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An integral field unit fiber array spectrograph was used to observe the emission spectra of

radical species (C2, C3, CH, CN, and NH2) in multiple comets. The resultant azimuthal and radial

division maps produced from the reduced data provide a unique method of analyzing features with

these radicals in the comae, as well as how they behave over time. A Monte Carlo model was

developed in order to simulate the behavior of particles from the outer nucleus and coma of each

comet depending on various parameters including rotational period, outflow velocity, and active

area location. The results from the model were used to constrain the physical parameters of three

comets: 10P/Tempel 2, C/2009 P1 (Garradd), and 168P/Hergenrother.
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CHAPTER I

INTRODUCTION

Scientists across multiple fields, not just physics and astronomy, have an interest in comets and

their connection to the formation of the solar system. Many questions concerning the chemical and

biological evolution of life on Earth involve the early conditions of the planet. Accretion of material

in the outer distances of the solar system led to the formation of comets. Initially postulated as

“dirty snowballs” [40], recent observations of the composition of comets led astronomers to view

them more as “icy dirtballs”, consisting mainly of ice, rock, and organic compounds that coalesced

together into low density structures during the early age of the solar system, over 4.5 billion years ago

[3]. This composition appears to hold true even for observed insterstellar comets, such as 2I/Borisov

[8], which was observed passing through our solar system in 2019. Comets are usually grouped

by their orbital characteristics, with the longer-period comets originating from distant small-body

populations such as the Kuiper Belt, the scattered disk, and the Oort Cloud. The existence of these

populations support a model of the evolution of the solar system known as the Nice model, where

the gas giants were in more cicular, closely spaced orbits at the edge of the inner disk. Small

icy bodies were scattered by the gas giants inwards, which caused Saturn, Uranus, and Neptune

to migrate outwards due to conservation of angular momentum [38]. Further interactions with

Jupiter caused the icy bodies to enter highly elliptical orbits, while Jupiter migrated slighty inwards
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towards its current postion. An alternative model known as the grand tack hypothesis proposes

that Jupiter instead initially migrated inwards from a distance of 30 AU and then outwards after

capturing Saturn in a mean-motion resonance [26]. This hypothesis has developed more recent

support from studies of comets C/2014 S3 (PANSTARRS) and 67P/Churyamov-Gerasimenko,

where the low detection of collisional elements in these outer bodies corresponds with the early

migration of Jupiter and Saturn posited in the grand tack [37].

Comets tend to be less dynamically active and exhibit less change in volatile composition

compared to other major bodies in the solar system. Thus, they provide insight into the physical

and chemical properties of the early conditions of the solar system. In situ measurements of comets,

such as the Stardust mission, have detected organic molecules, including the amino acid glycine [9].

Such evidence supports the hypothesis that comets were key to delivering the precursors to life to

early Earth. However, recent studies into comets, including the Rosetta mission, have measured the

Deuterium-to-Hydrogen (D/H) ratio, which was determined to be at least three times greater than

the ratio for the Vienna Standard Mean Ocean Water (VSMOW) on Earth, (1.5576±0.0001)×10−4

[27]. This suggests the opposite to the long-held idea that comets were also the means through

which water came to our planet. Cometary science is still rapidly changing and can still provide

much in the way of constraints of the formation of Earth and the solar system.

The majority of comets fall within two categories: short-period and long-period comets, based

on whether their orbital revolution periods are less than, or greater than, 200 years. Most short

period comets, known as Jupiter-family comets (JFCs), are theorized to have originated from

beyond Neptune, in the scattered disk of the Kuiper Belt region. They tend to orbit in the same

ecliptic plane as the planets and have periods of less than 200 years. The exception to these are the
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Halley-family comets. While they also have a short orbital period, they are highly inclined to the

ecliptic, suggesting a different region of origin: the distant Oort Cloud. Proposed by Jan Oort in

1950, the Oort Cloud is a theoretical, spherical region of space dominated by icy planetesimals that

were theorized to have formed during the same time period as the planets [32] [10]. Long-period

comets by contrast are highly eccentric, leading to orbital periods that range from hundreds to

thousands of years. These long-period comets are also thought to have originated from the Oort

Cloud. As many have hyperbolic trajectories, long-period comets will only have a single solar

apparition before they escape the solar system.

Due to their possible connection to the formation of the solar system, comets are the subject

of numerous chemical surveys [15]. Narrow-band photometry [1] and spectroscopic surveys [7]

have shown that the majority of comets are similar in chemical composition, with the exception

that a significant fraction of JFCs are depleted in carbon-chain molecules. Observations of the

dust-to-gas ratio and the abundances of carbon-based radical species (𝐶𝑁 , 𝐶3, 𝐶2, etc.) show

little correlation based on composition or dynamical family. The subtle variances exhibited in

the comets based on their classes suggest differences in dynamical evolution rather than different

conditions of formation [7].

Due to the nature of comets, many properties have to be inferred from the types of radiation

we can detect remotely, as in situ observations are a rare opportunity. One such property is the

rotational period of the comet, which has most commonly been determined from the measured

lightcurve. If a celestial target such as a comet is observed over a long enough period, it is possible

to graph the flux or intensity of the measured light over time. If periodicity is seen in the lightcurve,

then it is possible to determine a spin period of the nucleus. Further constraints could be made if
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multiple lightcurves are made over a range of heliocentric distances, as was made with 1P/Halley

[14]. Active areas are determined from spherical nucleus approximations, even though they tend

to be elliptical in nature. Constraints are made based on the size and flux of emission sources, and

are determined as fractions of the surface area of the nucleus [20].

1.1 Target comets

The comets examined in this research were C/2009 P1 (Garradd), Comet 168P/Hergenrother,

and Comet 10P/Tempel 2. Garradd was an active, dynamically young, long-period comet at the

time of observation, likely making its first trip through the solar system. The comet is in a highly

eccentric orbit of e = 1.001, and has an inclination of 106.18 degrees. Comet Hergenrother is a

Jupiter-family comet with an orbital period of about 6.90 years. It has an orbital eccentricity e =

0.610, and an inclination of 21.93 degrees. Tempel 2 is also a JFC, with e = 0.5363, an inclination

of 12.02 degrees, and an orbital period of about 5.5 years.

