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This dissertation outlines the development of a signal-to-text system that incorporates spatial

relationship information to generate scene descriptions. Existing signal-to-text systems generate

accurate descriptions in regards to information contained in an image. However, to date, no signal-

to-text system incorporates spatial relationship information. A survey of related work in the fields

of object detection, signal-to-text, and spatial relationships in images is presented first. Three

methodologies followed by evaluations were conducted in order to create the signal-to-text system:

1) generation of object localization results from a set of input images, 2) derivation of Level One

Summaries from an input image, and 3) inference of Level Two Summaries from the derived

Level One Summaries. Validation processes are described for the second and third evaluations, as

the first evaluation has been previously validated in the related original works. The goal of this

research is to show that a signal-to-text system that incorporates spatial information results in more

informative descriptions of the content contained in an image. An additional goal of this research

is to demonstrate the signal-to-text system can be easily applied to additional data sets, other than



the sets used to train the system, and achieve similar results to the training sets. To achieve this

goal, a validation study was conducted and is presented to the reader.

Key words: Object Detection, Signal-to-Text, Scene Understanding, Spatial Relationships in
Images, Natural Language Processing
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CHAPTER 1

INTRODUCTION

This research provides a novel signal-to-text (S2T) framework that couples existing technologies

to create a system that generates more informative scene descriptions. This chapter first presents

the motivation for developing such a system, which is primarily due to the lack of existing systems’

abilities to infer spatial reasoning information. Following, a number of research questions and

corresponding hypotheses are presented to the reader. These research questions and hypotheses

will be the primary focus of the remainder of this dissertation including evaluations and validations

performed toward determining the level of support for the formulated hypotheses. Two novel

concepts will be introduced throughout this research, Level One and Level Two Summaries, and

these summaries explored in depth in Chapters 4 and 5 respectively.

1.1 Motivation

Current signal-to-text systems [65] [66] [70] are limited by the lack of incorporation of spatial

reasoning information. These current systems largely center around a combination of object

detection frameworks and natural language processing (NLP), where the NLP labels are simply

constructed based around the output of the object detection frameworks. While these systems

do generate valid labels for scene descriptions, the lack of spatial reasoning, a valuable piece of

information, between objects in an image limit inference accuracy.
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Image processing techniques are being adopted across a broad range of applications. While

image processing is not new research, the advent of deep learning brought about a resurgence

of research interest in image processing. In particular, convolutional neural networks (CNN)

caused an expansion in the research and development of object classification and object detection

frameworks.

Object classification frameworks generate a label and corresponding accuracy score for objects

believed to exist in an image. Object detection frameworks also generate a label and classification

score for objects in an image, but also compute the outline of each object in an image via bounding

boxes or masks. Numerous open source frameworks for object classification and detection have

been developed for use. The research outlined in the conducted evaluations made use of the

TensorFlow [1] and You Only Look Once (YOLO) [46] frameworks for object detection.

Recent research has centered around signal-to-text (S2T) systems. S2T, also referred to as

scene understanding or scene description systems, attempt to generate a concise, natural descrip-

tion of the interactions between objects in images. S2T systems designed around the deep learning

methodology, such as Show-and-Tell [70], use labels generated by an object detection framework

combined with the natural language processing (NLP) capabilities of recurrent neural networks

(RNN) to construct high-level descriptions of object interactions. S2T systems such as the hierar-

chical framework developed by Anderson, et al. in [3] made use of fuzzy inference for constructing

the high-level descriptions of object interactions in images.

One area of S2T systems that can be improved is the ability to take spatial context into account

when generating scene descriptions. At the time of this writing, no work has been performed in the

area of using object bounds to compute spatial relationships or ensure logical orderings of objects
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in scene captions that contain spatial context. Thus, a primary goal of this research was to build

upon current S2T methodologies by incorporating a spatial relationship component into the S2T

framework. Very little work has been performed toward using spatial relationships in the context

of S2T systems and an overview of the existing attempts and their drawbacks is given in Chapter

2.3. As a result of incorporating spatial information into S2T systems, this research determined an

effective strategy for constructing NLP descriptions of scenes that are driven by the inferred spatial

relationships.

1.2 Research Questions and Hypotheses

This research first derived concise natural language descriptions of spatial relationships between

objects in an image. These are considered “Level One Summaries” and provide a high level

description about the relationships between each tuple of objects in an image. This research

demonstrates that Level One Summaries can be derived in a manner that accurately informs the

S2T system constructed.

This research then inferred a natural language scene description based on the derived Level

One Summaries. These “Level Two Summaries” provide a high-level description about the overall

relationships between the set of object tuples in an image. In other words, the Level One Summaries

informed the next phase of the pipeline, which constructed the Level Two Summaries. The

expectation of this research was to show that Level Two Summaries that incorporated spatial

information provided a more informative natural language scene description when compared to

existing frameworks that do not take spatial information into account.

3



Each of the Level One and Level Two Summaries depend upon a constrained set of grammar

terms that were defined during the evaluations. A constrained grammar allowed the S2T system

to accurately map images to Level One Summaries and then Level One Summaries to Level Two

Summaries.

This research presents methods and evaluations designed to answer the following research

questions (RQ) and validate the hypotheses (H).

RQ1: How can concise and meaningful natural language descriptions (Level One Sum-

maries) of spatial relationships between all object tuples in an image be derived?

RQ2: How can the Level One Summaries provide meaningful information to the creation

of informative, high-level, natural language descriptions (Level Two Summaries) of the object

interactions in a scene?

RQ3: When applying the S2T framework to a data set other than the data set used to

construct the system, will the results be as reliable as the initial data set results?

RQ4: How can the S2T framework developed in this research be used as a mechanism

for applying scene interaction labels that incorporate spatial reasoning information to a

previously unlabeled data set?

H1: Histogram of Forces (HOF) [40] and Generalized Intersection Over Union [51], both rig-

orously validated methods with strong mathematical proofs, will provide concise natural language

descriptions of spatial relationship information between object tuples in a scene.

H2: By utilizing a fuzzy inferencing approach in the generation of scene labels, the uncer-

tainty in spatial relationship reasoning can be effectively modeled and incorporated into scene

descriptions generated by the S2T system.
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H3: Since the S2T system was modeled as a fuzzy inferencing system at its core, the rule-base

will be data set agnostic and as such the developed S2T system will be as reliable on an additional

data set as it was on the training data set.

H4: The developed S2T system requires no a priori information regarding scene labels, thus

applying the framework to a previously unlabeled data set will not limit the effectiveness of the

system in regards to generating accurate scene descriptions.

1.3 Summary

This chapter introduced the concept of object detection and S2T systems in terms of their uses in

providing natural language scene descriptions. Also introduced was the concept of Level One and

Level Two Summaries for S2T systems. These Level One and Level Two Summaries are expected

to provide a more informative natural language labeling for images as opposed to state-of-the-art

systems that do not incorporate spatial information. In particular, Level One Summaries provide an

additional piece of information between object tuples, in the form of spatial reasoning, that could

prove to be invaluable for computer vision data sets. Level Two Summaries will provide refined

scene descriptions that incorporate spatial relationship reasoning, allowing the scene labels tomuch

more accurately describe the interactions occurring in the scene. The S2T system provided by this

research can be used as a standalone image annotation system, or be used to label a previously

non-annotated data set. This property of the system allows it to be used as a tool for training

supervised learning algorithms that require lots of training data via automating the data labeling

process.
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The remainder of this dissertation is composed of the individual parts of the S2T system, where

each component will be analyzed with a discussion of results. To begin, background work related

to this research is discussed in Chapter 2. Chapter 3 provides details of the methodologies used

to extract object localization results. Chapter 4 provides implementation details of the algorithms

used to construct the Level One Summaries (spatial relationship reasoning for object tuples) from

the object localization results. Chapter 5 combines object localization results with Level One

Summaries in order to produce Level Two Summaries, which are high level NLP descriptions of

interactions occurring in the scene. Chapter 6 applies the S2T system to a data set not previously

encountered along with an analysis of the results obtained. To conclude, Chapter 7 provides a

discussion of the overall results of the system along with a presentation of potential future work.
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CHAPTER 2

RELATED WORK

The presented research used existing methods in the areas of object detection and spatial

reasoning, where spatial reasoning was an integral part of the proposed Signal-To-Text (S2T)

framework. The following sections discuss existing object detection, spatial relationship, and S2T

systems as they relate to this research. The proposed research improves upon existing S2T systems

that do incorporate spatial reasoning by the use of well-defined algorithms such as Histogram

of Forces [40] and Generalized Intersection Over Union [51]. By incorporating these methods

for spatial reasoning, the proposed system provides additional fine-grained detail about spatial

relationships between objects, compared to the existing methods, which only indicate one of three

cardinal directions [20].

2.1 Object Detection

A vital component of S2T systems that warrants an initial discussion is object detection. Object

detection builds upon the task of object classification, which provides a set of labels for objects that

exist in an image. Object detection provides, in addition to the set of labels, localization information

for each object. State-of-the-art object detection methods provide localization information by using

either bounding boxes or pixel-wise object masks.
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There has been extensive prior work in the area of object detection that has evolved over the

years. Early models for object detection involved using a combination of methods to first estimate

features and then perform classification on the estimated features. Recently, the focus has heavily

shifted toward the use of deep neural networks, specifically convolutional nerual networks (CNN),

for object detection. Recent approaches use CNNs to estimate features to form objects, classify

which object the estimated features represent, and form bounding regions around each of the

classified objects.

The following subsections first discuss some of the earliest works in object recognition. Then

a general discussion of non-deep learning object recognition frameworks is presented. Finally, a

brief overview of some of themost recent and widely accepted deep learning-based object detection

frameworks are discussed in further detail as these networks are the current state-of-the-art.

2.1.1 Frameworks Based on Human-Engineered Models

One of the earliest works for object detection is described in Robust Real-TimeObject Detection

[67] and is commonly referred to as the Viola-Jones detector. The original Viola-Jones detector

was developed to perform real-time face detection in images. The Viola-Jones detector operated

by first computing Haar-like features that allow fast feature evaluation, which the authors term an

integral image. The integral image was then subjected to a boosting process, namely AdaBoost,

in which several weak classifiers were allowed to work on the subset of features from the integral

image in order to construct strong classifiers out of their weaker counterparts. Once these strong

classifiers had been obtained, a cascade classifier architecture was developed using the strong

classifiers. This cascade classifier approach allowed the Viola-Jones detector to first denote the
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promising regions of the image, and then classify with further scrutiny any region that looked

promising. By doing this, the speed of the Viola-Jones detector was dramatically increased.

By applying their novel approach, Viola and Jones were able to achieve real-time results with

accuracies similar to existing facial detection methods. The Viola-Jones detector was one of the

first major works in the field of object detection. It is a very specialized object detection framework

that was optimized to detect human faces. Retraining the framework would require additional

training of the AdaBoost component to account for other object instances, as well as hand-crafting

a set of features for each additional object instance.

A novel framework for human detection was proposed in Histograms of Oriented Gradients

for Human Detection [11]. The framework proposed was robust in that it could detect humans in

various poses and at various scales. This framework also introduced a novel feature descriptor in

the form of a histogram of oriented gradients (HOG). These features were used in conjunction with

a classification algorithm to detect objects in an image.

The authors note that an object can often be localized by examining the distribution of the local

intensity gradients and edge directions without precise knowledge of where the object is in the

image. HOG features are computed by first dividing the image into n grid cells where each cell

computes the gradient and direction of the gradient for the average value of the pixels in the cell.

Once these cells have been computed, m block regions are computed. These block regions are an

accumulation of the values in the smaller cells. Each of these blocks can then be used to normalize

the smaller cell regions, and the normalized value of the cells that compose the block regions are

what the authors define as a HOG descriptor block. The combination of the m descriptor blocks

into a single vector is what the authors define to be a HOG feature.
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The HOG features are then used in conjunction with a classifier to detect objects, humans in

this case, in an image. The authors used a linear support vector machine (SVM) to speed up

execution of their algorithm in [11]; however they do note that a Gaussian kernel SVM showed an

accuracy increase of 3% at the cost of a much longer running time. Dalal and Triggs [11] note

that, at the time of writing, the proposed framework reduced the false positive rates of the state-of-

the-art human detectors by more than an order of magnitude. The proposed framework achieved

near-perfect accuracy on the Massachusetts Institute of Technology (MIT) pedestrian database. As

such, the authors also created a freely available pedestrian database aimed to be more challenging

than its predecessor. Finally, while the HOG features are efficient on pedestrian images where the

pedestrian is fully visible, any occlusions are prone to introduce false negative classification errors

and it is assumed that a parts-based model with higher spatial invariance would lower these false

negative rates.

The HOG feature-based approach to classification gave excellent results when working with

images where objects were fully visible. The deformable parts model (DPM) framework proposed

in Object Detection with Discriminatively Trained Parts-Based Models [15] builds upon the work

on Dalal and Triggs in [11] by adding a parts-based model into the pipeline to avoid high false

negative rates introduced by occlusion. The authors note that historically, complex models such

as the one proposed, have performed poorly when applied to non-trivial data sets. This is likely

due to the difficulty in training these complex models and the authors’ proposed framework aims

to bridge that gap.

