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Medical imaging is a key tool used in healthcare to diagnose and prognose patients by aiding

the detection of a variety of diseases and conditions. In practice, medical image screening must be

performed by clinical practitioners who rely primarily on their expertise and experience for disease

diagnosis. The ability of convolutional neural networks (CNNs) to extract hierarchical features and

determine classifications directly from raw image data makes CNNs a potentially useful adjunct

to the medical image analysis process. A common challenge in successfully implementing CNNs

is optimizing hyperparameters for training. In this study, we propose a method which utilizes

scheduled hyperparameters and Bayesian optimization to classify cancerous and noncancerous

tissues (i.e., segmentation) from head and neck computed tomography (CT) and positron emission

tomography (PET) scans. The results of this method are compared using CT imaging with and

without PET imaging for 2D and 3D image segmentation models.
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CHAPTER I

INTRODUCTION

Medical imaging is commonly used by healthcare practitioners to detect and quantify malig-

nant tumors. Traditionally, this is achieved by visually differentiating (segmenting) cancerous

tissue from healthy tissue for a given image modality. This chapter introduces the task of using

convolutional neural networks (CNNs) to facilitate image segmentation of head and neck tumors

in computed tomography (CT) and positron emission tomography (PET) images.

1.1 Motivation

Approximately 600,000 new global cases of head and neck cancer are diagnosed annually,

making it the fifth most commonly diagnosed cancer worldwide [5, 38]. Among these new cases,

40-50% result in death [38]. The prevalence and incidence of head and neck cancer have lead to

a significant investment in how this disease is diagnosed and treated. A critical tool utilized in

the diagnosis, treatment, and prognosis of head and neck cancer (as well as other cancer types) is

medical imaging. Different medical imaging modalities allow healthcare practitioners to visualize

specific physiological features. Among these features is malignant cancer tumors. The limitations

of the analysis of these medical images reside in the practitioners experience and ability to detect

cancerous tissue from noncancerous tissue. The practitioner is tasked with correctly classifying

regions of a given image. This is known as segmentation (Figure 1.1).
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Figure 1.1

Cancer Tumor Segmentation of a CT Image

Deep neural networks, specifically CNNs, have widely been used for image classification tasks.

The architecture of CNNs allow them to extract hierarchical features and learn models which

can classify images pixel by pixel [33]. Image classification at this level of detail provides class

detection as well as spatial information. The end result is a model which is able to predict "what"

is present in a given image as well as "where" it is located. This capability makes CNNs a powerful

tool which can be implemented to aid practitioners in the medical image analysis process.

1.2 Problem Statement

While medical practitioners can pose limitations due to experience and ability, CNNs possess

limitations as well. The ability of a CNN to correctly segment a medical image relies heavily

in how the CNN is trained. Several studies investigate varying aspects of training which lead to

increased model performance for medical image segmentation [1, 18, 21]. Hyperparameter tuning
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is among one of the most critical tasks when training a CNN model. Hyperparameters determine

the specifications for how a model is trained and can affect the model’s ability to generalize.

Hyperparameters can be related to the network architecture itself, such as the number of layers, or

can relate to the algorithms used to train the model (learning rate and batch size).

The learning rate is one of the most important hyperparameters to consider. With all other design

choices held constant, studies show that an improperly tuned learning rate can make the difference

between exceptional or poor model performance [23]. Batch size is another hyperparameter which

can be tuned, with or without consideration of the learning rate [51].

A common approach of refining CNN training is scheduling hyperparameters during training

(e.g., decaying the learning rate) [51]. The logic behind decaying the learning rate is that at the

start of training, a larger learning rate is more beneficial to successfully navigate the total relevant

space of the loss function (avoiding local minima) [59]. Conversely, assuming that the optimizer

algorithm is converging to a minimum, smaller learning rates should be implemented later in

training to ensure continued convergence and avoid overshooting.

This explanation, however, is by no means definitive. You et al. suggest that the benefits from

large initial learning rates are seen instead because large learning rates avoid memorization of noise

[59]. Smith et al. found that decreasing the learning rate throughout training was quantitatively

equivalent to increasing the batch size [51]. Additionally, several studies support that the learning

rate and batch size are in fact intimately connected [20, 25, 51, 52]. This could help explain

why there is some debate about the mechanism behind the benefits of decaying the learning rate.

Supporting the interconnection between batch size and learning rate, He et al. stress the importance

of considering the batch size to learning rate ratio in order to generalize well [20, 25].
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Although previous literature supports the idea that an optimal batch size to learning rate ratio

exists, no such ratio has been empirically identified and used in training [20, 25, 51, 52]. Further,

it is unclear if an optimal batch size to learning rate ratio exists for optimizers other than stochastic

gradient descent (SGD). If batch size to learning rate ratio is a more accurate lens in which to view

hyperparameter scheduling, then what is actually relevant is that training is scheduled from a low

ratio to a higher one.

The problem being addressed in this study is that some de facto methods tune the learning

rate and batch size independently of each other. Failure to recognize the interdependence of the

learning rate and batch size may result in suboptimal decision making when training deep neural

networks.

1.3 Assumptions

Several assumptions are made for this study:

• One of the most significant assumptions is that the labels used to train the model are in fact

correct. The data used for this study is sourced by the International Conference on Medical

Image Computing and Computer Assisted Intervention (MICCAI). The images originate

from Vallières et al., were used by Andrearczyk et al., and were then re-annotated by an

expert for the MICCAI 2020 Head and Neck Tumor Segmentation Challenge [5].

• The medical images used in training are limited to CT and PET images of the head and neck

region in Gnu zipped file format.

• Each image used in training is the resultant of an axis-aligned bounding box used to crop the

original image. Not to be confused with a minimum bounding box, the bounding boxes are
4



the same dimensions for each image. The cropped images contain the centered tumor along

with a sufficient amount of proximal tissue to ensure proper training.

• The TensorFlow Python API version 2.6.0 is used to facilitate development and training of

the CNN models used for segmentation.

• Processes are executed on a NVIDIA GeForce RTX 3090 GPU.

• Hyperparameters are optimized using a package titled Bayesian Optimization, which is a

pure Python implementation for constrained global optimization using Bayesian inference.

• The Hyperparameter optimization used in this study is exclusively used for medical image

segmentation tasks.

1.4 Research Objectives

The batch size to learning rate ratio is a derived hyperparameter which provides a new context

for interpreting CNN model performance. Within the context of batch size to learning rate ratios,

decaying the learning rate and increasing the batch size are effectively doing the same thing -

increasing the batch size to learning rate ratio.

The apparent negative correlation between generalization ability and batch size to learning rate

ratio suggests that smaller batch size to learning rate ratios are preferred [20]. However, intuition

reveals that there is a lower limit to how small this ratio should be. Decreasing the batch size to

learning rate ratio excessively will select for large learning rates that prohibit convergence.

The primary objective of this research is to improve deep neural network performance by

optimizing both the learning rate and the batch size (optimizing the batch size to learning rate
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ratio). Secondary objectives are to validate the presence of optimal batch size to learning rate

ratios when using the Adam optimizer and to empirically test whether scheduling benefits can be

realized with ratio scheduling.

1.5 Contribution

There are several challenges which affect successful implementation of CNN models for medical

image segmentation. One of the most well known challenges is the fine tuning of hyperparameters

[10, 59]. Several hyperparameter optimization methods exist to streamline the process of hyperpa-

rameter tuning. Among these methods is Bayesian optimization. Bayesian optimization updates

a probabilistic model of the loss function over multiple iterations to determine hyperparameters

which will minimize the loss function.

Previous studies have also investigated whether altering hyperparameters during training could

yield increased model performance. Although a significant amount of literature exists for schedul-

ing learning rates, less research has been conducted with respect to scheduling other hyperpa-

rameters such as batch size. At the time of this study, there are no known studies that explicitly

optimize the batch size to learning rate ratio. Moreover, the scheduling of this ratio has not been

investigated.

In this study, we implement a new method which combines Bayesian hyperparameter optimiza-

tion with scheduled training. Two different sets of hyperparameters are used for each schedule

component. For each schedule component, Bayesian optimization is used to determine the batch

size and the learning rate. This Bayesian optimization-derived scheduling (BOS) is compared
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against unscheduled models using SGD and Adam for both CT and CT/PET images. Methods are

further compared with respect to 2D U-Net and 3D U-Net implementation.

1.6 Thesis Overview

The structure of this thesis is as follows: Chapter 2 covers the fundamentals of supervised

machine learning, then reviews the literature for machine learning-based segmentation, CNNs in

medical image segmentation, the relationship between learning rate and batch size, scheduled

learning, and Bayesian hyperparameter optimization. Chapter 3 details the methodology used in

this study, including the basics of deep learning, the neural network architecture used, the Dice score

coefficient and Dice loss, the mechanism of Bayesian optimization, and Bayesian optimization-

derived scheduling. Chapter 4 describes the Experimental Results and provides an analysis and

discussion of results. Chapter 5 provides Conclusions and directions for future work.
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CHAPTER II

LITERATURE REVIEW

This chapter presents the information required to understand the basic fundamentals of super-

vised machine learning. Then, a literature review of machine learning-based image segmentation

is provided. The literature review covers non-deep learning approaches and compares their advan-

tages and disadvantages. Then, an overview of deep learning segmentation methods using CNNs

is given. The relationship between learning rate and batch size and the implementation of Bayesian

hyperparameter optimization is discussed as well.

2.1 Supervised Machine Learning Fundamentals

Artificial Intelligence (AI) efforts date as far back as the 1950’s when Alan Turing developed

the Turing Test to evaluate how well a machine could imitate a human [8]. Since then, further

developments in the field of AI resulted in the sub-field titled machine learning [8]. The overall

idea of machine learning is for a machine to take data and automatically make decisions based off

of this data. With every decision, the machine "learns" and will make better subsequent decisions

[8].

8



2.1.1 How Training Works

Machine learning starts with a model [8]. This model receives an input and will return an

output or prediction [13]. In the case of supervised machine learning, there is correct output data

for all input data. It is then the machine’s job to iteratively alter the model so that the model can

best predict future input data [42]. The assumption is that there is a pattern that can be learned

from the amount of training data used to create the model [13]. In order for reliable patterns to

be learned, there needs to be a sufficient amount of data and there needs to be a way to quantify

how well a model performed throughout its training process (i.e., the correctness of its predictions)

[8, 42]. This performance is measured by a loss function which returns a specific amount of error

when given the model’s prediction and the correct prediction [42].

2.1.2 Loss Function Optimization

Machines alter the model towards better predictions by use of the loss function. What the

machine is altering during this process is the parameters of the model [8, 42]. Since the loss

function is defined in terms of these same parameters, the minimum value of the loss function

will correspond to the model parameter values which yield the smallest error [13]. As a result,

optimizing the loss function will provide the "best" model.

2.2 Machine Learning-based Image Segmentation

Several traditional machine learning algorithms have been used for image segmentation. Each

algorithm presents a different approach with its own unique considerations. The literature regarding

clustering, random forests, support vector machines, and Markov random fields is reviewed to

summarize machine learning-based image segmentation.
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2.2.1 Clustering

Clustering is known as a type of unsupervised machine learning. In unsupervised machine

learning, input image data is not associated with any correct labeling (the correct output of the

image is unknown) [41]. In supervised machine learning, this labeling provides the machine with

information needed in order to learn patterns. In the case of clustering, patterns need to be learned

a different way [41].

