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wavelets for solving fractional-order optimal control problems. The exact value of the Rie-

mann–Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets

is computed by applying regularized beta function. We apply the given wavelets, the exact for-

mula, and collocation method to transform the studied problem to a new optimization problem.
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CHAPTER I

INTRODUCTION

Fractional calculus has gained much attention among scientists because of its vast applications

in various fields such as signal processing (Gorenflo et al., 2001), solid mechanics (Rossikhin

and Shitikova, 1997), mathematical finance (Ionescu et al., 2017), control theory (Bohannan,

2008), and other areas of science and engineering. Fractional-order Derivatives are generalized

derivatives, which are obtained by replacing integer-order derivatives by fractional ones. A history

of the development of fractional differential operators can be found in [101] and [92]. It is well

known that the integer-order differential and integral operators are local, but the fractional-order

differential and integral operators are non-local. When the value of an integer-order derivative

at a point is computed, the obtained result depends only on that point. This property is called

locality. But this is different with the fractional derivative. The fractional derivative is calculated

by integrating over an entire range of values. This is main reason why differential operators of

fractional order provide an excellent tool for description of memory and hereditary properties of

various mathematical, physical, and engineering processes [42].

The fractional-order optimal control problems (FOCPs) are optimal control problems in which

the cost function or the constraints contain fractional derivatives. FOCPs have been applied in
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many areas, such as electronic, chemical, biological systems, and transportation (Hassani et al.,

2019).

There are several types of fractional-order optimal control problems: distributed-order frac-

tional optimal control problems (DO-FOCPs), variable-order fractional optimal control problems

(VOFOCPs), fractional optimal control problems which contain delay argument.

In DO-FOCPS, the dynamic system contains fractional derivatives which are continuous and

distributed over a given range. Some physical and engineering systems have been modeled by

distributed-order differential equations. For example, these differential equations have been used

to show stress relaxation in a rod [5], describe anomalous diffusion and relaxation [6], and study

the rheological properties of composite materials [7].

In variable-order fractional calculus, the orders of the derivative and integral can be any

given function [91]. In recent years, variable-order fractional calculus problems have been used

for modeling complex systems in mathematical physics and engineering like diffusive-convective

effects on the oscillatory flow [72], characterizing memory property of systems [96] (for more

applications see [82, 93, 8, 7]).

In many practical problems, the behavior of the model at previous times is of important effect.

A system containing the state of the model at the current time as well as the state at the previous

time is called a time delay system. Time delay systems are important in many fields such as biology,

medicine, chemistry, and transportation (see [3, 53] and references therein). If the FOCPs contain

a delay argument, we have delay FOCPs (DFOCPs).

Due to the extensive applications of fractional calculus in engineering and science, research in

this area has grown significantly, and there has been considerable interest in developing numerical
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schemes for their solution, for example dynamic Hamilton–Jacobi–Bellman [81], neural networks

[85], gradient-based optimization method [49], and reflection operators [21]. Over the last decade,

spectral methods have emerged as one of the most efficient numerical methods for solving the

dynamical systems. The key elements of the spectral method are the trial functions. The trial

functions are used as the basis functions for a truncated series expansion of the solution. Orthogonal

functions are usually used as trial functions [26]. The available sets of orthogonal functions can

be divided into three classes. The first class includes sets of piecewise constant basis functions

(e.g., block-pulse, Haar, Walsh, etc.). The second class consists of sets of orthogonal polynomials

(e.g., Chebyshev, Laguerre, Legendre, etc.). The third class is the set of sine-cosine functions

in the Fourier series. Orthogonal functions have been used when dealing with various problems

of the dynamical systems. The main advantage of using orthogonal functions is that they reduce

the dynamical system problems to those of solving a system of algebraic equations by using the

operational matrices of differentiation or integration. These matrices can be uniquely determined

based on the particular orthogonal functions.

Wavelets are piecewise continuous functions with compact support [0,1] and the numerical

technique based on wavelets is an emerging area of research nowadays and has gained a lot of

interest in many application fields, such as signal processing [25] and differential and integral

equations [24]. Different variations of wavelet bases (orthogonal, biorthogonal, multiwavelets)

have been presented and the design of the corresponding wavelet and scaling functions has been

addressed. Wavelets permit the accurate representation of a variety of functions and operators.

Moreover, wavelets establish a connection with fast numerical algorithms [13].
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Due to the considerable advantages of wavelets, different types of them have been used for

solving a vast area of problems. Some of these wavelets are Legendre [39], CAS [86], Bessel

[26], Chebyshev [74] and Haar [50]. For these wavelets, in general, the operational matrices of

integration, 𝑃𝛽, of the wavelets Ψ(𝑡) were applied in the form:

𝐼 𝛽Ψ(𝑡) � 𝑃𝛽Ψ(𝑡), (1.1)

where 𝐼 𝛽 is the Riemann-Liouville fractional integral operator (RLFIO) of order 𝛽. To obtain 𝑃𝛽,

some approximations were involved, and the values of 𝐼 𝛽Ψ(𝑡) were not calculated exactly until

2016. To the best of our knowledge, 𝐼 𝛽Ψ(𝑡) was calculated exactly with a hybrid of block-pulse

functions and Bernoulli polynomials in [59] by using Laplace transform. Later the exact formula

was obtained by applying Taylor wavelets in [99] and [102].

To obtain better accuracy, fractional-order Legendre functions, generalized Laguerre functions,

and Bernoulli wavelets were introduced in [45], [16], and [75], respectively, by applying 𝑥 = 𝑡𝛼

(𝛼 > 0). However, the RLFIO of none of these functions and wavelets was obtained exactly.

In this thesis, a new approach for solving various types of FOCPs by applying generalized

fractional-order Chebyshev wavelets (GFOCW) is proposed. We give an exact formula for the

RLFIO of the GFOCW and use this formula and the properties of GFOCW to solve our FOCPs.

Several examples are given to illustrate the applicability and accuracy of the method. It is worth

mentioning that when the exact solutions are polynomials or fractional-order power terms, we can

get the exact solutions. These exact solutions were not obtained previously in the literature.

The outline of this thesis is as follows: In chapter 2, we introduce some necessary definitions

and preliminaries of fractional calculus and explain some properties of generalized fractional-

4



order Chebyshev wavelets required for our subsequent development and we provide a formula

which obtains the exact value of Riemann-Liouville fractional integral operator for generalized

fractional-order Chebyshev wavelets. In chapter 3, we apply the GFOCW properties and the exact

formula of the RLFIO to solve fractional-order optimal control problems (FOCPs). Moreover, the

proposed method is used to find numerical solutions of FOCPs consisting inequality constraints

in this chapter. The numerical approach for solving distributed-order fractional optimal control

problems and variable-order fractional optimal control problems is presented in chapters 4 and 5

respectively.
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CHAPTER II

PRELIMINARIES AND NOTATIONS

2.1 Generalized fractional-order Chebyshev wavelets and their properties
2.1.1 Generalized fractional-order Chebyshev wavelets

Let k be a non-negative integer and ℎ > 0. For 𝑛 = 1, ... , 2𝑘−1 , �̂� = 2𝑛−1 and m, a non-negative

integer, the generalized Chebyshev wavelets 𝜓ℎ
𝑛,𝑚 (𝑥) are defined on [0, ℎ] as [104]:

𝜓ℎ
𝑛,𝑚 (𝑥) =


2 𝑘

2 [𝑚𝑈𝑚 (2𝑘 𝑥
ℎ
− �̂�), if x ∈

[
(�̂�−1)ℎ

2𝑘 ,
(�̂�+1)ℎ

2𝑘

]
,

0, otherwise,
(2.1)

where

[𝑚 =


1√
𝜋
, 𝑚 = 1,√︃
2
𝜋
, 𝑚 > 0,

(2.2)

and 𝑚 = 0, ..., 𝑀 . The coefficients in (2.2) make the system orthonormal. Here, 𝑈𝑚 (𝑡) is the

generalized Chebyshev polynomial of the second kind of degree 𝑚 defined as follows [104]

𝑈𝑚 (𝑥) =
⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

)
(2 𝑥)𝑚−2 𝑗 . (2.3)

6



A generalized fractional-order Chebyshev wavelet (GFOCW) of order 𝛼, denoted by 𝜓
ℎ,𝛼
𝑛,𝑚 is

obtained by setting 𝑥 = ℎ( 𝑡
ℎ
)𝛼 for 𝛼 > 0 over the interval [0, ℎ]. So, we have:

𝜓ℎ,𝛼
𝑛,𝑚 (𝑡) =


2 𝑘

2 [𝑚𝑈𝑚 (2𝑘 𝑡𝛼

ℎ𝛼
− �̂�), if ( �̂�−1

2𝑘 )
1
𝛼 ℎ ≤ 𝑡 ≤ ( �̂�+1

2𝑘 )
1
𝛼 ℎ,

0, otherwise,
(2.4)

where 𝑛 = 1, ... , 2𝑘−1, and 𝑚 = 0, 1, ..., 𝑀 .

2.1.2 Function approximation based on generalized fractional-order Chebyshev wavelets

An integrable function defined over [0, ℎ], ℎ > 0, can be expressed with the GFOCWs as:

𝑓 (𝑡) ≃
𝑀∑︁
𝑚=0

2𝑘−1∑︁
𝑛=1

𝑐𝑛,𝑚𝜓
ℎ,𝛼
𝑛,𝑚 (𝑡) = 𝐶𝑇Ψ

ℎ,𝛼

𝑘,𝑀
, (2.5)

where

𝐶 = [𝑐1,0, ..., 𝑐1,𝑀 , 𝑐2,0, ..., 𝑐2,𝑀 , ..., 𝑐2𝑘−1,0, ..., 𝑐2𝑘−1,𝑀]𝑇 , (2.6)

and

Ψ
ℎ,𝛼

𝑘,𝑀
= [𝜓ℎ,𝛼

1,0 , ..., 𝜓
ℎ,𝛼

1,𝑀 , 𝜓
ℎ,𝛼

2,0 , ..., 𝜓
ℎ,𝛼

2,𝑀 , ..., 𝜓
ℎ,𝛼

2𝑘−1,0, ..., 𝜓
ℎ,𝛼

2𝑘−1,𝑀
]𝑇 . (2.7)

2.2 The fractional derivative and integral

There are several definitions of fractional derivative and integration. The commonly used

definitions for fractional derivative and fractional integration are the Caputo definition and the

Riemann-Liouville definition respectively.

Here, by 𝐶 [0, ℎ], we denote the set of all continuous real valued functions defined over

the interval [0, ℎ]. In addition, we use 𝐶𝑛 [0, ℎ] to denote the set of all n-times continuously

differentiable functions in 𝐶 [0, ℎ].
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Definition 1

The Riemann-Liouville fractional integral operator (RLFIO) of order 𝛽 ≥ 0 of a function 𝑓 (𝑥) in

𝐶 [0, ℎ] is defined as [63]

𝐼 𝛽 𝑓 (𝑥) =



1
Γ(𝛽)

∫ 𝑥

0 𝑓 (𝑠) (𝑥 − 𝑠)𝛽−1𝑑𝑠, 𝛽 > 0,

𝑓 (𝑥), 𝛽 = 0.

Definition 2

The Caputo fractional derivative operator of order 𝛽 ≥ 0 of 𝑓 (𝑥) in 𝐶𝑛 [0, ℎ] is defined as [63]:

𝐷𝛽 𝑓 (𝑥) =



1
Γ(𝑛−𝛽)

∫ 𝑥

0 𝑓 (𝑛) (𝑠) (𝑥 − 𝑠)𝑛−𝛽−1 𝑑𝑠, 0 ≤ 𝑛 − 1 < 𝛽 ≤ 𝑛 ∈ N,

𝑓 (𝑛) (𝑥), 𝛽 = 𝑛 ∈ N.

(2.8)

Proposition 1. The operators 𝐼 𝛽 and 𝐷𝛽 are linear operators and they satisfy the following

properties:

1. 𝐼 𝛽𝐷𝛽 𝑓 (𝑥) = 𝑓 (𝑥) − ∑𝑛−1
𝑘=0 𝑓 (𝑘) (0) 𝑥𝑘

𝑘! , if 𝑥 ≥ 0.

2. 𝐼 𝛽𝑥𝛼 =
Γ(𝛼+1)

Γ(𝛼+𝛽+1) 𝑥
𝛼+𝛽, for every real number 𝛼 > −1.

3. 𝐷𝛽𝑥𝛼 =
Γ(𝛼+1)

Γ(𝛼−𝛽+1) 𝑥
𝛼−𝛽, for every real number 𝛼 > 𝛽 − 1.

4. 𝐷𝛽𝐼 𝛽 𝑓 (𝑥) = 𝑓 (𝑥).

5. 𝐷𝛽2 𝐼 𝛽1 𝑓 (𝑥) = 𝐼 𝛽1−𝛽2 𝑓 (𝑥), for 𝛽1 ≥ 𝛽2.
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2.3 Error bounds

In this section, the error bound of the function approximation and fractional derivative and

integral are presented.

The Sobolev norm of order b ≥ 0 of a function over the interval (0, 1) is defined by [18]

∥ 𝑓 ∥𝐻 b (0,1) =

(
b∑︁

𝑘=0

∫ 1

0
| 𝑓 (𝑘) (𝑡) |2𝑑𝑡

) 1
2

=

(
b∑︁

𝑘=0
∥ 𝑓 (𝑘) (𝑡)∥2

𝐿2 (0,1)

) 1
2

, (2.9)

where 𝑓 (𝑘) is the 𝑘th derivative of 𝑓 , and 𝐻b (0, 1) denotes the Hilbert space. In addition,

| 𝑓 |𝐻 b ;𝑀 (0,1) =
©«

b∑︁
𝑘=𝑚𝑖𝑛(b,𝑀+1)

∥ 𝑓 (𝑘) (𝑡)∥2
𝐿2 (0,1)

ª®¬
1
2

,

| 𝑓 |𝐻𝑟 ;b ;𝑀;𝑁 (0,1) =
©«

b∑︁
𝑘=𝑚𝑖𝑛(b,𝑀+1)

𝑁2𝑟−2𝑘 ∥ 𝑓 (𝑘) (𝑡)∥2
𝐿2 (0,1)

ª®¬
1
2

.

2.3.1 Error bound for the function approximation

The following theorem gives the error bound for approximating a function by GFOCWs.

Theorem 1

Suppose 𝑓 ∈ 𝐻b (0, 1) with b ≥ 0, and P2𝑘−1

𝑀
𝑓 is the best approximation of 𝑓 out of Ψℎ,𝛼

𝑘,𝑀
then [77]

∥ 𝑓 − P2𝑘−1

𝑀 𝑓 ∥𝐿2 (0,1) ≤ 𝑐𝑀−b (2𝑘−1)−b ∥ 𝑓 (b) ∥𝐿2 (0,1) , (2.10)

and for 1 ≤ 𝑟 ≤ b

∥ 𝑓 − P2𝑘−1

𝑀 𝑓 ∥𝐻 b (0,1) ≤ 𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b ∥ 𝑓 (b) ∥𝐿2 (0,1) , (2.11)

where 𝑐 depends on b.
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Theorem 2

Suppose 𝑓 ∈ 𝐻b (0, 1) with b ≥ 0, and 0 < ` ≤ 1, then

∥𝐷` 𝑓 − 𝐷` (P2𝑘−1

𝑀 𝑓 )∥𝐿2 (0,1) ≤
1

Γ(2 − `) 𝑐𝑀
2𝑟− 1

2−b (2𝑘−1)𝑟−b ∥ 𝑓 (b) ∥𝐿2 (0,1) , (2.12)

where 1 ≤ 𝑟 < b.

Proof: By applying properties of the RLFIO, Caputo fractional derivative operator, and [12]

∥ 𝑓 ∗ ℎ∥𝑝 ≤ ∥ 𝑓 ∥1∥ℎ∥𝑝,

we have

∥𝐷` 𝑓 − 𝐷` (P2𝑘−1

𝑀−1 𝑓 )∥
2
𝐿2 (0,1) = ∥𝐼1−` (𝐷1 𝑓 − 𝐷1(P2𝑘−1

𝑀−1 𝑓 ))∥
2
𝐿2 (0,1)

= ∥ 1
𝑡` Γ(1 − `) ∗ (𝐷

1 𝑓 − 𝐷1(P2𝑘−1

𝑀−1 𝑓 )∥
2
𝐿2 (0,1)

≤
(

1
(1 − `)Γ(1 − `)

)2
∥𝐷1 𝑓 − 𝐷1(P2𝑘−1

𝑀−1 𝑓 )∥
2
𝐿2 (0,1)

≤
(

1
Γ(2 − `)

)2
∥ 𝑓 − P2𝑘−1

𝑀−1 𝑓 ∥
2
𝐻𝑟 (0,1)

≤
(

1
Γ(2 − `)

)2
𝑐2(𝑀 − 1)4𝑟−1−2b (2𝑘−1)2𝑟−2b ∥ 𝑓 (b) ∥2

𝐿2 (0,1) . (2.13)

Taking the square root of Eq. (2.13), gives us Eq. (2.12).