The first contribution of the DPM framework was centered around the previously discussed

HOG features. The DPM framework formed its part-based model by constructing a star-shaped
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graph hierarchy where the root node was a HOG filter as described in [11] and each subsequent

node of the hierarchy was a combination of parts filters and deformation models. The root filter

approximately reasoned about an entire object in an image whereas each subsequent parts filter

performed higher resolution reasoning about smaller parts of the coarse object. Thus, the position

of the root filter defined the detection window and the parts filters defined the smaller bounding

boxes that constructed the individual parts of the entire object. To accurately detect objects, an

overall score for each root filter was computed. High scoring root filters were indicative of an

object, and the location of the parts that resulted in the high scoring root filter defined the full object.

The authors noted that by defining an overall score for each root filter, they were able to detect

multiple instances of the same object in an image and also that the placement of the root filters

were analogous to using a sliding window approach such as those used in the Dalal-Triggs filter

defined in [11]. In these terms, the score of the root filter can be viewed as the score of a sliding

window placement. The DPM framework also employed principal component analysis on the

HOG feature vectors, reducing the dimensionality of each with no noticeable loss in performance

and an increase in execution speed. The DPM framework was designed to be feature invariant, but

the authors chose to use HOG descriptors as features for their experimentation.

This particular framework used partially labeled imagery. The labels were bounding boxes

around a region of interest, with no associated class label. The second contribution of the DPM

framework was the ability to train using this partially-labeled data. The authors developed a

technique they referred to as latent SVM (LSVM). The latent variables in the LSVM model were

the specifications of the proposed object configurations. LSVM operated on the concatenation of

the root filter, part filters, and deformation models (the star hierarchical model), β, and the feature
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vectors that represented each proposed object ι(x, z). Bymaximizing the inner product of β∗ ι(x, z),

a bounding box for x was generated if its score was above an arbitrary minimum threshold for

detection.

The data set used for experimentation was the PASCAL Visual Object Classes (VOC) 2006

data set and consisted of images labeled with bounding boxes [14]. The authors were able to

successfully train the DPM framework using a three-phase approach. First, the LSVM model was

trained on the ground truth data using gradient descent. Then the root filters of the DPM were

initialized to n components, where n was the number of objects in the data set. The root filters for

each component were trained using a standard SVM approach that resulted in positive examples.

Negative examples for the SVM training were provided by randomly selecting regions from images

in the data set that did not contain bounding boxes. Finally, the part filters were initialized by

greedily assigning six components per root filter that maximized the energy covered in the filter

specified by the root region. During testing, the greedy assignment of the parts filters resulted in

overlap. Using non-maximum suppression, the overlapping regions were eliminated. The authors

note that this method of training allowed them to train an accurate, complex model on non-trivial

data.

In general, the DPM framework performed well on a wide variety of object classes and achieved

accuracies similar to state-of-the-art approaches for most categories. The DPM model was not

subjected to the errors of occlusion, as was the case for state-of-the-art techniques at the time of

writing. The majority of false positives were due to intra-class confusion, such as the difference

between a car and bus or horse and cow. The DPM framework was rigid in terms of bounding

box prediction. The authors note that their model reported high false positives in the cat category
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because the training data contained only images of cat faces and the testing data contained faces

and bodies. This is a common pitfall of most object detection systems.

2.1.2 Machine-Learned Framework Methods

Lecun et al. pointed out that one reason for the increased use of deep learning techniques for

image classification and object detection was that traditional machine learning approaches were

unable to process input images in their raw form. CNNs can process images as raw input and also

craft features using the network architecture as opposed to using hand-crafted features or features

formed using traditional feature extraction methods. Each convolutional layer abstracts the image

to form features, for example, the first convolutional layer may detect edges, the second lines, the

third shapes, and so on. Each of these layers generated a subset of features, and as such, feature

extraction was performed naturally within the CNN. This inherit ability of CNNs along with the

accuracy CNNs achieve on image data sets led to a wide adoption of deep learning techniques by

the computer vision community [32].

Numerous CNN variants have been developed to date, as can be evidenced by a quick online

literature search. However, the general structure of a convolutional neural network remains the

same. As mentioned above, the input layer of a CNN was the image itself. One or more

convolutional layers were then applied to the input image, resulting in a feature map. These

convolutional layers performed a filtering operation on the input data in the form of a discrete

convolutional filter, which was where the convolutional in convolutional neural network originates.

After the first convolution operations, the outputs were passed through an activation function, the

most common being either rectified linear units (ReLU), softmax, or hyperbolic tangent. These
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activation functions generated the feature map for an individual convolutional layer. The feature

maps were then passed through a pooling layer, which simply merged similar features into one

feature by computing the maximums of local patches of features in a feature map(s). One or more

combinations of convolutional layers plus max pooling layers were stacked together in the CNN

architecture. The final two layers of general CNN architecture were a fully connected layer and

an output layer. To date, CNNs were generally trained using traditional backpropagation to adjust

weights and minimize loss [32]. The networks discussed in the following subsection all adhere to

this general architecture for CNNs, but with some tweaking in order to perform a specific task.

Initial work using convolutional neural networks focused heavily on the idea of region proposals

and forming object descriptions based on the proposed valid regions. InRich FeatureHierarchies for

Accurate Object Detection and Semantic Segmentation [18], the authors described the regions with

CNN (R-CNN) features algorithm that “combined CNNs with bottom-up region proposals in order

to localize and segment objects.” The authors state that the progress on object detection frameworks

for most of the 2000’s was based around feature extraction and constructing an ensemble framework

that used the features to extract object bounds in images. While these ensemble methods gave

acceptable results, most of the work from 2010-2012, for example [63], [6], and [64] resulted in

small gains in mean average precision (mAP) percentages because the frameworks developed were

essentially variants of other ensemble frameworks based around feature extraction and recognition.

Existing works in image recognition using CNNs show that CNN architectures result in higher

mAP accuracy compared to existing frameworks based on feature extraction and classification.

However, these CNN architectures were unable to successfully segment objects within the images

they were classifying [31]. The primary goal of the R-CNN framework was to bridge the gap that
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existed between image classification and object detection using CNNs. The R-CNN framework

was the first framework proposed that showed a CNN could achieve higher mAP accuracy on the

PASCAL VOC data set when compared to the generally-accepted feature-based frameworks [14].

The authors compared the proposed framework to an existing framework, OverFeat [57], which

combined a sliding window approach with a CNN architecture in order to perform object detection.

The primary disconnect between image classification and object detection was that object

detection required the localization of any objects that existed within the image. To solve this task,

the proposed framework generated approximately 2000 class-independent region proposals for

each input image. A feature vector of fixed-length was extracted from each proposal using a CNN,

and these feature vectors were classified using a category-specific linear support vector machine.

The CNN architecture used in the R-CNN framework was the same CNN architecture proposed by

Krizhevsky and Hinton in [31]. A selective search was used to extract the region proposals and

forward pass them through the CNN architecture. The features generated by this forward pass were

then passed to a set of SVM classifiers to score each extracted feature vector.

The R-CNN framework was tested on the PASCAL VOC 2010-12 data set and compared with

the original deformable parts model (DPM) and variants of the DPM [14]. R-CNN achieved a

mAP of 50.2%, which was a noticeable improvement over the DPM mAP of 33.4%. The R-CNN

framework was applied to the ILSVRC2013 data set and compared to the OverFeat framework.

Where OverFeat achieved a mAP of 24.3%, R-CNN was able to achieve a mAP of 31.4%. The

authors note that while the mAP was improved, the OverFeat model was approximately nine times

faster than the R-CNN model.
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Fast R-CNN [17] was an improvement to the R-CNN framework proposed in [18]. Fast R-CNN

builds on the work of the R-CNN framework by improving training and testing speeds of the

framework and also increasing detection accuracy. As discussed above, the R-CNN framework

was a three-stage pipeline. The proposed framework in this paper streamlines the model into a

single pipeline that learns to categorize the object proposals and then refines their spatial locations.

The authors note that training the R-CNN was slow due to performing a forward pass through the

CNN for each region proposal without sharing any computations.

To speed up the training time, region proposals were fed into the CNN architecture alongside

the training image where they were processed by several convolutional and max pooling layers.

These layers produced a convolutional feature map. After constructing the feature map, each region

proposal was processed by a region of interest (ROI) pooling layer. This ROI layer extracted a

feature vector of fixed-length. Fast R-CNN processed each feature vector using a sequence of fully

connected layers that fed into two softmax output layers. One output layer produced probability

estimates over n object categories while the second output layer output a 4-tuple for each of the n

object classes. Each 4-tuple corresponded to the bounding box positions for one of the n classes.

Constructing the framework as a single pass pipeline allowed Fast R-CNN to detect objects by

forward passing an input image and pre-computed region proposals through the CNN. The authors

do not explicitly denote which method was used to pre-compute the region proposals, but their

experiments indicated that the proposals could be computed using DPM or selective search. The

ROI features were compressed using a truncated singular value decomposition (SVD) approach in

order to speed up the execution time of performing object detection.
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The authors compared the performance of Fast R-CNNwith the original R-CNN framework. On

the VOC 2012 set, Fast R-CNN achieved a mAP of 68.4% where the improved R-CNN framework

detailed in [19] achieved a mAP of 62.4%. Fast R-CNN reduced the training time of R-CNN by a

factor of nine, decreasing the time to train the network from 84 hours to 9.5 hours. Fast R-CNN

processed images 146 times faster than R-CNN when not using truncated SVD ROI compression

and processed images 213 times faster when using truncated SVD ROI compression.

An incremental improvement to Fast R-CNN, Faster R-CNN, was proposed in [50] and was

shown to operate in real-time. Though Fast R-CNN could process images in under a second, the

computation time required to perform the region proposal was not taken into account. Performing

region proposals was the bottleneck of performing real-time object detection at the time of this

writing. To eliminate this bottleneck, the authors introduced region proposal networks (RPN) that

allowed computation of region proposals in approximately 10 ms per image.

The Faster R-CNN model was composed of two modules. The first module was a RPN that

computed the region proposals for the input images. The second module was the Fast R-CNN

detector. These modules comprised a single network for object detection. To share computation

time with Fast R-CNN, the RPN module was constructed such that it shared the convolutional

layers that computed feature maps for region proposals with the Fast R-CNN module. Regions

were generated by sliding a small window over the feature maps generated by the convolutional

layers. These windows generated a lower dimensional feature vector from the feature maps

generated in the convolutional layers. The window feature maps were then processed by two

fully connected layers, a box-regression layer and a box-classification layer. To prevent RPN and

Fast R-CNN from modifying the convolutional layers independently, the authors proposed three
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techniques that allowed sharing of convolutional layers between the two network architectures. All

of the experiments listed in this paper made use of the alternating training strategy. Alternating

training first, trained the RPN and used the proposal to train the Fast R-CNN, and the resulting

trained Fast R-CNN was then used to initialize the RPN architecture. The authors suggested that

using these methods to propose regions eliminates the bottleneck that existed in previous region

proposal frameworks.

In R-FCN: Object Detection via Region-based Fully Convolutional Networks [10], the authors

proposed a framework that used a fully convolutional network coupled with a RoI pooling layer for

region segmentation. The framework was denoted as region-based fully convolutional networks

(R-FCN). Similar to R-CNN, the R-FCN framework incorporated the two-stage pipeline of a)

region proposal and b) region classification. The authors use a region-based approach for their

implementation because such approaches demonstrated a higher overall accuracy when compared

to non-region based proposal frameworks for several benchmark data sets at the time of writing.

The R-FCN framework used the same RPNs that were used in the Faster R-CNN architecture to

propose candidate regions [50]. The region proposals were then shared with the fully convolutional

network (FCN). The FCNwas used to classify object categories and background. The final layer of

the FCN was a RoI pooling layer similar to the RoI pooling layer introduced by Fast R-CNN [17].

This RoI layer computed an output score for each candidate region. By combining the RoI layer

with the convolutional layers, the R-FCN framework learned specialized scores for each proposed

region that were position sensitive.

The authors used the PASCAL VOC data set for experimentation [14]. Compared to Faster

R-CNN, which achieved a mAP of 68.9%, the R-FCN framework achieved a mAP of 76.6%.
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However, this required the use of position sensitivity scoring in the RoI layer. Without the position

sensitivity score, the authors note R-FCN failed on the VOC data set.

YOLO [46] is a framework aimed to re-purpose object detection via a CNN into a single-

pass pipeline. YOLO used a single CNN to simultaneously predict bounding boxes for objects

and classification probabilities for each bounding box found in a single pass through the network

architecture. The primary reason for using a single-pass pipeline for object detection was to

optimize execution speed to provide a framework that could perform object detection in real-time.

YOLO was the first framework proposed that provided a real-time solution for object detection

using a CNN.