K-means clustering is a common algorithm used to group or cluster data without the use

of labels [11]. The K-means algorithm achieves this by use of quantitative data features [11].

Since the data features are quantitative, the "closeness" of a feature against another feature can be

measured by the Euclidean distance between these two features [11, 41]. Regions of an image are

then segmented according their respective cluster. Theoretically, each cluster will contain pixels

that are more similar to pixels of their same cluster while being more different than pixels of each

alternative cluster [11, 41].

2.2.2 Random Forests

A random forest is an ensemble method which uses multiple decision trees to achieve a

prediction [27]. Each tree contains different criteria for making a particular set of binary decisions

with respect to the data [27, 48]. After these decisions, a final decision (the prediction) is made.

Since each tree contains a different set of decisions, each one may arrive to a different conclusion

[27, 48]. Random forests are used to address this variation [27]. In a random forest, many trees are

constructed, and the final prediction is made based on what the majority of decision trees predicted,

given the same input data [27].

10



2.2.3 Support Vector Machines

A significant challenge in classification tasks is that separability may not exist for original

input data [48, 60]. This lack of separability makes classification difficult as there is no possible

hyperplane which can separate the data in its given dimensional space [60]. A key concept in

Support Vector Machines (SVMs) is that the input data can demonstrate separability if the data

is transformed into a higher dimensional representation (Figure 2.1) [32, 60]. Kernel functions

perform this type of transformation [60].

Figure 2.1

How SVMs transform data to higher dimensions, leading to separability [32]

2.2.4 Markov Random Fields

Markov random fields (MRFs) use conditional probability to produce image segmentations

[48]. Since adjacent pixels are likely to be similar, the probability of a given pixel classification is

affected by neighboring pixels [48]. In MRFs, pixels are grouped together as objects [24, 48]. The
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label for an individual pixel is determined based on its similarity between a given object and its

neighboring objects [24].

2.2.5 Image Segmentation Model Comparisons

Each machine learning approach has its own advantages and disadvantages. The breadth

of continuing literature is often a direct result of attempting to improve upon a currently estab-

lished segmentation methodology [40]. Table 2.1 summarizes these different approaches and their

respective advantages and disadvantages.

A key parameter that the K-means algorithm requires is the number of clusters, 𝑘 [11, 41].

For the image predicted, the number of classes which are to be identified must be known in

advance [41]. Successful implementing K-means clustering for image segmentation also requires

appropriate initialization of the cluster, a task which can be considerably challenging [11]. As a

result, K-means clustering has been useful for clustering similar features together but has been less

successful for image segmentation [60].

Another criticism of K-means clustering has been its all-or-nothing nature of classification [60].

In K-means clustering, each pixel belongs to a singular cluster (full membership to one cluster)

[11, 41]. Fuzzy C-means clustering allows for partial membership which has made it more suitable

for real-world tasks [56]. The significant disadvantage of this partial membership application is

that membership functions are particularly difficult to determine [56]. Additionally, since both

K-means and fuzzy C-means clustering are unsupervised, they rely on intraclass variation being

low and interclass variation being high to segment images properly, which is not always the case

12



[41, 60]. Figure 2.2 shows how fuzzy C-means can segment a brain image when regions of the

image are relatively homogeneous [58].

SVMs have been used for image segmentation as well but notably lack robustness, often

times failing to classify pixels when significant noise is present [46, 60]. Although reasonable

segmentation results have been achieved on select datasets using SVMs, these models are often not

pure SVM implementations [46]. Instead, additional algorithms or models are used in conjunction

with an SVM to support the segmentation process [46].

Hartmann et al. found that a random forest model performed well for medical image segmen-

tation, demonstrating a Dice score coefficient (DSC) value of 0.85 [19]. In other cases, random

forests can be limited depending on how similar regions of interest are to their surroundings [35].

One advantage that was noted for random forests was that they could be implemented when Graph-

ics Processing Units (GPUs) are not available [19]. In this case, random forests could be used in

smaller IT infrastructures given that there is sufficient hardware memory to produce optimal image

segmentation [19].

MRFs have been implemented to segment images with success on specific image types (e.g.,

brain MR images and mammograms) [22, 55]. In MRFs, filters are used to extract features from

image data, but unlike other methods, these filters are not learned and must be carefully designed

and/or selected [48]. This inability to learn filters has the potential to be fairly limiting. Held et al.

highlighted three filters which were used for image segmentation, non-parametric distributions of

tissue intensities, neighborhood correlations, and signal inhomogeneities [22].
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Table 2.1

Advantages and Disadvantages of Image Segmentation

Approach Authors (year) Advantages Disadvantages

K-means Zhang et al.
(2016)

• Suitable for grouping/clustering • Inaccurate segmentation

Fuzzy
C-means

Jasim and
Mohammed
(2021)

• Can be useful for real-world problems •Membership function is difficult to determine
due to partial membership

SVM Zhang et al.
(2016)

• Inherently a classification method • Not sensitive to noise
• Inexact segmentation

SVM Rajan et al.
(2017)

• Good results on Berkeley • Lacks robustness to noise
segmentation database • Required implementation of fuzzy C-means
• Competitive performance on color images

RF Balsiger et al.
(2015)

• Duration suitable for clinical use • Cannot compete with state-of-the-art methods
• Reports "feasible" segmentation • Only segments distal femur

RF Liu et al.
(2019)

• High accuracy segmenting lung nodules • Difficulty with lung nodules stuck together
• Fully automatic

RF Hartmann et
al. (2021)

• Competitive F1 score performance • Requires large amount of hardware memory
• Does not require GPU

MRF Held et al.
(1997)

• Performed well on 3D brain MR images • Only considers 3 features
• Not tested for classes with similar signal intensity

MRF Venmathi et
al. (2019)

• Accurately segmented breast calcifications • Advanced segmentation difficult without
• Can segment breast from pectoral muscle classifiers



Figure 2.2

Original Brain Image and Fuzzy C-Means Segmentation [58]

Alternatively, it is not uncommon for CNNs to have hundreds of filters which are learned and

therefore presumed to actively contribute to segmentation processes [40, 48].

2.3 CNNs in Medical Image Segmentation

CNNs are among the most common and successful architectures for computer vision problems,

making them particularly suitable for medical image segmentation [40]. Several studies have

implemented various CNNs to perform image segmentation on both normal and pathological

anatomical structures (Table 2.2).

Implementation of 3D V-Net CNN models has been used to segment different organs such as

bladders, rectums, femurs, prostates, and various head organs [12, 39, 47]. Disease regions of

interest have been segmented as well, such as cancer and liver and kidney disease [1, 5, 15, 49].
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Table 2.2

Medical Image Segmentation Literature Using CNNs

Authors (year) Modality Region of Interest Model DSC1

Abdelhafiz et al. (2020) X-Ray Cancer (breast) 2D U-Net 0.951
Andrearczyk et al. (2020) PET-CT Cancer (head/neck) 2D V-Net 0.606
Duanmu et al. (2020) CT Various Organs (head) 3D V-Net 0.82
Golla et al. (2020) CT Arteries (abdomen) 2D U-Net 0.822
Gonella et al. (2019) MRI Cancer (brain) 3D V-Net 0.641
Milletari et al. (2016) MRI Prostate 3D V-Net 0.869
Savenije et al. (2020) MRI Bladder, Rectum, Femur 3D V-Net 0.97
Shin et al. (2020) CT Liver/Kidney Disease 3D V-Net 0.961
Tan et al. (2019) MRI Prostate 3D V-Net 0.646
1 Highest DSC is shown for results with multiple regions of interest

Table 2.2 shows that the differences in performance can vary significantly, with DSC values as low

as 0.606 for head and neck tumor segmentation, to 0.97 for femurs [5, 47].

The extent to which a model can segment a medical image can be inferred somewhat qualita-

tively. Visually, MR images in Savenije et al. show that femurs are clearly defined with distinct

boundaries rather than blending within the background (Figure 2.3) [47]. This observation can be

seen in Abdelhafiz et al. as well [1]. Mammography images use X-rays to produce images with

high contrast, helping to define clear lesion boundaries [1]. Lower DSC values are seen in cases

where regions of interest are visually more difficult to distinguish from their surroundings (Figure

2.4) [5, 15].

Andrearczyck et al. performed automatic head and neck tumor segmentation using 2D and 3D

V-Net CNNs [5]. Both CT and PET images were used to demonstrate the benefits of utilizing both

modalities together [5]. Andrearczyk et al. implemented an early fusion approach where CT and
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Figure 2.3

Femur, Rectum, and Prostate Segmentation [47]

Figure 2.4

Axial CT Image (head), Predicted Segmentation (green), Correct Segmentation (red) [5]
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Table 2.3

Results of Andrearczyk et al. [5]

Model Modality DSC Precision Recall
2D/3D CT 48.7%/49.2% 52.7%/48.6% 54.1%/65.0%
2D/3D PET 58.2%/58.6% 59.7%/59.1% 66.7%/70.2%
2D/3D early fusion 58.5%/58.9% 58.1%/59.0% 70.2%/70.8%
2D/3D late fusion 60.6%/59.7% 69.4%/62.8% 62.1%/69.1%

PET represented multiple input channels for the model and a late fusion approach by averaging

probabilities for individual CT and PET models [5]. Their results can be seen in Table 2.3.

2.4 Learning Rate and Batch Size Relationship

Studies have demonstrated an important relationship between learning rate and batch size

[20, 25, 51]. This relationship has primarily been evaluated for SGD [20, 25]. Jastrzębski et al.

concluded that scheduling the batch size is a suitable alternative to scheduling the learning rate

[25]. Smith et al. investigated scheduling batch size further, showing that scheduling the batch

size resulted in the same test accuracy with equal epochs and less parameter updates compared

to scheduling the learning rate [51]. They showed that fewer parameter updates lead to greater

parallelism and less training time when training with SGD, Momentum, and Adam optimizers [51].

Goyal et al. found that equal generalization could be achieved with different batch sizes as

long as the learning rate was scaled linearly [16]. To further explain this finding, Jastrzębski et al.

discretized SGD as a stochastic differential equation to determine what factors influence the final

minima learned from SGD [25]. Their work theoretically explains and experimentally supports that

a higher learning rate to batch size ratio correlates with a wider minima and greater generalization

18



[25]. This supports the work of He et al., where 1,600 models were trained using CIFAR-10 and

CIFAR-100 datasets [20]. The primary finding for this study was that the batch size to learning

rate ratio was negatively correlated with generalization ability [20]. Figure 2.5 shows the results

of this negative correlation [20]. Both theoretical and empirical evidence was provided to support

this finding [20].

Figure 2.5

Negative Correlation of Batch Size to Learning Rate Ratio and Test Accuracy [20]

2.5 Scheduled Learning

Hyperparameters do not have to remain static during training. Several neural network training

strategies involve scheduled learning, where different hyperparameters are used at different stages in

the training process [2, 28, 51]. Several implementations have focused on scheduling the learning

rate [28, 51, 59]. Although studies have suggested that scheduling the batch size could yield
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identical, and in some respect, better results than scheduling the learning rate, this implementation

remains scare within the literature [51].

