for the effects of paleochannels (Daniel et al., 1996; Mulligan et al., 2007; Russoniello 

et al., 2013; Spalt et al., 2018; Viso et al., 2010). 

Paleochannels, or ancient fluvial channel valleys that are now a part of the stratigraphic 

record, exhibit varying characteristics between river systems due to geologic influences such as 

uplift and subsidence rates, the scale of the river system, controlling influences on sediment 

transfer and storage, and proximity to the river mouth and its migration due to eustatic sea level 

change (Blum et al., 2013; Blum and Törnqvist, 2000). The most common types of valleys are 

differentiated as bedrock and mixed-bedrock-alluvial valleys (where the channels directly impact 

bedrock and are in a long-term state of incision), coastal-plain valleys (extend from the upstream 

limits of sea level influence to the highstand shoreline and are fully alluvial), and cross-shelf 

paleovalleys (occur between highstand shorelines and the shelf margin and contain fluvial, 

estuarine, and shallow-marine deposits) (Blum et al., 2013). Paleochannels associated with cross-

shelf paleovalleys are common features beneath the modern coastal plain sediments of the Gulf 

of Mexico and eastern United States (Harris et al., 2005; Thieler et al., 2014).  

Since cross-shelf Pleistocene paleochannels are ubiquitous along the continental shelf in 

the Gulf of Mexico (Adcock, 2019; Anderson et al., 2004; Bartek et al., 2004; Coleman and 

Roberts, 1988; Fisk, 1947; Fisk et al., 1954; Flocks et al., 2015; Gal, 2018; Greene et al., 2007; 

Hollis, 2018, Kindinger, 1989; Kindinger et al., 1994; McBride et al., 2004; Spalt et al., 2018; 

Zaitlin et al., 1994), understanding the spatial effects of paleochannels on SGD is central to 

making accurate predictions of water balances for coastal aquifers. When fluvial channels are 
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incised across a newly exposed regressive surface, the channel fill is typically coarser-grained 

than the sediments that were incised (Allen, 1991; Allen and Posamentier, 1993; Dalrymple et 

al., 1992; Green, 2009; Mulligan et al., 2007; Zaitlin et al., 1994). After the period of maximum 

regression, transgressive deposition is initiated by a rise in sea level. Sedimentation rates on the 

submerged portion of the continental shelf are dependent on the rate of sea-level rise; thinner 

strata will be deposited where transgressive episodes are more rapid, and thicker strata where rise 

is slower (Anderson et al., 2016). Incised valleys on the continental shelf are filled with finer 

transgressive sediments if the channels are under-filled valleys, as opposed to an over-filled 

valley, which is filled entirely of fluvial sediments (Simms et al., 2006). During sea-level rise, 

fluvial sediment supply is commonly less than during times of maximum incision during the 

lowstand since the channel longitudinal profile is shortened, reducing accommodation space, 

resulting in a drowned-valley estuary at the seaward end of the incised valley (Blum et al., 2013; 

Dalrymple et al., 1994). 

Transgressive sediments that have filled in the fluvial channels form a less-permeable 

sediment cap over the more porous fluvial fill (Allen, 1991; Foyle and Oertel, 1997; Green, 

2009; Mulligan et al., 2007; Russoniello et al., 2013), impeding vertical flow and directing 

groundwater laterally through the porous channel sediments, preventing submarine groundwater 

discharge nearshore (Mulligan et al., 2007; Russoniello et al., 2013). Significant spatial 

distributions of SGD are possible where paleochannels have been incised across confining units, 

leading to seepage further from shore (Breier and Edmonds, 2007; Russoniello et al., 2013; Spalt 

et al., 2018).   
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2.3 Late Quaternary Sea Level 

The late Quaternary sedimentary record is ordered into five chronostratigraphic stages 

(Figure 2.1) based on eustatic sea-level fluctuations and marine transgressive-regressive 

sequences (Bard et al., 1990a, 1990b, 1996; Fairbanks, 1989, 1992; Kindinger, 1988; Kindinger 

et al., 1989). These glacial and interglacial marine isotope stages (MIS) have been determined 

from the oxygen isotope ratio (18O/16O, or δ18Ob) of calcium carbonate (CaCO3) shells of benthic 

foraminifera (Bouvier-Soumagnac and Duplessy, 1985; McCrea, 1950; Zeebe, 1999).  This ratio 

is a function of both the isotopic composition and the water temperature of ancient oceans in 

which the shell was formed (Chappell et al, 1996; Emiliani, 1955; Lisiecki and Raymo, 2005; 

Waelbroeck et al., 2012; Wefer and Berger, 1991). When ocean water is evaporated, isotopic 

fractionation occurs, leaving the heavier 18O and transporting the 16O atmospherically poleward 

 

 

Figure 2.1 Eustatic sea level curve from Th-U dating of corals (from Chappell et al., 1996) 

with oxygen isotope stages separated by dashed lines (modified from Blum and 

Törnqvist, 2000). 
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to precipitate and accumulate as glaciers and ice sheets (Covey and Haagenson, 1984; 

Dansgaard, 1964). As more 16O is locked into polar ice and sea level drops, organisms will 

incorporate the increasingly abundant 18O in bioprecipitated shell material. Several 

complementary studies (Bard et al., 1990b; Chappell et al., 1996; Chen et al., 1991; Edwards et 

al., 1986; Stein et al., 1993) have used 230Th–234U and 234U–238U dating of corals to test the 

accuracy of the oxygen isotope ratio sea level calculations, finding them to be in good agreement 

and resolving some uncertainties with previous age calculations. 