Theorem 3

Suppose 𝑓 ∈ 𝐻b (0, 1) with b ≥ 0, and ` ≥ 0, then [60]

∥𝐼 𝛽 𝑓 − 𝐼 𝛽 (P2𝑘−1

𝑀−1 𝑓 )∥
2
𝐿2 (0,1) ≤

1
Γ(𝛽) 𝑐𝑀

−b2−(𝑘−1)b ∥ 𝑓 (b) ∥𝐿2 (0,1) . (2.14)
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Proof: By using Definition 1, we get

∥𝐼 𝛽 𝑓 (𝑥) − 𝐼 𝛽 (P2𝑘−1

𝑀−1 𝑓 (𝑥))∥
2
𝐿2 (0,1) = ∥ 1

Γ(𝛽)

∫ 𝑥

0
(𝑥 − 𝑠)𝛽−1( 𝑓 (𝑠) − P2𝑘−1

𝑀−1 𝑓 (𝑠))𝑑𝑠∥𝐿2 (0,1) ,

≤ ∥ 1
Γ(𝛽)

∫ 1

0
(1 − 𝑠)𝛽−1(( 𝑓 (𝑠) − P2𝑘−1

𝑀−1 𝑓 (𝑠))𝑑𝑠∥𝐿2 (0,1) ,

≤ ∥ 1
Γ(𝛽)

∫ 1

0
∥ 𝑓 (𝑠) − P2𝑘−1

𝑀−1 𝑓 (𝑠))𝑑𝑠∥𝐿2 (0,1) ,

from Equation (2.10), we obtain Equation (2.14).

2.4 Riemann-Liouville fractional integral operator for GFOCW

In this section, we provide an exact formula for computing the RLFIO of the GFOCW. To this

end, we use the unit step function,

`𝑐 (𝑥) =


1, if 𝑥 ≥ 𝑐,

0, otherwise.

The regularized beta function is given in [1] by

I(𝑥; 𝑎, 𝑏) = 1
𝐵(𝑎, 𝑏)

∫ 𝑥

0
𝑠𝑎−1(1 − 𝑠)𝑏−1𝑑𝑠,

where 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) is the beta function.

Lemma 1

Let 𝑐 ≥ 0 and 𝛼 ≥ 0. Then, for a real number 𝛽 > 0, we have

𝐼 𝛽 (𝑥𝛼`𝑐 (𝑥)) =
Γ(𝛼 + 1)

Γ(𝛼 + 𝛽 + 1) 𝑥
𝛼+𝛽

[
1 − I

( 𝑐
𝑥

;𝛼 + 1, 𝛽
)]

`𝑐 (𝑥). (2.15)
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Proof: For 0 ≤ 𝑥 < 𝑐, both sides of Eq. (2.15) are equal to zero. For 𝑥 ≥ 𝑐, by using the definition

of the unit step function, we have

𝐼 𝛽 (𝑥𝛼`𝑐 (𝑥)) =
1

Γ(𝛽)

∫ 𝑥

0
𝑠𝛼`𝑐 (𝑠) (𝑥 − 𝑠)𝛽−1𝑑𝑠

=
1

Γ(𝛽)

∫ 𝑥

0
𝑠𝛼 (𝑥 − 𝑠)𝛽−1𝑑𝑠 − 1

Γ(𝛽)

∫ 𝑐

0
𝑠𝛼 (𝑥 − 𝑠)𝛽−1𝑑𝑠

= 𝐼 𝛽 (𝑥𝛼) − 𝑥𝛼+𝛽

Γ (𝛽)

∫ 𝑐

0

( 𝑠
𝑥

)𝛼 (
1 − 𝑠

𝑥

) 𝛽−1
𝑑

( 𝑠
𝑥

)
=

Γ (𝛼 + 1)
Γ (𝛼 + 𝛽 + 1) 𝑥

𝛼+𝛽
(
1 − Γ (𝛼 + 𝛽 + 1)

Γ (𝛼 + 1) Γ (𝛽)

∫ 𝑐
𝑥

0
𝑡𝛼 (1 − 𝑡)𝛽−1 𝑑𝑡

)
.

Therefore, we get

𝐼 𝛽 (𝑥𝛼`𝑐 (𝑥)) =
Γ(𝛼 + 1)

Γ(𝛼 + 𝛽 + 1) 𝑥
𝛼+𝛽

[
1 − I

( 𝑐
𝑥

;𝛼 + 1, 𝛽
)]

`𝑐 (𝑥).

Theorem 4

For 𝛼, 𝛽 > 0, we have

𝐼 𝛽𝜓ℎ,𝛼
𝑛,𝑚 (𝑡) =



0, if 𝑡 < 𝑐1,

𝑈 (𝑡), if 𝑐1 ≤ 𝑡 < 𝑐2,

𝑈 (𝑡) −𝑉 (𝑡), if 𝑡 ≥ 𝑐2,

(2.16)

where

𝑈 (𝑡) = 2
𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2𝑟 (𝑘+1)

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

× Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽 ×
[
1 − I

(𝑐1
𝑡

;𝛼𝑟 + 1, 𝛽
)]

,
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𝑉 (𝑡) = 2
𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2𝑟 (𝑘+1)

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

× Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽 ×
[
1 − I

(𝑐2
𝑡

;𝛼𝑟 + 1, 𝛽
)]

,

and

𝑐1 = ℎ

(
�̂� − 1

2𝑘

) 1
𝛼

, 𝑐2 = ℎ

(
�̂� + 1
2𝑘

) 1
𝛼

.

Proof: By using the unit step functions, we have

`𝑐1 (𝑡) − `𝑐2 (𝑡) =


1, if 𝑐1 ≤ 𝑡 < 𝑐2,

0, otherwise.

Therefore, the GFOCW can be rewritten as

𝜓ℎ,𝛼
𝑛,𝑚 (𝑡) = 2

𝑘
2 [𝑚𝑈𝑚 (2𝑘 𝑡

𝛼

ℎ𝛼
− �̂�)

(
`𝑐1 (𝑡) − `𝑐2 (𝑡)

)
= 2

𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

)
(2𝑘+1 𝑡

𝛼

ℎ𝛼
− 2�̂�)𝑚−2 𝑗 (`𝑐1 (𝑡) − `𝑐2 (𝑡)

)
= 2

𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
(2𝑘+1 𝑡

𝛼

ℎ𝛼
)𝑟 (−2�̂�)𝑚−2 𝑗−𝑟 (

`𝑐1 (𝑡) − `𝑐2 (𝑡)
)

= 2
𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2(𝑘+1)𝑟

ℎ𝛼𝑟
𝑡𝛼𝑟 (−2�̂�)𝑚−2 𝑗−𝑟 (

`𝑐1 (𝑡) − `𝑐2 (𝑡)
)
.

Therefore,

𝐼 𝛽
(
𝜓ℎ,𝛼
𝑛,𝑚 (𝑡)

)
= 2

𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2(𝑘+1)𝑟

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

×
[
𝐼 𝛽

(
𝑡𝛼𝑟`𝑐1 (𝑡)

)
− 𝐼 𝛽

(
𝑡𝛼𝑟`𝑐2 (𝑡)

) ]
.
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From Eq. (2.15) in Lemma 1, we have

𝐼 𝛽
(
𝜓ℎ,𝛼
𝑛,𝑚 (𝑡)

)
= 2

𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2(𝑘+1)𝑟

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

×
[

Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽
(
1 − I

(𝑐1
𝑡

;𝛼𝑟 + 1, 𝛽
))

`𝑐1 (𝑡)

− Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽
(
1 − I

(𝑐2
𝑡

;𝛼𝑟 + 1, 𝛽
))

`𝑐2 (𝑡)
]
.

By setting

𝑈 (𝑡) = 2
𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2(𝑘+1)𝑟

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

× Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽 ×
[
1 − I

(𝑐1
𝑡

;𝛼𝑟 + 1, 𝛽
)]

,

and

𝑉 (𝑡) = 2
𝑘
2 [𝑚

⌊𝑚2 ⌋∑︁
𝑗=0

(−1) 𝑗
(
𝑚 − 𝑗

𝑗

) 𝑚−2 𝑗∑︁
𝑟=0

(
𝑚 − 2 𝑗

𝑟

)
2(𝑘+1)𝑟

ℎ𝛼𝑟
(−2�̂�)𝑚−2 𝑗−𝑟

× Γ(𝛼𝑟 + 1)
Γ(𝛼𝑟 + 1 + 𝛽) 𝑡

𝛼𝑟+𝛽 ×
[
1 − I

(𝑐2
𝑡

;𝛼𝑟 + 1, 𝛽
)]

,

we obtain Eq. (2.16).
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CHAPTER III

FRACTIONAL-ORDER OPTIMAL CONTROL PROBLEMS

The focus of this chapter is on solving fractional optimal control problems (FOCPs). Different

definitions of fractional derivatives can be used to define FOCPs. The widely used one are Riemann-

Liouville and Caputo fractional derivatives. The Hamiltonian formulation for FOCPs was studied in

[14] and [2]. Several numerical schemes have been applied to solve FOCPs, for example, Legendre

wavelets [39], Chelyshkov polynomials [40], dynamic Hamilton–Jacobi–Bellman [81], modified

hat functions [68], neural networks [85], Hermite polynomials [106], Laguerre polynomials [94],

gradient-based optimization method [49], Chebyshev wavelets [55], and reflection operators [21].

We apply GFOCW and its properties to solve these problems.

3.1 Problem statement and numerical method

We consider FOCP as

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡, (3.1)

subject to

𝑢(𝑡) = 𝐺 (𝑡, 𝑥(𝑡), 𝐷𝛽0𝑥(𝑡), 𝐷𝛽1𝑥(𝑡), ..., 𝐷𝛽𝑟 𝑥(𝑡)), (3.2)

and

𝑥 (𝑘) (0) = _𝑘 , 𝑘 = 0, 1, 2, ..., 𝑛 − 1, (3.3)
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where 𝛽0 ≥ 𝛽1 ≥ ... ≥ 𝛽𝑟 , and 𝑛 − 1 < 𝛽0 ≤ 𝑛, for 𝑛 ∈ N.

First, we expand 𝐷𝛽0𝑥(𝑡) by using GFOCW:

𝐷𝛽0𝑥(𝑡) ≃ 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (3.4)

where 𝐶, and Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) are defined in Eqs. (2.6) and (2.7) respectively. Then by applying the

operator 𝐼 𝛽0 to Eq. (3.4), we obtain

𝑥(𝑡) ≃ 𝐶𝑇 𝐼 𝛽0Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , (3.5)

where 𝛽0 ≤ 𝑛. For each 𝑖 = 1, . . . , 𝑟 , by applying the operator 𝐷𝛽𝑖 to Eq. (3.5) and using Proposition

1, we obtain

𝐷𝛽𝑖𝑥(𝑡) ≃ 𝐶𝑇 𝐼 𝛽0−𝛽𝑖Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝐷𝛽𝑖 (𝑡𝑘 )

= 𝐶𝑇 𝐼 𝛽0−𝛽𝑖Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=⌈𝛽𝑖⌉

_𝑘

Γ(𝑘 − 𝛽𝑖 + 1) 𝑡
𝑘−𝛽𝑖 . (3.6)

Here

𝐼 𝛽0Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) =

[
𝐼 𝛽0𝜓

ℎ,𝛼

1,0 (𝑡), . . . , 𝐼
𝛽0𝜓

ℎ,𝛼

1,𝑀 (𝑡), 𝐼 𝛽0𝜓
ℎ,𝛼

2,0 (𝑡), . . . , 𝐼
𝛽0𝜓

ℎ,𝛼

2,𝑀 (𝑡), . . . ,

𝐼 𝛽0𝜓
ℎ,𝛼

2𝑘−1,0(𝑡), . . . , 𝐼
𝛽0𝜓

ℎ,𝛼

2𝑘−1,𝑀
(𝑡)

]
.

By substituting Eqs. (3.4)-(3.6) in Eq. (3.2), we get

𝑢(𝑡) ≃ 𝐺
©«𝑡, 𝐶𝑇 𝐼 𝛽0Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , 𝐶𝑇Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡), ..., 𝐶𝑇 𝐼 𝛽0−𝛽𝑟Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=⌈𝛽𝑟 ⌉

_𝑘

Γ(𝑘 − 𝛽𝑟 + 1) 𝑡
𝑘−𝛽𝑟ª®¬ .

(3.7)

By applying Eqs. (3.5) and (3.7) in Eq. (3.1), we have
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𝐽 = 𝐽 (𝑥, 𝑢) =
∫ 1

0
𝑓

(
𝑡, 𝐶𝑇 𝐼 𝛽0Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , 𝐺

(
𝑡, 𝐶𝑇 𝐼 𝛽0Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡)

+
𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , 𝐶𝑇Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡), ..., 𝐶𝑇 𝐼 𝛽0−𝛽𝑟Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=⌈𝛽𝑟 ⌉

_𝑘

Γ(𝑘 − 𝛽𝑟 + 1) 𝑡
𝑘−𝛽𝑟 ª®¬ª®¬ 𝑑𝑡.

(3.8)

Next, we evaluate the integral in Eq. (3.8) numerically by using Gauss-Legendre quadrature.

For the error of the Gauss-Legendre quadrature method, please refer to Chapter 19 of [100].

According to differential calculus, we have the following necessary conditions for optimizing the

cost functional 𝐽 given in Eq. (3.8) [78]

𝜕𝐽

𝜕𝑐𝑛𝑚
= 0, 1 ≤ 𝑛 ≤ 2𝑘−1, 0 ≤ 𝑚 ≤ 𝑀.

To find the unknown constants 𝑐𝑛𝑚, we will solve the above nonlinear algebraic system by using

Newton’s iterative method. It is well-known that the initial guess for Newton’s iteration method

is very important, especially for a complicated problem [58]. The initial guess in this case can be

obtained similarly to the method given in [108]. By evaluating 𝐶, the optimal control 𝑢(𝑡) can be

calculated.

3.2 Illustrative examples

In this section, we compare our numerical method with several existing methods in the literature.

Our numerical solutions were calculated by using Mathematica 12.1.1. We consider the examples

for which the integral in the cost functional is defined over the interval [0, 1]. However, if we

have the integral defined over [0, ℎ], since GFOCW given in Eq. (2.4) is defined over [0, ℎ], we

can change the interval for the integral to the interval [0, 1] by using appropriate transformation.
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For the first two given examples, the present method can obtain the exact solutions while the other

existings methods could not obtain these exact solutions.

Example 3.2.1. We consider the following FOCP [90]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = 1
2

∫ 1

0

[(
𝑥(𝑡) − 𝑡𝛽

)2
+

(
𝑢(𝑡) − 𝑡𝛽 − Γ(𝛽 + 1)

)2
]
𝑑𝑡, (3.9)

subject to

𝐷𝛽𝑥(𝑡) = −𝑥(𝑡) + 𝑢(𝑡), and 𝑥(0) = 0. (3.10)

The optimal state and control functions are 𝑥(𝑡) = 𝑡𝛽, and 𝑢(𝑡) = 𝑡𝛽 +Γ(𝛽 + 1), with corresponding

minimum cost functional 𝐽𝑜𝑝𝑡 = 0.

This FOCP was solved in [90] by using the Legendre wavelet method (LWM), Laguerre wavelet

method (LaWM), and Chebyshev wavelet method (CWM) with 𝑘 = 1, 𝑀1 = 4, 𝛽 = 1, and 0.5.

Here 𝑀1 is the degree of the polynomials used in these wavelets. We solve this problem in two

cases: 𝛽 = 1 and 𝛽 = 0.5 with 𝛼 = 𝛽, 𝑘 = 1 and 𝑀 = 2.

For 𝛽 = 1, we expand 𝐷𝛽𝑥(𝑡) by GFOCW as follows:

𝐷𝛽𝑥(𝑡) = 𝐶𝑇Ψ
1,1
1,2 (𝑡), (3.11)

where

Ψ
1,1
1,2 (𝑡) =

[√︂
2
𝜋
,
−4 + 8𝑡
√
𝜋

,
6 − 32𝑡 + 32𝑡2

√
𝜋

]𝑇
. (3.12)

Then,

𝑥(𝑡) = 𝐶𝑇 𝐼 𝛽Ψ
1,1
1,2 (𝑡), (3.13)

where

𝐼 𝛽Ψ
1,1
1,2 (𝑡) =

[√︂
2
𝜋
𝑡,

4𝑡 (𝑡 − 1)
√
𝜋

,
2𝑡 (3 − 4𝑡)2

3
√
𝜋

]𝑇
. (3.14)
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Now, by substituting Eqs. (3.11) and (3.13) in Eq. (3.10), we get

𝑢(𝑡) = 𝐶𝑇Ψ
1,1
1,2 (𝑡) + 𝐶𝑇 𝐼 𝛽Ψ

1,1
1,2 (𝑡). (3.15)

By substituting Eqs. (3.13) and (3.15) in Eq. (3.9), we get a parameter optimization problem. By

solving this problem, we obtain the unknown parameter 𝐶 =
[√︁

𝜋
2 , 0, 0

]𝑇 . By using Eqs. (3.9),

(3.13) and (3.15), we get 𝑥(𝑡) = 𝑡, 𝑢(𝑡) = 1 + 𝑡, and 𝐽 = 0, which are the exact solutions. These

solutions were not obtained in [90] for any of the wavelets used for this example.