Scheduling of optimizers has also been of interest [2, 28]. Since different optimizers are believed

to accomplish different benefits, particularly with respect to early training versus late training,

starting with a particular optimizer then switching to another has been explored [28]. Keskar

and Socher found that they were able to switch from Adam to SGD and obtain the generalization

performance of SGD while also retaining rapid initial progress properties from Adam [28]. Akiba

et al. switched optimizers in a similar way, opting to use root mean square propagation as a

"warm-up" to overcome difficulties associated with the beginning of training [2].

Several different methods such as grid search, random search, Bayesian optimization, and

genetic algorithms have been developed to optimize hyperparameters for deep learning [3, 14,

26, 31]. Gao and Ding concluded that Bayesian hyperparameter optimization was a more stable

method than grid search and random search [14]. Kunang et al. were able to increase the test

accuracy of their intrusion detection model from 0.8233 to 0.99991 by using Bayesian optimization

to fine tune hyperparameters [31]. In order to predict real estate prices, Kalliola et al. were able to

increase the relative mean error of their deep artificial neural network (ANN) model by 2.5% by

using Bayesian hyperparameter optimization. [26]. Other studies show different results. Alibrahim

and Ludwig compared grid search, a Bayesian algorithm and a genetic algorithm and found that

each method performed similarly, but the genetic algorithm produced the best results [3]. The

Bayesian algorithm resulted in a DSC value of 0.81 while grid search and the genetic algorithm

values were 0.85 and 0.87 respectively [3]. Differences in accuracy were less, with the genetic
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algorithm leading with an accuracy of 0.9059, grid search resulting in 0.8976 and the Bayesian

algorithm at 0.8959 [3].
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CHAPTER III

METHODOLOGY

This chapter first covers the basics of deep learning. Once basics have been established, the

methods used to improve CNN training are described, including the network architecture, the

loss function used for this task, and how Bayesian hyperparameter optimization is combined to

implement scheduled training.

3.1 Basics of Deep Learning

Deep learning is a subset of machine learning which has made significant advancements

in nearly every application domain [4, 13]. Deep learning primarily utilizes neural networks

as computational models to achieve state of the art results in areas such as image classification,

autonomous vehicles, and speech recognition [4]. This section describes an overview of the basics

of deep learning, covering elements of deep learning and mechanisms explaining how neural

networks are able to learn.

3.1.1 Perceptrons

Perceptrons are the functional units which make up neural networks [13]. Figure 3.1 shows a

diagram of a perceptron and the operations within it that transform data inputs into a single output

value. Data inputs are multiplied by their respective parameters and then summed. The activation
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function will then receive this summation and return the final output. A bias term (denoted in

Figure 3.1 as w0) is often added in the summation to provide greater output flexibility via horizontal

shifting of the activation function [4]. Similar to more traditional machine learning methods, a

perceptron is a model which receives input data and will output a prediction. In the context of

classification tasks, this prediction is the predicted class of the input data [4, 8].

Figure 3.1

Perceptron Diagram

3.1.2 Neural Networks

Single perceptrons can be used to classify linearly separated data quite well [8]. In most cases,

however, the data is not linearly separable, and a nonlinear model is required [13]. Connecting

perceptrons so that the output of one perceptron is given to the next perceptron as input can

model this nonlinearity [8, 13]. Connecting perceptrons in this way is how more general ANNs

are formed, specifically, feedforward multilayer perceptron (MLP) neural networks [8]. Multiple

perceptrons that receive the same input are referred to as layers (also hidden layers) [4]. These
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layers will then send their respective outputs to subsequent hidden layers until the last layer yields

the prediction [4, 13]. Deep neural networks simply obtain their name by consisting of enough

layers to be considered "deep" [8].

3.1.3 Convolutional Neural Networks

CNNs are a type of deep neural network that has been particularly successful in image classifi-

cation applications [1, 4, 13, 37]. From a high level perspective, the concepts related to perceptrons

and MLPs hold true for CNNs - groups of functional units receive input data, then pass their outputs

to other functional units via a network until a final output is achieved [8]. CNNs, however, contain

several structural differences which help explain their performance success [13].

3.1.3.1 Kernels

For perceptrons, the first operation is that input data are multiplied by parameters. In the case

of MLPs, this process will occur for every perceptron in the first hidden layer [8]. This process also

occurs within CNNs, albeit in a slightly different yet equally systematic way. This difference can

largely be explained by understanding kernels and their role within the CNN structure [4, 8, 13].

In Figure 3.1, the input of the activation function is simply the dot product of the input data

vector and the vector of corresponding parameters. While Figure 3.1 depicts this dot product

linearly, if the number of data inputs is a perfect square, we can just as easily depict this same dot

product in the form of a square grid [4, 13].

The size of this square grid is typically 3x3 or 5x5 and is referred to as a kernel. The kernel

itself is a grid organization for a specific set of parameters [13]. In 2D images, data is represented

as a grid of pixels and each pixel contains a numerical value which will determine the exact color
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that will be emitted [10]. The kernel size is intentionally smaller than a typical image size so that

one kernel (with the same parameters) can be applied over each portion of the image systematically

[4].

3.1.3.2 Convolutional Layers

When kernels are applied over respective regions of an input image, dot products between the

input data and kernel parameters are fed as input to activation functions, not unlike what is seen

for perceptrons (Figure 3.1) [4, 13]. The output of the activation function produces values which

make up an activation map [13]. An individual activation map is a different representation of the

input image which is why kernels are also known as filters [13].

Consider input data 𝑋 and kernel 𝐾 of dimensions (𝑤x𝑤). Applying the kernel will output the

activation map, 𝑀 , where

𝑀𝑖, 𝑗 = 𝜎(
𝑤∑︁
𝑖′=1

𝑤∑︁
𝑗 ′=1

𝑋𝑖+𝑖′−1, 𝑗+ 𝑗 ′−1 · 𝐾𝑖′, 𝑗 ′) (3.1)

𝑀𝑖, 𝑗 is the portion of the activation map which is a result of applying the kernel 𝐾 to a section of the

input data 𝑋𝑖, 𝑗 , where (𝑖, 𝑗) is the starting point and 𝜎 is typically a nonlinear activation function.

A stride parameter 𝑠 is set for how the kernel will slide across the image. Sliding for 𝑠 = 1 will

result in the kernel being applied to the image with every pixel being a starting point (𝑖, 𝑗), 𝑠 = 2

will perform operations so that (𝑖, 𝑗) will be every other pixel, and so forth. For whichever 𝑠, the

kernel is slid across the entire image resulting in a complete activation map, 𝑀 .

Applying different kernels or filters to an image will produce different activation maps [13].

When stacked, these 2D activation maps create a volume known as a convolutional layer [13].

The term convolution refers to the operation of sliding the kernel over the entire input image to
25



collect each dot product [13]. Although this sliding dot product operation is technically a cross

correlation, for the purposes of training a CNN, calculating the cross correlation and calculating

the convolution will not produce any practical differences in the model’s ability to learn or perform

[13].

3.1.3.3 Pooling Layers

Kernels and convolutional layers explain how a model can receive image data and apply different

parameters to obtain alternative image representations [4, 8]. Different image representations will

emphasize different image features [8]. Identification and utilization of these different features are

what enable the model to make successful predictions [4, 13].

The ability to make predictions is increased by a CNN’s ability to identify different levels

of features [4, 13]. Low level features such as lines and edges can be identified with the earlier

convolutional layers, but in order to detect higher level features, pooling is introduced [4]. A

common approach is known as max pooling, which considers a square grid of the activation map

(similar to a kernel), and returns the maximum value of the grid [6, 13]. If the square grid is (2x2),

then the result would be 𝑋𝑚𝑎𝑥 , where

𝑋𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑋𝑖, 𝑗 , 𝑋𝑖+1, 𝑗 , 𝑋𝑖, 𝑗+1, 𝑋𝑖+1, 𝑗+1} (3.2)

𝑋𝑚𝑎𝑥 is passed to a separate layer known as the pooling layer [13]. This type of pooling downsamples

the original input data, reducing the image size, while also allowing for extraction of higher level

features and is illustrated in Figure 3.2 [4, 13].
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Figure 3.2

Maxpooling Operation with a Stride of 𝑠 = 2

3.1.4 Backpropagation and Optimizers

With any deep neural network, the fundamental goal remains the same. Given a model of

parameters, optimize parameter values so that the model will result in the smallest error (or

loss) between the model’s output and the given training data [8]. Chapter 2.1.2 introduced the

optimization of a loss function. More sophisticated models require specific methods to achieve

this optimization [4, 8].

In contrast to more rudimentary functions, it is not feasible to differentiate loss functions of

deep neural networks and simply compute parameters which correspond to the global minimum

[48]. These loss functions are complex and often times non-convex [13]. Instead, once a set of

parameters is defined, an algorithm is used to determine a subsequent set of parameters which

result in a decreased value of the loss function [8]. Determining subsequent sets of parameters

utilizes the backpropagation algorithm and optimizers [4, 13, 48].
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In backpropagation, the chain rule is used to determine how a specific change in one parameter

will effect the end value of the loss function [4, 13]. Figure 3.3 shows a simple schematic of a

neural network to help track the backpropagation process in the following equation,

𝜕𝐿 ( �̂�, 𝑦)
𝜕𝑤

=
𝜕𝐿 ( �̂�, 𝑦)
𝜕𝑦

𝜕𝑦(ℎ)
𝜕ℎ

𝜕ℎ(𝑠)
𝜕𝑠

𝜕𝑠(𝑤)
𝜕𝑤

(3.3)

In order to determine how a change in 𝑤 will affect the change in the loss function 𝐿 ( �̂�, 𝑦), the

change in the loss function is computed with respect to the predicted output, �̂� (recall in Chapter

2.1.1 that the loss function accepts both the model prediction and correct output as variables).

After this, the chain rule is applied "backwards" through the network [13, 48].

Figure 3.3

Backpropagation: Parameter (weight) 𝑤 influences output �̂�

Backpropagation helps determine how each parameter affects the loss function. However,

how exactly the parameter is updated in each iteration can vary [4, 48]. The algorithms which

determine these parameter updates are known as optimizers. Different optimizers often have

much in common, with newer optimizers building off of previous ones to help increase overall

performance [4, 13, 48]. One of the most basic optimizers is gradient descent (or batch gradient
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descent), which has since been divided into SGD and minibatch gradient descent [25]. SGD

and the relatively recent Adam optimizer has lead to promising results in various deep learning

applications [1, 5, 49, 54].

3.1.4.1 Gradient Descent

Gradient descent addresses two important considerations when updating model parameters,

should parameters increase or decrease, and if so, what should be the magnitude of this increase or

decrease [25, 50]. Since the gradient of the loss function will represent the direction for which the

loss function will increase the most, the negative of the gradient is used to provide the direction of

steepest descent [4]. In gradient descent, the magnitude of parameter change with respect to this

direction is manually selected and is termed as the learning rate [59]. In its simplest form,

𝑤 = 𝑤 − [∇𝐿 ( �̂�, 𝑦) (3.4)

where 𝑤 is a parameter or weight, [ is the learning rate, and ∇𝐿 ( �̂�, 𝑦) is the gradient of the loss

function.

3.1.4.2 Gradient Descent Variants

To appreciate gradient descent variants, Equation 3.4 needs to be expanded upon. A set of

parameters and multiple samples of input data must be considered. Here we will consider 𝑤 as a

vector of parameters used in the model 𝐹 to make a single prediction �̂� (𝑖) , for a single sample 𝑥 (𝑖)

(Equation 3.5).