During the last interglacial highstand (MIS 5e) between ca. 131±1–112 ka (Bard et al., 

1990b; Chen et al., 1991; Collins et al., 1993; Dia et al., 1992; Edwards et al., 1986; Helmens, 

2014; Ludwig et al., 1996; Szabo et al., 1994; Zhu et al., 1993), eustatic sea level was ~2–8 m 

above the present mean level (Collins et al., 1993; Hearty and Kindler, 1997; Kopp et al., 2009; 

Otvos, 2018; Zhu et al., 1993). Around 122 ka, oxygen and carbon isotope records of benthic 

foraminifera from Ocean Drilling Project site 658 in the Eastern Atlantic show a short cold event 

and climate instability of a few hundred years at the peak of the interglacial period (Maslin and 

Tzedakis, 1996). This is supported by a coincident period of ash deposition triggered by 

catastrophic volcanism (Linsley, 1996) and U-series dating, which indicates that coral reef 

building starts at 127 ka and ends at 122 ka, the start of the cold event (Stirling et al., 1995). For 

the remainder of the MIS 5 period, substages MIS 5d–5a represent alternating cooler and warmer 

phases with subsequent sea level change between 113 and 76 ka (Richmond and Fullerton, 1986; 

Cutler et al., 2003): Substage MIS 5d relative sea level of –50 m (van Andel and Tzedakis, 

1996); Substage MIS 5c relative sea level of –6 to –16 m (Bloom et al., 1974; Cabioch and 

Ayliffe, 2001; Dodge et al., 1983; Mesolella et al., 1969); Substage 5b relative sea level of –45 to 

–58 m (Cutler et al., 2003; van Andel and Tzedakis, 1996); Substage MIS 5a relative sea level of 
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–13 to –19 m (Bloom et al., 1974; Cabioch and Ayliffe, 2001; Dodge et al., 1983; Mesolella et 

al., 1969).  

 The first glacial maxima since the MIS 5e highstand occurred in MIS 4, ca. 70–60 ka, 

which reached full glacial conditions in Europe, the North Atlantic Ocean, and South America 

(Helmens, 2014; Larsen et al., 2009; Peltier, 2021), allowing some glaciers to reach maximum 

extent prior to 50 ka (Doughty et al., 2021; Ehlers et al., 2011; Gillespie and Molnar, 1995; 

Hughes et al., 2013; Kaufman et al., 2011; Peltier, 2021; Stauch et al., 2007). Sea levels declined 

from approximately –21 to –81 m during the MIS 5a–4 transition between ca. 71 and 65 ka 

(Cutler et al., 2003). Starting at this transition, until MIS 2, the newly exposed continental shelf 

starts to become incised by fluvial channels as eustatic sea level declines (Blum and Price, 1998; 

Törnqvist et al., 2000, 2003). 

MIS 3, between ca. 59 to 29 ka (Voelker et al., 1998), was a mild interval (van Andel, 

2002) of continued eustatic sea level decline between the two cold maxima with relative sea 

levels of approximately –45 to –85 m (Cabioch and Ayliffe, 2001; Chappell, 2002; Chappell et 

al., 1996; Cutler et al., 2003; Guilderson et al., 2000).  

MIS 2, the period of the Last Glacial Maximum (LGM), occurred between ca. 28–12 ka 

(Lisiecki and Raymo, 2005; Martinson et al., 1987; Shackleton, 1987), with eustatic sea levels 

reaching a low of –80 to –127 m (Curray, 1965; Duncan et al., 2000; Guilderson et al., 2000; 

Johnson and Andrews, 1986; Shackleton, 1987; Skene et al., 1998; Yokoyama et al., 2000), 

dropping below the shelf edge (Törnqvist et al., 2006a). During this time, fluvial networks 

continued to erode and extend seaward, marking the height of incision and the creation of the 

MIS 2 sequence boundary (Anderson et al., 2016). At the peak of the LGM, between ca. 26.5–18 

ka (Clark et al., 2009; Helmens, 2014; Hughes et al., 2013; Lunkka et al., 2001), glaciers that had 
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not previously reached maximum extent during MIS 4 would reach maximum extent during the 

LGM (Booth et al., 2003; Licciardi et al., 2004; Phillips et al., 2009; Porter, 2011; Vásquez-

Selem and Heine, 2011).  

MIS 1 marks the time period of drastic sea-level rise between ca. 18 ka–Present, 

transitioning from the Pleistocene Wisconsinan glacial period to the Holocene interglacial period 

(Anderson et al., 2016; Saucier, 1994). The early Holocene was a time of episodic retreat of ice 

sheets such as the West Antarctic Ice Sheet (Anderson et al., 2002; Lowe and Anderson, 2002) 

and the Antarctic Peninsula Ice Sheet (Heroy and Anderson, 2007). In the Gulf of Mexico, 

between ca. 10.5–8.2 ka, sea level rose from approximately –21 m to –15 m in the Mississippi 

Sound and Mobile Bay (Anderson et al., 2014; Otvos, 1982a, 2005b, 2018). The rapid sea-level 

rise in 8.2–8 ka is argued to be associated with the release of meltwaters from the Laurentide Ice 

Sheet (Blanchon and Shaw, 1995; Carlson et al., 2007) and the drainage of Lake 

Agassiz/Ojibway (Leverington et al., 2002; Törnqvist et al., 2005; Von Grafenstein et al., 1998). 

For 8–4 ka, a sea-level curve in the Gulf of Mexico has been established from basal peat 

samples, indicating –10 m to –3 m, respectively (Törnqvist et al., 2004, 2005, 2006b), which is 

similar to other depth findings of the time period (Anderson et al., 2016; Blum et al., 2001, 

2002). For the time from 4 ka to Present, there are observations of sea-level rise ranging from 

0.4–0.6 mm/yr (Anderson et al., 2014; Milliken et al., 2008) to 0.2 to 1.2 mm/yr (Clark et al., 

1978; Fairbanks, 1992; Bard et al., 1996; Toscano and Macintyre, 2003). 