Comet Garradd was very active during its pre-perihelion transit, with one of the highest dust-

to-gas ratios and water production rates observed in a comet [5]. The 𝐶𝑂2/𝐻2𝑂 and 𝐶𝑂/𝐻2𝑂

ratios were measured from September-October 2011, and in January-March 2012, and were found

to be less abundant post-perihelion [5]. Since the ices in comets are primarily composed of these

volatiles, we can determine how the activity is driven during the comet’s passage. An asymmetry

between the two ratios from pre- to post-perihelion also suggests either a large-scale chemical

heterogeneity in the nucleus [30], or that the rotational state led to an effect where one hemisphere

was exposed to more activity from solar exposure than the other [13]. It also had a high active

surface area to nucleus area ratio.
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Comet Hergenrother was a recently discovered comet, of which few publications exist. It

underwent an outburst in 2012, which may have resulted in a fragmentation event a few weeks

afterward and has been reported as overdue for its 2019 apparition after it was not detected

near its expected perihelion passage. [41]. Pierce and Cochran [33] performed spectroscopic

analysis of Hergenrother and found it to be the most depleted comet reported in 𝐶2, 𝐶3, and 𝑁𝐻2.

Observations of such events can provide unique insight into the chemical and physical properties of

comets during a period of high activity. Fragments of Comet 73P/Schwassmann-Wachmann 3 were

observed to have similar chemical properties but physical heterogeneities [16]. The fragmentation

event itself can also affect the dust production, such as with C/1994 S4 LINEAR [2], or the orbital

parameters, as with the Kreutz sungrazers, a family of comets believed to have originated from a

common progenitor comet that fragmented into two parts during a past perihelion approach within

3.45 solar radii [19]. These super-fragments were then believed to have undergone their own

fragmentation events upon subsequent perihelion passages [36].

In contrast, 10P/Tempel 2 has been extensively studied since its discovery in 1873. Its short

orbital period, allowing for multiple observations over dozens of apparitions, as well as it once

being a possible target for a flyby mission, has made it the object of numerous ground-based studies.

Its next close approach to Earth is due to occur in August 2026 with a nominal geocentric distance

of 0.41 AU. It has been observed to have low outgassing activity and brightness pre-perihelion,

and has a typical dust-to-gas ratio of other comets with a similar perihelion distance [23].
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CHAPTER II

OBSERVATIONS

Observations of comets primarily focus on two components: the nucleus and the coma. The

nucleus corresponds to the solid part of the comet. Nuclei are typically comprised of dust and ice,

and tend to have a size range on the order of a few to tens of kilometers. As the nucleus is exposed to

heat from the Sun, the ices trapped on or below the surface can sublimate. The resultant atmosphere

of gas surrounding the nucleus is known as the coma. As the comet approaches the Sun, the visible

coma can increase in size to an order of tens of thousands of kilometers in diameter, as ice grains

can continue to sublimate as they’re dragged outwards by the gas. Due to the low albedo and

smaller size of the nucleus compared to the coma, direct observations of the nucleus are usually

restricted to in situ measurements. For comets Garradd and Hergenrother, the measurements for

this study were taken of their respective comae from ground-based telescopic observations. The

observations for Comet Garradd were obtained pre-perihelion, while the Hergenrother and Tempel

2 observations were obtained post-perihelion. Specific observation and calibration parameters for

Garradd, Hergenrother, and Tempel 2 are shown in Table 2.1 and Table 2.2 on page 8.

The coma observations were obtained with the George and Cynthia Mitchell Spectrograph. This

integral-field unit (IFU) spectrograph is a low- to moderate- resolution fiber optic spectrograph

consisting of 246 optical fibers. The optical fibers each have a diameter of 4.1 arcsec and are
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arranged in a 1.7 x 1.7 arcmin array, alternating from 14 to 15 bundled fibers per row [17]. A

diffraction grating covered the passband from 3600-5800 Å and provides a spectral resolving power

(𝜆/Δ𝜆) of 850. The spectrometer was used in conjunction with the 2.7 m Harlan J. Smith Telescope

located at McDonald Observatory in Fort Davis, Texas. In order to maintain the comet’s position

on the array, a tracking star is used with a fiducial that moves opposite to the comet’s motion. Any

star spectra caught crossing through the field of view are removed in analysis [33].

Observations were taken of various radical species with spectral emission bands visible in

the spectrometer’s passband, including 𝐶2, 𝐶3, 𝐶𝐻, 𝐶𝑁 , and 𝑁𝐻2. Each fiber in the array was

connected to a charge-coupled device (CCD) and yield independent spectra. The raw data were

initially reduced through bias subtraction, flat fielding, and calibration in flux and wavelength.

Since the measured spectra are a mix of the emission bands from the coma superposed on a

continuum from the reflection of the solar spectrum off the dust in the coma, analogue stars were

utulized. Each night the flux and color of a solar analog star is matched with the observed comet’s

spectrum, and the solar spectrum is subsequently removed.
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Table 2.1

Comet Observation Parameters

Comet Obs. Date r𝐻 1 Δ2 Phase Angle3 Pre/Post
(UT) (AU) (AU) (Degrees) Perihelion

10P/Tempel 2 2010 Jul 15 1.43 0.72 42.2° Post
2010 Sep 13 1.60 0.67 21.8° Post

C/2009 P1 (Garradd) 2011 Aug 20 2.28 1.40 16.1° Pre
2011 Aug 21 2.27 1.39 16.4° Pre
2011 Aug 22 2.26 1.39 16.9° Pre

168P/Hergenrother 2012 Oct 6 1.42 0.44 14.8° Post
2012 Oct 8 1.42 0.44 16.1° Post
2012 Oct 9 1.42 0.44 16.7° Post

2012 Dec 19 1.66 0.99 32.7° Post
2012 Dec 20 1.66 0.99 32.7° Post
2012 Dec 21 1.67 1.00 32.7° Post

Table 2.2

Comet Calibration Targets

Comet Obs. Date (UT) Flux Standard Solar Analogue
10P/Tempel 2 2010 Jul 15 Feige 98 None