For 𝛽 = 0.5, by using the similar argument, we get 𝐶 =

[
𝜋

2
√

2
, 0, 0

]𝑇
. For this case, we obtain

𝑥(𝑡) = 𝑡
1
2 , and 𝑢(𝑡) = 𝑡

1
2 + 1

2
√
𝜋 which are the exact solutions. Again, these exact solutions were

not obtained in [90].

Example 3.2.2. Consider the following FOCP [26]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
(𝑢(𝑡) − 𝑥(𝑡))2 𝑑𝑡, (3.16)

subject to

¤𝑥(𝑡) + 𝐷𝛽𝑥(𝑡) = 𝑢(𝑡) − 𝑥(𝑡) + 𝑡3 + 6 𝑡𝛽+2

Γ(𝛽 + 3) , 0 < 𝛽 ≤ 1, (3.17)

with 𝑥(0) = 0. The optimal solutions are 𝑥(𝑡) = 𝑢(𝑡) = 6 𝑡𝛽+3

Γ(𝛽+4) , with the corresponding optimal

cost functional 𝐽 = 0.

In case 𝛽 = 1, we expand 𝐷𝛽𝑥(𝑡) by GFOCW as follows:

𝐷𝛽𝑥(𝑡) = 𝐶𝑇Ψ
1,1
1,3 (𝑡). (3.18)

Then,

𝑥(𝑡) = 𝐶𝑇 𝐼 𝛽Ψ
1,1
1,3 (𝑡). (3.19)

Now, by substituting Eqs. (3.18) and (3.19) in Eq. (3.17), we get
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𝑢(𝑡) = 2𝐶𝑇Ψ
1,1
1,3 (𝑡) + 𝐶𝑇 𝐼 𝛽Ψ

1,1
1,3 (𝑡) − 𝑡3 − 6 𝑡𝛽+2

Γ(𝛽 + 3) . (3.20)

By substituting Eqs. (3.19) and (3.20) in Eq. (3.16), we get

𝐽 =

∫ 1

0

(
2𝐶𝑇Ψ

1,1
1,3 (𝑡) + 𝐶𝑇 𝐼 𝛽Ψ

1,1
1,3 (𝑡) − 𝑡3 − 6 𝑡𝛽+2

Γ(𝛽 + 3) − 𝐶𝑇 𝐼 𝛽Ψ
1,1
1,3 (𝑡)

)2

𝑑𝑡. (3.21)

The given problem is now reduced to the following parameter optimization problem: Finding

the unknown constants 𝐶, which minimize the cost functional 𝐽 given in Eq. (3.21). By solving

the latter problem, we obtain the unknown constants as 𝐶 =

[
7
√
𝜋/2

32 ,
7
√
𝜋

64 ,
3
√
𝜋

64 ,
√
𝜋

128

]𝑇
, which gives

the exact solutions 𝑥(𝑡) = 𝑢(𝑡) = 𝑡4

4 , and the minimal cost 𝐽 = 0.

In case 𝛽 = 0.5, we solve with 𝛼 = 0.5, 𝑘 = 1, and 𝑀 = 5. We obtain the unknown constants as

𝐶 =

[
33

80
√

2
,

33
128

,
11
64

,
11
160

,
1
64

,
1

640

]𝑇
.

From the above equation, we obtain 𝑥(𝑡) = 𝑢(𝑡) = 6𝑥3.5

Γ(4.5) , and the minimal cost 𝐽 = 0, which are

the exact solutions. This problem has been solved in [26] by applying Bessel wavelets and in [73]

by using Bernoulli polynomials. These exact solutions were not obtained in [26] and [73].

For the cases when 𝛽 = 0.8, 0.9, we solve with 𝛼 = 𝑘 = 1 and 𝑀 = 5. We compare the

absolute errors for the obtained 𝑥(𝑡), 𝑢(𝑡), and 𝐽 with those from the Bessel wavelet method with

𝑘 = 1, 𝑀2 = 5 reported in [26] in Table 3.1 on page 33, Table 3.2 on page 34, and Table 3.3 on

page 34, respectively. Here, 𝑀2 is the degree of the Bessel polynomials. It is noted that, since we

get the exact value for 𝑥(𝑡) with 𝛽 = 1, 𝑘 = 1, 𝑀 = 5, the column for 𝛽 = 1 in Table 3.2.2.1 is all

equal to zero.
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Figure 3.1

Graphs of absolute error functions of x(t) and u(t) for 𝛼 = 0.5, 𝛽 = 1, 𝑘 = 1, and 𝑀 = 2 for
Example 3.2.3

Example 3.2.3. Consider the following FOCP [26]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

((
𝑥(𝑡) − 𝑡2

)2
+

(
𝑢(𝑡) − 𝑡𝑒−𝑡 + 1

2
𝑒𝑡

2−𝑡
)2

)
𝑑𝑡, (3.22)

subject to

𝐷𝛽𝑥(𝑡) = 𝑒𝑥(𝑡) + 2𝑒𝑡𝑢(𝑡), 𝑥(0) = 0, 0 < 𝛽 ≤ 1. (3.23)

When 𝛽 = 1, the optimal solutions are 𝑥(𝑡) = 𝑡2 and 𝑢(𝑡) = 𝑡𝑒−𝑡 − 1
2
𝑒𝑡

2−𝑡 with the corresponding

optimal cost functional 𝐽 = 0. We solve this problem for 𝛼 = 0.5, 𝑘 = 1, and 𝑀 = 2. In Table 3.4

on page 35, we compare the obtained numerical results using our method with those obtained by

the Bessel wavelet method with 𝑀2 = 5 in [26]. Figure 3.1 represents graphs of absolute error

functions of x(t) and u(t) obtained by the present method for 𝛼 = 0.5, 𝛽 = 1, 𝑘 = 1, and 𝑀 = 2.

Example 3.2.4. Consider the following FOCP [11]

𝑚𝑖𝑛 𝐽 =

∫ 1

0

((
𝑥(𝑡) − 𝑡2

)2
+

(
𝑢(𝑡) + 𝑡4 − 20 𝑡0.9

9Γ(0.9)

)2)
𝑑𝑡,
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subject to

𝐷1.1𝑥(𝑡) = 𝑢(𝑡) + 𝑡2𝑥(𝑡),

𝑥(0) = ¤𝑥(0) = 0.

The optimal cost functional value is 𝐽 = 0, which is obtained by

𝑥(𝑡) = 𝑡2, and 𝑢(𝑡) = 20 𝑡0.9

9Γ(0.9) − 𝑡4.

This problem has been solved in [11] by applying Bernoulli wavelets. Table 3.5 on page 36

and Table 3.6 on page 36 provide comparisons between our method with 𝛽 = 𝛼 = 1, 𝑘 = 2 and

Bernoulli wavelets for 𝛽 = 1, 𝑘 = 2, and different values of 𝑀 and 𝑀4. Here, 𝑀4 is the degree

of Bernoulli polynomials. As M increases for the same 𝑘 , the error of J in Table 3.5 on page 36

tends to zero. In addition, Table 3.6 on page 36 also suggests that as M increases for the same k,

the errors of x(t) and u(t) decrease.

Example 3.2.5. Consider the following FOCP [11]

𝑚𝑖𝑛 𝐽 (𝑥1, 𝑥2, 𝑢) = 0.5
∫ 1

0

(
𝑥2

1 (𝑡) + 𝑥2
2 (𝑡) + 𝑢2(𝑡)

)
𝑑𝑡, (3.24)

subject to

𝐷𝛽𝑥1(𝑡) = 𝑢(𝑡) − 𝑥1(𝑡) + 𝑥2(𝑡), (3.25)

𝐷𝛽𝑥2(𝑡) = −2 𝑥2(𝑡), (3.26)

with 𝑥1(0) = 𝑥2(0) = 1.

For 𝛽 = 1, the optimal cost functional value is 𝐽 = 0.4319835548817479 which is obtained by
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𝑥1(𝑡) =
−3
2
𝑒−2𝑡 + 2.48164 𝑒−

√
2𝑡 + 0.018352 𝑒

√
2𝑡 ,

𝑥2(𝑡) = 𝑒−2𝑡 ,

𝑢(𝑡) = 1
2
𝑒−2𝑡 − 1.02793 𝑒−

√
2𝑡 + 0.0443056 𝑒

√
2𝑡 .

To solve this problem, we expand 𝐷𝛽𝑥1(𝑡) and 𝐷𝛽𝑥2(𝑡) by GFOCW as follows:

𝐷𝛽𝑥1(𝑡) = 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (3.27)

𝐷𝛽𝑥2(𝑡) = 𝐸𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (3.28)

where C and E are given in Eq. (2.6), and Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) in Eq. (2.7). Then

𝑥1(𝑡) = 𝐶𝑇 𝐼 𝛽Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) + 1, (3.29)

𝑥2(𝑡) = 𝐸𝑇 𝐼 𝛽Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) + 1. (3.30)

By substituting Eqs. (3.27)–(3.30) to Eq. (3.25), we have

𝑢(𝑡) = 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) + 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1 −

(
𝐸𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1

)
. (3.31)

Then, we substitute Eqs. (3.29)–(3.31) in the cost functional J in Eq. (3.24), and Eqs. (3.28) and

(3.30), in Eq. (3.26). Hence, we get

𝐽 (𝑥1, 𝑥2, 𝑢) = 0.5
∫ 1

0

[
(𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1)2 +

(
𝐸𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1

)2
+(

𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) + 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1 − (𝐸𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1)

)2
]
𝑑𝑡, (3.32)

subject to

𝐸𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) = −2 (𝐸𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) + 1). (3.33)
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The problem in Eqs. (3.32)-(3.33) is a parameter optimization problem. This problem has been

solved by applying the Bernoulli wavelet method in [11]. For this example, the authors in [11]

give the errors for 𝑥1(𝑡), 𝑥2(𝑡), and 𝑢(𝑡) for the case 𝛽 = 1. In addition, they draw the graphs of

the approximation of 𝑥1(𝑡), 𝑥2(𝑡), and 𝑢(𝑡) for the case 0.8 < 𝛽 < 1. In order to compare our

method with the method in [11], we also consider the same values of 𝛽. Table 3.7 on page 37

represents a comparison between absolute errors of the cost functional J and 𝐿2 norm errors of

control and state functions obtained by our method with 𝛼 = 𝛽 = 𝑘 = 1, and Bernoulli wavelet

method with 𝛽 = 𝑘 = 1, and several values of 𝑀 and 𝑀4. In addition, the plots of absolute error

functions of 𝑥1(𝑡), 𝑥2(𝑡) and 𝑢(𝑡) obtained by the proposed method for 𝑘 = 1, and 𝑀 = 6 are

represented in figure 3.2 on page 38, and the plots of approximate functions of 𝑥1(𝑡), 𝑥2(𝑡), and

𝑢(𝑡) for 𝑘 = 1, 𝑀 = 4 and several values of 𝛽 along with the exact functions are given in figure 3.3

on page 39. Clearly, the approximate solutions tend to the exact ones given for 𝛽 = 1.

Example 3.2.6. We consider the following cancer model [36]:

𝑚𝑖𝑛 𝐽 (𝑢) =
∫ 1

0

(
20𝑇 (𝑡) − 𝑁 (𝑡) + 𝑢2(𝑡)

)
𝑑𝑡, (3.34)
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subject to the nonlinear fractional differential system

𝐷𝛽𝑇 (𝑡) = 1.5𝑇 (𝑡) (1 − 𝑇 (𝑡)) − 0.5𝑇 (𝑡)𝐼 (𝑡) − 𝑇 (𝑡)𝑁 (𝑡) + 1.5𝑇 (𝑡)𝐹 (𝑡) − 0.08 𝐷1(𝑡)𝑇 (𝑡),

(3.35)

𝐷𝛽𝐼 (𝑡) = 0.33 + 0.01
𝑇 (𝑡)𝐼 (𝑡)

0.3 + 𝑇 (𝑡) − 0.5𝑇 (𝑡)𝐼 (𝑡) − 0.2 𝐼 (𝑡) − 2 × 10−11𝐷1(𝑡)𝐼 (𝑡), (3.36)

𝐷𝛽𝑁 (𝑡) = 𝑁 (𝑡) (1 − 𝑁 (𝑡)) − 𝑇 (𝑡)𝑁 (𝑡) − 0.008𝐷1(𝑡)𝑁 (𝑡), (3.37)

𝐷𝛽𝐹 (𝑡) = 0.75 𝐹 (𝑡) (1 − 1.5 𝐹 (𝑡)) − 0.1𝑇 (𝑡)𝐹 (𝑡) − 0.008 𝐷1(𝑡)𝐹 (𝑡), (3.38)

𝐷𝛽𝐷1(𝑡) = 𝑢(𝑡) − 0.1 𝐷1(𝑡), (3.39)

where 𝑇 (𝑡) stands for tumor cells, 𝐼 (𝑡) immune cells, 𝑁 (𝑡) normal cells, and 𝐹 (𝑡) fat cells around

tumor cells at time t. 𝐷1(𝑡) is the chemotherapeutic drug, and 𝑢(𝑡) is the dose of this drug that is

injected (for more details about the model, see [36]). The initial conditions are

𝑇 (0) = 1, 𝐼 (0) = 0.001, 𝑁 (0) = 4, 𝐹 (0) = 0.25, 𝐷1(0) = 0.5. (3.40)

We solve this problem for 𝛽 = 0.95 that is used in [36], 𝛼 = 1, 𝑘 = 1, and 𝑀 = 4. First, we

expand 𝐷𝛽𝑇 (𝑡), 𝐷𝛽𝐼 (𝑡), 𝐷𝛽𝑁 (𝑡), 𝐷𝛽𝐹 (𝑡), and 𝐷𝛽𝐷1(𝑡) by GFOCW as follows:

𝐷𝛽𝑇 (𝑡) = 𝐶𝑇
1 Ψ

1,1
1,4 (𝑡),

𝐷𝛽𝐼 (𝑡) = 𝐶𝑇
2 Ψ

1,1
1,4 (𝑡),

𝐷𝛽𝑁 (𝑡) = 𝐶𝑇
3 Ψ

1,1
1,4 (𝑡), (3.41)

𝐷𝛽𝐹 (𝑡) = 𝐶𝑇
4 Ψ

1,1
1,4 (𝑡),

𝐷𝛽𝐷1(𝑡) = 𝐶𝑇
5 Ψ

1,1
1,4 (𝑡),
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where 𝐶𝑖 for 𝑖 = 1, ..., 5 and Ψ
1,1
1,4 are given in Eqs. (2.6) and (2.7). Next, by applying the operator

𝐼 𝛽 in Eq. (3.41), we get

𝑇 (𝑡) = 𝐶𝑇
1 𝐼

𝛽Ψ
1,1
1,4 (𝑡) + 1, (3.42)

𝐼 (𝑡) = 𝐶𝑇
2 𝐼

𝛽Ψ
1,1
1,4 (𝑡) + 0.001, (3.43)

𝑁 (𝑡) = 𝐶𝑇
3 𝐼

𝛽Ψ
1,1
1,4 (𝑡) + 4, (3.44)

𝐹 (𝑡) = 𝐶𝑇
4 𝐼

𝛽Ψ
1,1
1,4 (𝑡) + 0.25, (3.45)

𝐷1(𝑡) = 𝐶𝑇
5 𝐼

𝛽Ψ
1,1
1,4 (𝑡) + 0.5. (3.46)

Then, by substituting 𝐷𝛽𝐷1(𝑡) from Eq. (3.41) and 𝐷1(𝑡) from Eq. (3.46) in Eq. (3.39), we obtain

𝑢(𝑡) = 𝐶𝑇
5 Ψ

1,1
1,4 (𝑡) + 0.1𝐶𝑇

5 𝐼
𝛽Ψ

1,1
1,4 (𝑡) + 0.05. (3.47)

Finally, after substituting Eqs. (3.41)-(3.47) in the performance index 𝐽 in Eq. (3.34), and in the

differential equations in Eqs. (3.35)-(3.39), the problem is reduced to a parameter optimization

problem. The approximate functions obtained for the states and control variables are shown in

figure 3.4 on page 40. From this figure, we can conclude that over time, the number of tumor cells

(T(t)) decreases, the immune and fat cells population increase, while the drug concentration and

its dose decline after destroying most of the tumor cells.