YOLOfirst composed the input image into a N×N grid of cells, where each cell was responsible

for predicting bounding boxes and confidence scores for each bounding box. The confidence score

for each bounding boxwas an indication of how confident theYOLO frameworkwas that a particular

bounding box concisely encapsulated an object. Thus, if an object fell into a particular cell, that

cell was responsible for the object prediction. Each bounding box was a 5-tuple that consisted of

the width and height of the bounding box, the (x, y) coordinate of the bounding box in the image,

and the confidence score of the bounding box. To classify objects, the YOLO framework predicted

a class conditional probability for each object m in the set of known objects. These conditional

probabilities were predicted for each cell in the SxS grid in the image. The combination of the

class probabilities for each cell and the bounding box confidence scores provided a class-specific

confidence score for each bounding box. The authors note that these scores encoded the probability

that a class appeared in a bounding box as well as how well a bounding box fit an object.
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At the time of writing, the only real-time object detection system that had been implemented

was a variant of the deformable parts model developed by Sadeghi et al. [55] that ran at 30 fps.

Similar work using CNN architectures for real-time object detection achieved maximum execution

speeds of 18 fps with a mAP% of 26.1. YOLO achieved an execution speed of 45 fps with a 63.4

mAP%. The authors tested a smaller YOLO architecture, referred to as Fast YOLO, which achieved

an execution speed of 155 fps with a mAP% of 52.7. Other region-based proposal networks, such

as R-CNN, achieved higher mAP%s but were unable to achieve the FPS speeds of the YOLO

architectures. YOLO redefined state-of-the-art in regards to real-time object detection.

Although the YOLO framework does perform object detection faster than previous CNN object

detection frameworks, it does not achieve the same accuracy. Specifically, the authors note that the

framework struggles to localize smaller objects that usually are grouped together such as a flock of

birds. YOLO also does not generalize to objects that appear in unknown configurations since the

model learns to predict bounding boxes from input training data. Lastly, errors in small bounding

boxes versus errors in large bounding boxes are penalized the same in the YOLO framework.

The authors note that their localization errors occurred due to the lack of differentiation on the

bounding box error penalization. The previous results were all obtained from experimentation on

the PASCAL VOC 2007 data set [14]. The authors applied a YOLO model that was trained on this

data set to a generalized problem of person detection in artwork. YOLO exhibited the capability

to generalize well to a new domain based on experimentation. YOLO was also the first framework

to exhibit capability to perform live detection on incoming frames from a live webcam.

The first improvement to the original YOLO detector was proposed in YOLO9000: Better,

Faster, Stronger [47], dubbed YOLO v2 by the authors. The authors noted that current object
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detection data sets were relatively small compared to object classification data sets, with the

primary drawback being labeling of objects in images, which was usually performed via user

specification.

A goal of YOLO v2 was to expand object detection to the scale of object classification. The

authors proposed a new method that harnessed the vast amount of classification data and expanded

it to the object detection domain. This method jointly trained an object detector on both detection

and classification data sets. In this manner, YOLO v2 leveraged the labeled object detection data

sets to precisely localize objects and used the classification data sets to increase the robustness and

vocabulary of YOLO v2. By incorporating this training strategy, the authors note that YOLO v2

can detect over 9000 different object categories.

A second goal of YOLO v2 was to improve upon the recall and localization errors of YOLO

v1. Rather than scaling up the original YOLO architecture, the authors proposed to simplify

the network architecture and make the representation easier to learn by using a combination of

techniques including: batch normalization, high resolution classifiers (448 × 448 convolutional

layers as opposed to 256 × 256 in YOLO v1), using anchored bounding boxes to predict bounding

boxes, predicting the anchored bounding boxes using K-Means clustering, using fine-grained

features to eliminate small object localization errors, and using multi-resolution data for training.

With the addition of these features, YOLO v2 achieved a mAP of 77.8% compared to 63.4% mAP

for the original YOLO model on the Pascal VOC 2007 [14] data set.

A third goal of YOLO v2 was to improve the detection speed of YOLO without sacrificing the

model accuracy. To speed up processing speeds, the authors proposed a new CNN architecture,

Darknet-19, that was used as the base of the YOLO v2 model. This new architecture reduced the
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number of operations required from 30.69 billion for the VGG-16 CNN to 8.52 billion operations

for YOLO v2. By using this CNN architecture the processing speed was increased to 59 fps

compared to the 45 fps of the original YOLO model.

In YOLOv3: An Incremental Improvement [48], the authors proposed the YOLO v3 framework

as an incremental improvement to the YOLO v2 framework [47]. The first improvement resulted

from replacing the softmax classification with logistic regression. The authors noted that softmax

was not necessary for good performance, and using logistic regression helped when moving on to

more complex data sets. A second improvement came from allowing YOLO v3 to perform predic-

tions across three different scales of bounding boxes. Another incremental improvement involved

replacing the base architecture proposed in YOLO v2 (Darknet-19) with a newly developed CNN

architecture, Darknet-53, that combined the structure of Darknet-19 and the recently developed

residual networks. This new CNN architecture demonstrated the highest measured GPU operations

per second and thus improved the execution speed of YOLO v2.

These incremental improvements were tested on the COCO data set. YOLO v3 exhibited a

mAP of 41.9% compared to a mAP of 35.5% for YOLO v2. The single-shot multi-box detector

(SSD) still achieved a higher mAP of 49.8% but the authors note that YOLO v3 runs at three times

the speed of SSD on the COCO data set, although none of the timings were listed in this work.

The most recent update to the YOLO framework, YOLO V4: Optimal Speed and Accuracy of

Object Detection [4], sought to improve both the accuracy and real-time execution speed of the

existing YOLO frameworks. YOLO V4 leveraged the use of GPU architectures for training and

running networks to improve real-time speed. To improve accuracy, the self-adversarial training

methodology was employed. Also used to improve accuracy were the “bag of freebies” and
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“bag of specials” methods selected by the authors which were composed of various tuning and

regularization techniques for the convolutional network. YOLO V4 [4] was able to achieve a mAP

score of 43% on the COCO [35] data set while operating at 70 FPS.

SSD, proposed in [37], was similar to the YOLO framework in that it used a single deep

neural network to perform bounding box localization and bounding box classification. The SSD

framework was also designed with real-time object detection in mind. The authors noted that their

framework was simple to train and to integrate into embedded systems, which made it ideal for a

real-time solution for object detection. At the time of writing, increased speed in similar object

detection frameworks came as a trade-off for detection accuracy and the SSD framework aimed

to provide more accurate detections in real-time. The SSD framework was the first deep network

framework that did not resample features from proposed bounding boxes and was as accurate as

approaches that do, such as methods based on the R-CNN [18] architecture.

The SSD framework improved existing single-shot framework detection rates by making a

modification to the types of filters used to classify object categories. By using small convolutional

filters to predict object categories in proposed bounding boxes and using separate filters for various

aspect ratio detections of the same object categories. These filters were applied at progressive

stages of the network in order to perform detection at multiple scales within the image. The authors

note that this modification allowed the SSD framework to achieve high accuracy in low-resolution

imagery which, in turn, further decreased execution speeds.

The core of the SSD model was constructed based on the VGG16 [59] architecture, minus the

classification layers. The framework produced a fixed-size set of bounding boxes and scored the

presence of object categories that existed in the bounding boxes in a manner similar to YOLO
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[46]. However, all bounding boxes were allowed to remain intact and a non-maxima suppression

step removed any bounding boxes that were subsets of larger boxes. To perform object detection,

several progressively decreasing convolutional feature layers were added to the end of the VGG16

base network that allowed the SSD framework to perform class predictions at multiple scales.

Similar to other single shot approaches, the SSD framework tiled the input image into grid cells,

but the SSD framework proposed default bounding boxes of varying resolutions at each grid scale

to account for different object aspect ratios.

The SSD frameworkwas able to provide speeds of 59 fps with amAP of 74.3% on theVOC2007

data set. This was a substantial improvement to the execution speed of Faster R-CNN [18], which

ran at 7 fps, as well as a substantial improvement to the 63.4%mAP of YOLO [46], which ran at 45

fps. While Fast YOLO ran at 155 fps, the authors noted that the increased execution speed comes

at the price of a 22% decrease in accuracy when compared to the SSD framework. The authors

also noted that the improvement in speed was a result of eliminating bounding box proposals

and pixel/feature resampling. Compared to R-CNN, the authors noted that SSD performed better

at localization because it “directly learns how to regress the object’s shape and classify object

categories instead of using two decoupled steps.” SSD did show a higher error rate when localizing

smaller object categories. This was likely due to SSD being very sensitive to bounding box size.

In other words, since the SSD framework used various aspect ratios to detect objects, the coarsest

filters may have little to no useful information for smaller objects. The authors noted that SSD

achieved very high accuracy on any larger object category and was robust to aspect ratios in larger

objects due to the use of the decreasing ratio convolutional filters.
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The authors noted that using a variety of bounding box shapes during SSD initialization greatly

increased bounding box generalization during testing. One of the major contributions of the SSD

framework were these different bounding boxes at different scales on the network output layers.

By combining these various resolution bounding boxes, the SSD framework achieved comparable

accuracy to Faster R-CNN on lower resolution input imagery. The authors also noted that they

believe this was the reason that the SSD framework was considerably more accurate than the YOLO

framework. Finally, the authors noted that due to the simplicity of the SSD framework, it could be

used as a viable building block for a system that required a real-time object detection component.

The most recent development in machine-learned framework methods was centered around the

computation of object masks in images. A mask is a pixel wise binary visualization of an object in

an image, a value of 1 indicates that a pixel belongs to an object, whereas a value of 0 indicates an

object does not. By using pixel masks, it is possible to get a tighter set of bounds that encompass

an object due to a mask representing a set of pixels that belong to an object whereas a bounding

box is composed of only the four corners of the box enclosing an object in an image.

In Mask R-CNN [21], the authors described a framework that predicted an object mask in

parallel to predicting object bounding boxes. Mask R-CNN builds upon the concept of Faster

R-CNN [50]. Faster R-CNN provided as output a bounding box and class label for each object in

the image. The proposed framework added in a third branch that output a mask for each object in

the image. The mask branch provided much finer-grained localization detail. To accomplish this,

the authors made use of the RPNs and ROI proposals used by Faster R-CNN and then used the

ROI proposals to construct the pixel-wise masks for each object detected. The labels computed for
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each binary mask made use of the ROI classification step of Faster R-CNN to assign a label to the

object mask while assigning labels to each ROI proposal.

The authors tested the proposed Mask R-CNN [21] on the COCO [35] data set and compared

their results to state-of-the-art methods in instance segmentation [9], [34], [58]. Mask R-CNN

outperformed all previous methods when using the average precision(AP) scoring metric. The

authors also noted that the Mask R-CNN framework outperformed the Faster R-CNN framework

[50] on the COCO data set in terms of the AP metric. Lastly, the authors noted that the Mask

R-CNN framework can be easily extended to other tasks such as human pose estimation. The

authors noted that Mask R-CNN generated comparable results to those obtained by state-of-the-art

pose estimation methods.

2.2 Signal-to-Text

S2T is the process of generating a semantic description of an image and the objects contained

within. Scene understanding frameworks generally consist of an object detection and localization

component combined with a NLP component that generates semantic descriptions from the output

of the object detection components.

The earliest frameworks that performed scene description took a hierarchical approach. In these

frameworks, many individual components were stacked on each other to build a scene description

system. Recent advances in the field of deep learning led to the usage of CNN for the object

detection and localization component and long short-term memory recurrent neural networks

(LSTM RNN) for the NLP component of scene understanding frameworks.
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2.2.1 Frameworks Based on Hierarchical Models

In Toward Total Scene Understanding: Classification, Annotation, and Segmentation in an

Automatic Framework [33], the authors proposed a hierarchical generative framework for scene

understanding. At the time of writing, no algorithm had been developed that performed the

classification, object annotation, and object segmentation of images in a single framework. This

process of high level scene classification, object annotation, and object segmentation was denoted

by the authors as the total scene understanding framework and combining these tasks into a single

framework was a primary goal of this paper. The authors noted that earlier object detection

approaches simply offered a single label or list of labels to an image without localization of

where the objects were in the scene, disallowing effective semantic descriptions of the scene. The

proposed framework computed the localization of the annotated objects in the scene, allowing

more meaningful semantic scene descriptions to be generated.

The framework first generated a visual component and annotation component for each image.

For the generative visual component, a multinomial distribution over the probability of objects in

the scene was used. The image was sampled for each object in the distribution and known features

of each class object was compared to features from the sampled patch. The features used by the

framework were scale invariant feature transform (SIFT) features, first proposed by Lowe [38]. The

annotation component was generated at the same time as the image component. For the generative

annotation component, a region index was sampled from a uniform distribution over the number

of classes that was responsible for assigning each image region a corresponding tag.

After construction of the generative models for the image and annotation components, the

framework used these models to perform the tasks of classification, segmentation, and annotation.
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The goal of segmentation in this framework was to extract exact pixel locations of each object in

the image. The generative image model component was used to both propose object locations and

also to infer these object locations. Once object localization had been performed, the generative

annotation component was used to assign labels to each object in the image by treating the names

of the segmented object as the object annotation. The overall goal of the classification step in

regards to the framework proposed was to estimate the most likely label for an input image given

the labels and object locations inferred by the visual and annotation generative models. The

classification step generated a scene label, taken from one of eight learned classes in this work,

that described the entire image. In other words, the scene label was composed as a hierarchical

structure where the label concisely described the inferred tags and the inferred tags were composed

of their corresponding localized object(s).