�̂� (𝑖) = 𝐹 (𝑤, 𝑥 (𝑖)) (3.5)

𝑤𝑡+1 = 𝑤𝑡 − [ ·
1
𝑁

𝑁∑︁
𝑖=1

𝜕𝐿 ( �̂� (𝑖) , 𝑦 (𝑖))
𝜕𝑤

(3.6)
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Equation 3.6 shows the parameter update process when considering every training sample before

performing an update. This is known as batch gradient descent [13]. The resultant change in loss

with respect to current parameters is averaged for all 𝑁 samples. Conceptually, we see that no one

sample will dictate the direction of the update [4, 13].

One update in batch gradient descent requires computing the gradients for all samples which

can be impractical for larger datasets [13, 48]. In direct contrast, SGD performs parameter updates

for each training sample 𝑖,

𝑤𝑡+1 = 𝑤𝑡 − [ ·
𝜕𝐿 ( �̂� (𝑖) , 𝑦 (𝑖))

𝜕𝑤
(3.7)

Changing the direction of parameter updates for each sample can result in a more indirect path to

minimum convergence, aptly naming this variant of gradient descent as stochastic [25, 50].

Another gradient descent variant is minibatch gradient descent. In minibatch gradient descent,

a preselected number of samples (batch) is chosen [48]. This minibatch is what is averaged for

each parameter update [13]. For 1 < 𝑛 < 𝑁 ,

𝑤𝑡+1 = 𝑤𝑡 − [ ·
1
𝑛

𝑛∑︁
𝑖=1

𝜕𝐿 ( �̂� (𝑖) , 𝑦 (𝑖))
𝜕𝑤

(3.8)

Gradient descent algorithms will typically contain an algorithm parameter, batch size, which allows

practitioners to choose how many training samples will be considered for a single model parameter

update [4]. Since this algorithm parameter is used to influence a different type of parameter,

it is considered a hyperparameter [8]. In this study, SGD is technically referring to minibatch

gradient descent. The term SGD is used instead as this is the algorithm’s official name within the

TensorFlow API documentation.
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3.1.4.3 Adam

Adam is an optimizer which differs from gradient descent in two primary ways. Adam utilizes

momentum and adaptive learning rates to perform parameter updates [28, 30]. Momentum in terms

of a deep learning optimizers refers to an algorithm’s ability to keep track of previous parameter

update directions [30]. The addition of this temporal element will help the algorithm compute an

exponential moving average of prior directions (negative gradients) [7, 30]. This average will help

dampen movements in directions that are not toward the minimum and instead accelerate (build

momentum) toward the overall direction of minimization [30]. Momentum, 𝑚𝑡 , can be described

in the following equation,

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 (3.9)

where 𝑔𝑡 is the current gradient and 𝛽1 is a hyperparameter to specify the weightage of the

exponential moving average [30].

Adaptive learning rates function similarly. However, instead of computing a moving average of

prior negative gradients, an exponential moving average 𝑣𝑡 of the prior squared gradients is tracked,

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) · 𝑔2
𝑡 (3.10)

where 𝛽2 is a separate hyperparameter to be distinguished from 𝛽1 [7, 30].

For Adam, the parameter update utilizes 𝑚𝑡 and 𝑣𝑡 in he following equation,

𝑤𝑡+1 = 𝑤𝑡 − [ ·
𝑚𝑡√
𝑣𝑡 + 𝜖

· 𝑔𝑡 (3.11)

where 𝜖 is a small scalar quantity to prevent division of zero [30]. We see that 𝑚𝑡 provides

momentum for the direction of greatest descent while the square root of 𝑣𝑡 has the effect of
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normalizing the learning rate [7, 30]. Parameters which cause the path of convergence to oscillate

are penalized by 𝑣𝑡 while parameters that do the opposite are encouraged by 𝑚𝑡 [30].

3.2 Deep Segmentation Network Architecture

Different CNNs can be constructed differently based on the number of convolutional layers

and pooling layers, how these convolutional layers and pooling layers are connected, and if de-

convolution layers are present, how they are connected as well [44]. This study implements an

architecture called U-Net, first introduced by Ronneberger et al. in 2015 [44].

U-Net architecture is divided into two pathways, a contracting pathway and an expansive

pathway. The contracting pathway works identically to what is described in Chapter 3.1.3, multiple

filters are applied to an image to produce convolutional layers which undergo pooling to downsample

the data. It is at this point where U-Net architectures differ from a standard vanilla CNN. From

here, deconvolutions take place which upsample the data until the original image resolution is met.

This upsampling creates the expansive pathway.

Upsampling by itself, however, results in a loss of spatial information. In reference to Figure

3.2, if a deconvolution operation was performed to reverse the image resolution from 2x2 to 4x4,

how pixel values of the 2x2 image should be mapped onto the 4x4 image would be unknown.

Specifically, if we considered the "3" in the 2x2 image, we only know that it represents the

maximum of the upper left 2x2 quadrant of the 4x4 image. It is unknown how many "3’s" were

present in this upper left quadrant and exactly where they were located.
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Figure 3.4

U-Net CNN Architecture



To preserve this spatial information, skip connections are formed between layers of the con-

tracting pathway and layers of the expansive pathway. Convolutional layers of the contracting

pathway are concatenated with their deconvolutional counterpart of the same resolution. Details

such as the depth of the network and number of convolutions can be seen in Figure 3.4. These

same architecture specifications are implemented in this study for 3D images.

3.3 Dice Score Coefficient and Dice Loss

The primary metric which is used to evaluate the success of segmentation prediction in this

study is the Dice score coefficient (DSC). For binary classification,

𝐷𝑆𝐶 =

2
𝑁∑
𝑖

�̂�𝑖𝑦𝑖

𝑁∑
𝑖

�̂�𝑖 +
𝑁∑
𝑖

𝑦𝑖

(3.12)

where the measurement for correct predictions is the intersection between the prediction �̂� and

correct output label 𝑦 with respect to the sum of correct and predicted labels. Formulating the

correctness of predictions in this way is an appropriate metric of evaluation when data contains

class imbalances. In the case of head and neck tumors, the actual tumor itself may only represent

a small percentage of the overall medical image. DSC values will elucidate how well a model

segmented an image when a class is not well represented while accuracy as a metric may be inflated

due to the model’s correct negative predictions. To incorporate the DSC as the loss function of the

CNN, the Dice loss is used,

𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶 (3.13)
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3.4 Bayesian Hyperparameter Optimization

Hyperparameter tuning has the potential to be extremely tedious if it requires excessive

evaluation of the loss function for each hyperparameter combination [45]. Further, the relationship

between the loss function and the hyperparameter combinations cannot be directly measured

[45, 17, 29]. Bayesian optimization allows for tuning of hyperparameters without knowing the loss

function while also requiring less evaluations [45, 9].

For a given loss function, 𝜑(𝑥), where 𝑥 ∈ X, 𝑥 is a vector of hyperparameters for a given

combination. Via Bayesian optimization, the optimal hyperparameter combination, 𝑥∗, is searched,

where 𝑥∗ = arg min𝑥∈X 𝜑(𝑥) [45]. In order to achieve this, an a-priori probability distribution, 𝑃(𝜑),

and an acquisition function, 𝑎𝑃(𝜑) , are used. 𝐷𝑛 is a set of 𝑛 hyperparameter combinations where

𝐷𝑛 = (𝑥𝑖, 𝑦𝑖)𝑖=1,...,𝑛 and 𝑦𝑖 = 𝜑(𝑥𝑖) + Y𝑖 [45]. Hyperparameter combinations are determined by the

combination that maximizes the acquisition function,

𝑥𝑛+1 = arg max
𝑥∈X

𝑎𝑃(𝜑|𝐷𝑛) (𝑥). (3.14)

Once 𝑥𝑛+1 is obtained, the loss is calculated, 𝑦𝑛+1 = 𝜑(𝑥𝑛+1) + Y𝑛+1 [45]. (𝑥𝑛+1, 𝑦𝑛+1) is then

added to 𝐷𝑛 [45]. From here, both the probability model, 𝑃(𝜑 |𝐷𝑛+1), and the acquisition function,

𝑎𝑃(𝜑 |𝐷𝑛+1) are updated [45]. This update is achieved by use of Bayes’ Theorem which describes that

the posteriori probability distribution for a set with additional points is proportional to the a-priori

probability distribution multiplied by the similarity of this new set,

𝑃(𝜑 |𝐷𝑛+1) ∝ 𝑃(𝐷𝑛+1 |𝜑)𝑃(𝜑). (3.15)

This process is repeated for several iterations, theoretically converging to an optimal set of hyper-

parameters, 𝑥∗ [45, 29].
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A Gaussian process was used for the a-priori model, which utilizes a mean function, 𝑚(𝑥), and

a covariance function, 𝑘 (𝑥, 𝑥′), where

𝜑(𝑥) ∼ 𝐺𝑃(𝑚(𝑥), 𝑘 (𝑥, 𝑥′)). (3.16)

Expected improvement as an acquisition function has resulted in promising results for previous

Bayesian Optimization implementations [43, 45]. For this study, expected improvement is used to

select batch size and learning rate with currently observed data, 𝐷𝑛,

𝑎𝐸𝐼
𝑃(𝜑|𝐷𝑛) (𝑥) = (𝜑(𝑥

∗) − 𝑚(𝑥))Φ(𝑧) + 𝜎(𝑥)𝜙(𝑧) (3.17)

where 𝑧 =
𝜑(𝑥∗)−𝑚(𝑥)−b

𝜎(𝑥) , Φ is the cumulative distribution function of the normal distribution,

𝑁 (𝑚(𝑥), 𝑘 (𝑥, 𝑥′), and 𝜙 is the density function [45]. b is a parameter which can control how

hyperparameters are searched in terms of exploration and exploitation [45, 17].