3.3 Fractional-order optimal control problems with inequality constraints

In this section, we solve fractional-order optimal control problems (FOCPs) with inequality

constraints involving state and control inequality constraints.

26



3.3.1 Problem statement and numerical method

We study the following FOCP:

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
F (𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡, (3.48)

subject to the dynamical system

𝐷𝛽𝑥(𝑡) = G (𝑡, 𝑥(𝑡)) + a(𝑡)𝑢(𝑡), 𝑛 − 1 < 𝛽 ≤ 𝑛, for 𝑛 ∈ N, (3.49)

with the inequality constraint

H(𝑡, 𝑥(𝑡), 𝑢(𝑡)) ≤ 0, (3.50)

and

𝑥 (𝑘) (0) = _𝑘 , 𝑘 = 0, 1, 2, ..., 𝑛 − 1, (3.51)

where a(𝑡) ≠ 0, F , G and H are continuous functions.

To solve this problem, first we expand 𝐷𝛽𝑥(𝑡) by using GFOCW as

𝐷𝛽𝑥(𝑡) ≃ 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (3.52)

where 𝐶, and Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) are defined in equations (2.6) and (2.7) respectively. Then from equa-

tion (3.52), we get

𝑥(𝑡) ≃ 𝐶𝑇 𝐼 𝛽Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 . (3.53)

By using equations (3.49), (3.52), and (3.53), we get

𝑢(𝑡) ≃
𝐶𝑇Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) − G

(
𝑡, 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑
𝑘=0

_𝑘
𝑘! 𝑡

𝑘

)
a(𝑡) . (3.54)

By applying equations (3.53) and (3.54) in equation (3.48), we have
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𝐽 = 𝐽 (𝑥, 𝑢) =
∫ 1

0
F

©«
𝑡, 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 ,

𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) − G

(
𝑡, 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑
𝑘=0

_𝑘

𝑘! 𝑡
𝑘

)
a(𝑡)

ª®®®®¬
.

(3.55)

For the inequality constraints, we substitute equations (3.53) and (3.54) in equation (3.50), and we

get

H
©«
𝑡, 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 ,

𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) − G

(
𝑡, 𝐶𝑇 𝐼 𝛽Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑
𝑘=0

_𝑘
𝑘! 𝑡

𝑘

)
a(𝑡)

ª®®®®¬
≤ 0. (3.56)

Now, by collocating equation (3.56) at the following Newton-Cotes nodes given in [109]:

𝑡𝑖 =

(
2𝑖 − 1

2𝑘 (𝑀 + 1)

)1/𝛼
ℎ, 𝑖 = 1, ..., 2𝑘−1(𝑀 + 1), (3.57)

we have

H
©«
𝑡𝑖, 𝐶

𝑇 𝐼 𝛽Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡𝑖) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘𝑖 ,

𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡𝑖) − G

(
𝑡𝑖, 𝐶

𝑇 𝐼 𝛽Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡𝑖) +

𝑛−1∑
𝑘=0

_𝑘
𝑘! 𝑡

𝑘
𝑖

)
a(𝑡𝑖)

ª®®®®¬
≤ 0. (3.58)

Next, we minimize 𝐽 in equation (3.55) subject to equation (3.58) by using known methods. Finally,

by obtaining 𝐶, the values of 𝑥(𝑡), 𝑢(𝑡) and the cost functional 𝐽 can be evaluated.

3.3.2 Illustrative examples

Example 3.3.2.1. We consider the following FOCP [51], [101] ,[105]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

(
𝑥2(𝑡) + 𝑢2(𝑡) − 2(1 − 𝑡

3
2 ) 𝑢(𝑡) + 2 𝑡

3
2 𝑥(𝑡)

)
𝑑𝑡, (3.59)
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subject to

𝐷
3
2 𝑥(𝑡) = 3

√
𝜋

4
(𝑥(𝑡) − 𝑢(𝑡)), (3.60)

𝑥(𝑡) ≤ 0, (3.61)

0 ≤ 𝑢(𝑡) ≤ 1, (3.62)

𝑥(0) = ¤𝑥(0) = 0. (3.63)

The optimal solutions are 𝑥(𝑡) = −𝑡 3
2 , 𝑢(𝑡) = −𝑡 3

2 + 1, with 𝐽 = −0.7.

To solve this problem, we use 𝛼 = 1, 𝑘 = 1, and 𝑀 = 2. First, we expand 𝐷
3
2 𝑥(𝑡) by GFOCW

as

𝐷
3
2 𝑥(𝑡) = 𝐶𝑇Ψ

1,1
1,2 (𝑡). (3.64)

Then,

𝑥(𝑡) = 𝐶𝑇 𝐼
3
2Ψ

1,1
1,2 (𝑡). (3.65)

Now, by using equations (3.64) and (3.65) in equation (3.60), we get

𝑢(𝑡) = −4
3
√
𝜋
(𝐶𝑇Ψ

1,1
1,2 (𝑡) −

3
√
𝜋

4
(𝐶𝑇 𝐼

3
2Ψ

1,1
1,2 (𝑡)). (3.66)

Next, we use equations (3.65) and (3.66) in equations (3.61) and (3.62) to get

𝐶𝑇 𝐼
3
2Ψ

1,1
1,2 (𝑡) ≤ 0, (3.67)

0 ≤ −4
3
√
𝜋
(𝐶𝑇Ψ

1,1
1,2 (𝑡) −

3
√
𝜋

4
(𝐶𝑇 𝐼

3
2Ψ

1,1
1,2 (𝑡)) ≤ 1 (3.68)

After that, we collocate the above equations at the nodes defined in equation (3.57). Finally, by

substituting equations (3.65) and (3.66) in equation (3.59), and after solving this problem, we
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obtain the values for the unknown parameters as 𝐶 = [𝑐1,0, 𝑐1,1, 𝑐1,2]𝑇 = [−3𝜋
4
√

2
, 0, 0]𝑇 which gives

the exact solutions given by

𝑥(𝑡) = −3𝜋
4
√

2

√︂
2
𝜋

(
4𝑡 3

2

3
√
𝜋

)
= −𝑡 3

2 , 𝑢(𝑡) = −𝑡 3
2 + 1, 𝐽 = −0.7.

This problem has been solved in [51] by using epsilon penalty Ritz method, in [101] by applying

fractional-order Bernoulli wavelets, and in [105] by Chebyshev wavelet method. Neither of these

methods could obtain the exact solution.

Example 3.3.2.2. Consider the following FOCP [101]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

(
(𝑥(𝑡) − 𝑡2)2 + (𝑢(𝑡) − 𝑡

4
3 )2

)
𝑑𝑡, (3.69)

subject to

𝐷𝛽𝑥(𝑡) = 𝑡
2
3 𝑥(𝑡)𝑢(𝑡) − (𝑡4 − 2𝑡),

0 ≤ 𝑥(𝑡) + 𝑢(𝑡) ≤ 2,

𝑥(0) = 0.

The exact solution of this problem for 𝛽 = 1 is 𝑥(𝑡) = 𝑡2, 𝑢(𝑡) = 𝑡
4
3 , and 𝐽 = 0. To solve this

problem for 𝛽 = 1, we choose 𝛼 = 1
3 , 𝑘 = 1, and 𝑀 = 5. First, we write 𝐷𝛽𝑥(𝑡) and 𝑢(𝑡) as

𝐷𝛽𝑥(𝑡) = 𝐶𝑇Ψ
1, 1

3
1,5 (𝑡), (3.70)

𝑢(𝑡) = 𝐸𝑇Ψ
1, 1

3
1,5 (𝑡). (3.71)

Then by applying the RLFIO on 𝐷𝛽𝑥(𝑡) in equation (3.70), we get

𝑥(𝑡) = 𝐶𝑇 𝐼 𝛽Ψ
1, 1

3
1,5 (𝑡). (3.72)
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Now, by using the same procedure applied in Example 3.3.2.1, we obtain the following values for

the unknowns vectors 𝐶, and 𝐷

𝐶 = [
7
√︁
𝜋/2

16
,
7
√
𝜋

32
,
3
√
𝜋

32
,

√
𝜋

64
, 0]𝑇 , (3.73)

𝐸 = [
21

√︁
𝜋/2

128
,
3
√
𝜋

32
,
27
√
𝜋

512
,

√
𝜋

64
,

√
𝜋

512
]𝑇 . (3.74)

By substituting the above values for 𝐶 and 𝐸 , in equations (3.69), (3.71), and (3.72), we obtain the

exact solution. This solution was not obtained in [101] by applying fractional Bernoulli wavelets.

Example 3.3.2.3. Consider the following FOCP [61, 68, 107]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
(−𝑙𝑛 2)𝑥(𝑡)𝑑𝑡, (3.75)

subject to

𝐷𝛽𝑥(𝑡) = 𝑙𝑛2 (𝑥(𝑡) + 𝑢(𝑡)), (3.76)

𝑥(𝑡) + 𝑢(𝑡) ≤ 2, (3.77)

|𝑢(𝑡) | ≤ 1, (3.78)

with 𝑥(0) = 0. When 𝛽 = 1, the exact solutions are given in Ref. [68] as 𝑥(𝑡) = 2𝑡 − 1, 𝑢(𝑡) = 1 and

the optimal cost functional with 9 digits is 𝐽 = −0.306852819. We solve the problem by applying

the proposed approach for 𝛽 = 1, and several values of 𝛼, 𝑘 and 𝑀 . First, we write 𝐷𝛽𝑥(𝑡) as

𝐷𝛽𝑥(𝑡) = 𝐶𝑇Ψ
1,1
𝑘,𝑀

(𝑡). (3.79)

Then,

𝑥(𝑡) = 𝐶𝑇 𝐼 𝛽Ψ
1,1
𝑘,𝑀

(𝑡). (3.80)
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Now, by using equations (3.76), (3.79) and (3.80), we get

𝑢(𝑡) =
𝐶𝑇Ψ

1,1
𝑘,𝑀

(𝑡) − 𝑙𝑛2𝐶𝑇 𝐼 𝛽Ψ
1,1
𝑘,𝑀

(𝑡)
𝑙𝑛2

. (3.81)

Next, we substitute 𝑥(𝑡) and 𝑢(𝑡) from equations (3.80) and (3.81) in the inequality constraints

given in equations (3.77) and (3.78) and then collocate at the nodes defined in equation (3.57).

𝐶𝑇 𝐼 𝛽Ψ
1,1
𝑘,𝑀

(𝑡) +
𝐶𝑇Ψ

1,1
𝑘,𝑀

(𝑡) − 𝑙𝑛2𝐶𝑇 𝐼 𝛽Ψ
1,1
𝑘,𝑀

(𝑡)
𝑙𝑛2

≤ 2,

− 1 ≤
𝐶𝑇Ψ

1,1
𝑘,𝑀

(𝑡) − 𝑙𝑛2𝐶𝑇 𝐼 𝛽Ψ
1,1
𝑘,𝑀

(𝑡)
𝑙𝑛2

≤ 1.

Finally, by substituting 𝑥(𝑡) and 𝑢(𝑡) in equation (3.75), we obtain a parameter optimization

problem. By solving the last problem, we can obtain the values of 𝐶.

In Table 3.8 on page 37, we get the AE values for 𝐽 with 𝑘 = 2 and several values of 𝛼 and 𝑀

by using our method. This table suggests that 𝛼 = 1 results in the best AE values for our method.

Table 3.9 on page 41 provides a comparison between the evaluated J values obtained for 𝛽 = 1 by

the proposed method and the methods in [4, 61, 68, 107]. In this table, 𝑀𝑖, (𝑖 = 4, 5, 6, 7), are

the degrees of the hat functions, Bernoulli, Taylor, and Bernstein polynomials, respectively. In

Table 3.10 on page 42, the 𝑙2-norm error values of 𝑥(𝑡) and 𝑢(𝑡) are compared between the present

method and the method in [68]. In this table, 𝐸𝑀𝑥(𝑡) and 𝐸𝑀𝑢(𝑡) are the 𝑙2-norm of the errors of

𝑥(𝑡) and 𝑢(𝑡) and they are given in [68] by

𝐸𝑀𝑥(𝑡) = ©« 1
2𝑘−1(𝑀 + 1)

2𝑘−1 (𝑀+1)∑︁
𝑗=1

(
𝑥(𝑡 𝑗 ) − 𝑥𝑀 (𝑡 𝑗 )

)2ª®¬
1
2

,

𝐸𝑀𝑢(𝑡) = ©« 1
2𝑘−1(𝑀 + 1)

2𝑘−1 (𝑀+1)∑︁
𝑗=1

(
𝑢(𝑡 𝑗 ) − 𝑢𝑀 (𝑡 𝑗 )

)2ª®¬
1
2

,

where 𝑡 𝑗 = 𝑗

2𝑘−1 (𝑀+1) , 𝑗 = 0, 1, ..., 2𝑘−1(𝑀 + 1).

In addition, the graphs of AE functions of 𝑥(𝑡) and 𝑢(𝑡) are shown in figure 3.5 on page 42.
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Table 3.1

Comparison of absolute errors of 𝑥(𝑡) produced by the proposed method and Bessel wavelet
approach [26] with 𝛼 = 1 for Example 3.2.2

t

Present method (𝑘 = 1, 𝑀 = 5) Bessel wavelets (𝑘 = 1, 𝑀2 = 5)

𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1

0 0 0 0 3.84×10−29 3.42×10−29 2.79×10−28

0.1 6.65 × 10−7 3.09 × 10−7 0 1.49 × 10−5 7.50 × 10−6 3.30×10−16

0.2 1.09 × 10−6 4.85 × 10−7 0 4.23 × 10−6 2.71 × 10−6 1.95×10−17

0.3 1.26 × 10−6 5.34 × 10−7 0 3.65 × 10−6 2.21 × 10−6 3.35×10−16

0.4 1.53 × 10−6 6.57 × 10−7 0 9.09 × 10−6 4.52 × 10−6 3.52×10−16

0.5 3.01 × 10−7 1.38 × 10−7 0 1.10 × 10−5 5.39 × 10−6 1.16×10−16

0.6 1.39 × 10−6 6.23 × 10−7 0 6.43 × 10−6 3.30 × 10−6 1.64×10−16

0.7 1.38 × 10−7 1.29 × 10−7 0 1.93 × 10−7 2.07 × 10−7 2.63×10−16

0.8 1.30 × 10−6 5.53 × 10−7 0 1.44 × 10−6 5.62 × 10−7 7.85×10−17

0.9 2.44 × 10−7 1.10 × 10−7 0 4.05 × 10−6 1.75 × 10−6 2.23×10−16

1 1.87×10−17 5.72×10−18 0 4.37×10−17 2.79×10−17 6.10×10−17
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Table 3.2

Comparison of absolute errors of 𝑢(𝑡) with 𝛼 = 1 for Example 3.2.2

t
Present method (𝑘 = 1, 𝑀 = 5) Bessel wavelets (𝑘 = 1, 𝑀2 = 5)

𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1 𝛽 = 0.8 𝛽 = 0.9 𝛽 = 1

0 1.25 × 10−5 5.11 × 10−5 0 2.71 × 10−4 1.29 × 10−4 2.07×10−14

0.1 5.38 × 10−5 2.54 × 10−6 0 1.09 × 10−4 5.58 × 10−5 3.14×10−15

0.2 2.69 × 10−6 1.37 × 10−6 0 5.49 × 10−5 2.79 × 10−5 8.18×10−15

0.3 3.18 × 10−5 1.49 × 10−5 0 6.20 × 10−5 2.93 × 10−5 3.93×10−15

0.4 1.31 × 10−6 7.13 × 10−6 0 8.01 × 10−5 3.73 × 10−5 2.34×10−15

0.5 3.19 × 10−7 1.55 × 10−6 0 8.41 × 10−7 3.09 × 10−6 5.93×10−15

0.6 4.22 × 10−7 1.48 × 10−7 0 9.41 × 10−7 4.71 × 10−5 4.75×10−15

0.7 2.89 × 10−5 1.43 × 10−7 0 9.05 × 10−5 4.59 × 10−5 4.33×10−16

0.8 1.33 × 10−6 6.07 × 10−6 0 8.97 × 10−5 9.85 × 10−6 5.81×10−15

0.9 1.45 × 10−5 1.69 × 10−7 0 2.21 × 10−5 4.54 × 10−5 4.40×10−15

1 2.23 × 10−5 3.46 × 10−5 0 2.87 × 10−4 1.44 × 10−4 1.41×10−14

Table 3.3

Comparison between approximate values of J for various values of 𝛽 and 𝛼 = 1, for Example 3.2.2

𝛽 = 0.7 𝛽 = 0.8 𝛽 = 0.85 𝛽 = 0.9 𝛽 = 1

Present method (𝑘 = 1, 𝑀 = 5) 2.4377 × 10−9 1.0298 × 10−9 5.6172 × 10−10 2.4152 × 10−10 0