2.4 Geologic Setting 

The northern Gulf of Mexico coastal plain consists of a complex stratigraphic series 

resulting from cyclic periods of marine and terrestrial deposition from continuous sea level 

advance and retreat. Fine-grained sediments such as clay and silt are characteristic of shallow 
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marine, deltaic, and estuarine lower energy environments, while coarse-grained sediments such 

as sand and gravel are characteristic of nearshore, beach, and terrestrial fluvial environments. 

Transgressive and regressive sequences show repeated shoreline migration and evolution 

(Anderson et al., 2016; Sloss et al., 1949) throughout geologic history in response to mean sea 

level fluctuation associated with the change in global climate. In addition to controlling 

stratigraphic composition, shoreline migration greatly alters the hydrogeologic properties across 

marine marginal basins by reworking and redistributing previously deposited sediments. 

Subaerial surfaces are subjected to fluvial erosion (Galloway, 1989), while submerged sediments 

can be eroded by currents, wave action, sediment starvation, and mass wasting (Swift, 1968; 

Frazier, 1974). Collectively, these erosional processes create an unconformable contact between 

older and younger deposits (Blum et al., 2013; Galloway, 1989). 

Near surface, late Quaternary stratigraphy along the Mississippi Gulf Coast consists of 

older (MIS 5 – MIS 3) Pleistocene sediments unconformably overlain by younger Holocene 

sediments deposited after the MIS 2 transgression (Kindinger et al., 1994; Otvos, 2001). This 

unconformable contact contains relict fluvial channels (Flocks et al., 2015; Mulligan et al., 2007; 

Spalt et al., 2018), or paleochannels, evidence of an exposed shelf from the mean sea level 

lowstand about 120 m below current mean sea level in MIS 2 (Curray, 1965; Kindinger et al., 

1994), as a result of the LGM (Bartek et al., 2004; Swift, 1975; Waelbroeck et al., 2012; 

Woodruff et al., 2013; Yokoyama et al., 2000) (Figure 2.1). During this lowstand, rivers and 

streams flowing across the approximately 100–130 km of exposed shelf (Curray, 1965; Galicki 

and Schmitz, 2016; Shackleton, 1987) incised a network of fluvial channels (Bartek et al., 2004; 

Dalrymple et al., 1992, 1994; Greene et al., 2007; Mars et al., 1992; Rainwater, 1964) filled with 

coarse-grained fluvial sediments (Zaitlin et al., 1994) and then covered by progressively finer-
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grained Holocene sediments from the subsequent sea-level rise and marine transgression into 

MIS 1 (Anderson et al., 2016; Kramer, 1990). Subsurface mapping of the northern Gulf of 

Mexico stratigraphy has identified multiple paleochannel networks incised during the major 

stages of glacial-interglacial periods of the late Quaternary (Adcock, 2019; Anderson et al., 

2004; Bartek et al., 2004; Coleman and Roberts, 1988; Fisk, 1947; Fisk et al., 1954; Flocks et al., 

2015; Gal, 2018; Greene et al., 2007; Hollis, 2018, Kindinger, 1989; Kindinger et al., 1994; 

McBride et al., 2004; Spalt et al., 2018; Zaitlin et al., 1994). 

2.5 Regional and Study Area Setting 

The Mississippi Sound is a bar-built estuarine system approximately 137 km long and 

11–24 km wide, with a mean depth of 3 m, that extends from the mouth of the Pearl River to 

Mobile Bay. Its northern extent is defined by mainland tidal salt marshes and southern extent by 

the Mississippi Sound barrier-island system (Boone, 1973; Otvos, 2001; Priddy et al., 1955). 

Several rivers flow into the Mississippi Sound including the Pascagoula, Biloxi, Wolf, Jourdan, 

Pearl, and the Mobile River, which drains the fourth largest drainage basin in the U.S. in terms of 

flow (Isphording et al., 1989; Kindinger, 2014). Between the Pearl and Pascagoula River are 

several smaller streams that flow southeast and enter the Mississippi Sound through estuaries and 

bays (Upshaw et al., 1966). 

In this microtidal, storm-dominated, slowly subsiding (~1.0–1.5 mm/yr), passive margin 

environment (Flocks, 2015; Ivins et al., 2005, 2007), the majority of coarse sediments are 

orthoquartzitic, originating from the weathering of the southern Appalachian igneous-

metamorphic complex, which contain minerals characteristic of the Eastern Gulf Province (van 

Andel and Poole, 1960). However, the immediate source of coarse sediments in the study area is 

the erosion of Pre-Holocene deposits along the Alabama-Florida coast (Stone et al., 1992) and 
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the reworking of sediments deposited fluvially on the shelf during the Pleistocene glaciation 

(Rucker and Snowden, 1989). A westward long-shore current results in westward littoral drift of 

Eastern Gulf Province sediments along the coast and barrier islands (Cipriani and Stone, 2001), 

and restricts the eastward flow of sediments from the Mississippi River Delta (Mississippi 

Province) (Davies and Moore, 1970; van Andel and Poole, 1960). Although restricted, clay 

sediments of igneous origin, characteristic of the Mississippi River, have been found throughout 

the western Mississippi Sound (Milne and Shott, 1958; Priddy et al., 1955; Upshaw et al., 1966). 

While the sediments around the shore and barrier islands are generally well sorted quartzose 

sand, the seabed of the Sound is predominantly sandy mud (Ludwick, 1964) with silt and clay in 

the central portion (Upshaw et al., 1966). 