Figure 3.5

Gaussian process model and acquisition function used to determine 𝑥𝑡 [17]
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3.5 Bayesian Optimization-derived Scheduling (BOS)

The method used to improve deep neural network training is titled Bayesian optimization-

derived scheduling (BOS). BOS uses Bayesian optimization to determine both the learning rate

and the batch size for two separate phases of scheduled training. Optimizing the learning rate and

batch size simultaneously ensures that the optimal batch size to learning rate ratio is used for each

training phase. Exploratory data analysis revealed that certain hyperparameter combinations could

result in a fast, reliable increase in validation DSC values while other hyperparameter combinations

resulted in a stable, more gradual progression without overfitting. This result motivated a two phase

schedule.
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Algorithm 1 Bayesian Optimization-derived Scheduling (BOS)
1: 𝑋: Original images; 𝑦: Label images
2: procedure 1: Preprocess Images
3: Preprocess original images: 𝑋 ← preprocess(𝑋)
4: Preprocess label images: 𝑦 ← preprocess(𝑦)
5: Randomize and split original images: 𝑋𝑜𝑝𝑡 , 𝑋𝑣𝑎𝑙 , 𝑋𝑡𝑒𝑠𝑡 ← split(𝑋)
6: Randomize and split label images: 𝑦𝑜𝑝𝑡 , 𝑦𝑣𝑎𝑙 , 𝑦𝑡𝑒𝑠𝑡 ← split(𝑦)
7: end procedure
8: procedure 2: Bayesian Hyperparameter Optimization
9: for 𝑖 = 1, . . . , 𝑁 do

10: Train phase 1 using optimization set: model.fit(𝑋𝑜𝑝𝑡 , 𝑦𝑜𝑝𝑡)
11: Train phase 2 using optimization set: model.fit(𝑋𝑜𝑝𝑡 , 𝑦𝑜𝑝𝑡)
12: Evaluate model using validation set: model.evaluate(𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙)
13: Return DSC, learning rate, and batch size
14: end for
15: return Learning rate and batch size of highest DSC
16: end procedure
17: procedure 3: K-Fold Cross Validation
18: for 𝑗 = 1, . . . , 𝐾 do
19: Split 𝑋𝑡𝑒𝑠𝑡 and 𝑦𝑡𝑒𝑠𝑡 with respect to K folds
20: Train phase 1 using test set: model.fit(𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡)
21: Train phase 2 using test set: model.fit(𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡)
22: Evaluate model
23: Return DSC, Dice loss, precision, recall, and duration
24: end for
25: return Results of all K folds in data frame
26: end procedure

Algorithm 1 describes the general process of BOS in pseudocode. The exact original images

𝑋 can vary from CT images, PET images, or CT/PET fused images (2D or 3D). The train-

ing/validation/test split is divided into a 21/9/70 split, where the training set is designated as an

optimization set to be used in procedure 2. The validation set is used to evaluate the generalization

ability gained from steps 10 and 11. Lastly, for each fold in procedure 3, the test set is divided

according to the 𝐾 value specified.
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In procedure 2, 𝑁 represents the sum of exploratory and exploitative hyperparameter combi-

nations tested. Training phase 1 of procedure 2 is identical to training phase 1 of procedure 3.

Similarly, training phase 2 of procedure 2 is identical to training phase 2 of procedure 3. In training

phase 1, a stopping criteria is defined using the EarlyStopping callback. Model training in training

phase 1 will cease when the Dice loss has not improved for two epoch iterations. When this occurs,

training phase 2 is initiated with a different learning rate and batch size. The stopping criteria for

phase 2 is defined for when the Dice loss has not improved for ten epoch iterations. In phase 2,

improvement is defined for when the the current Dice loss has minimized with a difference greater

than 0.001 of the previous smallest Dice loss. For example, if the previous smallest Dice lost was

0.45, a Dice loss of 0.449 or lower will constitute improvement while any value within (0.449, 1]

would constitute as failure to minimize. A checkpoint is set within training phase 2 to so that the

best performing model is evaluated in step 12 and step 22.

Once the surrogate model in procedure 2 has evaluated all 𝑁 hyperparameter combinations,

the combination which resulted in the highest DSC value is passed to procedure 3 for K-fold cross

validation. Procedure 3 is used for 𝐾 = 10, with the test set separated into a 90/10 split for each

iteration. This ensures that each 10th of the test set is evaluated. The results of all 10 folds are

stored in a data frame which is then exported as a comma-separated values (CSV) file and/or Excel

file.
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CHAPTER IV

EXPERIMENTAL RESULTS

This chapter provides a discussion of the results. The data is described along with the steps taken

to preprocess the data. The results of an exploratory hyperparameter analysis (EHA) are shared

which motivated the use of a two phase training schedule which utilizes Bayesian optimization for

hyperparameter selection - Bayesian optimization-derived scheduling (BOS). The results of each

strategy are discussed. Lastly, segmentation predictions are visualized and discussed as well.

4.1 Data Description

The data was sourced from the 2021 Medical Image Computing and Computer Assisted

Intervention (MICCAI) Head and Neck Tumor Segmentation Challenge. It is comprised of 224

CT and PET images in NIfTI format. Ground truth contours were originally annotated by radiation

oncologists and were then curated (re-annotated) by experts who were both a radiologist and nuclear

medicine physician for the purpose of the MICCAI Challenge. Fused CT/PET image 3D contours

were edited using the Siemens Syngo.Via RT Image suite [5]. Figure 4.1 shows a CT image,

the ground truth mask, and the ground truth mask contour transposed onto its corresponding CT

image.

All patients were diagnosed with primary squamous cell carcinoma (PSCC) of the head and

neck (TNM-Stage I-IV) and were being treated either with radiation therapy only or chemotherapy
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Figure 4.1

MICCAI Head and Neck images (CT, ground truth, and CT + ground truth)

and radiation therapy. TNM-Staging classifies the size of the tumor progression (T), number of

nodes that have cancer (N), and level of metastasis (M). Tumors were located in the oropharynx

region. Patient ages ranged from 18 to 84, with a mean of 61 years old. The majority of patients

were male (74.6% male and 25.4% female). Table 4.1 details these patient demographics.

CT and PET images are sourced from 4 different Canadian hospital centers, Hôpital Général

Juif, Montréal (CHGJ); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke (CHUS);

Hôpital Maisonneuve-Rosemont, Montréal (CHMR); and Centre Hospitalier de l’Université de

Montréal, Montréal (CHUM). All centers used a hybrid PET/CT scanner where the bed was placed

in multiple positions for image acquisition. Each position is acquired for a specific duration of

time (position acquisition). The median position acquisition and range for each machine in each

center is listed in Table 4.2. For PET, the radiotracer activity is recorded for the medium that

is intravenously injected. These median activity values and ranges are given in Table 4.2 as

well. For centers CHGJ, CHMR, and CHUM, reconstruction of attenuation corrected images used

an ordered subset expectation maximization (OSEM) iterative algorithm with a median span of

41



5 (axial smash). For CHUS, attenuation corrected images were reconstructed using a Line of

Response-Row Action Maximum Likelihood Algorithm (LOR-RAMLA) iterative algorithm.
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Table 4.1

Characteristics of MICCAI Patient Data

Characteristic Type No. of Patients

Gender Male 167 (74.6%)
Female 57 (25.4%)

Age Range 34-90
Mean ± STD 63 ± 9

TNM-Stage
Stage I 4 (1.8%)
Stage II 48 (21.4)
Stage IV 172 (76.8%)

T-Stage

T1 26 (11.6%)
T2 94 (42.0%)
T3 58 (25.9%)
T4 45 (20.1%)
Tx 1 (0.4%)

N-Stage

N0 33 (14.7%)
N1 26 (11.6%)
N2 150 (67.0%)
N3 15 (6.7%)

M-Stage
M0 219 (97.8%)
M1 4 (1.8%)
Mx 1 (0.4%)

HPV Status
Positive 84 (37.5%)
Negative 30 (13.4%)
N/A 110 (49.1%)

Treatment Radiation only 27 (12.1%)
Chemo-radiation 197 (87.9%)
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Table 4.2

PET/CT Scan Specifications

Specification CHGJ CHUS CHMR CHUM
Machine Type Discovery ST, GE Healthcare GeminiGXL 16, Philips Discovery ST, GE Healthcare Discovery ST, GE Healthcare
Radiotracer Activity 584 MBq (368-715) 325 MBq (165-517) 475 MBq (227-859) 315 MBq (199-3182)
Position Acquisition 300 s (180-420) 150 s (120-151) 360 s (120-360) 300 s (120-420)
PET Slice Thickness 3.27 mm 4 mm 3.27 mm 4 mm
PET In-Plane Resolution 3.52 x 3.52 mm2 4 x 4 mm2 3.52 x 3.52 mm2 4 x 4 mm2

CT Energy 140 kVp 140 kVP 140 kVP 120 kVp
CT Exposure 12 mAs 210 mAs 11 mAs 350 mAs
CT Slice Thickness 3.75 mm 3 mm 3.75 mm 1.5 mm
CT In-Plane Resolution 0.98 x 0.98 mm2 1.17 x 1.17 mm2 0.98 x 0.98 mm2 0.98 x 0.98 mm2



4.2 Data Preprocessing

In each each original 3D CT or PET image, the patient occupies a fraction of the entire image.

Images are cropped according to bounding boxes provided by the MICCAI Challenge (Figure

4.2). This ensures that the model will be trained for regions of the image that solely contain the

patient rather than excessive background area. Cropped images are then resized to 96×96×96.

The intensity values of the CT images are clipped in the range of [-1024, 1024] Hounsfield Units.

After clipping, values are mapped to [-1, 1]. Each PET image was normalized individually using

Z-score normalization.

Figure 4.2

Cropping of original CT image

A 2D and 3D version of a U-Net model is used in this study. In order for the original 3D images

to satisfy the 2D requirement of the 2D U-Net model, each 3D image is converted into a series of
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2D slices in the axial plane, resulting in 96 slices per patient. Three different image modalities

are considered, CT, PET, and CT/PET. While both 3D and 2D formats are of interest, 2D slices

are also trained where all slices contain at least some portion of a tumor (Figure 4.3). Image sets

that exclusively use these slices are denoted with the prefix "ROI" to designate slices with specific

regions of interest (tumors).

Figure 4.3

Image sets labeled with the "ROI" prefix only contain slices with a tumor present (left). Image
sets simply labeled "CT", "PET", or "CT/PET" contain these same slices in addition to slices for

which there are no tumors present (right).

Restricting 3D images to a bounding box volume containing each tumor would result in

imbalances where the tumor would occupy a significant proportion of each image. Instead, PET

modality variations are used in addition to CT, PET, and CT/PET to evaluate different cases for

BOS. Gaussian derivatives are used to obtain gradient magnitudes for PET-grad filters (Figure 4.4).

Each transformation uses a standard deviation of 0.5 in all three axes. The PET-grad transformation
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emphasizes the edges of the original PET images. Additional PET filters are created using the

maximum standard uptake value (SUV) of each image. Thresholds of 50%, 40%, 30%, and 20%

of the maximum SUV are used to eliminate potential noise in the original PET images (Figure 4.4).

Sridhar et al. used gradient, 30%, 40%, and 50% thresholds as tumor segmentation methods and

found that gradient segmentation resulted in the highest correlation with pathologic tumor volume

[53]. Their results motivate the use of PET variants to hopefully increase model performance.

PET PET-grad PET-20

PET-30 PET-40 PET-50

Figure 4.4

Original PET image and PET variations used in BOS
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Table 4.3

Hyperparameters used in Exploratory Analysis

Optimizer Learning Rate Batch Size Initializer
Adam 1e-2 2 He Normal
Nadam 1e-3 10 Glorot Normal
SGD 1e-4 20

1e-5
1e-6

4.3 Exploratory Hyperparameter Analysis (EHA)

After successfully preprocessing images and constructing the U-Net model, an analysis of

model behavior was performed with respect to different hyperparameter design choices. Through

various trials, generalization performance appeared to be highest with ROI-2D images. ROI-2D

CT images were used in the analysis to determine how the model would behave with different

combinations of hyperparameters. Table 4.3 shows the different hyperparameters that are explored

in the analysis.

DSC, precision, and recall history were recorded for 100 epochs for both training and validation

datasets. Generalization was assessed visually using the DSC values of the validation dataset for

different hyperparameter combinations. The majority of hyperparameter combinations showed

either excessive overfitting or underfitting. Each figure from the analysis shows trends for a single

optimizer and specific batch sizes and learning rates.