2010 Sep 13 BD+25 3941 HD 191854
C/2009 P1 (Garradd) 2011 Aug 20 BD+25 3941 39 Tau

2011 Aug 21 Feige 15 HD 6204
2011 Aug 22 BD+28 4211 HIP 109931

168P/Hergenrother 2012 Oct 6 Feige 15 HD 19518
2012 Oct 8 BD+28 4211 HIP 109931
2012 Oct 9 BD+28 4211 16 Cyg B

2012 Dec 19 Feige 15 Hyades 64
2012 Dec 20 Feige 34, Feige 56 35 Leo
2012 Dec 21 Feige 15, Feige 25 Hyades 64, HD19518
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The reduced data were separated into columns representing the fiber number, the base-10

logarithm of the projected distance from the comet nucleus (𝑙𝑜𝑔(𝜌)), the logarithm of the column

density of the respective radical (𝑙𝑜𝑔(𝑁)), and the 𝑥 and 𝑦 coordinates of the coma measurement

from the comet nucleus. For the Garradd and Hergenrother data, 𝑥 corresponded to the hour angle

offset in kilometers, and 𝑦 corresponded to the declination position in kilometers. The radial

distance from the comet nucleus, 𝜌, was determined by the distance formula

𝜌 =

√︃
𝑥2 + 𝑦2 (2.1)

The optocenter fiber was determined from each observation from the fiber corresponding to the

lowest value of 𝜌. This single fiber is designated as the position of the comet nucleus.

Raw contour plots were generated for each observation, with the variables corresponding to the

𝑥 and 𝑦 values for each observation, and the contour levels corresponding to the 𝑙𝑜𝑔(𝑁) values.

The data were then analyzed based on their arrangement about the optocenter. In order to model

enhanced coma features as a function of projected distance from the nucleus, azimuthal rings were

determined based on the fibers being arranged in concentric, hexagonal rings about the optocenter.

For each pixel in the ring, the projected distance was measured from the optocenter by

|𝜌 − 𝜌0 | =
√︃
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 (2.2)

where 𝑥0 and 𝑦0 represent the horizontal and vertical position of the optocenter, and 𝑥 and 𝑦 represent

the horizontal and vertical position of the respective pixel. For each pixel in each azimuthal ring,

the values for |𝜌 − 𝜌0 | were averaged, yielding an averaged radius value (𝜌𝑎𝑣𝑔). The column

densities for each fiber in the ring were also averaged, yielding an azimuthally averaged column
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density value 𝑁𝑎𝑣𝑔. In order to describe the relationship of the column density of each radical with

respect to the projected distance from the nucleus, a relationship 𝑁𝑚𝑜𝑑𝑒𝑙 was determined,

𝑁𝑚𝑜𝑑𝑒𝑙 = 𝐶 |𝜌 − 𝜌0 |𝑘 , (2.3)

where 𝐶 and 𝑘 are constants determined from a weighted least-squares fit. The fit parameters were

determined from the linear relation

log(𝑁𝑚𝑜𝑑𝑒𝑙) = 𝑘 log( |𝜌 − 𝜌0 |) + log(𝐶) (2.4)

To further examine the heterogeneities of the radicals, azimuthal division coma enhancement

plots were generated, with the contour levels corresponding to the column density 𝑁 of each fiber

divided by the respective 𝑁𝑎𝑣𝑔 of the azimuthal ring. Radial division coma enhancement plots

were generated in a similar manner, with the contour levels corresponding to the ratio of 𝑁 over

𝑁𝑚𝑜𝑑𝑒𝑙 for each fiber in the array.

These azimuthal and radial coma enhancements can be used to look for coma features such

as jets or arcs. In addition to comparing coma features for each radical species across different

comets, they can also be used to observe how these features change over time. By focusing

on how the features change in position over several observations, we can attempt to link coma

features with changes in the physical nucleus, and recurring coma morphological features can be

used to constrain possible rotational states of the comets. The most common way to constrain

comet rotation periods is through analyzing a measured lightcurve to look for periodic, repeating

behavior [31]. A technique similar to ours used by Esterle [11] with Comet Halley involves

dynamically modeling simulated dust jets about the long axis mode of the comet nucleus over

time, and comparing them with jets seen in ground-based observations. Comparing spectroscopic
10



features allows for an additional method of analyzing rotation by use of a Monte Carlo model [22].

Comparisons between the raw, azimuthal division, and radial division contour plots are shown in

Figure 2.1 on the next page.
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Figure 2.1

Sample IFU contour plots

Representations of the radially divided (a) and azimuthally divided (b) contour plots
(top) with their respective raw contour plot (bottom). Plots were of 𝐶3 measurement
taken from Comet Garradd on 2011 August 22. The raw plot is slightly offset in terms
of the origin, as it is aligned with the optocenter (denoted by the red crosshair) of the
fiber array.
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CHAPTER III

METHODS

There are no simple methods for analyzing the mechanical behavior of the comet, such as its

rotational motion, from the radical features expressed in the outer coma. We can, however, place

constraints on several parameters by simulation. A Monte Carlo model used by Schleicher and

Woodney [35] outlines a method by which we can use the properties of the detected dust particles

of our radical species and their motion over time to simulate the behavior of the features found

in our coma enhancement plots. Several parameters of the model can be adjusted manually, and

they are usually randomly generated within known boundaries. These include the positions of the

simulated active regions, the number and position of the particles within these respective active

regions, their outflow direction and velocity, and the rotational axis of the comet, assuming no

precession or nutation. Each run of the model will output several images over a predetermined

period of time that corresponds with the timespan of the comet observations.

The model is used to simulate a variety of cases, with the parameters randomly varied between

each simulation [35]. The visual output of the model is then cross-referenced with the comet

enhancement plots by eye in order to determine a reasonable range of values for the parameters.

They are then adjusted slightly to yield a better overall fit of the simulated particles with the
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features shown in the enhancement plots. With these determined physical parameters, it is possible

to constrain a rotational period for the comet.