 

Figure 2.2 General locations of late Pleistocene units near the Mississippi coast and study 

area. The Biloxi Formation does not outcrop onto the land surface. (Otvos, 2001) 
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2.6 Stratigraphic Units 

The Pleistocene units in the Mississippi Sound consist of a single complex of fluvial to 

marine sediments of late Pleistocene age, representing a single cycle of highstand sedimentation 

during the last interglacial episode (MIS 5), divided into the Gulfport, Biloxi, and Prairie 

Formations (Figure 2.2) (Gohn and Reinhardt, 2001; Otvos, 1982b, 1991a, 2001; Otvos and 

Howat, 1992). Although it has been suggested to classify these three formations into members of 

a single formation, Otvos (2001) argues that each unit differs in sediment characteristics, fossil  

content, if any, and that usually only two of three formations appear vertically together in any 

location. 

2.6.1 Biloxi Formation 

The Biloxi Formation is a late Pleistocene unit that represents a prograding, low-energy 

shoreline and offshore to lower shoreface, with marine to estuarine deposits (DuBar et al., 1991; 

Gohn and Reinhardt, 2001; Otvos, 1972, 1997, 2001), comprised of muddy sand, fine sandy 

mud, and silty very fine sand, and contains both macro and microfossils that provide an age 

dating of MIS 5 (Otvos and Howat, 1992; Otvos, 2001). Cores from Ocean Springs, Biloxi, Point 

aux Chenes, and Belle Fontaine Point, MS, show a thickness ranging from 2–28.5 m (Gohn et 

al., 2001; Otvos, 2001). The Biloxi Formation is marked by a basal erosional contact that is dark-

greenish-gray to greenish-gray and an upper contact that is very pale orange (Gohn et al., 2001; 

Otvos, 2001). The Biloxi Formation underlies and interfingers with the Gulfport and Prairie 

Formations and extends seaward toward the Mississippi Sound. 



 

16 

2.6.2 Gulfport Formation 

The Gulfport Formation, a late Pleistocene unit, which interfingers with the Biloxi 

Formation, displays evidence of aggradation, grading upward from muddy, poorly sorted sandy, 

relatively low-energy, nearshore deposits to subtidal shoal sands to finally eolian upper 

shoreface, foreshore, backshore and dune deposits (Gohn et al., 2001; Otvos, 2001). These 

deposits contain well-sorted fine to medium-quartz sand (Gohn et al., 2001; Otvos and Howat, 

1992), have been found up to 21 m thick, are mostly barren of calcareous fossils, and are 

consistent with the sea level fall around 124–116 ka (MIS 5e–MIS 5d) in coastal Mississippi and 

northwestern Florida (Gohn and Reinhardt, 2001; Otvos, 2001). 

2.6.3 Prairie Formation 

Overlying the Gulfport Formation, the Prairie Formation represents the lowest shore-

parallel Pleistocene unit (Otvos, 1991b) and underlies the coastwise Prairie terrace (Fisk, 1938). 

The lowest Prairie terrace reaches about +6–8 m (about +12–18 m inland from Quaternary 

regional uplift) in height, approximately 1 km wide at the narrowest, and up to 50 km wide along 

the Pearl River, near Louisiana (Otvos, 2001). Several studies have determined the age of the 

Prairie Formation to be between MIS 5 (Saucier, 1968, 1974, 1994), MIS 3 (Autin et al., 1991; 

Fisk, 1944, 1951), and ages of both MIS 5 to MIS 3 (Mange and Otvos, 2005; Otvos, 2005a), 

until 25 ka where the Peoria Loess begins to accumulate in the Lower Mississippi Valley (Bettis 

et al., 2003; Markewich et al., 1998; Otvos, 1975; Pye and Johnson, 1988). During this time, 

barrier strandplains prograded seaward from the edge of the Prairie Coastal Plain (Otvos, 1972, 

1991a, 2001), filling large portions of valley margins with floodplain and coastal-plain deposits 

(Autin et al., 1991; Saucier, 1994). Muddy, clayey fine sands and moderately silty, fine and very 

fine sands, which are colored yellowish-gray, greenish-gray and gray with very pale orange, with 
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pale to medium-yellowish-orange oxidation near the surface (Greene et al., 2007), are 

predominant throughout this 4.5–12 m alluvial complex that wedges out landward against older 

units and interfingers with the Biloxi Formation (Otvos, 2001). 

2.6.4 Holocene Sediments 

After the peak of the LGM, as sea levels began to rise from 18 ka until 4 ka (Saucier, 

1994), the preservation of coastal sediment deposits on the subaerially exposed surface was 

minimal as transgressive ravinement occurred (Anderson et al., 2016; McBride et al., 2004; 

Penland et al., 1988). Fluvial deposits that are topographically contained, such as channels and 

floodplains, and related delta, estuarine, and shore deposits, are more easily preserved during the 

transgressive episode and are comprised mostly of paleochannel fill (Simms et al., 2006; Thomas 

and Anderson, 1994). Otherwise, shoreface and tidal ravinement processes erode sediments, 

creating unconformable contacts where sediments are more easily eroded, leaving the 

stratigraphy largely fragmented except in paleochannel margins (Anderson et al., 2016; Simms et 

al., 2006; Thomas and Anderson, 1994). 