Asmentioned previously, this was the first proposedwork that incorporated high level classifica-

tion, segmentation, and annotation into one framework. Of particular interest was the framework’s

ability to segment objects without any a priori knowledge about object localization or labels dur-

ing training. The framework successfully computed object locations and labels, which were then

assigned to one of eight (the number of scene classes proposed by the authors) scene labels. The

framework proposed achieved state of the art accuracy for object segmentation and annotation

when compared to existing methods at the time of this writing. However, the framework could

not infer semantic descriptions of objects in a scene dynamically. In other words, the framework

was dependent upon a user-defined set of high-level scene classes in which the annotated objects

were binned. In recent works, the task of assigning a semantic scene description was performed

by applying NLP methods to labels generated during object detection allowing the high-level clas-
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sification to be performed at the segmentation level, a more dynamic method of generating scene

descriptions. These methods will be discussed in further detail below.

In Linguistic Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic

[3], the authors proposed a hierarchical framework that was designed for fall detection, which

operated on a continuous video feed. The proposed framework was designed to be used in a facility

such as a senior care center, where fall detection was a significant concern. The authors designed

their framework with privacy in mind so humans were distinguished by silhouettes and the video

feeds were not retained. Using the silhouettes, a fuzzy inference approach was used to classify

the current state of the person. Linguistic summaries were then constructed based on the temporal

states of the silhouettes classified by the fuzzy inference system.

To construct the human silhouettes, the authors used multiple cameras that each viewed the

environment at different angles. Once each camera’s silhouette had been computed, the intersection

of each silhouette was used to construct a three-dimensional silhouette of a human, which the

authors labeled as a voxel person. Using the voxel person representation remedies problems such

as occlusion that arose in standard single camera setups. The voxels computed for each image

were then classified by a fuzzy inference system using a set of rules such that their membership

degree existed in a set of pre-determined states. For the purposes of experimentation, the proposed

framework used three states of membership to classify activity: Upright, On-the-ground, and In-

between. The authors noted that it was important to point out that being on the ground (a state)

does not imply a fall (an activity). The result of performing reasoning about the state of a voxel

person at time t was thus three membership values for the set of pre-determined states that were

used to calculate temporal linguistic summaries from video.
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The goal of performing the temporal linguistic summaries was to take time periods of resident

activity and provide a succinct semantic description of the activity performed. As an example

the authors used “the resident was preparing lunch in the kitchen for a moderate amount of time”

and “the resident has fallen in the living room and is down for a long time.” As the authors point

out, reporting linguistic summaries for each video frame would result in too much information for

the user to process, thus performing the summaries in a temporal manner reduced the amount of

information presented to the end user, limiting information overload. The linguistic summaries

were constructed in human readable language, such as the examples above, using the form:

Xc is Si in Pk forTj (2.1)

where X denoted the voxel person, S denoted the state the voxel person was in, P denoted the part

of the “world” the voxel person was in, and T denoted the amount of time the voxel person had

spent in state S in P area. The authors also noted that X was obtained from crisp sets whereas

S, P, and T all resulted from fuzzy set membership values. Unlike previous approaches based on

hidden Markov models, the framework proposed in this research used fuzzy set theory to construct

annotations. Using fuzzy set theory allowed the system to be adaptable to special cases and thus

could be modified to fit individual needs, in this case individual patients in a facility.

The authors performed experiments on data thatwas generated at theComputational Intelligence

Laboratory at the University of Missouri. Experiments were not performed using elderly citizens

as the risk of obtaining fall data would be too high, thus students were used as subjects to simulate

falls. Working with nurses to establish a threshold for true positive fall detection alerts, the

proposed framework was able to successfully classify 100% (14 out of 14) of fall activities as true
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positives and only generate false positives for 6% (2 out of 32) of non-fall activities. The authors

noted that the false positive alerts were generated by activities that required the voxel person to be

on the ground such as doing lying leg lifts.

The proposed hierarchical framework based on fuzzy set memberships proved to be very robust

and easily adaptable to other use cases besides the one discussed in this paper. The proposed

framework successfully generated linguistic scene summaries that provided valuable information

to the end user in a concise but descriptive manner, unlike previous frameworks that just provided

one-word labels generated in a hierarchical manner. The primary drawback of this system was that

in order to adapt the framework for a new usage, the rules for the fuzzy inference system must be

hand-crafted in order to meet the needs of the new system, which could be a time consuming task.

However, recent methods based upon deep neural networks required the training and testing of the

neural networks in order to fit new and specific use cases, which was a very time intensive task

itself.

2.2.2 Frameworks Based on Machine-Learned Models

In Show and Tell: A Neural Image Caption Generator [65], the authors described a framework

for signal-to-text that used a single pipeline based on deep neural nets that first assigned a list

of labels to an image and then generated a sentence structure natural language description of an

image. The authors denote this framework as Show and Tell.

To generate the natural language descriptions, the framework used a RNN by first allowing

an encoder RNN to read the source sentence and then allowing a decoder RNN to generate a

verbose target sentence. The authors replaced the encoder RNN with a CNN that performed image

31



classification, which generated a list of labels that were passed into the decoder RNN to produce

the final description of the scene. The decoder RNN used was a LSTM RNN that had shown state

of the art performance for the tasks of translation and sequence generation due to its ability to

handle exploding/vanishing gradients [23]. The authors indicated that a batch normalization CNN

model was used for generating the image labels.

To evaluate the model, the authors tested Show-And-Tell on several data sets and evaluated

the resultant image captions using two metrics. The first metric was based on human ratings of

the input images. To accomplish this, the authors set up an Amazon Mechanical Turk experiment

where each image was labeled by two workers to provide a ground truth description. The second

metric was based on the bilingual evaluation understudy (BLEU) score, which ranked the precision

of word n-grams between the generated captions and ground truth captions. The authors indicated

that the labels generated by Show-And-Tell aligned well with the BLEU scores, but the model fared

less well versus the labels constructed by human raters. The authors noted that a major area of

improvement was making the captions align more closely with the human rater labels.

This model was one of the first works in the field of signal-to-text using deep neural networks

and successfully generated semantic sentence descriptions of images in a data set. However, this

work did not take spatial context between objects into consideration as the framework used a CNN

strictly for image classification and not object detection.

Improvements and alterations to the original Show-And-Tell framework was proposed in Show

and Tell: Lessons Learned [66] for the Microsoft common objects in context (COCO) image

captioning challenge [35]. One such alteration was testing with the GoogleLeNet CNN model.
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This model resulted in sub-par performance when compared to the batch normalization model

previously used.

The first improvement made to the model was to allow the LSTM RNN to fully train before

fine tuning the CNN used to generate the image captions. Previous training strategies trained

both models simultaneously and the authors noted that training in this fashion allowed the noisy

gradients coming from the LSTMmodel to creep into the CNNmodel and corrupt it. To counteract

this, the authors trained the CNN for 500K iterations and then froze the parameters before jointly

training the LSTM alongside the CNN.

A second improvement involved allowing the LSTM model to perform scheduled sampling to

more loosely predict the next word in the sequence. In other words, as opposed to forcing the

model to strictly predict the next word in the sequence, which resulted in overfitting and poor

evaluation performance, the framework was allowed to use the LSTM model predicted word (even

if it was wrong) during training, which resulted in higher accuracy on the evaluation set. The final

improvements involved constructing an ensemble of these models and aggregating their captions

and reducing the search space of the beam search algorithm used to construct the proposed image

captions, which resulted in more novel image captions.

The improvements to the original model resulted in higher accuracy on the MS COCO data

set as well as image captions more in line with the hand-crafted image captions. However, the

improvements to the model still did not take into account the location of objects in the scene and

thus could not provide spatial context for any image captions.

A framework was proposed that was based on a combination of a CNNmodel and LSTM RNN

model that aimed to move toward providing a dense description of a scene in Deep Visual-Semantic

33



Alignments for Generating Image Descriptions [28]. The proposed framework attempted to infer

the alignment between segments of a sentence and the region of the image they described, and to

use a multimodal RNN that accepted an input image and generated a dense textual caption of the

input image.

To detect the image regions, the framework used the R-CNN framework discussed in [18]

and kept the top 19 detected locations in the image. To compute the sentence representations

of the detected locations, the authors proposed a bidirectional RNN (BRNN) that learned the

word representations of the visual components at each of the detected locations. To align the text

segments to image segments, the framework treated each alignment as hidden variables in aMarkov

random field where the interactions between neighboring words resulted in alignment to the same

region. The scene descriptions were then generated using the multimodal LSTM RNN. This RNN

operated in a similar fashion to the model discussed in [65] with the addition of a conditioning

process that conditioned the generative process of the RNN on the content of the input images,

which resulted in more accurate contextual scene captions.

The proposed framework outperformed state-of-the-art models at the time of writing on both

the Flickr30K and MS COCO [35] data sets in terms of precision and recall. The authors noted

that the model was subject to limitations. The first limitation was that the framework could only

perform at a fixed resolution. Secondly, the RNN only received image information from additive

bias, which were less verbose than using multiplicative interactions between the CNN and the RNN

models. Finally, the authors noted that this was not a single stage pipeline and converting it into

one remains an open problem. The example figures listed in the paper do show that the model does

generate concise, descriptive examples of testing images from the data set. While this model does
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use a CNN model that is well-suited for object detection, the only locality information used by the

authors was to generate text snippets of each location. Thus, the model did not make full use of

the spatial relationship information available when generating the final image caption.

The framework proposed in Show, Attend, and Tell: Neural Image Caption Generation with

Visual Attention [70] used an attention-based model to describe the contents of images. The

authors showed via visualization how the model learned to fix its gaze on salient objects while

generating image captions. The authors highlighted the ability to saliently gaze as it mimicked a

human’s ability to compress a vast amount of information into a descriptive language.

The framework approached caption generation by incorporating both a hard attention mecha-

nism trainable by maximizing an appropriate lower bound and a soft attention mechanism trainable

by standard backpropagation. Visualizing these attention mechanisms provided insight into what

and where the attention was focused. Similar to [65], the framework used a CNN model, Google

LeNet, to generate image labels and a LSTM RNN model to construct the image captions. To

represent the hard attention component, the framework extracted the visual features from the CNN

model when generating each word of the output image caption sequence. To generate the soft

attention component, the approximate marginal likelihood of a vector representing all potential

salient image features was optimized using backpropagation.

Experimentation showed that the proposed framework was able to achieve state-of-the-art

performance in terms of BLEU and Metric for Evaluation of Translation with Explicit Ordering

(METEOR) scores on the MS COCO [35], Flickr8K, and Flickr30K data sets. The authors also

noted that the visual attention models corresponded very well to human intuition but there was

no metric to judge this. While this model did use individual image features to determine which
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salient objects to focus on, the framework did not take into account positioning of the objects and

thus could not provide spatial context regarding the image captions generated. However, the visual

examples provided in the supplementary section of this paper do show that the addition of visual

attention did allow for more verbose image captions that eliminated some of the noise that previous

models could not.

2.3 Spatial Relationships in Images

There have been few works in the realm of image spatial relationships. This section presents

two different frameworks, one based on hierarchical models and one based on machine-learned

models. This research will implement the framework discussed in Section 2.3.1 combined with

object detection methods in an attempt to improve upon the machine-learned models discussed in

Section 2.3.2.

2.3.1 Frameworks Based on Hierarchical Models

The framework described in A New Way to Represent the Relative Position Between Aerial

Object [40] introduced the concept of histogram of forces (HOF), or F-Histograms. The approach

treated two-dimensional objects as longitudinal sections (one-dimensional objects) in order to

leverage the power of integral calculus to compute the relationship between each object in an

image. The spatial relationships between two objects were constructed in a building block manner:

point-couple spatial relationships informed line segment couple spatial relationships; line segment

couple spatial relationships informed longitudinal section couple spatial relationships; and finally,

F-Histograms were computed on longitudinal sections that determined the degree of confidence in

computed spatial relationships.
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The framework took two images, Image A and Image B as input. Image A represented the

argument image, whereas image B represented the referrant image. Images A and B were either

a binary mask representing a crisp object in space, or a grey-scale mask with values in the range

[0−255] that represented a fuzzy object in space. As such, the F-Histogram framework was able to

successfully compute either crisp or fuzzy spatial relationships between two objects. The primary

goal of the framework was to answer the proposition “A is in direction α of B” where α was a finite

set of spatial directional relationships.

As mentioned above, the spatial relationships were constructed in a building block manner. For

the handling of points, each point formed the argument image and was compared with each point

in the referrant image. Let M and N be a point of A and B respectively, then the equation

ϕ(XM − XN ) (2.2)

provided the weight that supported the proposition “A is in direction α of B.” ϕ was computed for

each point in A and B for each direction α in the finite set of directions. The result was a set of

weights supporting each point couple’s directional relationship for all finite directions.

To compute the relationships between the oriented line segments contained in the argument

and referrant images, the couple (I, J) was used to support the proposition “A is in direction α of

B.” Both I and J could be described by points M and N described above. The authors noted that it

followed naturally that the set of weights, f , describing the directional relationships between each

oriented line segment (I, J) could be computed by summing the set of weights, ϕ, that described

each point that composed the tuple (I, J).

f (x, y, z) =
∫ x+y+z

y+z
(

∫ z

0
ϕ(u − v)dv)du (2.3)
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Equation 2.3, in the general form, described the integral calculus solution to summing over each

point in the combined line segments.