Bessel method (𝑘 = 1, 𝑀2 = 5) 1.5115 × 10−8 7.0650 × 10−9 — 1.7599 × 10−9 0
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Table 3.4

Comparison between absolute error values of functions J, x(t), and u(t), at 𝛽 = 1 with 𝛼 = 0.5, for
Example 3.2.3

t
Present method (𝑘 = 1, 𝑀 = 2) Bessel wavelet (𝑘 = 1, 𝑀2 = 5) [26]

𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝐽 𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝐽

0 0 5.5511 × 10−17 4.6906 × 10−33 1.7698 × 10−25 9.3526 × 10−2 —

0.1 6.9389 × 10−18 5.5511 × 10−17 3.8755 × 10−2 4.4211 × 10−3

0.2 9.5409 × 10−18 0 4.4015 × 10−2 9.8306 × 10−3

0.3 1.0408 × 10−17 8.3267 × 10−17 3.9146 × 10−2 1.1924 × 10−2

0.4 0 2.7755 × 10−17 2.8318 × 10−2 1.0805 × 10−2

0.5 0 6.9389 × 10−17 1.4636 × 10−2 1.0656 × 10−2

0.6 0 0 8.0523 × 10−4 1.2465 × 10−5

0.7 3.8164 × 10−17 4.1633 × 10−17 1.0706 × 10−2 1.5475 × 10−2

0.8 7.9797 × 10−17 4.1633 × 10−17 1.7596 × 10−2 1.8067 × 10−2

0.9 1.3878 × 10−17 4.1633 × 10−17 1.7695 × 10−2 1.8344 × 10−2

1 8.3267 × 10−17 3.0646 × 10−17 8.9399 × 10−2 1.4570 × 10−2
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Table 3.5

Comparison between error values of J at 𝛽 = 1 for Example 3.2.4

Method 𝑒𝐽

Proposed method

(𝑘 = 2, 𝑀 = 3) 1.35602 × 10−8

(𝑘 = 2, 𝑀 = 4) 1.67671 × 10−9

(𝑘 = 2, 𝑀 = 5) 5.32699 × 10−10

(𝑘 = 2, 𝑀 = 6) 2.57362 × 10−10

Bernoulli wavelets [11]

(𝑘 = 2, 𝑀4 = 4) 3.45331 × 10−7

(𝑘 = 2, 𝑀4 = 5) 1.19358 × 10−7

(𝑘 = 2, 𝑀4 = 6) 4.21388 × 10−8

(𝑘 = 2, 𝑀4 = 7) 1.75609 × 10−8

Table 3.6

Comparison between 𝐿2 errors of the functions x(t) and u(t), for Example 3.2.4

Method 𝐿2 error of x(t) 𝐿2 error of u(t)

Proposed method

(𝑘 = 2, 𝑀 = 2) 6.13213 × 10−6 2.17741 × 10−4

(𝑘 = 2, 𝑀 = 4) 1.27887 × 10−7 5.89366 × 10−5

(𝑘 = 2, 𝑀 = 6) 1.73215 × 10−7 1.87711 × 10−5

Bernoulli wavelets

(𝑘 = 2, 𝑀4 = 3) 6.46147 × 10−5 5.04006 × 10−3

(𝑘 = 2, 𝑀4 = 5) 7.34298 × 10−6 4.88532 × 10−4

(𝑘 = 2, 𝑀4 = 7) 1.76367 × 10−6 1.87480 × 10−4
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Table 3.7

The absolute error values of J and 𝐿2 norm errors of control and state functions at 𝛽 = 1 for
Example 3.2.5

𝑒𝐽 𝐿2 error of 𝑥1(𝑡) 𝐿2 error of 𝑥2(𝑡) 𝐿2 error of 𝑢(𝑡)

Proposed method

𝑘 = 2, 𝑀 = 4 4.09635 × 10−6 4.74779 × 10−6 6.91619 × 10−7 1.04247 × 10−6

𝑘 = 2, 𝑀 = 5 3.72269 × 10−6 4.58891 × 10−6 6.41141 × 10−8 5.45539 × 10−7

𝑘 = 2, 𝑀 = 6 3.68642 × 10−6 4.57692 × 10−6 1.55831 × 10−9 5.26672 × 10−7

𝑘 = 1, 𝑀 = 4 2.43644 × 10−5 2.18562 × 10−5 2.95435 × 10−5 1.64708 × 10−6

𝑘 = 1, 𝑀 = 5 5.76070 × 10−6 5.53117 × 10−6 2.89979 × 10−6 2.48669 × 10−6

𝑘 = 1, 𝑀 = 6 3.87449 × 10−6 4.64578 × 10−6 2.59723 × 10−7 2.33632 × 10−6

Bernoulli wavelet method

𝑘 = 1, 𝑀4 = 5 — 1.16095 × 10−4 1.22992 × 10−4 2.73136 × 10−5

𝑘 = 1, 𝑀4 = 6 — 1.19411 × 10−5 1.02083 × 10−5 3.92688 × 10−6

𝑘 = 1, 𝑀4 = 7 — 4.66170 × 10−6 7.27096 × 10−7 1.39120 × 10−6

Table 3.8

The AE values of 𝐽 obtained by our method at 𝛽 = 1 with different 𝛼 for Example 3.3.2.3

(𝑘, 𝑀) 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1 𝛼 = 1.5 𝛼 = 2

𝑘 = 2, 𝑀 = 2 2.81 × 10−1 1.59 × 10−1 1.33 × 10−1 1.09 × 10−5 2.69 × 10−2 1.90 × 10−1

𝑘 = 2, 𝑀 = 3 2.74 × 10−1 1.93 × 10−1 1.33 × 10−1 4.18 × 10−7 2.69 × 10−2 3.34 × 10−1

𝑘 = 2, 𝑀 = 4 2.84 × 10−1 1.63 × 10−1 1.33 × 10−1 5.35 × 10−9 1.72 × 10−1 5.41 × 10−1

𝑘 = 2, 𝑀 = 5 2.64 × 10−1 1.93 × 10−1 1.33 × 10−1 6.74 × 10−10 3.37 × 10−1 7.19 × 10−1
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Figure 3.2

Graphs of absolute error functions of 𝑥1(𝑡), 𝑥2(𝑡), and 𝑢(𝑡) for 𝛼 = 𝛽 = 1, 𝑘 = 1, and 𝑀 = 6 for
Example 3.2.5
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Figure 3.3

Graphs of the approximate functions of 𝑥1(𝑡), 𝑥2(𝑡), and 𝑢(𝑡) for 𝑘 = 1, 𝑀 = 4, and several values
of 𝛽 along with the exact functions for Example 3.2.5
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Figure 3.4

Numerical values of 𝑇 (𝑡), 𝐼 (𝑡), 𝑁 (𝑡), 𝐹 (𝑡), 𝐷1(𝑡), and 𝑢(𝑡) for Example 3.2.6
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Table 3.9

A comparison of the evaluated values of J, between different methods for Example 3.3.2.3

Method 𝐽 𝑒𝐽

Bernstein polynomials 2013 [4]

𝑀2 = 3 -0.30685 2.82 × 10−6

Bernoulli hybrid functions 2018 [61]

𝑁 = 1, 𝑀5 = 3 -0.30683 2.28 × 10−5

Taylor hybrid functions 2018 [107]

𝑁 = 1, 𝑀6 = 3 -0.30683 2.29 × 10−5

Modified hat functions 2019 [68]

𝑀7 = 8 -0.3068511 1.72 × 10−6

𝑀7 = 16 -0.3068527 1.19 × 10−7

𝑀7 = 32 -0.3068528 1.94 × 10−8

Present method

𝑘 = 1, 𝑀 = 3 -0.306854727 8.09 × 10−6

𝑘 = 1, 𝑀 = 5 -0.306853257 4.38 × 10−7

𝑘 = 2, 𝑀 = 3 -0.306852901 4.18 × 10−7

𝑘 = 2, 𝑀 = 5 -0.306852820 6.74 × 10−10

𝑘 = 3, 𝑀 = 3 -0.306852794 2.45 × 10−8

𝑘 = 3, 𝑀 = 4 -0.3068528195 8.32 × 10−11

𝐽 given in [68] -0.306852819
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Table 3.10

The 𝑙2-norm errors of the state and control variables for Example 3.3.2.3

Method 𝐸𝑀𝑥(𝑡) 𝐸𝑀𝑢(𝑡)

Proposed method

𝑘 = 1, 𝑀 = 3 1.6951 × 10−5 2.8690 × 10−4

𝑘 = 1, 𝑀 = 5 8.4380 × 10−6 3.1356 × 10−4

𝑘 = 2, 𝑀 = 3 8.0694 × 10−7 1.3211 × 10−5

𝑘 = 2, 𝑀 = 5 7.3816 × 10−9 2.8974 × 10−7

Modified hat functions 2019 [68]

𝑀7 = 2 8.07 × 10−4 —

𝑀7 = 4 4.99 × 10−5 —

𝑀7 = 8 3.09 × 10−6 —

𝑀7 = 16 1.92 × 10−7 —

𝑀7 = 32 1.20 × 10−8 —

Figure 3.5

The AE functions of 𝑥(𝑡) and 𝑢(𝑡) for 𝛼 = 𝛽 = 1, 𝑘 = 2 and 𝑀 = 4 for Example 3.3.2.3
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CHAPTER IV

DISTRIBUTED-ORDER FRACTIONAL OPTIMAL CONTROL PROBLEMS

The fractional differential operators in dynamical systems not only appear as discrete fractional,

but they also possess a continuous nature in a sense that their order is distributed over a given range

[110]. Distributed-order fractional models have pore flexibility to explain real physical phenomena

in disordered, viscoelastic media, and composite materials [19, 48, 62, 95, 92].

This section focuses on solving optimal control problems containing distributed-order frac-

tional derivatives.

Definition 3

For 𝜌(`) ≥ 0, 𝜌(`) ≠ 0,
∫ 1
0 𝜌(`)𝑑` < ∞, and ` ∈ (0, 1), the distributed-order of 𝑓 (𝑥) is given by

𝐷𝜌(`) 𝑓 (𝑥) =
∫ 1

0
𝜌(`)𝐷` 𝑓 (𝑥)𝑑`. (4.1)

4.1 Problem statement and numerical approach

Consider the DO-FOCP

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
𝐹 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡, (4.2)

subject to

𝐷𝜌(`)𝑥(𝑡) = 𝐺 (𝑡, 𝑥(𝑡)) + a(𝑡)𝑢(𝑡), ` ∈ (0, 1), (4.3)

43



where

𝐷𝜌(`)𝑥(𝑡) =
∫ 1

0
𝜌(`)𝐷`𝑥(𝑡)𝑑`

and

𝑥(0) = 𝑥0, (4.4)

where a(𝑡) ≠ 0, 𝐹, and 𝐺 are continuous functions.

Remark 1. For the case when 𝜌(`) = 𝛿(` − ˆ̀), where ˆ̀ ∈ (0, 1), the left hand side of Eq. (4.3)

becomes 𝐷 ˆ̀𝑥(𝑡) (see [110]).

To solve the problem in Eqs. (4.2)-(4.4), first, by using Eqs. (2.6) and (2.7), we expand ¤𝑥(𝑡) by

GFOCWs as follows:

¤𝑥(𝑡) ≃ 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡). (4.5)

Then by applying the operator 𝐼1 in Eq. (4.5), we get

𝑥(𝑡) ≃ 𝐶𝑇 𝐼1Ψℎ,𝛼

𝑘,𝑀
(𝑡) + 𝑥0, (4.6)

from the above equation, we can get

𝐷`𝑥(𝑡) ≃ 𝐶𝑇 𝐼1−`Ψℎ,𝛼

𝑘,𝑀
(𝑡). (4.7)

Then by using Eqs. (4.3), (4.6) and (4.7), we have

𝑢(𝑡) ≃ 1
a(𝑡)

(∫ 1

0
𝜌(`) (𝐶𝑇 𝐼1−`Ψℎ,𝛼

𝑘,𝑀
(𝑡))𝑑` − 𝐺

(
𝑡, 𝐶𝑇 𝐼1Ψℎ,𝛼

𝑘,𝑀
(𝑡) + 𝑥0

))
. (4.8)

Now, by substituting Eqs. (4.6) and (4.8) in the cost function given in (4.2), we get

𝐽 (𝑥, 𝑢) =
∫ 1

0
𝐹 (𝑡, 𝐶𝑇 𝐼1Ψℎ,𝛼

𝑘,𝑀
(𝑡) + 𝑥0, (4.9)

1
a(𝑡)

(∫ 1

0
𝜌(`) (𝐶𝑇 𝐼1−`Ψℎ,𝛼

𝑘,𝑀
(𝑡))𝑑` − 𝐺

(
𝑡, 𝐶𝑇 𝐼1Ψℎ,𝛼

𝑘,𝑀
(𝑡) + 𝑥0

)))
𝑑𝑡,

(4.10)
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which is a parameter optimization problem that can be solved numerically. Our goal is to find 𝐶

which minimizes 𝐽 in Eq. (4.9).

4.2 Error bound for distributed-order fractional derivative

In the following theorems, the error bounds of distributed-order fractional derivative and

proposed method are provided.

Theorem 5

Suppose 𝑓 ∈ 𝐻b (0, 1) with b ≥ 0, 𝑀 ≥ 𝑟, and ∥𝜌(`)∥𝐿2 (0,1) ≤ D, then [79]

∥𝐷𝜌(`) 𝑓 − 𝐷𝜌(`) (P2𝑘−1

𝑀 𝑓 )∥𝐿2 (0,1) ≤ 1.085D𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b ∥ 𝑓 (b) ∥𝐿2 (0,1) . (4.11)

Proof: By using Eq. (2.12) given in Theorem 2, we have

∥𝐷𝜌(`) 𝑓 − 𝐷𝜌(`) (P2𝑘−1

𝑀 𝑓 )∥𝐿2 (0,1) = ∥
∫ 1

0
𝜌(`) (𝐷` 𝑓 − 𝐷` (P2𝑘−1

𝑀 𝑓 ) 𝑑`∥𝐿2 (0,1)

≤
∫ 1

0
∥𝜌(`)∥𝐿2 (0,1) ∥𝐷` 𝑓 − 𝐷` (P2𝑘−1

𝑀−1 𝑓 ∥𝐿2 (0,1) 𝑑`

≤
∫ 1

0
D

𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b ∥ 𝑓 (b) ∥𝐿2 (0,1)

Γ(2 − `) 𝑑`

= 1.085D𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b ∥ 𝑓 (b) ∥𝐿2 (0,1) .

(4.12)

Thus, the proof is complete.
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Theorem 6

Suppose 𝑥(𝑡) ∈ 𝐻b (0, 1) with b ≥ 0, 𝑀 ≥ 𝑟, 𝐹 and 𝐺 in the Eqs. (4.2) and (4.3) is Lipschitz with

the Lipschitz constants _1, and _2 respectively, and ∥ 1
a(𝑡) ∥𝐿2 (0,1) ≤ C, then the error bound of the

proposed approach is as follows [79]:

∥E2𝑘−1

𝑀 ∥𝐿2 (0,1) ≤ (_1 + C_1_2) 𝑐𝑀−b (2𝑘−1)−b ∥𝑥 (b) ∥𝐿2 (0,1)

+ 1.085C_1 D𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b ∥𝑥 (b) ∥𝐿2 (0,1) .

Proof: According to the problem stated in Eqs. (4.2)-(4.4), we have

E2𝑘−1

𝑀


𝐿2 (0,1)

=

𝐽 (𝑥, 𝑢) − 𝐽 (P2𝑘−1

𝑀 𝑥,P2𝑘−1

𝑀 𝑢)

𝐿2 (0,1)

=

∫ 1

0
𝐹

(
𝑡, 𝑥(𝑡), 1

a(𝑡)

(
𝐷𝜌(`)𝑥(𝑡) − 𝐺 (𝑡, 𝑥(𝑡))

))
−𝐹

(
𝑡,P2𝑘−1

𝑀 𝑥(𝑡), 1
a(𝑡)

(
𝐷𝜌(`)P2𝑘−1

𝑀 𝑥(𝑡) − 𝐺 (𝑡,P2𝑘−1

𝑀 𝑥(𝑡))
))

𝐿2 (0,1)

≤ _1

𝑥(𝑡) − P2𝑘−1

𝑀 𝑥(𝑡)

𝐿2 (0,1)

+ C_1

𝐷𝜌(`)𝑥(𝑡) − 𝐷𝜌(`)P2𝑘−1

𝑀 𝑥(𝑡)

𝐿2 (0,1)

+ C_1_2

𝑥(𝑡) − P2𝑘−1

𝑀 𝑥(𝑡)

𝐿2 (0,1)

≤ (_1 + C_1_2)𝑐𝑀−b (2𝑘−1)−b
𝑥b

𝐿2 (0,1)

+ 1.085C_1D𝑐𝑀2𝑟− 1
2−b (2𝑘−1)𝑟−b

𝑥b
𝐿2 (0,1) .