3.1 The model

The outline for the Monte Carlo model involves generating a simplified, spherically symmetric

model of the nucleus in 3-dimensional space. The model must be initialized with several parameters

including pole orientation, latitudes and longitudes of jet features, outflow velocity of radical

particles, and a set rotational period. A fixed number of particles are generated within the 3D

space, on the order of 104. To determine if features in the outer coma are related to physical active

regions on the surface of the comet’s nucleus, we assume that they are the same quantity. These

particles represent dust grains from active regions of a spherically-symmetric nucleus. The size of

the comet nucleus is based on available literature for the target comet being studied. Otherwise, if

no published values exist, we work within a likely range of values for those comets. The fraction of

the nucleus that is considered active is determined by a pseudo-random number generator operating

within a range of 10 - 60%. The active fraction is constrained to one or more regions with randomly

generated sizes and positions on the nucleus, depending on how many possible active regions can

be determined from the enhancement plots. Particles that are located within the boundaries of the

active regions are sorted into a separate list from the ‘inactive’ particles, and are made visually

distinct in the output plots via differing colors. A location for the solar vector is set based on the

comet’s orbital ephemeris at the time of observation. The chance that a particle is released from

the nucleus and emitted into the coma is determined by a probability function of the cosine of the

angle between the respective particle’s position and the solar vector. If the particle is released from
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the nucleus, its outflow position and velocity are tracked as it is emitted into the coma. The outflow

dispersion angles for the particles are defined by a random Gaussian distribution.

At the same time, the movement of the active regions due to the rotation of the comet is

simulated based on a predetermined rotational axis. For the sake of this model, a simple rotational

state is assumed, with no effects due to precession or nutation. Since the detected features from

our observations may not move at the same rate as the comet’s physical nucleus, we cannot simply

assume that our rotation parameter is the same value as the actual rotational period.

Additional perturbations on the released particles exist in the form of solar radiation pressure.

For real comet dust grains, the pressure applied by radiation from the Sun has a non-negligible

effect. The pressure (in 𝑁/𝑚2) on each particle can be determined by

𝑃𝑟𝑎𝑑 = 𝐶𝑟𝑎𝑑

𝐺𝑆𝐶

𝑐

®𝑟𝑑
| ®𝑟𝑑 |3

(3.1)

where 𝐺𝑆𝐶 is the solar constant: 1361 𝑊/𝑚2, and ®𝑟𝑑 is the displacement vector between each

particle and the Sun. 𝐶𝑟𝑎𝑑 is a constant where 2 corresponds to a perfectly reflecting surface, and 1

corresponds to perfect absorption. In reality, materials are neither totally reflecting nor absorbing,

so 𝐶𝑟𝑎𝑑 is randomly generated close to a value of 1, as dust grains tend to have low albedos. The

pressure is then multiplied by the cross-sectional area and divided by the mass for each particle to

determine the subsequent applied acceleration. For the scales of these particles, we assume a mass

on the range of 10−6 kg, and radii within a range of 0.1 𝜇m to 1 mm [34]. A flowchart showing the

step-by-step processes for the model is shown in Figure 3.1 on the following page.
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Figure 3.1

Flowchart for model processes
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3.2 Determining a limit for outflow velocity

One of the parameters that must be accounted for in the Monte Carlo model is the mean outflow

velocity of the radicals as they move outwards from the nucleus. Since there is no simple, common

factor amongst comets with regards to this behavior, we must try to determine it by analyzing the

positions of the emitted particles over time.

We use a similar method as [35] to constrain a velocity from our radial profile data. They

divided their enhanced division plots, obtained through narrowband photometry, into 10° wedges,

yielding 36 wedges in total. For each of these wedges that coincided with specific morphological

features in the coma, they examined the brightest points and tracked their relative positions over the

timespan of their observations. Due to the discrete, separated nature of our fiber array spectrograph,

as opposed to their CCD detector, we must use twelve 30° wedges to ensure sufficient data are

contained in each wedge. We tracked the radial position of the point corresponding to the highest

measured 𝑁𝑟𝑎𝑑 (where 𝑁𝑟𝑎𝑑 is the ratio between the column density 𝑁 and the modeled column

density related to the projected radius from the optocenter, 𝑁𝑚𝑜𝑑𝑒𝑙) for constant features over the

timespan of all of our observations for each night. The radial positions for the carbon-bearing

radicals, such as 𝐶2 and 𝐶𝑁 , were grouped together to increase the amount of available data.

These positions were plotted with respect to the difference in time from the first observation for

each usable 30° wedge. A line of best fit was found for each using linear regression, as shown in

Figure 3.2 on page 19. By comparing the regression slope parameters of each wedge for each night,

we can determine an upper limit on the mean outflow velocity of the particles from the nucleus.

This, in turn, can be used as a parameter to better model the outflow behavior of the particles in our
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Monte Carlo simulation. This process is repeated for each identified active region in the comet’s

coma.

As the dust particles get farther from the nucleus, forces such as solar radiation pressure

and gravity start to dominate [28]. These additional parameters must then be accounted for and

calculated based on each simulated particle’s relative position to the comet nucleus and the solar

angle.
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Figure 3.2

Outflow feature angular positions

Angular positions of detected features over the timespan of the observations of Comet
Garradd. The above figure depicts an example𝐶𝑁 radial division map, and the bottom
figure shows the position vs time relation for 𝐶𝑁 over all observations. The color bar
scale on the upper map represents the column density of 𝐶𝑁 . The blue line of the
bottom figure represents feature (a), while the orange line represents feature (b)
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3.3 Comparing spatial concentrations

While a qualitative method of visually comparing the model results with enhancement plots was

established, a more quantitative approach was desired as well. A method outlined by Vaughan [39]

for analysis of comet data from the same IFU spectrometer was utilized, where the enhancement

plots were divided into a circle with symmetrical 60° wedges, centered on the optocenter fiber. The

fibers that were located in these position angle wedges were used to calculate the concentration

ratio Ω,

Ω =

(
𝐴𝑧𝑖𝐷𝑖𝑣

𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣

+ 𝑅𝑎𝑑𝐷𝑖𝑣

𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣

) (
1

𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣

+ 1
𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣

)−1

(3.2)

where AziDiv and RadDiv correspond to the weighted averages of the azimuthal division values

and the radial division values, respectively, for each fiber. A larger number of fibers within each

wedge allows for more accurate values of Ω, which is why 60° wedges are used, as opposed to the

30° wedges used in the outflow velocity determinations. If a fiber resides exactly on a line dividing

the wedges, the concentration values are determined from the weighted average of two symmetric

fibers along either boundary of the wedge.