 It is generally accepted that the end of the Pleistocene epoch and the beginning of the 

Holocene occurred between 11.7–10 ka (Saucier, 1994; Walker et al., 2009), corresponding with 

a regime change of the Mississippi River from braided to meandering, found in the stratigraphic 

record, and seen near the coast in the sedimentary record as a chronological boundary (Saucier, 

1994). Near the study area, the contact between Holocene and the underlying Pleistocene units is 

marked by an unconformity that is separated by a dark greenish-gray to medium gray sandy clay, 

fine sandy mud, and muddy medium-sand above, from a stiff, oxidized medium gray, dark 

greenish-gray to yellow-orange clay below (Greene et al., 2007; Otvos, 2001). These Holocene 

deposits now cover the majority of the Mississippi Sound and the northern Gulf of Mexico, in 
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intervals of approximately 6–20 m thick depending on the underlying unconformity/ravinement 

surface topography (Anderson et al., 2014; Gohn et al., 2001; Rucker et al., 1990), and create 

environments such as coastal wetland, lagoon, and deltaic deposits, mainland and barrier island 

strandplains, beach complexes, and alluvium (Otvos, 1994). 
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CHAPTER III 

METHODS 

3.1 Reflection Seismology 

Because the incised paleochannels within the Holocene Pleistocene unconformity are 

covered with sediments and buried (6–20 m) in the subsurface, geophysical methods are the 

optimal method to image them. Geophysical seismic surveying has become an invaluable tool in 

allowing geologists to cost-effectively and rapidly collect data from the subsurface with a 

relatively high degree of resolution, without the need for direct observations. Although extracting 

core samples provides the highest resolution possible, the process of acquiring the cores requires 

more resources and time compared to that of seismic surveying on a large scale (Schock et al., 

1992). Seismic reflection surveying allows for a spatially continuous observation and 

interpretation of subsurface features over a large area, while core samples only contain 

information relating to lithologic properties of the subsurface at discrete sample sites (Schock et 

al., 1992). For this research, core sample and seismic profile data are used together to enhance 

the interpretation of subsurface features. Specifically, core data are used to ground truth the 

lithologic properties of reflectors imaged in seismic profiles, including the reflectors interpreted 

to be the Pleistocene-Holocene unconformity.  

Seismic reflection surveys require an acoustic source to transmit a seismic wave and a 

hydrophone receiver to capture the returning reflected wave. After the source creates the seismic 

wave, it travels through the underlying material (water for marine surveys and rock layers for 
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terrestrial surveys) until it comes in contact with a material or geologic feature with a different 

acoustic impedance than the material above it. A certain proportion of the wave is reflected 

based on the relative density between materials and the velocity of the seismic wave in each. 

This reflected energy travels back towards the surface where a receiver captures and records the 

data. The remaining source signal continues to propagate through the subsurface, creating 

reflectors at interfaces of differential acoustic impedance and losing energy until the wave 

becomes completely attenuated. The ratio of reflected to transmitted energy is known as the 

reflection coefficient, which is the ratio of the difference of acoustic impedance to the sum of the 

acoustic impedance of geologic units, and can be used to infer the physical characteristics of the 

reflecting surface. Coarser-grained sediments will have a higher reflection coefficient, whereas 

finer-grained sediments will have a lower reflection coefficient (Sanhaji and Guarin, 2013; 

Theuillon et al., 2008). The two-way travel time of the seismic wave from the source to the 

reflecting surface and back to the receiver is used to determine the range from the source and 

plot its relative depth beneath the seafloor (Červený, 2001; Mussett et al., 2000). 

The depth of penetration for a seismic wave is determined by its frequency. The lower the 

frequency, the deeper the wave can travel, which is ideal for deep subsurface surveys. However, 

interfaces are not resolvable if they are less than one-half wavelength apart. Although low 

frequency (and thus higher wavelength) sources give the deepest range for surveys, they provide 

the lowest resolution for subsurface data. Alternatively, high frequency sources give the highest 

resolution data at the loss of depth penetration. Since Pleistocene paleochannels are observed in 

other study areas within the Mississippi Sound to be between ~5–25 m of depth (Adcock, 2019; 

Gal, 2018; Hollis, 2018; Rainwater, 1964), seismic reflection surveys should be used to collect 
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the highest resolution data possible as the shallow penetration depth will not be impacted by 

wave attenuation (Diogo et al., 2004).  

Depending on the objective of the survey being conducted, whether penetrative depth or 

high-resolution data, there are a wide range of commonly used seismic sources, both naturally 

occurring and human engineered. Near the low frequency range (<10-2–1 Hz), earthquakes 

provide the penetration required to survey through the earth’s core. However, geologists often 

have time constraints and must use sources that release energy as needed. The mid frequency 

range (1–102 Hz) includes sources that are controlled and used for primarily terrestrial surveys. 

In the high frequency range (103–>105 Hz), these controlled devices are used exclusively for 

marine surveys that focus on the shallow subsurface where a higher resolution of data is 

required. For the purpose of this thesis, a high frequency source was used in order to obtain the 

highest resolution possible of the shallow subsurface. 

Compressed High Intensity Radar Pulse (chirp) sub-bottom profilers are marine sonar 

systems which use a highly repeatable source pulse to acquire correlated data with up to 10 cm 

vertical resolution in the top 20–30 m of unconsolidated sediments (Bull et al., 1998; Gutowski 

et al., 2002). Chirp does this by transmitting frequency-modulated (FM) pulses over the band of 

2–20 kHz (Schock, 2004) using a piezo-electric ceramic transducer that functions as both 

transmitter and receiver (Mosher and Simpkin, 1999). Reflection coefficients for chirp are 

calculated from amplitude information provided by single traces and polarity information 

provided by trace mixing (Bull et al., 1998). In the seismic profile, when examining collected 

chirp data, the areas with darker pixels indicate higher reflection coefficients, where lighter 

pixels indicate lower reflection coefficients (Figure 3.1). 
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Figure 3.1 The produced seismic waves travel from the source downward into the subsurface 

(red arrow). Higher reflection coefficients are shown as darker pixels, and lower 

reflection coefficients are lighter pixels. 