4.3 Illustrative Examples

Example 4.3.1. Consider the DO-FOCP [79, 90]:

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = 1
2

∫ 1

0

[(
𝑥(𝑡) − 𝑡𝛽

)2
+

(
𝑢(𝑡) − 𝑡𝛽 − Γ(𝛽 + 1)

)2
]
𝑑𝑡, (4.13)
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with ∫ 1

0
𝜌(`)𝐷`𝑥(𝑡)𝑑` = −𝑥(𝑡) + 𝑢(𝑡), 𝑡 ∈ [0, 1] and 𝑥(0) = 1. (4.14)

In the case when 𝜌(`) = 𝛿(` − 𝛽), the optimal state and control functions are 𝑥(𝑡) = 𝑡𝛽, and

𝑢(𝑡) = 𝑡𝛽 + Γ(𝛽 + 1), with corresponding minimum cost functional 𝐽𝑜𝑝𝑡 = 0. For solving this

problem, the authors in [90] have compared the results obtained by Chebyshev wavelet method

(CWM), cosine and sine wavelet method (CASWM), Laguerre wavelet method (LaWM), Legendre

wavelet method (LWM), and variational iteration method (VIM). Moreover, this problem has been

solved in [79] by applying Bernstein wavelet method (BWM) and using the following distribution

functions: 

Case 1: 𝜌(`) = 𝛿(` − 1),

Case 2: 𝜌(`) = 𝛿(` − 0.99),

Case 3: 𝜌(`) = 𝛿(` − 0.9),

Case 4: 𝜌(`) = 𝛿(` − 0.8),

Case 5: 𝜌(`) = 𝑁 (0.8,0.05) (`),

Case 6: 𝜌(`) = 𝑁 (0.5,0.1) (`),

(4.15)

For this problem, by using the distribution functions 𝜌(`) = 𝛿(` − 𝛽) when 𝛽 = 1 and 0.5, we

can obtain the exact solutions by selecting 𝛼 = 𝛽, 𝑘 = 1, and 𝑀 = 3 as follows:

For Case 1, when 𝜌(`) = 𝛿(` − 1), we expand 𝐷1𝑥(𝑡) by GFOCW as

𝐷1𝑥(𝑡) = 𝐶𝑇Ψ
1,1
1,3 (𝑡). (4.16)
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Then,

𝑥(𝑡) = 𝐶𝑇 𝐼1Ψ1,1
1,3 (𝑡). (4.17)

Now, by using Eqs. (4.14)-(4.17), we obtain

𝑢(𝑡) =
∫ 1

0
𝛿(` − 1)𝐷`𝑥(𝑡)𝑑` + 𝑥(𝑡)

= 𝐶𝑇Ψ
1,1
1,3 (𝑡) + 𝐶𝑇 𝐼1Ψ1,1

1,3 (𝑡). (4.18)

By substituting Eqs. (4.17) and (4.18) in Eq. (4.13), and then finding the minimum of the resulted

𝐽, we obtain

𝐶 =
[
𝑐1,0, 𝑐1,1, 𝑐1,2

]𝑇
=

[√︂
𝜋

2
, 0, 0

]𝑇
.

Finally we get 𝑥(𝑡) = 𝑡, 𝑢(𝑡) = 1 + 𝑡, and 𝐽 = 0 which are the exact solutions.

For 𝛽 = 0.5, by using the similar argument we get 𝐶 =

[
𝜋

2
√

2
, 0, 0

]𝑇
. For this case, we obtain

𝑥(𝑡) = 𝑡
1
2 and 𝑢(𝑡) = 𝑡

1
2 + 1

2
√
𝜋 which are the exact solutions. The exact solutions for the previous

case and this case were not obtained in [79] and [90].

For Cases 2-6, our results are compared with those of the BWM given in [79] in Table 4.1 on

the next page, Table 4.2 on page 50, and Table 4.3 on page 51. In Table 4.1 on the following page,

we compare the absolute errors (AEs) of 𝐽 by applying our method with 𝛼 = 1, 𝑘 = 2, 𝑀 = 3,

and the method in [79] with 𝑘 = 2, 𝑀1 = 4 for 𝜌(`) = 𝛿(` − 𝛽) with 𝛽 = 0.99, 0.9, and 0.8. In

this table, 𝑀1 is the degree of the Bernstein polynomials. In Table 4.2 on page 50, we compare

the AEs of 𝑥(𝑡) and 𝑢(𝑡) for 𝜌(`) = 𝛿(` − 0.99) by applying our method with 𝑘 = 1, 𝑀 = 4, and

the BWM with 𝑘 = 1 and 𝑀1 = 10. In Table 4.3 on page 51, we give the AE values of 𝐽 with

𝑘 = 2, 𝑀 = 4 for the present method by using 𝜌(`) = 𝑁 (0.8,0.05) (`) and 𝑁 (0.5,0.1) (`) with several

values of 𝛼. It is seen from this table that 𝛼 = 0.15 gives the best AE values for 𝐽 by using the
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Table 4.1

Comparison between the AEs of 𝐽 for different distribution functions for Example 4.3.1

Present method BWM [79]

𝜌(`) 𝑘 = 2, 𝑀 = 3 𝑘 = 2, 𝑀1 = 4

𝛿(` − 0.99) 2.5091 × 10−17 2.11834 × 10−8

𝛿(` − 0.9) 1.6823 × 10−17 4.48006 × 10−6

𝛿(` − 0.8) 2.2767 × 10−17 4.08630 × 10−5

present method. We also give the AE values for 𝐽 obtained by the BWM with 𝑘 = 2, 𝑀1 = 4

and the same distribution 𝜌(`) in this table. Besides, figure 4.1 on page 52 is the graphs of the

approximations of 𝑥(𝑡) and 𝑢(𝑡) by using our method with 𝜌(`) = 𝑁 (0.8,0.05) (`), 𝛿(` − 𝛽) with

𝛽 = 1, 0.99, 0.9 and 0.8. Figure 4.2 on page 53 is the graphs of the AE functions for 𝑥(𝑡) and 𝑢(𝑡)

by using the present method with 𝑘 = 2, 𝑀 = 4 and 𝜌(`) = 𝛿(` − 0.99).

Example 4.3.2. Consider the DO-FOCP [79, 90, 110]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = 1
2

∫ 1

0
[𝑥2(𝑡) + 𝑢2(𝑡)]𝑑𝑡, (4.19)

with the dynamical system∫ 1

0
𝜌(`)𝐷`𝑥(𝑡)𝑑` = 𝑢(𝑡) − 𝑥(𝑡), 𝑡 ∈ [0, 1], and 𝑥(0) = 1. (4.20)

For 𝜌(`) = 𝛿(` − 1), the optimal values are

𝑥(𝑡) = [𝑠𝑖𝑛ℎ(
√

2 𝑡) + 𝑐𝑜𝑠ℎ(
√

2 𝑡),

𝑢(𝑡) = ([ +
√

2)𝑠𝑖𝑛ℎ(
√

2 𝑡) + (
√

2 [ + 1)𝑐𝑜𝑠ℎ(
√

2 𝑡),
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Table 4.2

Comparison of AE values of 𝑥(𝑡) and 𝑢(𝑡) at 𝜌(`) = 𝛿(` − 0.99) for Example 4.3.1

Present method (𝑘 = 1, 𝑀 = 4) BWM (𝑘 = 1, 𝑀 = 10)

t 𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝑥(𝑡) 𝑒𝑢(𝑡)

0.1 1.68 × 10−17 8.33 × 10−17 2.68 × 10−5 2.68 × 10−5

0.2 3.20 × 10−17 2.77 × 10−17 3.64 × 10−6 3.64 × 10−6

0.3 1.21 × 10−17 1.11 × 10−16 2.94 × 10−6 2.94 × 10−6

0.4 5.56 × 10−18 5.55 × 10−17 2.49 × 10−5 2.49 × 10−5

0.5 5.08 × 10−17 2.22 × 10−16 1.55 × 10−6 1.55 × 10−6

0.6 6.45 × 10−17 2.22 × 10−16 5.04 × 10−7 5.04 × 10−7

0.7 7.34 × 10−17 3.33 × 10−16 1.81 × 10−5 1.81 × 10−5

0.8 2.59 × 10−17 1.11 × 10−16 2.95 × 10−6 2.95 × 10−6

0.9 1.38 × 10−17 3.33 × 10−16 9.25 × 10−6 9.25 × 10−6

where

[ = −𝑐𝑜𝑠ℎ(
√

2) +
√

2𝑠𝑖𝑛ℎ(
√

2)
√

2𝑐𝑜𝑠ℎ(
√

2) + 𝑠𝑖𝑛ℎ(
√

2)
≃ −0.98, (4.21)

and

𝐽 = 0.1929092980931.

We solve this problem with the distribution functions as Example 4.3.1 given in Eq. (4.15).

Table 4.4 on page 54 and Table 4.5 on page 54 give the AE values for 𝐽 and the maximal AE values

for 𝑥(𝑡) and 𝑢(𝑡) by using the present method for Cases 1 and 4 in Eq. (4.15), respectively. In

these tables, we use 𝑘 = 1, 𝑀 = 4 and different values of 𝛼. Table 4.4 on page 54 and Table 4.5

on page 54 suggest that we get the best results when 𝛼 = 𝛽. In Table 4.6 on page 55, we compare
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Table 4.3

AE values for 𝐽 for Example 4.3.1

Present method BWM

𝜌(`) 𝛼 = 0.15 𝛼 = 0.5 𝛼 = 1 𝛼 = 1.5

𝑁 (0.8,0.05) (`) 1.67 × 10−7 3.77 × 10−6 2.52 × 10−4 8.85 × 10−4 9.69301 × 10−4

𝑁 (0.5,0.1) (`) 5.73 × 10−6 1.45 × 10−4 2.257 × 10−3 5.69 × 10−3 9.20957 × 10−3

the values of 𝐽 with different distribution functions given in Cases 1-6 in Eq. (4.15) by using

our method together with Legendre collocation method (LCM) [110], BWM [79], CWM, LaWM,

CASWM, LWM [90], Adomian decomposition method (ADM) [111], and VIM [5].

Example 4.3.3. Consider the following DO-FOCP [79, 90, 110]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = 1
2

∫ 1

0
[𝑥2(𝑡) + 𝑢2(𝑡)]𝑑𝑡, (4.22)

subject to ∫ 1

0
𝜌(`)𝐷`𝑥(𝑡)𝑑` = 𝑢(𝑡) + 𝑡 𝑥(𝑡), 𝑡 ∈ [0, 1], and 𝑥(0) = 1. (4.23)

The exact value of 𝐽 is not known. We solve this problem with 𝛼 = 1 by using 𝑘 = 1, 2 and

𝑀 = 4, 5, 6 for the distribution functions given in Eq. (4.15). Table 4.7 on page 56 gives the values

of 𝐽 by using our method together with Legendre collocation method (LCM) [110], BWM [79],

CWM, LaWM, CASWM, LWM [90] and VIM [5]. Figure 4.3 on page 54 gives the graphs of

the approximate values of 𝑥(𝑡) and 𝑢(𝑡) by using our method with 𝜌(`) given in Cases 1-5 in

Eq. (4.15).
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Figure 4.1

The approximate functions of 𝑥(𝑡) and 𝑢(𝑡) for several distribution functions for Example 4.3.1

Example 4.3.4. Consider the following DO-FOCP [79]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = 1
2

∫ 1

0

(
0.625 𝑥2(𝑡) + 0.5 𝑥(𝑡)𝑢(𝑡) + 0.5𝑢2(𝑡)

)
, (4.24)

subject to ∫ 1

0
𝜌(`)𝐷`𝑥(𝑡)𝑑` = 0.5𝑥(𝑡) + 𝑢(𝑡), 𝑡 ∈ [0, 1], and 𝑥(0) = 1. (4.25)

For 𝜌(`) = 𝛿(` − 1), we have [79]

𝑥(𝑡) = 𝑐𝑜𝑠ℎ(1 − 𝑡)
𝑐𝑜𝑠ℎ(1) , 𝑢(𝑡) = −(𝑡𝑎𝑛ℎ(1 − 𝑡) + 0.5)𝑐𝑜𝑠ℎ(1 − 𝑡)

𝑐𝑜𝑠ℎ(1) ,

and

𝐽 =
𝑒2𝑠𝑖𝑛ℎ(2)
(1 + 𝑒2)2 ≃ 0.38079707797788.

The proposed method with 𝛼 = 1 is used to solve this problem for 𝑘 = 1, 2 and 𝑀 = 4, 5, 6.

Table 4.8 on page 57 gives the values of 𝐽 by applying the present method together with the BWM

[79] for the distribution functions given in Eq. (4.15). In Table 4.9 on page 58, we give the AE
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Figure 4.2

The AE functions of 𝑥(𝑡) and 𝑢(𝑡) with 𝑘 = 2, 𝑀 = 4 for 𝜌(`) = 𝛿(` − 0.99) for Example 4.3.1

values of 𝑥(𝑡) and 𝑢(𝑡) when 𝜌(`) = 𝛿(` − 1) by using the present method with 𝑘 = 1, 𝑀 = 10

and the BWM in [79] with 𝑘 = 1 and 𝑀1 = 10. Figure 4.4 on page 57 gives the graphs of the

approximate values of 𝑥(𝑡) and 𝑢(𝑡) by applying our method with 𝑘 = 2, 𝑀 = 4 for the distribution

functions given in Eq. (4.15). Figure 4.5 on page 58 shows the AE functions for 𝑥(𝑡) and 𝑢(𝑡) for

the distribution function 𝜌(`) = 𝛿(` − 1).
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Table 4.4

AE values for 𝜌(`) = 𝛿(` − 1) with different values of 𝛼, 𝑘 = 1 and 𝑀 = 4, for Example 4.3.2

𝛼 0.5 0.75 1 1.5 2

𝑒𝐽 1.15 × 10−6 7.44 × 10−6 1.46 × 10−7 2.03 × 10−4 9.86 × 10−4

Max 𝐴𝐸𝑥(𝑡) 1.97 × 10−4 4.37 × 10−4 6.43 × 10−5 3.17 × 10−3 8.53 × 10−3

Max 𝐴𝐸𝑢(𝑡) 2.02 × 10−3 6.19 × 10−3 1.77 × 10−3 9.11 × 10−2 1.68 × 10−1

Table 4.5

AE values for 𝜌(`) = 𝛿(` − 0.8) with different values of 𝛼, 𝑘 = 1 and 𝑀 = 4, for Example 4.3.2

𝛼 0.5 0.7 0.8 0.9 1

𝑒𝐽 2.55 × 10−2 2.58 × 10−2 2.51 × 10−2 2.58 × 10−2 2.58 × 10−2

Max 𝑒𝑥(𝑡) 2.76 × 10−2 2.79 × 10−2 2.75 × 10−2 2.82 × 10−2 2.84 × 10−2

Max 𝑒𝑢(𝑡) 1.67 × 10−2 1.35 × 10−2 9.31 × 10−3 2.55 × 10−2 5.21 × 10−2

Figure 4.3

Approximate functions of 𝑥(𝑡) (left), and 𝑢(𝑡) (right) for different distribution functions for
Example 4.3.3
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Table 4.6

Comparison of approximate values of 𝐽 for several distribution functions for Example 4.3.2

𝜌(`) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

LCM [110] 0.192909 - 0.179690 0.167347 0.165906 -

BWM (𝑘 = 2, 𝑀 = 5)[79] 0.183102 0.181852 0.169226 0.153519 0.144717 0.118702

CWM (𝑘 = 1, 𝑀 = 4) [90] 0.192921 0.19155 0.179641 0.167328 - -

LaWM (𝑘 = 1, 𝑀 = 4) [90] 0.192604 0.19169 0.185942 0.181798 - -

CASWM (𝑘 = 1, 𝑀 = 4) [90] 0.196914 0.192572 0.180555 0.168072 - -

LWM (𝑘 = 1, 𝑀 = 4) [90] 0.192909 0.191531 0.179529 0.167078 - -

ADM [111] 0.192909 0.19155 0.17962 0.16740 - -

VIM [5] 0.192909 0.19153 0.17953 0.16711 - -

Present method

𝑘 = 1, 𝑀 = 4 0.1929094450240 0.19153090 0.179533 0.167098 0.173066 0.149310

𝑘 = 1, 𝑀 = 5 0.1929092989576 0.19153064 0.179529 0.167083 0.172006 0.144279

𝑘 = 1, 𝑀 = 6 0.1929092980957 0.19153063 0.179528 0.167078 0.171469 0.141306

𝑘 = 2, 𝑀 = 4 0.1929092987957 0.19152875 0.179527 0.167078 0.168267 0.141700

𝑘 = 2, 𝑀 = 5 0.1929092980941 0.19152755 0.179524 0.167072 0.167465 0.139448

𝑘 = 2, 𝑀 = 6 0.1929092980931 0.19152723 0.179523 0.167072 0.167464 0.139098

𝐽 exact 0.1929092980931
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Table 4.7