Ω =

(
𝐴𝑧𝑖𝐷𝑖𝑣1

𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣,1

𝐴𝑧𝑖𝐷𝑖𝑣2

𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣,2

+ 𝑅𝑎𝑑𝐷𝑖𝑣1

𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣,1

𝑅𝑎𝑑𝐷𝑖𝑣2

𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣,2

) (∑︁ 1
𝜎2

)−1
(3.3)

where the summation term is

∑︁ 1
𝜎2 =

1
𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣,1

+ 1
𝜎2
𝐴𝑧𝑖𝐷𝑖𝑣,2

+ 1
𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣,1

1
𝜎2
𝑅𝑎𝑑𝐷𝑖𝑣,2

The average Ω values are then calculated for each wedge for each moment of observation. The

Ω𝑎𝑣𝑔 values for each comet and observation are shown in Appendix A. This method is known as

Welch’s Analysis of Variance (ANOVA).
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Since the model does not simulate discrete fibers, the concentration is simply determined by

dividing the final output into 60° wedges and calculating the ratio of the number of particles

in each wedge with the overall total particles produced for the simulated comet nucleus. With

concentration values organized in this way, we now have an additional method of comparing the

model results with our observed enhancement plots after they have been initially constrained by

eye.
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CHAPTER IV

RESULTS

The rotation of the comet is accounted for by setting a principal axis of rotation and including a

parameter for a change in angular position for set time-step intervals. Each time-step of the model

corresponds to the observations from the IFU spectrograph. For each time-step, the particles within

the active regions are checked against the release probability function. If they pass the check, they

are emitted radially outwards from the nucleus. If they do not pass, the particle remains on the

nucleus as it rotates in each interval. This process is repeated for every time-step, with the emitted

particles continuing their outward motion based on the outflow velocity values. Non-released

particles have a chance to pass the release probability check with every step.

The outputs from the three-dimensional model are manually analyzed in a two-dimensional

grid to compare with the observable features as seen on the plane of the sky in the 2-D contour

plots. The rotational period of our coma model was adjusted until we were able to approximate an

acceptable fit to our observations obtained with the IFU. A sample output of the model is shown in

Figure 4.1 on the following page.
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Figure 4.1

Sample nucleus of model

The top left image shows an initial setup in three dimensions, while the figure on the
top right depicts the respective setup in two dimensions, with the z-axis increasing
out of the page as the nucleus would be seen on the plane of the sky. The colored
circles represent the modeled particles. Inactive particles are blue, and the separate
active regions are shown in red and yellow. The two-dimensional plots are primarily
used to compare our results with the IFU observations. The bottom figures represents
subsequent timesteps.
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4.1 10P/Tempel 2

Comet 10P/Tempel 2 is a Jupiter-family comet that was observed with the IFU spectrograph.

Tempel 2 has been a subject of much analysis from outside sources [23], making it a useful body

for comparison. The effective radius of the nucleus was determined to be 5.98 ± 0.04 km [24],

which is very large for a JFC. The rotation period was determined to be 8.950 ± 0.002 hours by

Knight et al. [21] at the time of its 2010/2011 perihelion approach. Furthermore, the period was

also determined to have increased slightly between perihelion passages in 1988 and 1999, possibly

due to systematic torque [23].

From our radial division maps for the carbon-bearing radicals of Tempel 2, we were able to

determine one large primary feature in the coma, as shown in Figure 4.2 on page 27. This area

of high column density was present in our observations from 2010 July 15 and September 13,

suggesting they are from the same active source. The angular position of the feature changes very

little between observations taken on each date, suggesting that the active region from which it

originates is located near a rotational pole. A similar feature was observed from the 𝑁𝐻2 radial

division maps, though it is smaller in size.

Our Monte Carlo model was constrained to see if similar conditions could be observed from the

output. Thirty cases were produced from a parameter range, and the best fit was visually chosen

from among them. The parameters used for the final Tempel 2 simulations are shown in Table 4.1

on page 26. The resulting images are shown in Figure 4.3 on page 28

Tempel 2 illustrates one of the main limitations with our model: working with a small number

of observations. Tempel 2 was observed with the IFU spectrograph for only two nights, both with a

small temporal range. Observation times are detailed in Table 4.2 on page 26. As comet rotational
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periods tend to be at least several hours long, the available observations only offer a glimpse at the

spatial behavior for comparison with the simulation results. Furthermore, coma plots from each

enhancement date show only a single feature for all radical species, limiting our ability to constrain

our simulated plots by our usual visual standards.
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Table 4.1

Tempel 2 Model Parameters

Parameter Name Value Source
Radius 6 km Lamy & Toth et al. 2009 [24]

Outflow velocity 0.6 km/s Knight et al. 2012 [23]
Solar Vector Angle 109° NASA Horizons

Rotation period 8 ± 0.5 hours Custom parameter output
Active Area Fraction 34.3 ± .01 % Random parameter output
Number of test cases 30 Result

Table 4.2

Observation times for Tempel 2

Observation Label Start Time (UTC)
July 15 2010
278 08:39 300
279 08:48 600
280 09:03 900
September 13 2010
400 09:08 600
401 09:22 900
402 09:39 900
407 11:08 900
408 11:25 600
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Figure 4.2

Radial division maps for 𝐶𝑁 in Tempel 2

The large active feature can be seen in the lower left in both the July (left) and September
(right) observations, suggesting little dynamic activity in this period of the comet’s
orbit.
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Figure 4.3

Plots for Comet Tempel 2 from the Monte Carlo model

The first image shows one of the earliest time-steps for the simulation, while the last
shows the resultant plot after a simulated passage of a little over 8 hours. The purple
line running through the nucleus in the left plot denotes the simulated primary rotation
axis, which is partially perpendicular to the plane of the figure.
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4.2 C/2009 P1 (Garradd)

Our observations of comet Garradd showed a continuous feature present in the upper right

quadrant of the division maps for the carbon-bearing radicals, as seen in Figure 4.4 on page 32.