4.3.1 Adam and Nadam

For Adam and Nadam, a learning rate of 1e-6 resulted in reliable model training without

overfitting and underfitting. At a larger learning rate of 1e-5, overfitting is observed while a general
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trend towards increasing DSC values is observed. For learning rates larger than 1e-5, we see that the

model is completely unable to generalize. When considering how batch sizes affect the model, we

see that for a learning rate of 1e-6, a smaller batch size is preferred. However, when moving from

a batch size of 20 to 10 to 2, slightly greater instability is observed as the model’s generalization

improves. Neither Adam nor Nadam achieved a validation DSC value greater than 0.40 when

considering hyperparameter combinations that did not result in overfitting. These observations can

be seen in Figure 4.5. The results of the training loss, DSC, precision, recall and validation loss,

precision, and recall can be seen in Figures 4.6-4.12.
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Figure 4.5

Validation Dice Score Coefficients
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Figure 4.6

Training Dice Loss
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Figure 4.7

Training Dice Score Coefficients
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Figure 4.8

Training Precision
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Figure 4.9

Training Recall
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Figure 4.10

Validation Dice Loss
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Figure 4.11

Validation Precision
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Figure 4.12

Validation Recall



4.3.2 SGD

SGD demonstrated behavior slightly different from Adam and Nadam. For learning rates 1e-5

and 1e-6, the model showed severe underfitting, with validation DSC values never reaching 0.20.

With a batch size of 10 and 20, a learning rate of 1e-4 showed similar underfitting. In contrast,

overfitting occurred when learning rates were too large. The effect of batch size can be seen

with He Normal initialization and a learning rate of 1e-4 (Figure 4.5). As mentioned before, this

combination with batch sizes of 10 and 20 demonstrated significant underfitting. At a batch size of

2, however, the model performs significantly better, reaching a validation DSC value of 0.47 with

no signs of overfitting. It appears that for this combination (SGD/He Normal/1e-4), decreasing the

batch size helped the model transition from underfitting to suitable fitting. Interestingly, He Normal

initialization with a learning rate of 1e-4 and batch size of 2 resembles He Normal initialization

with a learning rate of 1e-3 and a batch size of 20. Unsurprisingly, these two combinations have

identical batch size to learning rate ratios (20,000). In the latter combination, a batch size of 20

results in suitable fitting. Decreasing the batch size then pushes the model from suitable fitting to

overfitting (Figure 4.5).

It becomes apparent that for a given hyperparameter combination, a specific batch size exists

which places the model somewhere between overfitting and underfitting. The same pattern can

be seen with differing learning rates. For any of the batch size combinations, learning rates of

1e-2, 1e-3, and 1e-4 collectively show the effect of a learning rate overfitting when too large and

underfitting when too small (Figure 4.5). Overfitting appears to occur when either the batch size

is too small and/or the learning rate is too large. Underfitting appears to occur when either the

batch size is too large and/or the learning rate is too small. In terms of batch size to learning rate
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ratios, if the batch size to learning rate ratio is too large, underfitting may occur. If the batch size to

learning rate ratio is too small, overfitting may occur. Figure 4.13 illustrates this optimal batch size

to learning rate ratio. Ratios were calculated with batch sizes ranging from 2 to 32 and learning

rates from 1e-4 to 1.
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Figure 4.13

Observation of Optimal Ratio with SGD

Another observation unique to SGD is that in some hyperparameter combinations, once over-

fitting is observed, the validation DSC values fluctuate, but not in such a manner that they oscillate

and approach zero. For instance, He Normal initialization with a batch size of 2 and learning rate

of 1e-3 shows overfitting, but never drops below 0.35. With Adam or Nadam, it is not uncommon

to see much more drastic fluctuations, with validation DSC values regularly fluctuating between

0.35 and 0.01. An additional note of interest is that when a hyperparameter combination involving
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SGD overfits, it usually also demonstrates a sharp, reliable increase in validation DSC values in

the beginning of training, which is much faster than more stable hyperparameter combinations that

are void of such overfitting.

The set of hyperparameters which yielded the best validation results was SGD, He Normal

initialization, with a batch size of 20 and a learning rate of 1e-3. This model demonstrated a

validation DSC value of 0.50. There was only one other combination which produced comparable

results, SGD, He Normalization, with a batch size of 2 and learning rate of 1e-4 which demonstrated

a validation DSC value of 0.48. Both of these hyperparameter combinations had a batch size to

learning rate ratio of 20,000.

Two findings motivated the use of EHA scheduling, the consistent sharp increase in the be-

ginning of training that was observed in a combination such as SGD/1e-3/batch size 2 and the

stability observed in the best performing combination, SGD/1e-3/batch size 20. The resultant DSC

validation behavior of scheduling these two combinations is shown in Figure 4.14.

This specific schedule is derived purely from our EHA. It was evaluated using 10-fold cross

validation CT, PET, and CT/PET images (2D and ROI-2D). The results for mean DSC value,

precision, recall, and training computation time (TCT) in minutes, along with 95% confidence

intervals are shown in Table 4.4. These results serve as a basis of which to compare Bayesian

optimization-derived scheduling (BOS) against.

4.4 Bayesian Optimization-derived Scheduling (BOS) Results

Bayesian optimization was used to identify four optimal hyperparameters for a two phase

training schedule, the learning rate and batch size for phase 1, and the learning rate and batch size

60



Figure 4.14

EHA Scheduling

for phase 2. Bayesian hyperparameter optimization was performed using SGD and He Normal

initialization. A total of 30 iterations were performed, 5 of which were exploratory. The batch

size parameter bounds were defined from 1 to 32 for 2D images and 1 to 16 for 3D images. The

batch size to learning rate ratio parameter bounds were defined from 1 to 10,000 for both 2D and

3D images. The resultant optimal hyperparameters for each phase are shown in Table 4.5 for each

image modality.

For 2D images, there is variation among learning rates and batch sizes for both the first and

second phase of training. However, one consistent finding is that the hyperparameters selected

result in a relatively lower batch size to learning rate ratio for the first phase, then switch to a

higher batch size to learning rate ratio for the second phase. This further emphasizes not only
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Table 4.4

2D 10-Fold Cross Validation Results

Image modality Strategy DSC (95% CI) Precision (95% CI) Recall (95% CI) TCT (95% CI)
CT EHA 0.24 (0.22-0.26) 0.43 (0.33-0.54) 0.49 (0.40-0.58) 19.8 (17.9-21.6)
PET EHA 0.41 (0.37-0.45) 0.76 (0.72-0.80) 0.82 (0.75-0.89) 19.4 (15.6-22.7)
CT/PET EHA 0.41 (0.37-0.45) 0.76 (0.73-0.80) 0.80 (0.74-0.85) 19.2 (17.2-21.2)
ROI-CT EHA 0.51 (0.44-0.57) 0.49 (0.39-0.58) 0.47 (0.41-0.54) 5.5 (4.7-6.3)
ROI-PET EHA 0.77 (0.72-0.81) 0.75 (0.71-0.79) 0.82 (0.78-0.88) 7.7 (6.2-9.2)
ROI-CT/PET EHA 0.79 (0.75-0.83) 0.76 (0.74-0.78) 0.84 (0.80-0.89) 6.4 (5.7-7.1)
CT BOS 0.25 (0.22-0.28) 0.41 (0.33-0.48) 0.57 (0.47-0.67) 23.3 (16.5-30.1)
PET BOS 0.41 (0.37-0.45) 0.84 (0.81-0.88) 0.77 (0.71-0.82) 5.8 (3.9-7.8)
CT/PET BOS 0.42 (0.38-0.46) 0.80 (0.78-0.82) 0.80 (0.75-0.85) 5.2 (4.0-6.5)
ROI-CT BOS 0.51 (0.46-0.56) 0.60 (0.50-0.69) 0.43 (0.34-0.52) 1.4 (1.1-1.6)
ROI-PET BOS 0.81 (0.78-0.85) 0.79 (0.76-0.82) 0.84 (0.80-0.87) 6.7 (5.7-7.7)
ROI-CT/PET BOS 0.81 (0.78-0.85) 0.79 (0.76-0.82) 0.84 (0.80-0.87) 4.1 (3.1-5.1)

the existence of an optimal batch size to learning rate ratio, but that this optimal ratio is uniquely

dependent upon the model’s progression during training.

The results for 3D images show the same trend of progressing from smaller ratios to higher

ones. One difference is that in 2D models, the change from the first batch size to second batch

size is inconsistent. Half of the models show a switch from a smaller batch size to a larger batch

size while the other half show a switch from a larger batch size to a smaller batch size. With the

exception of CT/PET-50, all 3D models start at a smaller batch size and switch to a larger batch

size during the second phase of training.

Once optimal hyperparameters were identified, a 10-fold cross validation was performed for

each image modality. The 2D results for mean DSC value, precision, recall, and TCT in minutes,

along with 95% confidence intervals are shown in Table 4.4. Figure 4.15 shows box plots that

compare each strategy (EHA and BOS) for each performance evaluation metric. Results show that

model performance is primarily dependent on image modality and type (original or ROI).
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Table 4.5

Optimal Learning Rate and Batch Size Identified by BOS

Image modality 2D/3D 1st Learning Rate 1st Batch Size 1st Ratio 2nd Learning Rate 2nd Batch Size 2nd Ratio
CT 2D 9.819e-1 3 3 6.328e-4 2 3058
PET 2D 5.196e-1 21 41 3.347e-3 22 6700
CT/PET 2D 2.670e-2 7 275 9.332e-3 28 3024
ROI-CT 2D 1.430e-1 11 78 1.057e-2 32 3005
ROI-PET 2D 2.978e-3 6 1863 1.118e-3 4 3456
ROI-CT/PET 2D 2.634e-2 29 1107 1.450e-3 5 3710
CT 3D 4.698e-3 7 1490 4.367e-3 9 2061
PET 3D 1.563e-2 2 128 4.532e-3 15 3310
CT/PET 3D 2.521e-2 3 119 5.629e-3 14 2487
CT/PET-grad 3D 3.670e-2 4 109 4.801e-3 14 2916
CT/PET-20 3D 6.931e-2 7 101 3.880e-3 12 3093
CT/PET-30 3D 1.911e-2 3 157 5.165e-3 15 2904
CT/PET-40 3D 1.078e-2 4 371 2.078e-3 14 6738
CT/PET-50 3D 3.731e-3 6 1608 1.029e-4 1 9718



DSC values are significantly higher in ROI image sets for both EHA and BOS strategies. This is

likely due to the ROI images containing greater representation of the tumor in each slice, avoiding

complications related to class imbalances.

The highest mean DSC value was found in the ROI-PET and ROI-CT/PET models using

BOS at 0.81. The models using EHA were comparable, demonstrating 0.77 and 0.79 mean DSC

values for ROI-PET and ROI-CT/PET respectively. The main difference between the EHA and

BOS strategies is in the TCT. The hyperparameters selected via BOS resulted in shorter TCT’s

compared to models implementing EHA, with the most noticeable difference seen in the CT/PET

model, with a mean TCT observed at 19.2 minutes for EHA and 5.2 minutes for BOS.

Although greater DSC values were achieved in models trained with ROI images, it is worth

noting that deriving all ROI image sets (including the images used for performance evaluation)

require the ground truth mask. This means that practical implementation of an ROI image-based

model has inherent limitations. Unseen images cannot be preprocessed in the same manner as

evaluation images without available ground truth masks.