 

 

Figure 3.2 Collection of all seismic surveys used for this thesis. 
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3.2 Geophysical Data 

In 1990, the U.S. Geological Survey (USGS) conducted geophysical survey 90KI1 to 

investigate the shallow subsurface geology of the Mississippi-Alabama-Florida shelf as part of a 

project to study coastal erosion and offshore sand resources (Sanford et al., 2016). Seismic data 

were collected through the use of an unnamed boomer system and hydrophone receiver; 

however, the amplitude of the reflected energy was recorded by an Edward P. Curley Lab (EPC) 

thermal plotter. Analog records have since been digitized through scanning at 200 dots per inch 

(dpi) using an IDEAL/Contex Crystal TX 40-inch (1394) large-format scanner and converted to 

TIFF format using WIDEimage software (version 2.8.1). These TIFF files were converted into 

SEGY files, resulting in ~44 km of seismic profile data used in this thesis (Figure 3.2). 

Between September 12 and September 23, 1991, the USGS conducted cruise Erda 91-3, 

surveying portions of the Mississippi Sound west of Horn Island (Bosse et al., 2017). Seismic 

data were acquired from a Huntec boomer sled accompanied by a Benthos hydrophone receiver, 

with analog data plotted in real time using an electrostatic plotter. These now digitized analog 

images were provided as SEGY files and contribute ~148 km of seismic data in the study area 

used for this thesis (Figure 3.2).    

In 2008, the USGS conducted geophysical surveys, cruises 08CCT01, 08CCT02, and 

08CCT03, around Ship Island to create, in part, a complete modern topobathymetric map of the 

Mississippi barrier islands from Cat Island to Dauphin Island (Buster et al., 2017; DeWitt et al., 

2012; Forde et al., 2011). Seismic reflection data were collected using a Chirp 512i Sub Bottom 

Profiler for cruise 08CCT01, and a Chirp 424 Sub Bottom Profiler for cruises 08CCT02 and 

08CCT03. Together, data from the three cruises were able to contribute ~254 km of the seismic 

data used for this thesis (Figure 3.2). 
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Approximately 267 km of new chirp seismic data were collected (Figure 3.2), from 

November 10th –12th, 2020 and December 2nd –7th, 2021, using an EdgeTech SB-216S Full 

Spectrum Sub-Bottom Tow Vehicle, operating at 2–10 kHz frequency modulated range, 1–2 m 

depth below sea level, powered by an EdgeTech 3100P Portable Sub-Bottom Processor. These 

profiles were recorded as SEGY format files and later processed with Chesapeake Technologies' 

SonarWiz software. 

3.3 Sediment Cores 

This thesis uses core data from two sources to identify the relative elevation of the 

Pleistocene-Holocene unconformable contact throughout the Mississippi Sound to aid in seismic 

profile interpretation. The first set of cores were taken from the Mississippi Department of 

Environmental Quality (MDEQ) historic cores website (geology.deq.ms.gov/coastal/Core_ 

historic_cores.htm) (Figure 3.3). Core log images showing the Pleistocene-Holocene contact are 

shown in Appendix A, Figures A.1–A.30. Cores from the Mississippi Sound (MS and P) and 

Barrier Islands (BI and IS) show the Pleistocene-Holocene contact at depth, and the cores from 

Harrison County (HR) show the contact at the surface or near the surface. These core logs 

contain contact depths, in feet, many showing evidence of the unconformity: yellowish to orange 

stained fine sandy mud, evidence of oxidation, below a dark-greenish gray to greenish-gray fine 

sandy mud, which is consistent with observations made by Greene et al. (2007) and Otvos 

(2001). 

The second source of sediment core logs is given by Rainwater (1964). Borings from the 

Mississippi Sound were taken along a line from Beauvoir to Ship Island for a proposed causeway  

connecting Ship Island to the mainland. Core samples were given to Rainwater, who described 

the lithologies and plotted the Pleistocene contact (Figure 3.4). A seismic data survey line was 
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collected during this study to closely match the line of cores that were collected and given to 

Rainwater (Figure 3.4). Results show that the newly collected data closely resemble the 

unconformable contact noted by Rainwater, mainly from Core A to Core M (Figure 3.5). 

Rainwater notes that the contact is much more difficult to determine as the core locations extend 

seaward, which is consistent with collected seismic profile data, in which the contact is not 

distinguishable near the same location as the core’s area of uncertainty (Figure 3.5). These 

sediment core logs give contact depths at which to best interpret the seismic data in all profiles. 

 

 

Figure 3.3 Locations of MDEQ historic cores in relation to the study area. Mississippi Sound 

(MS) locations are shown in red, Barrier Island (BI) locations are shown in yellow, 

and Harrison County (HR) locations are shown in blue. 
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Figure 3.4 Locations of boring sites along the line from the mainland to Ship Island from 

Rainwater, 1964 (left), and line 20211205150644-CH1-to-20211205165419-CH1 

collected for this study closely matching the boring site path (right). 

 

Figure 3.5 Seismic profile data line 20211205150644-CH1-to-20211205165419-CH1 with 

interpreted Pleistocene-Holocene contact from this study (top), and Pleistocene-

Holocene contact interpreted by Rainwater, (1964) from core samples (bottom). 
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3.4 Data Processing 

All seismic data were imported as SEGY files and processed with SonarWiz, version 

7.06.06, which allows seismic profiles to be viewed and reflector elevations to be digitized. The 

determined locations of paleochannel reflectors were supported by contact locations taken from 

sediment core logs and stratigraphic evidence of incised channels based on reflector structure 

and intensity. Seismic profiles were then bottom-tracked and aligned to a Biloxi, MS bathymetry 

grid.  