This suggests a relatively simple rotational mode for the comet, with the feature possibly originating

near the pole of the primary rotational axis. As such, we first tested our simulation by inputting

parameters from Garradd that were observed and also supported by other sources. These are

given in Table 4.3 on page 31. Due to the appearance of two features, a wider test case of about

seventy runs was required for a best-match simulation. Observation times are shown in Table 4.4

on page 31, with each observation having a 600 second duration.

Figure 4.5 on page 34 shows comparisons between sample radial division plots and model

simulation results that most visually resemble them. The simulated total active area fraction was

generated as 49.5%, which would support our estimate that Garradd is a highly active comet. The

water production rates measured by Boissier et al. [6] suggests an active area fraction of at least

50%. One notable distinction from the model output is the lower concenctration of particles in the

feature in the bottom of the map for Figure 4.5b. This can be due to limitations with the model,

or it could indicate a more complex rotational mode for Garradd than was initially assumed, as the

feature is not present for the entire night of observations. It could also be due to the fact that the

simulated nucleus is stationary, with the only motion being due to rotation. In reality, the comet

is travelling through space as it orbits the Sun, so if an active jet were to rotate away from view,

we wouldn’t still be seeing all the residual outflow. All the carbon-bearing radicals appear to have

similar morphologies over our observation period, suggesting they originate from the same source

regions on the surface of the nucleus. 𝐶𝑁 is typically chosen for primary visual comparison, as
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it has a better contrast in the coma compared to the other radicals due to the strength of the violet

band [23].

The concentration ratio of the active particles in the simulation shown in Figure 4.5 on page 34

match the Welch’s ANOVA wedge concentration spread, with the 0°, 240°, and 300° wedges having

the most activity across both. There is a difference in that the 0°-60° wedge in the model has a

slightly higher concentration than the 240°-300° wedge (27.5% and 28%, respectively) while the

relationship is reversed in the ANOVA concentrations found for 𝐶𝑁 , as shown in Appendix A.
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Table 4.3

Comet Garradd Model Parameters

Parameter Name Value Source
Radius 5.6 km Boissier et al. 2013 [6]

Outflow velocity 1-25 m/s Mazzotta et al. 2016 [29]
Solar Vector Angle 139° NASA Horizons

Rotation period 8 hours Custom parameter
Active Area Fraction 49.5% Random parameter

Primary Rotation Axis 𝜋/6 Random Parameter
Number of test cases 75 Result

Table 4.4

Observation times for 2009/P1 Garradd

Observation Label Start Time (UTC)
August 21 2011
944 02:45
946 03:12
948 03:46
950 04:16
952 04:47
958 06:18
960 06:50
962 07:21
964 07:53
966 08:26
968 08:59
August 22 2011
1028 02:53
1029 03:08
1034 04:34
1035 04:46
1039 05:52
1042 06:35
1046 07:40
1051 09:01
1054 09:39
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Figure 4.4

Radial division maps for Comet Garradd

Observations taken on the night of 2011 August 21 at 06:18 local time. The color bars
represent the column density of the detected radical. The white feature that can be
seen in the upper right is present for most of the night’s observations. This suggests an
active region rich in carbon-based molecules. The small yellow crosses represent the
locations of the optocenter, and the arrows represent the direction of the solar vector.
The solar vectors are pointing mostly out of the screen. The maps depict 𝐶2, 𝐶3, and
𝐶𝑁 , respectively.

32



While the spatial distributions of the carbon-bearing radicals are very similar to each other,

𝑁𝐻2 exhibits a very different outgassing behavior for Garradd. Two coma features can be seen

opposite to each other on the top and bottom parts of the enhancement plots, similar in appearance

to an hourglass. This indicates that the features originate from two separate sources, with the

bottom source being different than the active region responsible for the carbon-bearing radicals.

These plots and their respective model simulation comparisons are shown in Figure 4.6 on page 35.

The active particle spread most matches the ANOVA concentrations of the August 22 observations,

with the wedges in the 60°-120° and 240°-360° regions showing the highest density (14.4%, 24.2%,

and 25.7%, respectively).

Both the 𝑁𝐻2 and 𝐶𝑁 simulations had the same generating parameters, showing how they

could have separate morphology and possible source regions and yet arise from the same rotational

state. The model simulated a timespan of 292 hours with timesteps of 300 seconds. Our best

comparison plots were produced from an initial parameter for rotation period of 8 ± 0.5 hours.

This is lower than values obtained from other authors. Farnham et al. [12] determined a value of

10.4± 0.05 hours from lightcurve measurements, while Ivanova et al. [18] determined a period of

11.1 ± 0.8 hours using a cross-correlation method of tracking a morphological feature over time,

similar to our own. Due to the wider number of available usable observations for Comet Garradd,

an additional method for checking the period was done by determining our own lightcurve from

the enhanced plots. The phase determined from this method also corresponded with a period of

8±0.75 hours, which agrees with our model result. This suggests that this value is at least consistent

with our own observations. The lightcurve is shown in Figure 4.7 on page 36. The discrepancy of

our results from the others determined may be due to our different observation methodology.
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Figure 4.5

Garradd model CN comparison

Comparisons between radial division maps for 𝐶𝑁 in Comet Garradd and simulated
maps from the Monte Carlo model. The top three images show results over the night of
2011 August 21 and their respective observation timestamps. The bottom row shows
maps randomly generated by the model that appear visually closest to the enhancement
plots, with the left being the initial generated nucleus and the right being the result
after several timesteps. The purple line running through the nucleus in the left plot
denotes the simulated primary rotation axis.
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Figure 4.6

Garradd model NH2 comparison

Comparisons between radial division maps for 𝑁𝐻2 in Comet Garradd and simulated
maps from the Monte Carlo model. The top images show a sample observation over
two different nights. The bottom row shows a map randomly generated by the model
that appear visually closest to the enhancement plots.
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Figure 4.7

Garradd enhancement plot lightcurve

Lightcurve determined from our enhancement plots for our observations taken over
two nights. The blue dot represent observations taken on August 21, red dots represent
August 22. A phase (gray sine curve) was determined from similar morphological
features found in the enhancements of all radicals across both nights.
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4.3 168P/Hergenrother

Comet Hergenrother presented unique challenges compared to our other comets. It is another