The results of the 3D models address these limitations. Table 4.6 and Figure 4.16 show the

results of 3D 10-fold cross validation. In Table 4.6, EHA shows exceptionally low DSC values,

with the highest mean DSC value achieved being 0.046 in the PET model. In contrast, the BOS

models performed better with the highest mean DSC value of 0.76, which was achieved using

CT/PET-grad images. This is on par with model performances seen in current literature [5, 36]. Lo

Faso et al. performed a literature review of 14 studies that used deep learning methods to segment

head and neck tumors [36]. Results showed a mean DSC value of 0.725 for bimodal CT/PET

models.
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Figure 4.15

2D 10-fold Cross Validation Results

To provide better context as to whether or not this performance is comparable to manual

segmentations, we can consider the DSC value among individual practitioners. Leibfarth et al.
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found an average DSC value of 0.72 between three radiation oncologists who manually segmented

head and neck tumors using PET/MR imaging [34]. Results showed a mean DSC value of 0.75

between automatic and manual segmentations, suggesting that the variation between practitioners

is similar to the variation between the model and practitioner [34]. Further, similar DSC values can

be observed between practitioners when manually segmenting anatomical head and neck organs

[57]. Wong et al. found DSC values between radiation oncologists to be as low as 0.70, 0.69, and

0.72 for the spinal cord, parotid gland, and submandibular gland, respectively [57]. CT, CT/PET-

40, and CT/PET-50 image modalities demonstrated relatively poor performance. These findings

indicate that BOS is adaptable, selecting for appropriate hyperparameters when image modalities

change as well as when working with 2D versus 3D images.

Further, 3D results highlight the importance of information found within PET images. CT

images alone were unsuccessful in training models with acceptable performances. The DSC

values of Figure 4.16 support the importance of PET imaging. PET, CT/PET, CT/PET-grad, and

CT/PET-20 all show DSC values around 0.7 for BOS. The transition from CT/PT-20 to CT/PT-50

increases the threshold of what PET values are allowed to be displayed. PET-20 eliminates all voxel

values which are below 20% of the maximum SUV. PET-50 eliminates even more voxels, voxels

that are below 50% of the maximum SUV are not represented in the image. Figure 4.16 shows that

DSC values for BOS CT/PET-30 contain a considerably high variation within its 95% confidence

interval. This shows that for this image set, the model’s ability to learn was extremely variable. It

appears that excluding voxels which are below 30% of the maximum SUV can potentially provide

the model with enough information to learn, but not always. CT/PET-40 and CT/PET-50 show that

restricting SUV values to this extent results in significantly poorer performance.
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Table 4.6

3D 10-Fold Cross Validation Results

Image modality Strategy DSC (95% CI) Precision (95% CI) Recall (95% CI) TCT (95% CI)
CT EHA 0.021 (0.013-0.029) 0.008 (0.005-0.011) 0.77 (0.65-0.88) 5.2 (2.3-8.2)
PET EHA 0.046 (0.031-0.061) 0.021 (0.015-0.027) 0.98 (0.97-1.0) 9.2 (7.4-11.0)
CT/PET EHA 0.045 (0.031-0.059) 0.019 (0.013-0.025) 0.97 (0.94-1.0) 7.9 (5.3-10.5)
CT/PET-grad EHA 0.043 (0.029-0.057) 0.018 (0.012-0.024) 0.98 (0.95-1.0) 9.4 (7.7-11.0)
CT/PET-20 EHA 0.031 (0.026-0.036) 0.012 (0.010-0.014) 0.92 (0.88-0.97) 5.3 (3.5-7.1)
CT/PET-30 EHA 0.026 (0.018-0.034) 0.009 (0.006-0.012) 0.72 (0.57-0.87) 4.4 (2.0-6.8)
CT/PET-40 EHA 0.024 (0.018-0.030) 0.009 (0.006-0.012) 0.72 (0.62-0.83) 5.6 (4.0-7.2)
CT/PET-50 EHA 0.021 (0.015-0.027) 0.008 (0.005-0.011) 0.65 (0.50-0.80) 4.4 (2.5-6.3)
CT BOS 0.023 (0.016-0.030) 0.008 (0.005-0.011) 0.74 (0.67-0.82 3.7 (2.0-5.4)
PET BOS 0.71 (0.65-0.76) 0.68 (0.61-0.75) 0.69 (0.60-0.77) 9.2 (7.6-10.8)
CT/PET BOS 0.73 (0.66-0.80) 0.72 (0.67-0.76) 0.70 (0.60-0.79) 7.8 (6.3-9.3)
CT/PET-grad BOS 0.76 (0.71-0.82) 0.75 (0.70-0.80) 0.73 (0.64-0.83) 12.0 (10.1-14.0)
CT/PET-20 BOS 0.67 (0.61-0.74) 0.65 (0.58-0.72) 0.65 (0.57-0.72) 9.1 (8.8-9.5)
CT/PET-30 BOS 0.41 (0.16-0.66) 0.39 (0.13-0.65) 0.78 (0.68-0.88) 8.2 (5.8-10.6)
CT/PET-40 BOS 0.057 (0.026-0.088) 0.054 (0.0-0.12) 0.81 (0.74-0.88) 7.4 (4.7-10.1)
CT/PET-50 BOS 0.18 (0.015-0.35) 0.18 (0.0-0.38) 0.71 (0.60-0.82) 7.9 (6.1-9.7)
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3D 10-fold Cross Validation Results



Table 4.7

Information for Patients Selected for Segmentation Predictions

Hospital Center Patient ID Tumor Slice Range Age Gender T-Stage N-Stage M-Stage
CHGJ 041 37-65 58 Male T3 N2b M0
CHUS 095 27-53 65 Female T4 N2 M0
CHMR 002 43-49 75 Male T1 N1 M0
CHUM 055 57-71 56 Female T4 N2 M0

4.5 3D BOS Segmentation Predictions

The following section illustrates the predicted segmentations by each model implementing

the BOS strategy. The furthest left image is the original grayscale CT image overlayed with its

respective original colored PET image. The dimensions of this image are 96×96×96. The ground

truth for the tumor is segmented in red in this image as well as in the three subsequent images. The

three subsequent images show a zoomed portion of the original image. Three images are shown to

avoid overlapping and increase clarity. Different colors represent different models as denoted by

the accompanying legend. Four patients are shown, one from each of the four hospital centers in

the data set. Due to the tumor sizes of the patients selected from centers CHGJ and CHUS, every

second slice is shown for each 3D image. All tumor slices are shown for patients selected from

CHMR and CHUM. Table 4.7 summarizes information from the selected patients.
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4.5.1 CHGJ - Patient 041

Figure 4.17 shows Patient 041 sampled from center CHGJ. Patient 041 is a 58 year old male

with a tumor staging of T3, N2b, M0. The tumor is posterior to the patient’s mandible and anterior

to the cervical vertebrae. Each row represents a sagittal slice of the 96×96×96 image. Tumor

slices are shown from the patient’s right to left, starting with 37 and ending at 65. Due to the size

of the tumor, every second slice is shown. Models PET, CT/PET, CT/PET-grad, CT/PET-20 and

CT/PET-30 perform comparably for each slice. Models CT, CT/PET-40, and CT/PET-50 fail to

predict tumors for several of the slices. These models only make predictions toward the center

of the 3D image, and even then they lack a coherent boundary that could approximate the ground

truth mask.
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Figure 4.17

Comparison of segmentation predictions based on different inputs for Patient 041 of center
CHGJ, a 58 year old male with T3, N2b, M0 tumor staging. Each row represents every second

slice cut in the sagittal plane, from slice 37 to slice 65. The left most column shows ground truth
tumor segmentations of the full image where as the three adjacent columns show a close-up view

of prediction segmentations for each input.
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Figure 4.17 (continued)
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Figure 4.17 (continued)
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Figure 4.17 (continued)
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4.5.2 CHUS - Patient 095

Figure 4.18 shows a similar trend in model performance when illustrating sagittal slices of

Patient 095 from center CHUS. Like Patient 041 from CHGJ, PET, CT/PET, CT/PET-grad, CT/PET-

20, and CT/PET-30 perform reasonably well, however there are alternative observations that can

be noted. The tumor for this patient is larger than the tumor shown in Figure 4.17. The slices

observed toward the center of the tumor, where the cross section is larger, show a different model

behavior for CT/PET-grad. The segmentation for CT/PET-grad appears as a doughnut-shape,

where the model fails to make tumor predictions for the center of the tumor. This is likely due to

the PET-grad transformation being used to train this model since this transformation emphasizes

edges. With a large enough tumor, image information associated with the tumor’s center is lost

with this particular type of PET transformation.
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Figure 4.18

Comparison of segmentation predictions based on different inputs for Patient 095 of center
CHUS, a 65 year old female with T4, N2, M0 tumor staging. Each row represents every second
slice cut in the sagittal plane, from slice 27 to slice 53. The left most column shows ground truth
tumor segmentations of the full image where as the three adjacent columns show a close-up view

of prediction segmentations for each input.
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Figure 4.18 (continued)
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Figure 4.18 (continued)
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Figure 4.18 (continued)

79



4.5.3 CHMR - Patient 002

In Figure 4.19, segmentations are shown for a relatively smaller tumor for Patient 002 from

center CHMR. It is speculated that PET-30 represents the point at which PET threshold models

begin to degrade in performance. Table 4.16 shows the relatively smaller confidence interval of

CT/PET-20 followed by the larger confidence interval of CT/PET-30. Then, from CT/PET-40 and

CT/PET-50 we see a decline in DSC values along with smaller confidence interval ranges. In

Figure 4.19 we can see this visually. At least for this example, a small enough tumor prevents

CT/PET-30 from making any tumor predictions.

Up until this point, it was assumed that the PET model performed rather similarly to the CT/PET

model. In Figure 4.19, we see the PET model visibly outperforming the CT/PET model. Previous

results supported the idea that PET imaging information is more useful than CT imaging in order

for the model to learn. The decreased performance of the CT/PET model in Figure 4.19 might

indicate that CT information may not just be less useful, it may be disadvantageous and introduce

unnecessary noise.
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Figure 4.19

Comparison of segmentation predictions based on different inputs for Patient 002 of center
CHMR, a 75 year old male with T1, N1, M0 tumor staging. Each row represents every slice cut in

the sagittal plane, from slice 43 to slice 49. The left most column shows ground truth tumor
segmentations of the full image where as the three adjacent columns show a close-up view of

prediction segmentations for each input.
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Figure 4.19 (continued)
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4.5.4 CHUM - Patient 055

Patient 055 from center CHUM shows a unique ground truth tumor delineation in that the

right-most side of the tumor (earlier rows) shows two separate tumors. Whether this was an

annotation error remains to be unknown. If it were, then PET, CT/PET, CT/PET-grad, CT/PET-20,

and CT/PET-30 models successfully labeled this region as one, intact tumor.
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Figure 4.20

Comparison of segmentation predictions based on different inputs for Patient 055 of center
CHUM, a 56 year old female with T4, N2, M0 tumor staging. Each row represents every slice cut

in the sagittal plane, from slice 57 to slice 71. The left most column shows ground truth tumor
segmentations of the full image where as the three adjacent columns show a close-up view of

prediction segmentations for each input.
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Figure 4.20 (continued)
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Figure 4.20 (continued)
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Figure 4.20 (continued)
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CHAPTER V

CONCLUSION

With the prevalence of head and neck cancer and its associated complications, this disease

remains an important challenge to both diagnose and treat [38]. Medical imaging provides practi-

tioners with a critical tool to help aid in the detection and localization of tumors noninvasively [5].