The authors noted that there exists one set, and only one, of mutually disjoint segments that can

be constructed by the abovementioned line segments. Thesemutually disjoint segments represented

the longitudinal segments for the argument and referrant images. The authors considered the couple

(Aθv, Bθv), where θ was a direction from the finite set of directions and v a real-valued number,

an argument put forward to support the proposition “A is in direction α of B.” Again, it followed

naturally to estimate the set of weights, F, supporting those arguments by summing the previously

computed set of weights f that corresponded to the couple (Aθv, Bθv). The equation

F(θ, Aθv, Bθv) =
∑

i∈1...n, j∈1...m
f (dIi,D

θ
Ii Jj, dJj ) (2.4)

represented the set of weights supporting the proposition for each longitudinal section. In Eq.

2.4, dIi represented the line segment from I, dJj represented the line segment from J, and Dθ
Ii Jj

represented the distance between the line segments I and J.

Lastly, the authors described the computation of the F-Histograms, Fθ(A, B) over the argument

and referrant objects. Building upon the weights computed for the longitudinal segments, F, the

F-Histograms represent the total sum of the weights that support the proposition “A is in direction

α of B.” The equation

Fθ
2 (A, B) (2.5)

represented the scalar result of elementary forces of gravity. In other words Eq. 2.5 represented

the forces exerted by the longitudinal sections of the argument image, A, on the referrant image, B,
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each tending to move B in direction α. The authors noted that this property was why the function

Fθ
2 (A, B) was called the histogram of forces associated with (A, B) via F.

The authors noted that only disjoint objects were examined in this literature and that fuzzy

relationships were computed using the level cuts of the fuzzy objects, which were crisp represen-

tations of the fuzzy objects. Experimentation was performed on test raster images that expressed

the relationships: to the right of, to the left of, above, and below. Comparisons were performed

with a previously implemented method, histograms of angles [42]. The authors conducted experi-

ments using three different techniques, M(histograms of angles), M0 (general force F-Histograms)

and M2 (gravitational force F-Histograms). Results indicated that the methods M and M0 were

fundamentally equivalent. However, M preferred the horizontal and vertical directions, while M0

did not. M2 directly took metric information into account and produced specific histograms. For

simple configurations, the results achieved by M and M2 were comparable and for some config-

urations they were not comparable at all. The authors noted that the “best” method depended on

the application being considered. Finally, the authors noted that when M2 provided completely

different results, the opinions expressed by M2 were still able to be completely explained rationally

and these opinions were not able to be expressed by M because histograms of angles did not take

metric information into account.

2.3.2 Frameworks Based on Machine-Learned Models

To date, very little work has been performed regarding spatial relationships of objects in images

in the context of scene understanding. Some initial work used a CNN image classification model

coupled with the use of a heat map to designate the important areas of the image.
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In Identifying Spatial Relations in Images using Convolutional Networks [20], a framework

was described that used the VGGNet CNN image classification model coupled with a proposed

heat map to extract spatial context for objects in the scene in an attempt to provide better captions.

The framework used image features extracted from the VGGNet model as inputs to a multi-layer

perceptron, which generated the corresponding heat map for each image. The heat map in this

framework modeled image features in the range of not important (blue) to most important (red).

Once the heat map was constructed, it was used to determine the spatial relationships between

each object in the image by examining the positions of the red regions of the heat map since each

object in the image had a high likelihood of being represented in the red (most important) range.

The framework developed generated descriptions such as “a man is beside a dog” or “a ball is

behind a lamp.” For the simple case where the objects were juxtaposed, the heat map picked the

first object encountered and constructed the description of the form “object x is beside object y.”

For the more complicated case where the objects overlap, the framework used the heat map to

determine which object was in the foreground and which object was in the background to generate

descriptions of the form “object y is behind object x.”

To verify their model, the authors used a synthetic data set and tested the accuracy of the CNN

model. The model achieved 69% accuracy on the synthetic data set. No baseline existed for the

spatial relationship accuracy, so the authors reported their findings in terms of learning the expected

spatial relationships given the synthetic data set. The authors noted that the model performed with

100% accuracy when classifying the beside and behind relationships independently. However,

the authors also noted that when incorporating images with the “beside”, “behind”, and “above”

relationships present, the accuracy drops to 8.4% for beside and 20.43% for behind.
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This research presented an initial approach to incorporating spatial relationships between

objects in a scene understanding system. However, the proposed framework only generated

relationships for objects beside or behind each other. To construct a more robust and descriptive

system, accounting for object bounds and using them to compute spatial relationshipswould provide

more fine-grained detail than the heat maps presented in this model could. Also, the framework

presented in this paper does not account for the logical ordering of objects when generating scene

labels. This was likely due to the proposed model using only the object labels and spatial orderings

to construct the final semantic description.

2.4 Summary

This chapter explored previous work in the areas of object detection, S2T systems, and com-

puting spatial relationships in images. Much of the existing work will be leveraged in order to

construct the S2T system in Chapters 4 and 5. The existing S2T systems alone do not provide any

concept of object-to-object localization. A primary goal of the system was to leverage the work in

the area of object spatial relationships in order to provide more informative scene descriptions by

using object-to-object localization information.

41



CHAPTER 3

OBJECT LOCALIZATION

This chapter presents the implementation and results for several existing frameworks that were

used to extract various pieces of information from images. Information obtained from these existing

frameworks includes: image object segmentation via mask pixel segmentation, object bounding

boxes, and image category labels.

To begin, this chapter presents a diagram of the S2T pipeline that was implemented in this

paper along with examples of original unprocessed images that were passed through the pipeline

shown in Figure 3.1. A description of the implementation methods used for object segmentation

and metadata generation along with results are presented next. Results were analyzed to determine

which results met the criteria to be used as input to the Spatial Relationship stage of the pipeline

shown in Figure 3.1. Also, an analysis and explanation of results that were “good” detections, but

not suitable to be used as input to the Spatial Relationship evaluation is presented.

The aforementioned frameworks were used as-is, out of the box. As such, validation was not

performed on the methodologies presented in this chapter. However, a discussion of previous

validation results from the original works are presented. The goal of this activity was to provide

meaningful input to the evaluations conducted in Chapter 4. Therefore, the results analysis in
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Section 3.6 serves as a means of validating the useful results that proceed to the next stage of the

pipeline.

3.1 S2T Pipeline

To begin, let us start by exploring each stage of the S2T system as represented by the pipeline

shown in Figure 3.1. The system starts by accepting an image in its unprocessed form, such as the

example images shown in Figures 3.3(a) - 3.8(a), as input. The image is then processed via the

image segmentation and image labeling methods, which are the primary focus of this chapter. The

“Object Localization” stage shown in Figure 3.1 outputs a set of masks or bounding boxes, that are

used as input to the “HOF/GIOU Computation” phase discussed in Chapter 4. The Inception [61]

and Resnet [22] models provide image metadata that is used as input to the algorithms discussed

in Chapter 5 in conjunction with the spatial relationship results generated in Chapter 4.

The “HOF/GIOU Computation” task consists of two stages, Generalized Intersection Over

Union (GIOU) to determine object overlap and HOF to determine locality between object tuples

in an image. The result of the HOF/GIOU computation are the Level One Summaries for the raw

input image. These Level One Summaries are then used as input to the Fuzzy Inference System

(FIS) Computation stage of the pipeline. It is important to note that Level One Summaries can

be used as the final system output as is shown in Figure 3.1. Level One Summaries, viewed as

a system output, consist of the spatial relationship information for each localized object tuple in

an image. Consider the image in Figure 3.3(a). The Level One Summary for this image would

be of the form: “person_1 overlaps and is above surfboard_1.” Thus, the Level One Summaries

themselves do provide meaningful information when used as system output.
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Figure 3.1

S2T System Pipeline
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Each Level One Summary serves as input to the FIS Computation stage of Figure 3.1. This

stage generates a set of labels that describe both the general interactions between all object tuples in

an image, which we denote as “general category interactions” and the interactions between a person

or persons and objects in an image, which we denote as “person domain specific interactions.”

Given that an image has no person(s) detected, the general category interactions are returned as the

output of the S2T system. When an image does have a person(s) detected, both the general category

interactions for all object tuples, including people, and the interactions between people and each

object in the image is returned as the S2T system output. The general category and person domain

interactions both utilize their own sets of fuzzy rules for the FIS Computation stage of Figure 3.1.

Chapter 5 explains the construction of the fuzzy rules and the FIS in greater detail. Consider again

the image in Figure 3.3(a). The general category interactions generated by the FIS Computation

stage of Figure 3.1 for this image would be of the form: “person_1 interacting with surfboard_1.”

Additionally, the person domain interactions generated by the FIS Computation stage would be

of the form: “person_1 riding surfboard_1” since the person both overlaps and is in the “above”

direction of the surfboard. These sets of labels are the final output of the S2T system constructed

in this research for the raw input image shown in Figure 3.3(a). As mentioned in Chapter 1, a

primary focus of this research is to determine if spatial relationship information can be leveraged to

construct more informed scene descriptions than previous works have accomplished. Consider the

images in Figure 3.3(a) and 3.4(a). Current S2T systems may generate the same label of “person

riding surfboard” but clearly in Figure 3.4(a), the person is holding and not riding the surfboard.

Chapters 4 and 5 expand upon the use of spatial relationship information in constructing the output

Level Two Summaries as shown in Figure 3.1 and show that incorporation of such information
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does allow the system to differentiate between a person holding and a person riding a surfboard,

among various other interactions.

3.2 Object Localization via Pixel-wise Segmentation

This section discusses the evaluation design and implementation of the Mask-RCNN [21]

algorithm. Mask-RCNN generates pixel level object localizations and provides a tighter bound

than bounding box segmentations. As mentioned above, mask localizations are the preferred

method used in this pipeline.

3.2.1 Mask-RCNN Implementation

This section details the Mask-RCNN [21] implementation and evaluation design including

the software packages and libraries used, descriptions of how the mask image segmentation was

performed, and details how the results of the evaluation were stored for retrieval. Afterwards, a

small sample of the Mask-RCCN results are presented.

3.2.1.1 Software and Libraries Used

The Mask-RCNN algorithm was implemented using the OpenCV [5] open source framework

using the Python [45] programming language. An Anaconda [2] virtual environment was used

to allow the software designed for this evaluation to be easily shared between machines. The

Tensorflow [1] library provided weights for the Mask-RCNN model that were pre-trained on the

COCO [35] data set. As such, no model training for the Mask-RCNN model was required and the

model was used as-is out of the box. Results were stored using a combination of Pandas [62] data

frame, CSV files, and Numpy [43] arrays.
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3.2.1.2 Evaluation Design Details

Algorithm 3.1 Object Localization
Input: Raw input images from the COCO data set
Output: Object localization results for the input image
1: for all img ∈ COCO Images do
2: Set imgmask = MaskRCNN(img)

3: Set imgyolo = YOLOv3(img)

4: Set imgssd = SSD(img)

5: end for

Algorithm 3.1 shows the general process used to obtain object localization results. The process

is performed for each of the images in the COCO [35] data set and the output are the three sets

of object localization results for each of the input images in the data set. Mask RCNN [21],

YOLOv3[48], and SSD [37] were all applied to each input image to generate object localization

results. The algorithm returns each of these sets of results as individual output sets. The mask

segmentations were the preferred method for this research, as they provide tighter object bounds.

However, as Algorithm 3.1 shows, if no mask results were available, the system does generate

bounding box results using both the YOLO and SSD algorithms. Doing this allowed the system to

have “fallback” results if an image contained no mask segementations. It is important to note that

it is possible that none of the object localization algorithms generate valid results for an image.

In these instances, the object localization results are set to the empty set, and thus are not used in

Level One or Level Two Summary, Chapters 4 and 5 respectively, computation.

Each image from the COCO [35] data set was loaded from disk using the OpenCV [5] library

and processed sequentially using the algorithm described in this section. The Mask R-CNN [21]

model, set up as described in Section 3.2.1.1, was used to process each of the images.
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The Mask R-CNN [21] model generated the following results for each object in an image: a set

of coordinates for the bounding box surrounding the object, a class label for the object, a confidence

score indicating how confident the model was that the label was accurate, and a set of coordinates

that corresponded to the pixels defining the object mask. It was possible for the Mask R-CNN

model to detect the same objectmultiple times. In order to counteract this, non-maxima suppression

(NMS) [24] with a threshold value of 0.5 was performed on the bounding box output to ensure that

only boxes with the tightest bounds around each object were preserved. The threshold value was

determined by choosing 100 sample images from the COCO [35] data set, varying the threshold

value, and then inspecting the bounding box results to determine the threshold that provided the

most accurate bounding boxes for the 100 sample images. The threshold was varied between 0.1

and 0.9 during evaluation. For mask segmentation, a threshold value above 0.5 generated too many

undesirable extra localization outputs as artifacts, where a threshold value below 0.5 removed

too many good localization outputs from the data set to be considered reliable. Optimizing the

NMS threshold for Mask R-CNN is beyond the scope of this work, and is the subject of other

research in the field of object detection. The S2T system constructed in this research assumes

a priori optimization of any object detection/segmentation algorithm used to generate the object

localization data set to input to the evaluations conducted in Chapters 4 and 5.