Approximate values of 𝐽 for distribution functions given in Eq. (4.15) for Example 4.3.3

𝜌(`) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

LCM (M = 15) [110] 0.484268 - 0.476446 0.460500 0.451530 -

BWM (𝑘 = 2, 𝑀 = 5) [79] 0.399662 0.399579 0.389403 0.364130 0.351287 0.319455

CWM (𝑘 = 1, 𝑀 = 4) [90] 0.484232 0.48343 0.475881 0.467005 - -

LaWM (𝑘 = 1, 𝑀 = 4) [90] 0.483476 0.482572 0.473351 0.459714 - -

CASWM (𝑘 = 1, 𝑀 = 4) [90] 0.500511 0.499755 0.492513 0.483723 - -

LWM (𝑘 = 1, 𝑀 = 4) [90] 0.484268 0.483463 0.475886 0.466993 - -

VIM [5] 0.48426 0.48346 0.47593 0.46722 - -

Present method

𝑘 = 1, 𝑀 = 4 0.484268503082 0.48346356 0.4758855 0.4669872 0.467826 0.445432

𝑘 = 1, 𝑀 = 5 0.484267696480 0.48346265 0.4758827 0.4669781 0.467182 0.442661

𝑘 = 1, 𝑀 = 6 0.484267696237 0.48346265 0.4758827 0.4669781 0.467054 0.442106

𝑘 = 2, 𝑀 = 4 0.484267707008 0.48340658 0.4758169 0.466901 0.467053 0.442717

𝑘 = 2, 𝑀 = 5 0.484267696228 0.48333266 0.4757263 0.466787 0.466603 0.441134

𝑘 = 2, 𝑀 = 6 0.484267696228 0.48328334 0.4756663 0.466712 0.466523 0.440962
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Table 4.8

Comparison between the obtained 𝐽 values for distribution functions given in Eq. (4.15) for
Example 4.3.4

𝜌(`) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

BWM [79] 0.380797 0.379459 0.367210 0.353386 0.364870 0.310670

(𝑘 = 2, 𝑀 = 5)

Present method

𝑘 = 1, 𝑀 = 4 0.38079708031618 0.379407283 0.3667054 0.352312 0.352994 0.312932

𝑘 = 1, 𝑀 = 5 0.38079707800506 0.379407283 0.3667052 0.352311 0.352758 0.311821

𝑘 = 1, 𝑀 = 6 0.38079707797789 0.379407282 0.3667052 0.352310 0.352607 0.311561

𝑘 = 2, 𝑀 = 4 0.38079707798995 0.37938532 0.3666534 0.3522844 0.352654 0.311132

𝑘 = 2, 𝑀 = 5 0.38079707797788 0.37937273 0.3666215 0.3522649 0.352499 0.310395

𝑘 = 2, 𝑀 = 6 0.38079707797788 0.37935726 0.3665842 0.3522463 0.352463 0.310155

𝐽 exact 0.38079707797788

Figure 4.4

Graphs of the approximate functions of 𝑥(𝑡) and 𝑢(𝑡) with 𝑘 = 2, 𝑀 = 4 for various choices of
distribution function for Example 4.3.4
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Table 4.9

Comparison of AE values of 𝑥(𝑡) and 𝑢(𝑡) for 𝜌(`) = 𝛿(` − 1) for Example 4.3.4

Present method (𝑘 = 1, 𝑀 = 10) BWM (𝑘 = 1, 𝑀 = 10) [79]

t 𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝑥(𝑡) 𝑒𝑢(𝑡)

0.1 1.29 × 10−15 1.61 × 10−13 2.39 × 10−13 2.94 × 10−11

0.2 1.96 × 10−15 1.32 × 10−13 5.01 × 10−12 4.27 × 10−11

0.3 5.33 × 10−15 5.80 × 10−14 4.05 × 10−12 4.24 × 10−11

0.4 5.19 × 10−15 5.81 × 10−14 2.63 × 10−12 2.09 × 10−11

0.5 4.20 × 10−16 1.24 × 10−13 6.16 × 10−12 2.39 × 10−11

0.6 5.08 × 10−15 7.22 × 10−14 5.95 × 10−12 2.69 × 10−11

0.7 5.07 × 10−15 4.01 × 10−14 4.81 × 10−12 1.24 × 10−11

0.8 2.58 × 10−15 1.15 × 10−13 7.83 × 10−12 1.93 × 10−11

0.9 1.17 × 10−15 1.44 × 10−13 7.07 × 10−12 1.95 × 10−11

Figure 4.5

Graphs of the AE functions of 𝑥(𝑡) and 𝑢(𝑡) with 𝑘 = 2, 𝑀 = 4, at 𝜌(`) = 𝛿(` − 1) for Example
4.3.4
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CHAPTER V

VARIABLE-ORDER FRACTIONAL OPTIMAL CONTROL PROBLEMS

VO-FOCPs can be considered as a kind of FOCPs dealing with variable-order fractional

derivative operator in their dynamic system, i.e. order of the derivative operator is allowed to take

any given function. Variable-order operators have memory property, therefore, they have become

a powerful tool for modeling complex systems in science and engineering and there has been

a growing interest in solving problems containing variable-order fractional derivatives. Several

schemes have been developed to find numerical solutions of such problems, for instance, Chebyshev

cardinal function method in [40], transcendental Bernstein series method in [33], and Legendre

wavelet method in [38].

5.1 Problem statement

Consider the following VO-FOCP

min 𝐽 (𝑥, 𝑢) =
∫ 1

0
𝐹 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡, (5.1)

subject to the variable-order fractional dynamical system

𝐷𝛽(𝑡)𝑥(𝑡) = 𝐺 (𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑛 − 1 < 𝛽(𝑡) ≤ 𝑛, 𝑡 ∈ [0, 1], (5.2)

with

𝑥 (𝑘) (0) = _𝑘 , 𝑘 = 0, 1, 2, ..., 𝑛 − 1, (5.3)
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where 𝐹 and 𝐺 are given functions, _𝑘 for 𝑘 = 0, 1, 2, ..., 𝑛 − 1 are real constants, and 𝑛 is a

positive integer. The problem is to minimize/maximize the functional cost 𝐽 in Eq. (5.1) subject to

Eqs. (5.2) and (5.3). The existence and uniqueness of this problem has been discussed in [9].

5.2 Method of solution

First, we approximate 𝐷𝑛𝑥(𝑡) and 𝑢(𝑡) by using (2.5) to obtain

𝐷𝑛𝑥(𝑡) ≃ 𝐶𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (5.4)

and

𝑢(𝑡) ≃ 𝐸𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡), (5.5)

where Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) is given in Eq. (2.7), and 𝐶 and 𝐸 are unknown constants given by

𝐶 = [𝑐1,0, ..., 𝑐1,𝑀 , 𝑐2,0, ..., 𝑐2,𝑀 , ..., 𝑐2𝑘−1,0, ..., 𝑐2𝑘−1,𝑀]𝑇 ,

𝐸 = [𝑒1,0, ..., 𝑒1,𝑀 , 𝑒2,0, ..., 𝑒2,𝑀 , ..., 𝑒2𝑘−1,0, ..., 𝑒2𝑘−1,𝑀]𝑇 .

By applying 𝐼𝑛 in Eq. (5.4) and using Proposition 1, we have

𝑥(𝑡) ≃ 𝐶𝑇 𝐼𝑛Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 . (5.6)

Next, by applying 𝐷𝛽(𝑡) in Eq. (5.6) and using Proposition 1, we get:

𝐷𝛽(𝑡)𝑥(𝑡) ≃ 𝐶𝑇 𝐼𝑛−𝛽(𝑡)Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝐷𝛽(𝑡) (𝑡𝑘 ), (5.7)

where

𝐷𝛽(𝑡) (𝑡𝑘 ) =


0, if 𝑘 < 𝑛,

Γ(𝑘 + 1)
Γ(𝑘 + 1 − 𝛽(𝑡)) 𝑡

𝑘−𝛽(𝑡) , if 𝑘 ≥ 𝑛.

(5.8)
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By substituting Eqs. (5.5) and (5.6) in Eq. (5.1), we can rewrite the functional cost 𝐽 as

𝐽 =

∫ 1

0
𝐹

(
𝑡, 𝐶𝑇 𝐼𝑛Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , 𝐸𝑇Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡)

)
𝑑𝑡, (5.9)

which can be determined numerically by using Gauss-Legendre quadrature. Similarly, by using

Eqs. (5.5), (5.6) and (5.7) in Eq. (5.2), we can rewrite the constraint as

𝐶𝑇 𝐼𝑛−𝛽(𝑡)Ψℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝐷𝛽(𝑡) (𝑡𝑘 ) = 𝐺

(
𝑡, 𝐶𝑇 𝐼𝑛Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘 , 𝐸𝑇Ψ

ℎ,𝛼

𝑘,𝑀
(𝑡)

)
. (5.10)

By collocating Eq. (5.10) at the Newton-Cotes nodes defined by

𝑡𝑖 =
2𝑖 − 1

2𝑘 (𝑀 + 1)
, 𝑖 = 1, . . . , 2𝑘−1 (𝑀 + 1), (5.11)

we obtain the following system of algebraic constraints

𝑊𝑖 =𝐶
𝑇 𝐼𝑛−𝛽(𝑡)Ψℎ,𝛼

𝑘,𝑀
(𝑡𝑖) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝐷𝛽(𝑡) (𝑡𝑘 ) |𝑡=𝑡𝑖

− 𝐺

(
𝑡𝑖, 𝐶

𝑇 𝐼𝑛Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡𝑖) +

𝑛−1∑︁
𝑘=0

_𝑘

𝑘!
𝑡𝑘𝑖 , 𝐸

𝑇Ψ
ℎ,𝛼

𝑘,𝑀
(𝑡𝑖)

)
= 0, 𝑖 = 1, . . . , 2𝑘−1(𝑀 + 1). (5.12)

The given VO-FOCP has now been reduced to the following optimization problem: Find the

unknown constants 𝐶 and 𝐸 so that 𝐽 in Eq. (5.9) is minimized/maximized subject to the system

given in Eq. (5.12).

To solve the obtained parameter optimization problem, we let

𝐽∗ = 𝐽 + Λ𝑇𝑊,

where

Λ = [_1,0, ..., _1,𝑀 , _2,0, ..., _2,𝑀 , ..., _2𝑘−1,0, ..., _2𝑘−1,𝑀]𝑇 ,

61



is the vector of unknown Lagrange multipliers, and

𝑊 = [𝑊1, . . . ,𝑊2𝑘−1 (𝑀+1)],

is a vector containing the algebraic constraints given in Eq. (5.12). The necessary conditions for

the optimality of this problem is given by:

𝜕𝐽∗

𝜕𝐶
=
𝜕𝐽∗

𝜕𝐸
=
𝜕𝐽∗

𝜕Λ
= 0. (5.13)

The above system contains 3(𝑀 + 1)2𝑘−1 algebraic equations in 3(𝑀 + 1)2𝑘−1 unknown constants.

By solving Eq. (5.13), the unknown vectors 𝐶, 𝐸 and Λ can be calculated. Hence, 𝑥(𝑡), 𝑢(𝑡), and

𝐽 can be calculated.

5.3 Illustrative examples

Example 5.3.1. Consider the following VO-FOCP [27], [98]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
(𝑡 𝑢(𝑡) − (𝛽(𝑡) + 2) 𝑥(𝑡))2 𝑑𝑡, (5.14)

subject to

¤𝑥(𝑡) + 𝐷𝛽(𝑡)𝑥(𝑡) = 𝑡2 + 𝑢(𝑡), 0 < 𝛽(𝑡) ≤ 1, (5.15)

with the boundary conditions 𝑥(0) = 0, and 𝑥(1) = 2
Γ(𝛽(1)+3) . The exact solutions are

𝑥(𝑡) = 2𝑡𝛽(𝑡)+2

Γ(𝛽(𝑡) + 3) , 𝑢(𝑡) = 2𝑡𝛽(𝑡)+1

Γ(𝛽(𝑡) + 2) . (5.16)

This example was considered in [27], and in [98] by using fractional order Bessel wavelets,

and Legendre spectral-collocation method respectively, with 𝛽(𝑡) = 0.5 and 1. As [27], we use the

same 𝛽(𝑡) for our method.
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In case 𝛽(𝑡) = 1, we use our method with 𝛼 = 𝑘 = 1 and 𝑀 = 2. First, we approximate ¤𝑥(𝑡)

and 𝑢(𝑡) by using GFOCW as

¤𝑥(𝑡) ≃ 𝐶𝑇Ψ
1,1
1,2 (𝑡),

and

𝑢(𝑡) ≃ 𝐸𝑇Ψ
1,1
1,2 (𝑡), (5.17)

where 𝐶 and 𝐸 are unknown constants and

Ψ
1,1
1,2 (𝑡) =

[√︂
2
𝜋
,
−4 + 8𝑡
√
𝜋

,
6 − 32𝑡 + 32𝑡2

√
𝜋

]𝑇
. (5.18)

Then,

𝑥(𝑡) ≃ 𝐶𝑇 𝐼1Ψ1,1
1,2 (𝑡), (5.19)

𝐷𝛽(𝑡)𝑥(𝑡) ≃ 𝐶𝑇 𝐼1−𝛽(𝑡)Ψ1,1
1,2 (𝑡), (5.20)

where

𝐼1Ψ1,1
1,2 (𝑡) =

[√︂
2
𝜋
𝑡,

4𝑡 (𝑡 − 1)
√
𝜋

,
2𝑡 (3 − 4𝑡)2

3
√
𝜋

]𝑇
. (5.21)

By using Eqs. (5.14), (5.17) and (5.19), we get

𝐽 =

∫ 1

0

(
𝑡 𝐸𝑇Ψ

1,1
1,2 (𝑡) − (𝛽(𝑡) + 2) 𝐶𝑇 𝐼1Ψ1,1

1,2 (𝑡)
)2

𝑑𝑡, (5.22)

from which 𝐽 can be evaluated numerically in terms of𝐶 and 𝐸 . By substituting Eqs. (5.17), (5.19)

and (5.20) in Eq. (5.15), and collocating the resulting equation at the nodes given in Eq. (5.11), we

obtain a system of equations as

𝐶𝑇Ψ
1,1
1,2 (𝑡𝑖) + 𝐶𝑇 𝐼1−𝛽(𝑡)Ψ1,1

1,2 (𝑡𝑖) = 𝑡2𝑖 + 𝐸𝑇Ψ
1,1
1,2 (𝑡𝑖), 𝑖 = 1, . . . , 2𝑘−1(𝑀 + 1). (5.23)
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Hence we have the parameter optimization problem given by: Find the unknown constants 𝐶 and

𝐸 which minimize the cost 𝐽 given in Eq. (5.22) subject to the constraints given in Eq. (5.23). By

solving this optimization problem, we obtain

𝐶 = 𝐸 =

[
5
√

2𝜋
32

,

√
𝜋

8
,

√
𝜋

32

]𝑇
,

from which we obtain 𝑥(𝑡) = 1
3𝑥

3, 𝑢(𝑡) = 𝑥2, and 𝐽 = 0 which are the exact solutions.

In case 𝛽(𝑡) = 0.5, we use 𝛼 = 0.5, 𝑘 = 1, and 𝑀 = 3. In this case, we write

¤𝑥(𝑡) ≃ 𝐶𝑇
1 Ψ

1,0.5
1,3 (𝑡),

and

𝑢(𝑡) ≃ 𝐸𝑇
1 Ψ

1,0.5
1,3 (𝑡), (5.24)

where 𝐶1 and 𝐸1 are unknown constants. By using the similar procedure as 𝛽(𝑡) = 1, we get

𝐶1 = 𝐸1 =

[
7

12
√

2
,

7
24

,
1
8
,

1
48

]𝑇
.

From these, we have 𝑥(𝑡) = 2𝑥3.5

Γ(4.5) , 𝑢(𝑡) =
2𝑥2.5

Γ(3.5) , and 𝐽 = 0 which are the exact solutions again.

These exact solutions were not obtained in [27] and [98].

Example 5.3.2. Consider [27]:

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0
(𝑢(𝑡) − 𝑥(𝑡))2 𝑑𝑡, (5.25)

subject to

¤𝑥(𝑡) + 𝐷𝛽(𝑡)𝑥(𝑡) = −𝑥(𝑡) + 𝑢(𝑡) + 𝑡3 + 6 𝑡𝛽(𝑡)+2

Γ(𝛽(𝑡) + 3) , 0 < 𝛽(𝑡) ≤ 1,

𝑥(0) = 0, 𝑥(1) = 6
Γ(𝛽(1) + 4) .
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The exact solutions are 𝑥(𝑡) = 𝑢(𝑡) = 6 𝑡𝛽 (𝑡 )+3

Γ(𝛽(𝑡)+4) , with the corresponding optimal 𝐽 = 0. This

problem was solved in [27] for several values of 𝛽(𝑡). We use the same values of 𝛽(𝑡) as in [27].