Deep learning segmentation models hold enormous potential to contribute to this process [1, 5].

Using previously annotated CT and PET images, convolutional neural networks can be used to

train and predict new images both in 2D and 3D format [5].

Multiple design choices can be considered when formulating deep learning models. The

practicality and usefulness of these models is often a result of the culmination of these choices

[23]. In this study, specific design choices are considered and describe two strategies, Exploratory

Hyperparameter Analsysis (EHA) and Bayesian Optimization-derived Scheduling (BOS). EHA

utilizes a grid search method to explore different hyperparameters such as batch size, learning rate,

initialization, and optimizer. A given set of options for each hyperparameter is considered, and

each combination is trained. Depending on the number of hyperparameters being explored, this

task can be time intensive even when implementing a single image modality. Visual inspection of

model behavior after training each combination can also be laborious.
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BOS differs in that the strategy is more automatic. Using Bayesian optimization, optimal hy-

perparameters are found instead using conditional probability [45]. Hyperparameters are explored

similar to EHA, but not in an exhaustive hyperparameter space. Instead, iterations are explored

so that hyperparameter spaces which tend to yield greater model performance are favored [45].

BOS possesses limitations as well. The number of combinations needed for exploration increases

significantly if the specific number of hyperparameters is not reasonably restricted.

This study restricts hyperparameters searches in BOS to batch size and learning rate, two

hyperparameters which are incredibly vital to model performance [18]. To increase training

flexibility, two distinct sets of hyperparameter combinations are allowed during training, one for

phase one and another for phase two. This allows model training to better discriminate between

hyperparameter values, ideally utilizing values that support loss function convergence at different

periods in training progression.

Results show that for 2D-based models, EHA and BOS are comparable. There are slight

advantages of BOS with respect to lesser training computation times (TCT). In order to achieve

favorable performance for 2D images, both EHA and BOS strategies required preprocessing of CT

and PET image data so that image slices always contained the presence of a tumor. Although this

increase in model performance resulted in mean DSC values ranging from 0.77 to 0.81 when using

PET images, using CT images alone kept mean DSC values at 0.51. An additional drawback to

using slices that only contain tumors is that it prevents the use of future images, those for which

the presence or absence of a tumor is completely unknown.

Best results were observed using 3D-based models. Fused images were used with CT and PET

or CT and a PET variation obtained using different preprocessing transformations. PET variations
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included PET-grad, a transformation resulting in gradient magnitudes, and different PET thresholds.

PET thresholds were obtained by taking a percentage of each PET image’s maximum SUV. The

transformed image consequently retains whatever values are above this percentage threshold. For

example, PET-20 contains voxel values which are 20% or more than the maximum SUV for each

respective image.

PET, CT/PET, CT/PET-grad, and CT/PET-20 performed within the range of 0.67 to 0.71 for

mean DSC values. Performance began to degrade at CT/PET-30, indicating that the information

in PET imaging is likely responsible for adequate model performance. The low performances of

CT (0.023), CT/PET-40 (0.057), and CT/PET-50 (0.18) support this conclusion. The adaptability

of BOS is also noted as no EHA strategy achieved higher than a mean DSC value of 0.046 for 3D

modeling.

5.1 Contributions

This study provides support for the existence of an optimal batch size to learning rate ratio.

Previous studies have suggested the interdependence between batch size and learning rate, citing

that decreasing the learning rate provides the same result as increasing the batch size [20, 25,

51]. Although He et al. emphasized reducing the batch size to learning rate ratio to improve

generalization, they failed to caution that there is a limit to which this ratio should be reduced

[20]. The optimal hyperparameter values determined via BOS show a consistent trend among all

14 models where a smaller batch size to learning rate ratio is desired for the start of training, while

a larger batch size to learning rate ratio is preferential toward the end of training.
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5.2 For Further Research

It was assumed in this study that a two phase training schedule would provide enough flexibility

for the model to fully benefit from optimal batch size to learning rate ratios. Future research

could investigate this assumption by implementing training schedules with more than two phases.

Additionally, the batch size to learning rate ratio was only verified using the SGD optimizer. It

is unclear whether an optimizer with an adaptive learning rate such as Adam would demonstrate

similar behavior with respect to this ratio.

Practically, results show that there are significant limitations using CT imaging in isolation.

More dedicated investigation for CT imaged-based models would be required if any implementation

is to be considered in the case that CT imaging is available and PET imaging is not.
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[26] J. Kalliola, J. Kapočiūtė-Dzikienė, and R. Damaševičius, “Neural network hyperparameter
optimization for prediction of real estate prices in Helsinki,” PeerJ computer science, vol. 7,
2021, p. e444.

[27] B. Kang and T. Q. Nguyen, “Random forest with learned representations for semantic
segmentation,” IEEE Transactions on Image Processing, vol. 28, no. 7, 2019, pp. 3542–
3555.

[28] N. S. Keskar and R. Socher, “Improving generalization performance by switching from adam
to sgd,” arXiv preprint arXiv:1712.07628, 2017.

[29] K.-r. Kim, Y. Kim, and S. Park, “A probabilistic machine learning approach to scheduling
parallel loops with bayesian optimization,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, 2020, pp. 1815–1827.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[31] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Improving Classification Attacks
in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization,” 2020
3rd International Seminar on Research of Information Technology and Intelligent Systems
(ISRITI). IEEE, 2020, pp. 146–151.

[32] A. Kurani, P. Doshi, A. Vakharia, and M. Shah, “A Comprehensive Comparative Study of
Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting,”
Annals of Data Science, 2021, pp. 1–26.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324.

[34] S. Leibfarth, F. Eckert, S. Welz, C. Siegel, H. Schmidt, N. Schwenzer, D. Zips, and D. Thor-
warth, “Automatic delineation of tumor volumes by co-segmentation of combined PET/MR
data,” Physics in Medicine & Biology, vol. 60, no. 14, 2015, p. 5399.

[35] H. Li, M. Krček, and G. Perin, “A comparison of weight initializers in deep learning-based
side-channel analysis,” International Conference on Applied Cryptography and Network
Security. Springer, 2020, pp. 126–143.

[36] E. A. Lo Faso, O. Gambino, and R. Pirrone, “Head–Neck Cancer Delineation,” Applied
Sciences, vol. 11, no. 6, 2021, p. 2721.

94



[37] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmenta-
tion,” Proceedings of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 3431–3440.

[38] W. Lv, S. Ashrafinia, J. Ma, L. Lu, and A. Rahmim, “Multi-level multi-modality fusion
radiomics: application to PET and CT imaging for prognostication of head and neck cancer,”
IEEE journal of biomedical and health informatics, vol. 24, no. 8, 2019, pp. 2268–2277.

[39] F. Milletari, N. Navab, and S. Ahmadi, “V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. Proc-2016 4th Int Conf 3D Vision, 3DV 2016;
2016: 565–571,”, 2016.

[40] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image
segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[41] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image segmentation,”
Annual review of biomedical engineering, vol. 2, no. 1, 2000, pp. 315–337.

[42] T. Qin, “Machine Learning Basics,” Dual Learning, Springer, 2020, pp. 11–23.

[43] I. Roman, J. Ceberio, A. Mendiburu, and J. A. Lozano, “Bayesian optimization for parameter
tuning in evolutionary algorithms,” 2016 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2016, pp. 4839–4845.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” International Conference on Medical image computing and computer-
assisted intervention. Springer, 2015, pp. 234–241.

[45] C. Ruther and J. Rieck, “A Bayesian Optimization Approach for Tuning a Genetic Algo-
rithm Solving Practical-Oriented Pickup and Delivery Problems,” IEEE Transactions on
Automation Science and Engineering, 2021, pp. 1–12.

[46] K. Sakthivel, R. Nallusamy, and C. Kavitha, “Color image segmentation using SVM pixel
classification image,” World Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 8,
no. 10, 2015, pp. 1919–1925.

[47] M. H. Savenije, M. Maspero, G. G. Sikkes, J. R. van der Voort van Zyp, A. N. TJ Kotte, G. H.
Bol, and C. A. T. van den Berg, “Clinical implementation of MRI-based organs-at-risk auto-
segmentation with convolutional networks for prostate radiotherapy,” Radiation Oncology,
vol. 15, 2020, pp. 1–12.

[48] H. Seo, M. Badiei Khuzani, V. Vasudevan, C. Huang, H. Ren, R. Xiao, X. Jia, and L. Xing,
“Machine learning techniques for biomedical image segmentation: An overview of technical
aspects and introduction to state-of-art applications,” Medical physics, vol. 47, no. 5, 2020,
pp. e148–e167.

95



[49] T. Y. Shin, H. Kim, J.-H. Lee, J.-S. Choi, H.-S. Min, H. Cho, K. Kim, G. Kang, J. Kim,
S. Yoon, et al., “Expert-level segmentation using deep learning for volumetry of polycystic
kidney and liver,” Investigative and clinical urology, vol. 61, no. 6, 2020, p. 555.

[50] S. Smith, E. Elsen, and S. De, “On the Generalization Benefit of Noise in Stochastic Gradient
Descent,” International Conference on Machine Learning. PMLR, 2020, pp. 9058–9067.

[51] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the learning rate, increase
the batch size,” arXiv preprint arXiv:1711.00489, 2017.

[52] S. L. Smith and Q. V. Le, “A bayesian perspective on generalization and stochastic gradient
descent,” arXiv preprint arXiv:1710.06451, 2017.

[53] P. Sridhar, G. Mercier, J. Tan, M. T. Truong, B. Daly, and R. M. Subramaniam, “FDG
PET metabolic tumor volume segmentation and pathologic volume of primary human solid
tumors,” American Journal of Roentgenology, vol. 202, no. 5, 2014, pp. 1114–1119.

[54] L. Tan, A. Liang, L. Li, W. Liu, H. Kang, and C. Chen, “Automatic prostate segmentation
based on fusion between deep network and variational methods,” Journal of X-ray Science
and Technology, vol. 27, no. 5, 2019, pp. 821–837.

[55] A. Venmathi, E. Ganesh, and N. Kumaratharan, “Image segmentation based on Markov
random field probabilistic approach,” 2019 International Conference on Communication and
Signal Processing (ICCSP). IEEE, 2019, pp. 0490–0495.

[56] N. J. Wala’a and R. J. Mohammed, “A Survey on Segmentation Techniques for Image
Processing,” 2021.

[57] J. Wong, A. Fong, N. McVicar, S. Smith, J. Giambattista, D. Wells, C. Kolbeck, J. Giambat-
tista, L. Gondara, and A. Alexander, “Comparing deep learning-based auto-segmentation of
organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy
planning,” Radiotherapy and Oncology, vol. 144, 2020, pp. 152–158.

[58] Z. Yang, F.-L. Chung, and W. Shitong, “Robust fuzzy clustering-based image segmentation,”
Applied soft computing, vol. 9, no. 1, 2009, pp. 80–84.

[59] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate decay help modern
neural networks?,” arXiv preprint arXiv:1908.01878, 2019.

[60] T. C. Zhang, J. Yang, J. P. Zhang, and J. Zhang, “SVM Methods in Image Segmentation,”
Advanced Collaborative Networks, Systems and Applications, 2016, pp. 62–65.

96


	Improving deep neural network training with batch size and learning rate optimization for head and neck tumor segmentation on 2D and 3D medical images
	Recommended Citation

	tmp.1649083756.pdf.d1qIq