To create an image of the topography of the unconformable Pleistocene-Holocene 

contact, all digitized reflector elevation data were exported to ArcGIS to be processed with the 

Topo to Raster interpolation method. This method of interpolation uses an iterative finite 

difference interpolation technique to ensure the drainage structure remains connected for correct 

representation of ridges and streams from input data without losing surface continuity of other 

interpolation methods, such as Kriging and Spline (Hutchinson et al., 2011). 
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CHAPTER IV 

RESULTS 

Interpolation of the digitized reflectors that were determined from sediment core and 

reflector structure and intensity to be the unconformable Pleistocene-Holocene contact shows 

evidence of a network of connected incised paleochannels within the unconformable Holocene-

Pleistocene surface (Figure 4.1). Visual analysis of the marked paleochannels shows channel 

morphologies ranging from wide with flat channel bottoms to narrow V-shaped channels with 

steep sides (Figures 4.2 & 4.3–4.9). A majority of seismic profiles contain evidence of these 

paleochannels, reaching depths of 7.3–23.4 m and widths up to 2.5 km. Throughout these 

channel incisions, sediment infill can be seen as thinly layered and, in some instances, exhibiting 

large scale foreset bedding (Figures 4.10 & 4.11). Due to coarse grained sand deposits around 

Ship Island, several of the profiles contain shallow and highly reflective multiples, rendering 

much of the data unusable (Figures 4.2 & 4.12). 

Adhering to uniformitarianism, modern coastal channel drainage patterns in the region 

were used to aid in the interpretation of the interpolated surface. Interpretation of the 

paleochannel drainage surface (Figure 4.13) was determined by the interpolated channel area 

size and connectivity of lower elevation areas. 
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Figure 4.1 Interpolated surface generated with Topo to Raster in ArcGIS. 
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Figure 4.2 Interpolated surface overlain with seismic survey lines showing locations of 

individual seismic profiles. Lines A to G are seismic profiles and lines H and I are 

seismic profiles with reflection multiples near Ship Island. 

 

 

Figure 4.3 Seismic profile for line 20211004214001-CH1. Pleistocene-Holocene 

unconformity is marked in red and exhibits paleochannels. 
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Figure 4.4 Seismic profile for line 20211005191355-CH1. Pleistocene-Holocene 

unconformity is marked in red and exhibits paleochannels. 

 

 

Figure 4.5 Seismic profile for line 20211005120129-CH1. Pleistocene-Holocene 

unconformity is marked in red and exhibits paleochannels. 

 

 

Figure 4.6 Seismic profile for line 20220211005053934-CH1-to-20211005073517-CH1. 

Pleistocene-Holocene unconformity is marked in red and exhibits paleochannels. 
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Figure 4.7 Seismic profile for line 90KI1_5(b)-CH1. Pleistocene-Holocene unconformity is 

marked in red and exhibits paleochannels. 

 

 

Figure 4.8 Seismic profile for line Erda91-3-SEGY_9b-CH1. Pleistocene-Holocene 

unconformity is marked in red and exhibits paleochannels. This paleochannel’s 

margins are not fully seen as this seismic profile begins in the middle of the 

channel. 

 

Figure 4.9 Seismic profile for line 20211205175559-CH1. Pleistocene-Holocene 

unconformity is marked in red and exhibits paleochannels. 
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Figure 4.10 An example of channel infill thinly layered and with foreset beds in a paleochannel 

cross-section from line 20211205175559-CH1. Red line indicates channel 

margins. 

 

 

Figure 4.11 An example of channel infill thinly layered in a paleochannel cross section from 

line 20211205150644-CH1-to-20211205165419-CH1. Red line indicates channel 

margins. 



 

34 

 

Figure 4.12 Seismic profiles of data collected in proximity of Ship Island, lines 08c553-CH1 

(H-H’) and 08c644-CH1 (I-I’). These profiles show reflection multiples. 

 

Figure 4.13 Shows interpreted paleochannel locations from interpolated Pleistocene-Holocene 

unconformable surface. 
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CHAPTER V 

DISCUSSION 

The results indicate a branching Pleistocene paleochannel drainage network present 

within the study area, beneath Holocene sediments, that were incised starting at ~120 ka and 

ending at ~8–10 ka, when glacial melting of the LGM returned the eustatic sea level to near 

present level. The Biloxi, Gulfport, and Prairie Formations, which represent a shift from 

estuarian to beach deposits, were subaerially exposed as the shoreline retreated. Subsequently, 

the exposed surface experienced fluvial incision as streams and rivers extended channels toward 

the semi-continuously declining shoreline. Many of the paleochannels observed in this thesis 

exhibit wide channel margins close to or over 1 km, point bars with foreset beds, a channel 

thalweg, and cut banks, suggesting that these channels were meandering in depositional pattern. 

(Figures 4.3–4.9; 4.10 & 4.11). There are, however, many V-shaped, steep sided, shallow 

channels present in the seismic profiles (Figures 4.3 & 4.5), possibly created as overflow 

channels from increased continental runoff as glacial melt occurred, resulting in much younger 

channels as opposed to the meandering channels. 

As the eustatic sea level declined, and the elongation of existing channels occurred, the 

accommodation space and slope of the channels increased (as noted in the Fluvial 

Geomorphology section), effectively causing deeper incision of previously existing fluvial 

channels. Conversely, as the eustatic sea level rose, channels shortened and were subjected to 

aggradation, which is visible in Figures 4.10 & 4.11. Reflectors in both cases show highly 
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detailed, thin stratigraphic layering that comprises a large majority of the channel area. As the 

channels in the study area were subjected to channel shortening and the flow velocity decreased, 

coarse-grained sediments were no longer able to be transported, resulting in thick channel 

deposits. During the rise, the channel mouth would form a deltaic or estuarian depositional 

environment, widening channels and protecting the coarse sediment deposits. As the 

transgression occurred, the remaining portion of the channel was infilled with finer-grained 

sediments, fining further as the transgression continued landward. Portions of the exposed 

surface not protected by channel margins were more vulnerable to transgressive ravinement, 

creating the unconformity between Pleistocene and Holocene sediments seen today.  