In case 𝛽(𝑡) = 1, by setting 𝛼 = 1, 𝑘 = 1, and 𝑀 = 4, we obtain

𝐶 =

[
7
√

2𝜋
64

,
7
√
𝜋

64
,
3
√
𝜋

64
,

√
𝜋

128
, 0

]𝑇
,

𝐸 =

[
21

√
2𝜋

1024
,
3
√
𝜋

128
,
27
√
𝜋

2048
,

√
𝜋

256
,

√
𝜋

2048

]𝑇
,

which yields 𝑥(𝑡) = 𝑢(𝑡) = 𝑥4

4 and the optimal cost functional 𝐽 = 0.

Similarly, in case 𝛽(𝑡) = 0.5, we solve this example with 𝛼 = 0.5, 𝑘 = 1 and 𝑀 = 7. We obtain

the unknown constants as

𝐶1 =

[
33

80
√

2
,

33
128

,
11
64

,
11
160

,
1
64

,
1

640
, 0, 0

]𝑇
,

𝐸1 =

[
143

1792
√

2
,

143
2560

,
177
2560

,
13
512

,
5

512
,

9
3584

,
1

2560
,

1
35840

]𝑇
.

Therefore, we get 𝑥(𝑡) = 𝑢(𝑡) = 32𝑥3.5

35
√
𝜋

and the minimal cost 𝐽 = 0 which are the exact solutions.

These exact solutions were not obtained in [27] and [73].

In addition, in Table 5.1 on page 71, we compare the absolute errors (AEs) of 𝑥(𝑡) and 𝑢(𝑡)

by using the method in [27], and our method with 𝛼 = 0.5, 𝑘 = 2, 𝑀 = 𝑀2 = 7, 𝛽(𝑡) = 0.47

and 0.49. In Table 5.2 on page 72, we give the values of 𝐽 obtained in [27] and calculated by our

method for 𝛽(𝑡) = 0.8 + 0.05 𝑠𝑖𝑛(𝑡), 0.8 + 0.005 𝑠𝑖𝑛(𝑡) and 0.8 + 0.0005 𝑠𝑖𝑛(𝑡).

Example 5.3.3. Consider [38]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

(
𝑒𝑡

(
𝑥(𝑡) + 𝑡 − 𝑡4 − 1

)2
+ (1 + 𝑡2)

(
𝑢(𝑡) + 𝑡4 − 𝑡 + 1 − 24 𝑡4−𝛽(𝑡)

Γ(5 − 𝛽(𝑡))

)2)
𝑑𝑡,

(5.26)
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subject to

𝐷𝛽(𝑡) = 𝑢(𝑡) + 𝑥(𝑡), 1 < 𝛽(𝑡) ≤ 2, (5.27)

with 𝑥(0) = 1, ¤𝑥(0) = −1.

The exact solutions are

𝑥(𝑡) = 𝑡4 − 𝑡 + 1, 𝑢(𝑡) = 24 𝑡4−𝛽(𝑡)

Γ(5 − 𝛽(𝑡)) − (𝑡4 − 𝑡 + 1).

These values give the optimal performance index 𝐽 = 0. The authors in [38] used the Legendre

wavelets with 𝑘 = 2 and 𝑀1 = 10 to solve this example with different values of 𝛽(𝑡) = 𝛽𝑖 (𝑡) given

by

𝛽1(𝑡) = 1.9, 𝛽4(𝑡) = 1.5 + 0.15 𝑠𝑖𝑛(2𝜋𝑡),

𝛽2(𝑡) = 1.9 − 0.2 𝑡2, 𝛽5(𝑡) = 1.5 + 0.25 𝑠𝑖𝑛(2𝜋𝑡),

𝛽3(𝑡) = 1.9 − 0.4 𝑡2, 𝛽6(𝑡) = 1.5 + 0.45 𝑠𝑖𝑛(2𝜋𝑡).

In Table 5.3 on page 72, we give a comparison between the maximal AE values for 𝑥(𝑡), 𝑢(𝑡)

and 𝐽 obtained by using our method with 𝛼 = 1, 𝑘 = 1 and 𝑀 = 2 by selecting the same values of

𝛽(𝑡) by those from [38]. In this table, the CPU times for computing the solution is also included.

In addition, figure 5.1 on the next page displays the behavior of the obtained approximate functions

for 𝑢(𝑡) with different values of 𝛽(𝑡) with 𝑘 = 1, and 𝑀 = 2. Absolute error function of 𝑥(𝑡) at two

distribution functions 𝛽3(𝑡) = 1.9 − 0.4 𝑡2 and 𝛽6(𝑡) = 1.5 + 0.45 𝑠𝑖𝑛(2𝜋𝑡), are given in figure 5.2

on page 68.

Example 5.3.4. Consider [33]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

((
𝑥(𝑡) − 𝑡2

)2
+

(
𝑢(𝑡) + 𝑡4 − 2

Γ(3 − 𝛽(𝑡)) 𝑡
2−𝛽(𝑡)

)2
)
𝑑𝑡, (5.28)
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Figure 5.1

Approximate functions of 𝑢(𝑡) at several values of 𝛽(𝑡) with 𝛼 = 1, 𝑘 = 1, and 𝑀 = 2, for
Example 5.3.3

subject to

𝐷𝛽(𝑡)𝑥(𝑡) = 𝑢(𝑡) + 𝑡2 𝑥(𝑡), 1 < 𝛽(𝑡) ≤ 2,

with

𝑥(0) = ¤𝑥(0) = 0.

The exact solutions are

𝑥(𝑡) = 𝑡2, 𝑢(𝑡) = 2
Γ(3 − 𝛽(𝑡)) 𝑡

2−𝛽(𝑡) − 𝑡4, and 𝐽 = 0.
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Figure 5.2

Plots of AE functions of 𝑥(𝑡) for 𝛽3(𝑡), and 𝛽6(𝑡) with 𝛼 = 1, 𝑘 = 1, and 𝑀 = 3, for Example 5.3.3

This problem was solved in [33] by using the transcendental Bernstein series (TBS) method

by selecting degree 𝑚1 = 3 to approximate 𝑥(𝑡) and degree 𝑚2 = 5 to approximate 𝑢(𝑡) with the

following 𝛽(𝑡) = 𝛽𝑖 (𝑡):

𝛽1(𝑡) = 1.1, 𝛽3(𝑡) = 1.1 + 0.0004 𝑒𝑡
3
,

𝛽2(𝑡) = 1.1 + 0.001 cos(𝑡2), 𝛽4(𝑡) = 1.1 + 0.006 |𝑡 − 1| sin2(𝑡).

In Table 5.4 on page 72, we give a comparison between the calculated AE values for 𝐽 by

using our method with 𝛼 = 1, 𝑘 = 1, 𝑀 = 2, and by selecting the same values of 𝛽(𝑡) from the

TBS method. In addition, in figure 5.3 on the following page, we give AEs for 𝑥(𝑡), 𝑢(𝑡) with

𝛽(𝑡) = 𝛽2(𝑡) which is the same value as figure 2 in Ref. [33]. We see in our figure that the AEs for

𝑥(𝑡) and 𝑢(𝑡) are multiples of 10−17 and 10−16, respectively. However, the AE errors for 𝑥(𝑡) and

𝑢(𝑡) in the figure of the same problem in [33] are multiples of 10−9 and 10−5.
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Figure 5.3

The AE functions of 𝑥(𝑡) (left), and 𝑢(𝑡) (right) for 𝛽(𝑡) = 𝛽2(𝑡) for Example 5.3.4

Example 5.3.5. Consider [33]

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) =
∫ 1

0

©«
(
𝑥(𝑡) − 𝑡

3
2

)2
+

(
𝑢(𝑡) −

(
0.5 𝑒−𝑡

(
3
√
𝜋

4Γ( 5
2 − 𝛽(𝑡))

𝑡
3
2−𝛽(𝑡) − 𝑒𝑡

3
2

)))2ª®¬ 𝑑𝑡,
(5.29)

subject to

𝐷𝛽(𝑡)𝑥(𝑡) = 2 𝑒𝑡𝑢(𝑡) + 𝑒𝑥(𝑡) , 0 < 𝛽(𝑡) ≤ 1, (5.30)

and 𝑥(0) = 0.

From [33], the optimal value of the performance index is 𝐽 = 0, which is achieved by

𝑥(𝑡) = 𝑡
3
2 , and 𝑢(𝑡) = 0.5 𝑒−𝑡

(
3
√
𝜋

4Γ( 5
2 − 𝛽(𝑡))

𝑡
3
2−𝛽(𝑡) − 𝑒𝑡

3
2

)
. (5.31)

This problem was solved in [33] by using the TBS method with 𝑚1 = 𝑚2 = 4 and the following

𝛽(𝑡) = 𝛽𝑖 (𝑡):

𝛽1(𝑡) = 1, 𝛽3(𝑡) = 1 − 0.01𝑒𝑡 ,

𝛽2(𝑡) = 1 − 𝑒𝑡𝑐𝑜𝑠(𝑡)
30

, 𝛽4(𝑡) = 1 − 𝑐𝑜𝑠3(𝑡)
50

.
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Figure 5.4

Approximate functions of 𝑥(𝑡) (left), and 𝑢(𝑡) (right) for several values of 𝛽(𝑡) along with the
exact solution for Example 5.3.5

A comparison between the numerical values for 𝐽 calculated by our method with 𝛼 = 0.5, 𝑘 =

1, 𝑀 = 2 and those at the same values of 𝛽(𝑡) from TBS method are presented in Table 5.5 on

page 73. In figure 5.4, the graphs of the exact 𝑥(𝑡) and 𝑢(𝑡) given in Eq. (5.31) together with

the graphs of the numerical solutions for 𝑥(𝑡) and 𝑢(𝑡) obtained by our method are presented. In

figure 5.5 on the next page, the AEs of 𝑥(𝑡) and 𝑢(𝑡) for 𝛽(𝑡) = 𝛽2(𝑡) are plotted.
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Figure 5.5

The AEs of 𝑥(𝑡) (left), and 𝑢(𝑡) (right) for 𝛽(𝑡) = 𝛽2(𝑡) for Example 5.3.5

Table 5.1

Comparison of AE values of 𝑥(𝑡) and 𝑢(𝑡) with 𝛼 = 0.5, 𝑘 = 2, and 𝑀 = 𝑀2 = 7 for Example
5.3.2

𝑒𝑥(𝑡) 𝑒𝑢(𝑡)

t 𝛽(𝑡) = 0.47 𝛽(𝑡) = 0.49 𝛽(𝑡) = 0.47 𝛽(𝑡) = 0.49

Present method BW method Present method BW method Present method BW method Present method BW method

0.1 4.55 × 10−11 9.26 × 10−5 1.44 × 10−11 3.24 × 10−5 3.12 × 10−10 9.26 × 10−5 9.28 × 10−11 3.24 × 10−5

0.2 3.75 × 10−11 1.19 × 10−4 1.19 × 10−11 4.18 × 10−5 1.33 × 10−9 1.20 × 10−4 4.27 × 10−10 4.20 × 10−5

0.3 1.15 × 10−11 1.36 × 10−4 3.67 × 10−12 4.78 × 10−5 1.13 × 10−10 1.35 × 10−4 3.83 × 10−11 4.73 × 10−5

0.4 2.27 × 10−12 1.49 × 10−4 6.21 × 10−13 5.23 × 10−5 4.11 × 10−11 1.50 × 10−4 1.34 × 10−11 5.26 × 10−5

0.5 1.12 × 10−11 3.46 × 10−5 3.62 × 10−12 1.20 × 10−5 3.85 × 10−11 3.46 × 10−5 1.30 × 10−11 1.20 × 10−5

0.6 2.23 × 10−12 2.53 × 10−5 6.43 × 10−13 8.85 × 10−6 1.11 × 10−10 2.53 × 10−5 3.75 × 10−11 8.85 × 10−6

0.7 3.95 × 10−12 1.75 × 10−5 1.23 × 10−12 6.15 × 10−6 1.26 × 10−10 1.75 × 10−5 4.23 × 10−11 6.15 × 10−6

0.8 9.53 × 10−12 1.09 × 10−5 3.10 × 10−12 3.82 × 10−6 3.42 × 10−11 1.09 × 10−5 1.16 × 10−11 3.82 × 10−6

0.9 2.79 × 10−13 5.12 × 10−6 1.57 × 10−14 1.79 × 10−6 2.50 × 10−11 5.12 × 10−6 8.57 × 10−12 1.79 × 10−6
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Table 5.2

Numerical values of 𝐽 with 𝛼 = 0.5, at some functions of 𝛽(𝑡) for Example 5.3.2

𝛽(𝑡) 0.8 + 0.05 𝑠𝑖𝑛(𝑡) 0.8 + 0.005 𝑠𝑖𝑛(𝑡) 0.8 + 0.0005 𝑠𝑖𝑛(𝑡)

Present method 2.08331 × 10−15 4.96459 × 10−17 2.20447 × 10−17

BW method 7.9873 × 10−10 3.3543 × 10−10 3.0794 × 10−10

Table 5.3

Comparison of maximal AEs of the obtained 𝐽, 𝑥(𝑡), and 𝑢(𝑡) at different functions of 𝛽(𝑡) for
Example 5.3.3

𝛽(𝑡)
Present method (𝑘 = 1, 𝑀 = 2) LW method (𝑘 = 2, 𝑀1=10) [38]

𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝐽 CPU(s) 𝑒𝑥(𝑡) 𝑒𝑢(𝑡) 𝑒𝐽 CPU(s)

𝛽1(𝑡) 5.551 × 10−17 2.401 × 10−15 1.058 × 10−30 2.11 5.792 × 10−5 6.599 × 10−6 3.329 × 10−9 11.49

𝛽2(𝑡) 3.885 × 10−16 3.775 × 10−15 5.539 × 10−31 2.42 4.421 × 10−5 4.902 × 10−6 1.868 × 10−9 11.63

𝛽3(𝑡) 3.885 × 10−16 1.998 × 10−15 5.675 × 10−31 2.55 3.369 × 10−5 3.676 × 10−6 1.084 × 10−9 12.85

𝛽4(𝑡) 4.302 × 10−16 1.221 × 10−15 6.455 × 10−31 2.46 5.994 × 10−6 1.110 × 10−6 5.900 × 10−11 13.50

𝛽5(𝑡) 2.914 × 10−16 8.465 × 10−16 4.614 × 10−31 2.69 6.532 × 10−6 1.101 × 10−6 9.014 × 10−11 12.94

𝛽6(𝑡) 1.110 × 10−16 2.664 × 10−15 2.577 × 10−31 2.63 9.389 × 10−6 1.304 × 10−6 2.894 × 10−10 12.77

Table 5.4

Comparison between the numerical values of 𝐽 for Example 5.3.4

𝛽(𝑡) Present method (𝑘 = 1, 𝑀 = 2) TBS (𝑚1 = 3, 𝑚2 = 5) [33]

𝛽1(𝑡) 5.78561 × 10−32 2.42964 × 10−19

𝛽2(𝑡) 1.47523 × 10−32 3.75371 × 10−17

𝛽3(𝑡) 7.63644 × 10−32 1.50544 × 10−19

𝛽4(𝑡) 3.70426 × 10−32 2.91502 × 10−18
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Table 5.5

The numerical values of 𝐽 for Example 5.3.5

𝛽(𝑡) Present method TBS method [33]

1 5.96750 × 10−33 1.64830 × 10−8

1 − 𝑒𝑡𝑐𝑜𝑠(𝑡)
30 7.71312 × 10−33 1.96391 × 10−8

1 − 0.01𝑒𝑡 7.16928 × 10−33 1.37496 × 10−8

1 − 𝑐𝑜𝑠3 (𝑡)
50 1.00063 × 10−33 5.72515 × 10−9

73



CHAPTER VI

CONCLUSIONS

A general formulation for calculating the exact value of the Riemann-Liouville fractional

integral operator (RLFIO) for the generalized fractional-order Chebyshev wavelets (GFOCW) has

been derived. The GFOCW, and the RLFIO were applied to approximate the numerical solution of

the fractional-order optimal control problems containing both equality and inequality constraints,

distributed-order fractional optimal control problems, and variable-order fractional optimal control

problems. Some key features of the proposed method are as follows:

• We could obtain the exact value of the Riemann-Liouville fractional integral operator for
Generalized fractional-order Chebyshev wavelets.

• The proposed method could obtain the exact solutions of some problems whose exact so-
lutions are polynomials or fractional-order monomials. These exact solutions were not
obtained previously in the literature.

• Our numerical method gives more accurate solutions than those shown in the literature.

6.1 For Further Research

We plan to extend this method to fractional-order partial differential equations and two-

dimensional fractional-order differential equations.
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