The pixel-wise masks were then generated on an object-by-object basis using the chosen

bounding box for each object. Each mask was represented as a two-dimensional array where a

pixel coordinate that lies within the object had a value of 255 and pixels that do not had a value of

0. The masks had dimensions that corresponded to the width and height of the bounding box for

the object in question. The end result of mask generation was n numerical arrays, where n was the
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number of objects in an image and each segmentation mask had dimensions w × h where w and h

were the width and height of the bounding box that corresponded to the object being extracted. As

an example, in Figure 3.7(b) there were four objects: person 1, person 2, person 3, and motorcycle

1. Thus, there were four bounding boxes extracted, one for each object in the image. The pixel-wise

masks were then extracted using the bounding boxes for each object.

All of the evaluation results discussed in this section were stored for retrieval to avoid recom-

puting the results. Bounding boxes, labels, and confidence scores for each image were written to

Pandas [62] data frames during the Mask R-CNN [21] evaluation. Pixel-wise segmentations were

stored to disk as Numpy [43] “npy” compressed binary files. Along with the numerical arrays,

pixel-wise segmentation masks were stored to disk as a grayscale image. The grayscale images

were required as input to the HOF [40] algorithm discussed in Chapter 4. These images were

constructed by creating an image the same size as the original input image and setting all pixel

values that do not belong to the mask to 0 (black) and all pixel values that belong to the mask to

255 (white). An example of segmentation masks is shown in Figure 3.2 (b) and (c) for the original

image in (a). Similar to the Numpy [43] arrays, each image had n grayscale mask images associated

with them, where n was the number of objects detected in an image and these masks were stored

in a directory that corresponded to the image path. All values from the Pandas [62] data frames

were then stored in CSV files for retrieval. Along with the bounding boxes, labels, and confidence

scores, the image relative path and directory to the mask greyscale images and mask numerical

arrays for each image were also stored in the CSV file.
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(a)

(b) (c)

Figure 3.2

Pixel-Wise Segmentation Masks

(a) Original image (b) Horse pixel mask (c) Person pixel mask

50



(a) (b)
Figure 3.3

Person riding surfboard

(a) Original image (b) Mask localization output

(a) (b)
Figure 3.4

Person holding surfboard

(a) Original image (b) Mask localization output
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(a) (b)
Figure 3.5

Person riding horse

(a) Original image (b) Mask localization output

(a) (b)
Figure 3.6

Person beside horse

(a) Original image (b) Mask localization output
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(a) (b)
Figure 3.7

Person riding motorcycle

(a) Original image (b) Mask localization output

(a) (b)
Figure 3.8

People beside motorcycle

(a) Original image (b) Mask localization output
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3.2.1.3 Evaluation Results

Figures 3.3(b) - 3.8(b) visualize the results generated by the Mask R-CNN [21] for the original

images in Figures 3.3(a) - 3.8(a). In each figure, (a) shows the original unprocessed image, where (b)

shows the localization output obtained by applying pixel-wise mask segmentation. Visualization

of these results was performed using the OpenCV [5] library via loading the original image and

the pixel-segmentation mask arrays discussed in Section 3.2.1.2. After loading the masks from

disk for the original image, each pixel coordinate that corresponded to an object was overlaid with

a transparent color, chosen randomly, to signify the pixels that correspond to the detected object.

The labels for each object, also discussed in Section 3.2.1.2, were placed above the detected object

and assigned the same color as the mask pixels to signify the label and mask pixel correspondence.

Labels for each object were assigned a sequential numbering scheme, which was necessary for

the spatial relationship evaluation discussed in Chapter 4. For example, consider Figure 3.5(b),

Without a way to distinguish between each object of the same class, it would be impossible to

determine which person was riding the horse. Additionally, Figure 3.5(b) also shows that object

segmentation results are not always perfect since the dog in the image also was detected as a horse.

Given this, the question is now “which person is riding which horse?” The numbering scheme for

like objects in images allowed us to pass more useful information to the evaluations in Chapters 4

and 5 so that these questions can accurately be answered and incorrect labels for individual objects

in images become less of a concern.

Section 3.6 discusses the results that were deemed usable as input to the spatial relationship

evaluation discussed in Chapter 4 and Section 3.6 details the inspection process used in order to

determine the usable results. There were instances where the Mask R-CNN [21] model gener-
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ated good object localization results, but these results were not usable for computing the scene

descriptions described in Chapter 5, such as the images in Figure 3.9(b) where there is only one

class of object detected, a person. The detection results were accurate, however, there were no

objects detected with which a person could interact. Even when using the metadata generated via

the Inception [61] model, there would be no way to generate a scene description for this image.

However, these localization results can still be used as input to the spatial relationship evaluations

of Chapter 4. The pipeline process simply stops after computing spatial relationship information

in these cases.

(a) (b)
Figure 3.9

Good Mask R-CNN Localization; Unusable for Level Two Summaries

(a) Original image (b) Mask localization output

3.3 Object Localization via Bounding Boxes

This section discusses the evaluation design and implementation of the bounding box local-

ization algorithms used in the pipeline. Algorithm 3.1 shows that both YOLOv3 [48] and SSD
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[37] were applied to each of the images in the COCO [35] data set. Bounding box localization

results were used when there were no available mask results, and this section discusses the results

obtained by applying both the YOLO and SSD algorithms to each of the input images. Both

methods generate the same type of results, so the remainder of the discussion will just simply refer

to “bounding boxes” as opposed to the differentiation between the methods. As the name suggests,

bounding box localization generated bounding boxes for each object detected in an image.

3.3.1 Bounding Box Localization Implementation

This section details the implementation of the two bounding box localization methods used for

the S2T pipeline. The packages and libraries used are listed, followed by an explanation of the

evaluation design. Lastly, a small sample of bounding box localization results are visualized and

discussed.

3.3.1.1 Software and Libraries Used

Bounding box localization used two different models, YOLOv3 [48] and SSD [37]. The

OpenCV [5] library was used for both of the models and all code was implemented using the

Python [45] programming language. An Anaconda [2] virtual environment was used in this

evaluation as well to allow the software to be easily shared between machines. The Tensorflow

[1] library provided pre-trained model weights for the SSD [37] model that were trained on the

COCO [35] data set. YOLOv3 pre-trained model weights for the COCO data set are available for

download alongside the paper from [48]. As with the Mask R-CNN [21] implementation discussed

in Section 3.2.1.1, the YOLOv3 and SSD models were used as-is out of the box, so no model

training was performed.

56



As mentioned previously, Mask R-CNN [21] segmentation is the preferred method for local-

ization, but bounding box localizations were also computed to ensure there were as many usable

localization results as possible for all images in the data set. The methods discussed in this section

and in Section 3.2 were applied to each image in the data set, but not all results were used as input

to the evaluation outlined in Chapter 4. Section 3.6 describes the methods used for choosing which

localization results were used for each image in the data set.

3.3.1.2 Evaluation Design Details

The process for computing bounding box localization was similar to the process for Mask

R-CNN [21] localization described in Section 3.2.1.2. Each image from the COCO [35] data set

was loaded and processed sequentially through the YOLOv3 [48] and SSD [37] models using the

OpenCV [5] library via the setup discussed in Section 3.3.1.1. Both the SSD [37] and YOLOv3

[48] models generate the same set of information as output from a forward pass through the model.

That information included the following for each object detected in an image: a set of coordinates

for the bounding box surrounding the object, a class label for the object, and a confidence score

that indicates how confident the model was that the class label was accurate. Similar to Mask

R-CNN [21], it was possible for both YOLOv3 and SSD to generate multiple bounding boxes for

the same object in an image. NMS [24] with a threshold of 0.4 for SSD and 0.7 for YOLOv3 was

used to eliminate duplicate detections. These threshold values were chosen by using a random

sample of 100 images from the COCO [35] data set, using varying threshold values for each

model, and inspecting the bounding box detections to determine the optimal threshold value for the

sample images. Similar to the NMS [24] threshold selection for mask segmentation, the threshold
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was varied between values of 0.1 and 0.9. Values lower than 0.4 and 0.7 for SSD and YOLOv3

respectively, removed too many correct bounding box outputs. Values higher than 0.4 and 0.7 for

SSD and YOLOv3 respectively, generated too many artifact bounding box predictions, making the

bounding box outputs unreliable. As mentioned previously, it is beyond the scope of this work

to determine the optimal NMS [24] threshold for SSD and YOLOv3 in the general case and it

is assumed that the bounding box localization method used in the constructed S2T system has

been previously optimized to generate accurate object localization data to use in the evaluations

conducted in Chapters 4 and 5.

Unlike the Mask R-CNN [21] model, the bounding boxes were the localization results for the

YOLOv3 [48] and SSD [37] models, so no further processing was required after they were gener-

ated. The end result of bounding box localization was n sets of bounding box coordinates where n

was the number of objects detected in an image. Consider the bounding box localization results in

Figures 3.10(b) and 3.10(d) for the raw images shown in Figures 3.10(a) and 3.10(c) respectively.

There are two object localization results for Figure 3.10(a): “person 1” and “toothbrush 1”. Sim-

ilarly, there are two localization results for Figure 3.10(c): “toothbrush 1” and “sink 1”. Thus, in

each of these original images, two bounding boxes were extracted.

Again, all of the evaluation results discussed previously in this section were stored for retrieval

to avoid repeated computation of the results. Bounding boxes, object labels, and confidence scores

were written to Pandas [62] data frames during computation. As mentioned above, both SSD [37]

and YOLOv3 [48] model results were computed, thus there were two different sets of results for

the COCO [35] data set written out to Pandas data frames, one for the YOLOv3 results and one for
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the SSD results. All values stored in Pandas data frames were then stored in CSV files for retrieval

with an indicator of the type of detector used so results for an individual model could be retrieved.

3.3.1.3 Evaluation Results

Figures 3.10(b) and 3.10(d) visualize the bounding box results generated for the original images

in Figures 3.10(a) and 3.10(c) respectively. Visualization of these results was performed using

the OpenCV [5] library via loading the original image and using the library to draw the bounding

boxes and labels computed in Section 3.3.1.2 on the image. Bounding box colors were chosen

randomly and the class labels that correspond to a bounding box use the same color as the bounding

box and were placed above the bounding box in the image. Similar to mask localization, labels for

each object used a sequential numbering scheme to allow for usability in the spatial relationship

evaluations detailed in Chapter 4.

Section 3.6 discusses bounding box localization results that were deemed usable as input to the

evaluations implemented in Chapter 4 andChapter 5 aswell as themethods used to determinewhich

bounding box localization results were usable. As with mask localization, there were instances

where bounding box localization generated good object localization results which were not usable

for the evaluation in Chapter 5. Consider the bounding box results shown in Figure 3.11(b) for

the original image Figure 3.11(a). In this instance, there was only one class of object detected,

apples. There are no interactions that apples can logically perform, so this would not be a suitable

result to use for the S2T system. Figure 3.11(d), on the other hand, shows two different classes

of objects for the original image shown in Figure 3.11(c): an oven and a microwave. There are

no reasonable interactions that these two objects can perform, so this is another example of good
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Figure 3.10

Bounding Box Localization Results
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detection results that were not suitable to use as input to the evaluations in Chapter 5 that generate

scene descriptions. Although these localization results cannot be used as input to the evaluations of

Chapter 5, Level One Summaries, detailed in Chapter 4, can still be computed. The S2T pipeline

will simply return the Level One Summaries as a final output as opposed to computing the scene

descriptions.

3.4 Metadata Generation via Inception

This section discusses the evaluation design and implementation of the metadata generation

algorithm used in the pipeline. Metadata will be used as input to the evaluations in Chapter 5 to

provide additional information about the contents of an image. Unlike the previously discussed

localization algorithms, metadata generation does not provide a localization of objects in an image.

3.4.1 Metadata Generation Implementation

This section outlines the implementation of the metadata generation algorithm. First, the

libraries and software packages used are presented, followed by an explanation of the evaluation

design. This section concludes by providing an example of when metadata generation will be used

as additional input to the Level Two Summaries constructed in Chapter 5.

3.4.1.1 Software and Libraries Used

Metadata was generated using the Inception [61] model loaded using the OpenCV [5] library.

Pre-trained model weights were provided by the Caffe [26] library for the Inception model. No

training on the model was performed as it was used out of the box as-is. All of the evaluation
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(a) (b)

(c) (d)

Figure 3.11

Good Bounding Box Localizations; Not Usable for Level Two Summaries
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was performed using the Python [45] programming language and all packages were loaded into an

Anaconda [2] virtual environment to allow the code to be easily shared.

3.4.1.2 Evaluation Design Details

Each image from the COCO [35] data set was loaded and passed through the Inception [61]

model using the OpenCV [5] library per the setup described in Section 3.4.1.1. Once an image was

processed through the Inception model, a set of labels and confidences were returned as output.

These labels corresponded to objects the Inception model believed exist in the image and the

confidence scores corresponded to how confident the Inception model was that the labels were

accurate. If more than five labels were detected, only the top five labels for each image were

preserved as evaluation showed that result quality quickly deteriorated after the first five labels.