The interpreted Pleistocene drainage surface (Figure 4.13) shows wider channel margins 

indicating main channel locations and narrow channels representing smaller streams and 

tributaries. The direction of flow over the area follows the main channel orientation, northwest to 

southeast. The two larger channels form a confluence near the center of the study area and 

continue toward the southeast. Many of the channels exhibit meandering patterns. 

 Presently, transgressive Holocene sediments that are deposited over the Pleistocene 

deposits are continuously reworked within the Mississippi Sound and the Gulf Coast. These 

transgressive deposits fine upward, where coarser fine-grained sediments were deposited near the 

Pleistocene deposits and the continued rise of the sea level allowed finer-grains to finally settle 

(Figure 5.1). These finer-grained sediments have created a less-permeable layer over the much 

coarser-grained fluvial channel deposits. As terrestrial groundwater hydraulic head seeks mean 

sea level, these paleochannels may act as conduits for submarine groundwater to be discharged 

further from shore since groundwater will preferentially flow through the coarse-grained channel 

infill as opposed to other surrounding stratigraphic features of smaller grain sizes. The fine-
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grained, less permeable layer above the paleochannel will act to keep the groundwater from 

discharging nearshore, extending the influence of fresh groundwater into the coastal system. 

Synthesis of these results with isotopic tracer data and subsurface resistivity observations 

collected by collaborators, working under the same grant that funded this research, will be used 

to further investigate the impact of paleochannels and associated stratigraphic heterogeneity on 

submarine groundwater discharge processes. 

 

 

Figure 5.1 Paleochannel cross-section from line 20211205175559-CH1. Green outline 

indicates the area of examination for bottom image. Yellow line indicates 

transgressive sediments, which fine upwards. The sediments near the base of 

yellow line show a higher acoustic impedance, indicating a composition of coarser 

grains. The blue line indicates area of channel infill which reflects the most energy 

and contains the coarsest grains. Red lines indicate channel margins. 
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CHAPTER VI 

CONCLUSION 

This thesis combines newly and previously collected seismic reflection data from the 

study area in the central Mississippi Sound to characterize the shallow subsurface Pleistocene-

Holocene unconformity. The results indicate that a paleochannel drainage network was created 

from fluvial incision during the Last Glacial Maximum and associated eustatic sea level decline, 

and is now covered with Holocene sediments. 

Submarine groundwater discharge input into coastal water bodies is difficult to measure 

and its discharge locations are difficult to predict largely due to heterogeneous hydrogeologic 

properties in the subsurface. For the study area, stratigraphic features such as paleochannels and 

related channel infill are possible conduits for submarine groundwater discharge further from 

shore. Understanding the stratigraphic framework of an area is crucial in determining areas that 

may experience higher rates of discharge. Marine life adjacent to areas with higher flow 

potential, such as paleochannel networks, are at risk of exposure to fresh groundwater and 

possible contaminants. By knowing the locations of paleochannels, more informed decisions can 

be made by officials in determining wildlife conservation and commercial practices.  

This thesis aims to provide an increased understanding of the subsurface heterogeneities 

within the study area. Further refinement of the study area examined could be attained through 

the collection and application of more seismic data and sediment cores to better interpolate the 

Pleistocene-Holocene unconformity, therefore more accurately determining paleochannel 
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locations and potential SGD. Since the understanding of spatial variability of SGD is not well 

known for many areas, more research should be conducted where the terrestrial input of 

freshwater and subsequent contamination can have a significant environmental impact. 
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NOTE 

 

This project was paid for with federal funding from the Department of the Treasury under 

the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of 

the Gulf Coast States Act of 2012 (RESTORE Act). The statements, findings, conclusions, and 

recommendations are those of the author(s) and do not necessarily reflect the views of the 

Department of the Treasury.
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Figure A.1 Mississippi Sound core log MS1 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.2 Mississippi Sound core log MS2 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.3 Mississippi Sound core log MS3 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.4 Mississippi Sound core log BI1 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.5 Mississippi Sound core log BI2 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.6 Mississippi Sound core log BI3 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.7 Mississippi Sound core log BI4 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.8 Mississippi Sound core log BI5 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.9 Mississippi Sound core log BI6 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.10 Mississippi Sound core log BI7 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.11 Mississippi Sound core log BI8 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.12 Mississippi Sound core log BI9 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.13 Mississippi Sound core log BI10 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.14 Mississippi Sound core log BI11 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.15 Mississippi Sound core log BI12 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.16 Mississippi Sound core log BI13 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.17 Mississippi Sound core log BI14 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.18 Mississippi Sound core log BI15 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.19 Mississippi Sound core log BI16 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.20 Mississippi Sound core log BI17 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.21 Mississippi Sound core log BI18 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.22 Mississippi Sound core log BI19 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.23 Mississippi Sound core log BI20 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.24 Mississippi Sound core log BI21 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.25 Mississippi Sound core log BI22 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.26 Mississippi Sound core log BI23 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.27 Harrison County core log HR1 provided by the MDEQ. Red line shows 

Pleistocene-Holocene contact. 
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Figure A.28 Harrison County core log HR9 provided by the MDEQ. Pleistocene formations are 

at the surface. 
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Figure A.29 Harrison County core log HR15 provided by the MDEQ. Pleistocene formations 

are at the surface. 
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Figure A.30 Harrison County core log HR30 provided by the MDEQ. Pleistocene formations 

are at the surface. 
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