Jupiter Family Comet, whereas Garradd is a long-period comet, and thus likely has different

physical properties in terms of nucleus size and active area fraction, and a lot less is known about

Hergenrother as opposed to the other comets in this study. In terms of radicals, Hergenrother was

found to be extremely chemically depleted [33], allowing only viable observations for 𝐶𝑁 . Only

one bright feature can be seen in the 𝐶𝑁 maps, shown in Figure 4.8 on page 41, so only one active

area was set in the model. Fifty runs were required for Hergenrother as well. The closest visual

simulations are achieved by setting a rotation period parameter of 6.5 hours, and are shown in

Figure 4.9 on page 42. The other model parameters are shown in Table 4.5 on the following page.
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Table 4.5

Comet Hergenrother Model Parameters

Parameter Name Value Source
Radius 0.7 km Custom parameter

Outflow velocity 1-15 m/s Custom parameter
Solar Vector Angle 159° NASA Horizons

Rotation period 6.5 ± 0.5 hours Custom parameter
Active Area Fraction 19.4 ± .01% Random parameter
Number of test cases 50 Result
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Table 4.6

Observation times for 168P/Hergenrother

Observation Label Start Time (UTC)
October 06 2012
1200 05:09
1201 05:35
1202 06:00
1203 06:55
1204 07:18
October 08
1307 02:57
1308 03:20
1309 03:42
1310 04:06
1314 05:39
1315 06:02
1320 08:01
October 09
1372 02:20
1373 02:44
1377 04:18
1378 04:42
1381 05:53
1384 07:01
1389 08:55
December 19 2012
1423 01:14
1424 01:48
December 20
1514 06:43
December 21
1577 01:15
1578 01:47
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The active area fraction for the surface of the nucleus was 19.4 ± 0.01% for this best-match

simulation. This is much lower than the best-match runs for Garradd, which coincides with our

observation that Hergenrother is chemically depleted and less active compared to most comets

[33]. It remains to be seen if the depletion of Hergenrother, or its recent lack of detection near its

last expected perihelion [41], are related to the aforementioned fragmentation event. The model

constrains the rotation period for our analysis of 168P to 6.5±0.5 hours. There are no measurements

of Hergenrother’s rotation period from outside sources with which to compare our result.

Due to the aforementioned chemical depletion, Welch’s ANOVA wedge comparisons were

done with our measurements of 𝐶𝑁 . The simulation output yield concentrations in the 0°-60°,

60°-120°, and 300°-360° wedges of 36.1%, 32%, and 28.5%, respectively. The actual ANOVA

calculations show higher wedge concentrations primarily in the 0°-60°, 240°-300°, and 300°-360°

regions, differing slightly from our model. This indicates that our model results may not align

to our observations with high precision. It is difficult to further constrain, as almost half of our

Hergenrother observations were dominated by a low signal-to-noise ratio, which can affect the

amount of usable fibers in the ANOVA calculations.
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Figure 4.8

Hergenrother maps

𝐶𝑁 radial division maps for Comet Hergenrother on the night of 2012 October 6. Due
to the small interval of time coverage of the observations shown, the singular bright
feature in the upper right of each map moves very little between images.
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Figure 4.9

Hergenrother model CN comparison

Plots for Comet Hergenrother from the Monte Carlo model. The first image shows one
of the earliest time-steps for the simulation, while the last shows the resultant plot after
a simulated passage of about 290 hours. The purple line running through the nucleus
in the left plot denotes the simulated primary rotation axis.
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CHAPTER V

CONCLUSION AND FUTURE WORK

The rotational period parameters that were set for the best-matching model results for each

comet were very close to the period constrained by either other sources or by visually tracking the

periods over multiple observations. The model also simulates possible active area fractions for the

comets and their approximate locations on the surface. These parameters are not well constrained

by observation alone, so these values can be of interest to other parties. The values determined for

active area fractions (34%, 50%, and 19% for Tempel 2, Garradd, and Hergenrother respectively)

suggests that long period comets like Garradd have higher active area fractions than JFC’s such as

Tempel 2 and Hergenrother, as they have experienced more outgassing and perihelion passages.

Other methods of visually inferring rotational states of comets involves working with data

taken via multiple observations over a long timespan, typically months apart. The data for our

comets were only collected over a couple concurrent nights by the George and Cynthia Mitchell

IFU Spectrograph, limiting the long-term comparisons that could be done with our model. As

such our model results are only effective as comparisons with specific “snapshots" of the comets’

behavior. Further constraints could be placed with further observations, especially comparing pre-

and post-perihelion activity.
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Future efforts will be spent on improving the model. Dust and gas are two very different

components of comet composition and exhibit different outflow behavior, especially beyond the

first few kilometers after release from the nucleus. Our reduced division maps from the IFU

spectrograph are based primarily on the gas located in the outer coma, and we must be cautious in

establishing a link to the dust outflow from the nucleus generated by the Monte Carlo model. While

both may come from similar jet sources, gas interactions typically require parent-daughter molecule

interactions. A possible method of improvement would be to implement techniques from a similar

Monte Carlo model by Lederer et al. [25], in which trajectories of parent molecules are tracked, and

possible daughter decays are simulated by a exponential decay function. The daughter molecules

are ejected isotropically from the parent, and both are subsequently tracked vectorially in the coma

[25]. Additionally, the current version of the Monte Carlo model only accounts for simple rotation

around a primary axis. A more realistic model can be attempted by accounting for more complex

rotational states, such as precession and nutation, that have been observed for other comets, such

as Hartley 2 [4]. The comet’s translational motion as it moves along its orbital path around the

Sun could also be considered to eliminate residual outflow between timesteps. Further checks

must also be made to ensure uniqueness of our model simulations, as multiple three-dimensional

configurations of active area locations could theoretically produce visually similar two-dimensional

plots. The parameters of the model can be adjusted accordingly as more information on our comets

is corroborated and published by outside sources.
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APPENDIX A

MEAN CONCENTRATIONS OF RADICAL SPECIES
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A.1 Tempel 2