As each image was processed, the top five label results were stored in Pandas [62] data frames

for each image. After all images were processed, the information stored in the data frames was

written to a CSV file for retrieval in order to avoid repeated computation.

3.4.1.3 Evaluation Results

As mentioned in Section 3.4, the metadata results were used in order to provide additional

information to the inference of Level Two Summaries discussed in Chapter 5. This metadata

information became useful when object localization labels were vague. A brief example of such a

scenario follows:

Consider the image in Figure 3.12. The localization methods discussed in Sections 3.2 and 3.3

detected the soccer ball as a “sports ball.” For the Level One Summaries, discussed in Chapter

4, the vague label did not make much difference since we only cared about where objects were in
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relation to one another. However, for the Level Two Summaries computed in Chapter 5, the vague

label did not provide the necessary information that inferred the people in the scene were playing

soccer. Inception [61] labels allow this information to be extracted from images and thus allowed

for more well informed input to the Level Two Summary computations. The Inception labels for

Figure 3.12 were: “soccer ball” and “rugby ball”, a much more accurate description compared to

“sports ball” with regards to Level Two Summary input information.

3.5 Existing Framework Validation

As mentioned previously, all of the models used in this evaluation were used as-is and have

been previously validated. This section gives a brief discussion of how each model was validated,

as well as the performance of the model on the validation data.

Mask R-CNN [21] was validated on the COCO [35] data set and achieved a mAP score of

58.0% during validation. The underlying architecture used during validation was the Resnet-FPN

[36] [22] architecture. Mask R-CNN achieved the highest mAP score of any of the models used in

this chapter on the COCO data set. All validation details for the Mask R-CNN architecture can be

found in the original work in [21].

The YOLOv3 [48] model was validated on two data sets. For the Pascal VOC [14] data set, the

model achieved a mAP score of 77.8%. For the COCO [35] data set, the model achieved a mAP

score of 41.9%. All validation details for the YOLOv3 model can be found in the original work in

[48].

The SSD [37] model was also validated on the Pascal VOC [14] and COCO [35] data sets.

SSD achieved a mAP score of 74.3% on the Pascal VOC data set, and a mAP score of 43.5% on
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the COCO data set. All validation details for the SSD model can be found in the original work in

[37].

The Inception [61] model was validated during the Imagenet Large Scale Visual Recognition

Competition [54] on the data set for the challenge. The model achieved an error rate of 6.67% and

was the top performing model for the challenge. All validation details for the Inception model can

be found in the original work in [61].

3.6 Discussion

This chapter detailed the methods used to generate input information to the Level One and Level

Two Summaries discussed in Chapters 4 and 5 respectively. As has been previously mentioned,

pixel-wisemask segmentation was the preferredmethod used for object localization, with bounding

box localization being used as backup. The evaluations detailed in this chapter in effect implement

the “Object Localization” stage of the S2T system pipeline in Figure 3.1 and the output of the

“Object Localization” stage were the “Localized Objects” in regards to the figure. It is worth

noting that this section discusses only the results for the localization methods of Sections 3.2 and

3.3. As Inception [61] results are only used as metadata, we will refer to Section 3.4.1.3 for the

results analysis.

The evaluations described in this chapter first created an “Object Localization” data set out of

the images of the COCO [35] data set. This object localization data set was then further refined

to remove any data points that were not useful for the evaluations discussed in Chapter 4. An

additional refinement was then performed that pruned any data points that were deemed unusable
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for Level Two Summary computation, described in Chapter 5, from the object localization data set.

The remainder of this section describes the final object localization data set in detail.

3.6.1 Object Localization Data Set Description

The COCO [35] data set contained a total of 1558 images. These were the “Raw Input Images”

of the pipeline in Figure 3.1. As shown in Table 3.1, 571 images contained good detections suitable

for input to the Level One Summaries, 506 images contained detections suitable for input to the

Level One and Level Two Summaries evaluations, and 987 images did not contain any useful

information for either Level One or Level Two Summaries.

Table 3.1

Localization Data Set Totals
Total

Input Images 1558
Level One Usable 571
Level Two Usable 506
Unusable 987

Usable information for Level One and Level Two Summaries are briefly discussed in both

Section 3.2.1.3 and 3.3.1.3, but it is worth revisiting the topic in this section. Usable information

for the Level One Summaries evaluation of Chapter 4 can be viewed as an image with multiple

objects, regardless of if they are the same class or not, whose localization outputs were good. In

other words, Level One Summaries can be constructed on an image as long as there are multiple

good localization outputs for an image. Figures 3.3(b), 3.4(b), 3.5(b), 3.6(b), 3.7(b), 3.8(b), 3.9(b),
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3.10(b), 3.10(d), 3.11(b) and 3.11(d) all show localization outputs that are usable as input for Level

One Summaries because each image contained multiple good localization outputs.

Usable detections for Level Two Summaries, described in Chapter 5 are a subset of the usable

detections for Level One Summaries. In addition to the multiple good object localization outputs

requirement, the Level Two Summary inputs require that more than one class of object has been

detected. Furthermore, the classes of objects detected must be able to reasonably interact with

each other. In other words, in order to infer Level Two scene descriptions for an image, the image

must have two or more classes of objects within that can logically interact. As an example, the

localization outputs in Figures 3.3(b), 3.4(b), 3.5(b), 3.6(b), 3.7(b), 3.8(b), 3.10(b) and 3.10(d) all

contain more than one class of object and there are logical interactions between at least two of the

object classes in an image. Consider Figure 3.10(b), the logical interaction between “person 1”

and ”toothbrush 1“ is “person 1 brushing teeth”. As an additional example, consider Figure 3.3(b)

where the logical interaction between “person 1” and “surfboard 1” is “person 1 riding surfboard

1”. These are examples of Level Two Summary outputs of the S2T system. It is left to Chapters 4

and 5 to provide in depth details on how these scene descriptions were inferred. Table 3.2 gives

detailed counts for pixel-wise and bounding box localization data points in the object localization

data set and Table 3.3 gives total counts of the rejected images/localization outputs.

Table 3.2

Usable Localization Totals
Total

Mask Level One Usable 520
Mask Level Two Usable 460
Bounding Box Level One Usable 51
Bounding Box Level Two Usable 46
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Table 3.3

Unusable Localization Totals
Total

No Localization Results 58
One Localization Result 511
Poor Localization Results 418

It is important to also discuss the data points that were not usable for either of the evaluations

in Chapters 4 or 5. The first case were images that contained no localization outputs at all. In

total, there were 58 images from the COCO [35] data set where the Mask R-CNN [21], YOLOv3

[48], and SSD [37] models detected no localization output. A second case where data points did

not meet the criteria for either Level One or Level Two Summaries was when there was only one

object localization in an image. In total, there were 511 images where only one localization was

found no matter the localization model used. A final case where localization data points did not

meet the criteria for Level One or Level Two Summaries were images where the localization data

points were poor. Poor localizations included: localizations where the masks/bounding boxes were

in the wrong location for an object, object class labels were inaccurate and could not be used, or

masks/bounding boxes were too large or too small for proper localization. In total, there were 418

images from the COCO data set that contained poor localization results.

3.6.2 Manual Inspection of Localization Results

The first two cases for rejecting localization data points mentioned in Section 3.6.1 were

accomplished with simple queries of the data using Pandas [62]. The final case required a manual

inspection process. The manual inspection process was also used to sift the good localization data
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points down to those that could be used only for Level One Summaries and those that could be

used in both Level One and Level Two Summaries. The manual inspection process is the focus of

this section.

Manual inspection of the data set was performed as a two stage process. A Python [45] script

was used that visualized the images in the same manner discussed in Sections 3.2.1.3 and 3.3.1.3 in

both stages. During the first pass, images were first visualized and then two options were presented

in the Python console: “accept result” and “reject result”. This pass separated the 412 poor

localization data points discussed in Section 3.6.1. This process was first performed on pixel-wise

mask localizations and all images with good mask localization outputs were tracked by file name.

After the pass on the mask localization outputs, the same process was performed on bounding box

localization outputs for any image where masks had less than one object detection. Both SSD

[37] and YOLOv3 [48] localization outputs were inspected in this pass. This first pass of manual

inspection allowed extraction of the 577 localization outputs deemed usable as input to Level One

Summaries.

After the “good” data points were filtered out by the first pass, a second pass was performed

to determine which localization outputs were usable for Level Two Summaries. As with the first

pass of manual inspection, the localization outputs were visualized and two options presented

in the Python [45] console: “usable for Level Two Summaries” and “not usable for Level Two

Summaries”. In this secondary manual inspection pass we only looked for data points that met the

criteria discussed in Section 3.6.1; outputs with more than one localization with more than one

object class, and at least two classes of objects that could logically interact with each other. This
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secondary manual inspection allowed identification of the 509 localization outputs deemed usable

as input to Level Two Summaries.

This chapter presented all of the localization and metadata generation methods used in the S2T

pipeline. In Chapter 4, the object localization data set was used to inform inference of the Level

One Summaries, which corresponds to object tuple spatial relationships. In Chapter 5, the object

localization data set and the image metadata, were combined with the Level One Summaries and

used as input to the inference of Level Two Summaries, which corresponded to a natural language

scene description.

70



Figure 3.12

Metadata Example Image
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CHAPTER 4

EVALUATION 1: LEVEL ONE SUMMARIES

Level One Summary generation is the next phase of constructing the S2T pipeline and system.

Level One Summaries provide the spatial relationships between each tuple of objects in an image.

This chapter begins by revisiting the S2T pipeline diagram shown in Figure 4.1 to discuss the current

stage of the process. Afterwards, the implementation of the two methods used to generate Level

One Summaries, HOF [40] and GIOU [51], are discussed in detail. Following implementation

details, an analysis of the results obtained from combining the HOF and GIOU algorithms are

presented. Level one Summaries are, in essence, the results obtained by combining the output

of the HOF and GIOU algorithms. This chapter concludes with a discussion of the Level One

Summaries in general as well as how Level One Summaries pertain to input to the Level Two

Summary evaluations of Chapter 5.

HOF [40] and GIOU [51] both have been previously validated in their respective original works.

As such, no validation was performed on the algorithms as they were used without modification.

Section 4.8 serves as validation of the results as they relate to the input to Level Two Summary

evaluation of Chapter 5 and the validation of the HOF and GIOU algorithms is reserved to the

original works in [40] and [51] respectively.

72



Figure 4.1

Level One Summaries in the S2T Pipeline
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4.1 S2T Pipeline

Let us begin this chapter by revisiting the S2T pipeline diagram in Figure 4.1 and examine

the current as well as completed stages of the system. Evaluations in Chapter 3 performed the

“Object Localization” operations and the results are the “Localized Objects” as it relates to the

S2T pipeline diagram. “Localized Objects” serve as input to the “HOF/GIOU Computation” stage

and the result is the “Level One Summaries” in reference to the diagram. This chapter presents

the implementation of the “HOF/GIOU Computation” stage and the results analysis examines the

“Level One Summaries” output by the HOF and GIOU computations. Each of the completed

stages of the pipeline diagram in Figure 4.1 is shown in green and the stages yet to be completed

are shown in blue. Finally, nodes shown in orange, correspond to outputs of the S2T system. With

this in mind, the diagram shows the Level One Summaries, computed in this chapter, and Level

Two Summaries, computed in Chapter 5, as shown in Figure 4.1 can both be used as output of the

S2T system. As mentioned previously, the Level One Summaries are used as the final output when

there are no object localization results that can logically interact with each other. Sections 3.2.1.3

and 3.3.1.3 both discuss these cases in further detail.

4.2 Level One Summary Approach

This section briefly introduces the algorithms and methods used for constructing Level One

Summaries as well as the software packages and libraries used to implement the algorithms.

Thorough implementation details of each method are reserved to the individual Sections 4.3, 4.4

and 4.5 below. The combination of these methods is used to construct Level One Summaries and

this process is discussed in detail in Section 4.6. Results for the individual methods, as well as the
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Level One Summary output, is reserved to Section 4.7 as the combination of results is the most

logical way to present them.

4.2.1 Software Packages and Libraries

All evaluations detailed in this chapter made use of an Anaconda [2] virtual environment to

allow the S2T system to be easily configured on multiple machines. Object tuple computation and

GIOUwere implemented in Python [45] and made use of the Numpy [43] library for set operations.

HOF was implemented using Matlab [39] code obtained from the authors of the original work in

[40] that ran in a Python script. GIOU and HOF results were stored using Pandas [62] data frames,

which were then written to CSV files for retrieval. Visualization of results were performed using

the OpenCV [5] library for displaying images and text labels were assigned to each of the images.

These text labels will be displayed in tables for the purposes of this evaluation.

4.2.2 Level One Summary Methods

Construction of Level One Summaries relied on output from three individual methods. Each

method accepted the set of localization results computed in Sections 3.2 and 3.3 as input. The

first task performed was the computation of the object-two tuples for each localization result in the

set of results. This process is detailed in Section 4.3. These object tuples were used to map the

localization results for use as input to the other two tasks for constructing Level One Summaries.