The means of the concentration value Ω used in Welch’s ANOVA test are shown in the

following tables. Each table corresponds to a wedge in the region of the outer coma. Each wedge

measures 60° in the hour angle/declination plane. Each table shows values for four of the five

radical species (𝐶2, 𝐶3, 𝐶𝑁 , and 𝑁𝐻2) measured by the spectrograph, organized by observation

time. The observations for 𝐶𝐻 had too low of a signal-to-noise ratio to be used. The columns

are divided by Ω𝑎𝑣𝑔 representing the mean Ω value for that wedge region, and 𝜎 representing the

standard deviation for the concentration for that radical.
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Table 1: Concentration Group Averages for Wedge at 0°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 0.731 0.064 0.572 0.074 0.717 0.067 0.764 0.347
15 July 279 0.739 0.083 0.704 0.174 0.764 0.119 0.678 0.165
15 July 280 0.772 0.106 0.702 0.172 0.778 0.129 0.693 0.164
15 July 285 0.759 0.074 0.595 0.088 0.723 0.076 0.642 0.091
13 Sep 400 0.752 0.070 0.604 0.159 0.654 0.090 0.677 0.259
13 Sep 401 0.753 0.077 0.631 0.101 0.656 0.081 0.737 0.217
13 Sep 402 0.766 0.079 0.689 0.140 0.676 0.098 0.765 0.214
13 Sep 407 0.754 0.078 0.666 0.121 0.660 0.075 0.760 0.199
13 Sep 408 0.763 0.073 0.670 0.125 0.670 0.078 0.780 0.309
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Table 2: Concentration Group Averages for Wedge at 60°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 0.769 0.076 0.653 0.115 0.739 0.061 0.719 0.131
15 July 279 0.739 0.083 0.618 0.098 0.704 0.057 0.712 0.143
15 July 280 0.738 0.063 0.645 0.131 0.712 0.055 0.716 0.123
15 July 285 0.779 0.079 0.643 0.124 0.722 0.072 0.696 0.107
13 Sep 400 0.774 0.080 0.722 0.172 0.692 0.108 0.953 0.285
13 Sep 401 0.739 0.067 0.575 0.106 0.632 0.064 0.807 0.240
13 Sep 402 0.778 0.081 0.739 0.127 0.695 0.100 0.927 0.261
13 Sep 407 0.757 0.067 0.647 0.010 0.670 0.070 0.982 0.220
13 Sep 408 0.742 0.071 0.730 0.137 0.672 0.063 0.917 0.399

Table 3: Concentration Group Averages for Wedge at 120°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 1.047 0.090 1.180 0.176 1.009 0.089 1.106 0.187
15 July 279 0.928 0.095 0.867 0.125 0.870 0.086 0.879 0.104
15 July 280 0.933 0.090 0.876 0.135 0.879 0.081 0.897 0.010
15 July 285 1.017 0.121 1.187 0.319 0.990 0.161 0.967 0.203
13 Sep 400 1.020 0.089 1.075 0.155 0.999 0.124 1.145 0.213
13 Sep 401 0.935 0.107 0.880 0.154 0.891 0.131 1.044 0.268
13 Sep 402 1.010 0.088 1.058 0.128 1.001 0.119 1.145 0.155
13 Sep 407 0.985 0.098 0.960 0.132 0.964 0.119 1.167 0.200
13 Sep 408 0.983 0.088 1.004 0.130 0.971 0.112 1.195 0.241
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Table 4: Concentration Group Averages for Wedge at 180°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 1.300 0.089 1.495 0.173 1.304 0.094 1.338 0.147
15 July 279 1.252 0.107 1.334 0.185 1.227 0.140 1.265 0.214
15 July 280 1.240 0.107 1.315 0.184 1.221 0.132 1.253 0.231
15 July 285 1.258 0.071 1.452 0.097 1.283 0.070 1.294 0.119
13 Sep 400 0.774 0.080 0.722 0.172 0.692 0.108 0.953 0.285
13 Sep 401 0.739 0.067 0.575 0.106 0.632 0.064 0.807 0.240
13 Sep 402 0.778 0.081 0.739 0.127 0.695 0.100 0.927 0.261
13 Sep 407 0.757 0.067 0.647 0.010 0.670 0.070 0.982 0.220
13 Sep 408 0.742 0.071 0.730 0.137 0.672 0.063 0.917 0.399

Table 5: Concentration Group Averages for Wedge at 240°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 1.185 0.121 1.205 0.231 1.233 0.126 1.172 0.229
15 July 279 1.291 0.083 1.396 0.130 1.348 0.096 1.482 0.220
15 July 280 1.265 0.095 1.365 0.136 1.326 0.083 1.423 0.239
15 July 285 1.249 0.050 1.327 0.072 1.303 0.040 1.422 0.120
13 Sep 400 1.235 0.098 1.311 0.213 1.354 0.147 1.192 0.319
13 Sep 401 1.310 0.094 1.512 0.181 1.480 0.139 1.263 0.175
13 Sep 402 1.219 0.089 1.242 9.285 1.332 0.145 1.206 0.285
13 Sep 407 1.245 0.083 1.350 0.148 1.360 0.130 1.205 0.213
13 Sep 408 1.237 0.091 1.269 0.145 1.350 0.129 1.193 0.230
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Table 6: Concentration Group Averages for Wedge at 300°

Date File C2 C3 CN NH2

2010 No. Ωavg σ Ωavg σ Ωavg σ Ωavg σ
15 July 278 0.902 0.068 0.781 0.091 0.940 0.087 0.860 0.184
15 July 279 1.031 0.102 1.071 0.159 1.100 0.123 1.021 0.197
15 July 280 1.015 0.102 1.046 0.152 1.074 0.120 1.020 0.205
15 July 285 1.017 0.078 0.970 0.137 1.053 0.095 1.081 0.157
13 Sep 400 0.947 0.097 0.835 0.202 0.917 0.129 0.760 0.261
13 Sep 401 0.999 0.115 1.019 0.217 0.993 0.188 0.851 0.272
13 Sep 402 0.958 0.084 0.885 0.170 0.928 0.127 0.790 0.278
13 Sep 407 0.966 0.097 0.961 0.164 0.943 0.132 0.797 0.286
13 Sep 408 0.975 0.084 0.948 0.175 0.938 0.126 0.670 0.400
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