First, object overlap and object proximity was computed using the GIOU [51] algorithm with

implementation details given in Section 4.4. Following, object tuple spatial relationships were

computed using the HOF [40] algorithm, detailed in Section 4.5. Finally, a combination of the

results from GIOU and HOF were used to construct Level One Summaries for each localization
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result in the result set. This process is described in detail in Section 4.6. Level one Summary

results are presented in Section 4.7. Tuple, GIOU, and HOF results are embedded in the Level

One Summaries so visualization of the individual results are shown alongside the final Level One

Summaries.

4.3 Object Tuple Computation

The first task performedwas the generation of the set of object tuples for each image localization

result. Localization results, discussed in Sections 3.2.1.3 and 3.3.1.3, were loaded from CSV files

into Pandas [62] data frames and then a set of tuple object permutations was computed for each

image using the object labels contained in the localization results. This set of tuple object labels

for each image was then mapped to their corresponding bounding box or mask localization result.

These mappings served as the input to the GIOU [51] and HOF [40] algorithms discussed in

Sections 4.4 and 4.5. Algorithm 4.1 shows psuedocode for the process for computing the tuple of

objects in an image.

Algorithm 4.1 Compute Object Tuples for Image
let R be the set of localization results ≥ 2
for all r ∈ R do
let L be the set of labels for r
set twotuplesL = permutation(L, 2)
set twotuples′L = twotuplesL − inverse relationships

end for

Algorithm 4.1 shows that the tuple computation process is only performed on image object

localization outputs with two or more localization results. This process was performed on the

labels generated during object localization, discussed in Chapter 3, and the result of this process
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was a set of tuple label permutations for each individual image’s localization results. Permutations

with n = 2 were generated from the set of labels for an image and then inverse relationships were

removed such that only one pair of tuples was preserved for a pair of labels. By doing this, the

number of computations performed for both GIOU [51] and HOF [40] was halved. As an example,

consider Figure 3.12, where there are three labels: “person_1”, “person_2”, and “sports_ball_1”.

A logical conclusion can be drawn that if “person_1” has the relationship of “to the right of”

“sports_ball_1”, then “sports_ball_1” must be “to the left of” “person_1”. Thus, only one set of

results for spatial relationships need to be computed for a tuple of objects and the bidirectional

permutation does not need to be preserved. It follows that the same conclusion can be drawn for

a tuple of objects that overlap as well. The labels were ordered according to an object hierarchy,

discussed in further detail in Chapter 5, such that people took precedence over animate objects

and animate objects took precedence over inanimate objects. This was done to ensure that the

person-object Level One Summaries were computed and not the other way around. For the case of

no person detections, the system prefers to look at interactions in the form of animate-inanimate

Level One Summaries. The final result of Algorithm 4.1 is the set of tuple object pairs with no

inverse relationships and these result pairs were used to index the object localization results for

computing GIOU and HOF labels, which are discussed in the following sections.

4.4 Generalized Intersection Over Union

Generalized intersection over union (GIOU) [51] was originally implemented for computing

loss between predicted bounding boxes and ground truth bounding boxes. The original work

provides details on other uses of GIOU including computation of proximity and object overlap.

77



This work used the proximity and overlap properties of the GIOU algorithm to determine a) if

object tuples overlap and b) determine the proximity between object tuples. The remainder of this

section discusses the implementation of the GIOU algorithm used in this work, a discussion of

the validation of the GIOU algorithm from the original work in [51], and a brief discussion of the

results. The complete discussion of the results is reserved to Section 4.7 where both the GIOU and

HOF [40] results are presented.

4.4.1 GIOU for Computing Object Overlap and Proximity

The original GIOU implementation in [51] was implemented with bounding box localization

in mind. As such, the GIOU algorithm was used as described in the original work for the bounding

box localization results derived in Section 3.3, and GIOU was computed using the underlying

bounding boxes for the mask localization results derived in Section 3.2.

GIOU was implemented identical to the original work in [51]. Algorithm 4.2 shows the

pseudocode of the implementation for the purposes of the evaluations in this chapter. The input to

the algorithm were the bounding boxes corresponding to the argument and referrant images, which

are discussed in Section 4.5. For the purposes of the GIOU algorithm, the argument and referrant

images may be viewed as two distinct bounding boxes corresponding to two distinct objects. The

algorithm proceeds by then computing a minimal enclosing bounding box, C, for the Arg and

Ref bounding boxes. Afterwards, the intersection over union (IOU) was computed by dividing

the intersection of the pixels in the Arg and Ref bounding boxes by the union of the pixels in the

Arg and Ref bounding boxes. Lastly, GIOU was computed by subtracting a normalizing factor

from the IOU. The normalizing factor, |C−(Arg∪Ref|
|C| , represents the ratio of the area occupied by
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C excluding Arg and Ref divided by the area occupied by C. This normalizing factor allowed

a measure that focused on the empty area between Arg and Ref. In this manner, GIOU scores

reflected the distance between two arbitrary bounding boxes, whereas IOU scores did not. Both

IOU and GIOU were scale invariant, which was necessary given that most bounding boxes were

of dissimilar sizes.

Algorithm 4.2 Generalized Intersection Over Union
input: Two bounding boxes: Arg, Ref ∈ Img
output: IOU and GIOU score for the Arg and Re f objects
1: Find smallest enclosing bounding box C for Arg and Ref
2: IOU = |

Arg∩Ref|
|Arg∪Ref|

3: GIOU = IOU − |
C−(Arg∪Ref|
|C|

The input for the GIOU [51] computation were the bounding box localization results computed

in the evaluations of Chapter 3, separated into tuples using the method described in Section

4.3. As mentioned previously, GIOU used the underlying bounding boxes for mask segmentation

localization results discussed in Section 3.2, and the bounding boxes were used as is for bounding

box localization results discussed in Section 3.3. The output of the GIOU algorithm was two

labels: a) Arg overlaps/does not overlap Ref and b) Arg is in proximity p of Ref. Any Arg and

Ref pair with IOU > 0 was assigned the “overlaps” label, whereas any pair with IOU = 0 was

assigned the “does not overlap” label. The overlap computation was the trivial case in that any

IOU score with a value greater than 0 indicates that at least some portion of the bounding boxes

overlap. IOU was chosen for the overlap case because it reflected any potential overlap between

objects better than GIOU since there was no normalizing factor for IOU. The proximity case relied
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upon the range −1 ≤ GIOU ≤ 1, where decreasing GIOU values indicated that Arg and Ref were

further away from each other and increasing GIOU values indicated that Arg and Ref were closer

to each other. For the case of GIOU = 1, the objects completely surrounded each other and for

the case GIOU = −1, the objects were as far away from each other as possible. Results obtained

from the GIOU computations were stored in a CSV file for easy retrieval.

In order to construct the FIS system detailed in Chapter 5, the overlap and proximity values

were modeled using fuzzy membership functions. Figure 4.2 shows the trapezoidal membership

functions used to represent “Overlap”. Overlap was modeled as a trapezoidal membership function

in order to allow the system to capture the wide ranges where overlap and no overlap were certain.

As any value greater than 0 indicated overlap and any value less than zero indicated no overlap, these

trapezoidal membership functions more accurately model those ranges as opposed to triangular

membership functions. Similarly, proximity was also modeled using trapezoidal membership

functions. The use of trapezoidal membership functions allowed modeling the cases where more

than one value corresponds to a specific proximity, as shown in Figure 4.3.

Construction of membership functions is described in great detail by Ross in [53]. Figure

4.2 shows that any value IOU ≤ 0 corresponds to “No Overlap” where any value IOU > 0

corresponds to “Overlap.” In essence this is just a Boolean-valued function, but for the purposes

of constructing Level Two Summaries, overlap was represented as a fuzzy variable. For Level

One Summaries, the overlap label was a result of performing defuzzification of the IOU input

value and returning the maximum membership of the “Overlap” membership functions. Equation

4.1 represents this computation in mathematical form. The overlap membership functions and
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Figure 4.2

Overlap Membership Functions
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Figure 4.3

Proximity Membership Functions
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defuzzification operations were implemented using the SKFuzzy [69] library using Python [45]

scripts.

overlap = max(overlap(IOU), no_overlap(IOU)) (4.1)

Figure 4.3 shows the trapezoidal membership functions used to represent “Proximity.” As shown

in the figure, the proximity membership functions were more aligned with the classical definition of

a fuzzy variable in that the input variable could exist in multiple outputs. Figure 4.3 shows that the

range −1.0 ≥ GIOU > −0.75 corresponded to “Very Far”, −0.85 ≥ GIOU > −0.5 corresponded

to “Far”, −0.7 ≥ GIOU > −0.25 corresponded to “Medium”, −0.35 ≥ GIOU > 0.0 corresponded

to “Close”, and −0.1 ≥ GIOU > 1.0 corresponded to “Very Close”. While proximity was not

used specifically for Level One Summaries, its result could be computed by performing the

defuzzification of the GIOU input value and returning the maximum of the memberships of the

“Proximity” membership functions. Equation 4.2 represents this computation in mathematical

form. The proximity membership functions and defuzzification operations were implemented

using the SKFuzzy [69] library using Python [45] scripts.

proximity = max(very_close(GIOU), close(GIOU),
medium(GIOU), f ar(GIOU), very_ f ar(GIOU))

(4.2)

The overlap crisp output that results fromdefuzzification of the IOUvalue, computed viaAlgorithm

4.2, combined with the output of the HOF [40] algorithm, discussed in Section 4.5 were used to

construct the Level One Summary outputs. An in depth discussion of how the final Level One

Summaries were constructed is presented in Section 4.7. The proximity output from the GIOU

[51] computations was used strictly as latent input as a fuzzy variable, in addition to the combined
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overlap/HOF results represented as fuzzy variables, to the Level Two Summary computations

presented in Chapter 5.

4.4.2 GIOU Validation

No additional validation was performed on the GIOU [51] algorithm itself. The authors of the

original work used amAP score metric for the task of computing bounding box loss, i.e. the relative

position of the predicted bounding box compared to the ground truth value. The authors reported

an average mAP improvement of 9.78% for YOLOv3 bounding box predictions and an average

mAP improvement of 2.60% for Mask-RCNN [21] bounding box predictions. The evaluations

constructed in this work used an unmodified version of GIOU, and as such we relied on the original

validation as proof the algorithm works properly. A manual inspection of the crisp variables

obtained via defuzzification for overlap, using Equation 4.1, and proximity, using Equation 4.2,

was performed to ensure the fuzzy membership functions were performing as expected. This

manual inspection showed that both the overlap and proximity computations were accurate for the

object localization results obtained from Chapter 3. Specifically, overlap and proximity values

were computed for each tuple in the 571 images usable for Level One Summaries from Chapter 3.

Of these 571 images, all of the overlap and proximity results were accurate. This was an expected

behavior as the GIOU [51] computation was deterministic and the only verification necessary was

the proper construction of the fuzzy membership functions.

4.4.3 GIOU Discussion

GIOU [51] was performed on the set of object localization results that contained more than

one object localization deemed to be usable for either Level One or Level Two Summaries. Table
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3.2 shows totals for the usable object localization results. GIOU was performed on both mask

and bounding box usable localization results. As mentioned previously, the GIOU values for each

image’s object localization results were stored in CSV files for easy retrieval. Specifically, the IOU

and GIOU values were retained and stored as floating point values to be used as input information

for the Level Two Summaries computed via FIS, discussed in detail in Chapter 5.

The following section details the evaluations used to compute the spatial relationships between

the set of tuples of objects in an image. The combination of these results is presented in Section

4.6 to construct the Level One Summaries. Visualizations of the GIOU [51] results is reserved to

Section 4.7 where the visualizations are presented in tandem with the results from Section 4.5.

4.5 Histogram of Forces for Spatial Relationships Between Objects

The Histogram of Forces (HOF) algorithm implemented in the original work by Matsakis

in [40] was used to compute spatial relationship information for the object localization results

generated in Chapter 3. Each image’s localization results were separated into object tuple pairs

using the method detailed in Section 4.3 and the HOF algorithm was used to compute the spatial

relationships for each tuple pair. First a description of the implementation of the HOF algorithm

and its output as it relates to the S2T system constructed is presented. A discussion of the original

validation is presented following the implementation details. A discussion of the results of the

HOF algorithm is reserved for Section 4.7 where the combined results of GIOU and HOF will be

described.

4.5.1 HOF Implementation

85



Algorithm 4.3 Spatial Relationship Computation
input: Object localization results for an image
output: Tuple spatial relationships for localization results
1: Set T = tuple pairs generated using Algorithm 4.1
2: for (ta, tr) ∈ T do
3: Compute binary images for ta and tr
4: F0t, F2t, FHt = HOF(ta, tr)
5: if F0t = F2t = FHt then
6: SRt = FHt
7: else if F0t = F2t then
8: SRt = F2t
9: else if F0t = FHtorF2t = FHt then
10: SRt = FHt
11: end if
12: end for

The HOF [40] algorithm used for the evaluations made use of the original Matlab [39] code

provided by the authors of the original work. A Python [45] script was implemented to call

the Matlab functions and pass inputs to the HOF algorithm and to store the outputs of the HOF

algorithm for retrieval.

The original HOF [40] algorithm accepted as input an argument and referrant object as binary

images, where the spatial relationship computed was of the form: “Argument is in direction α of

Referrant.” The assignment of the argument and referrant objects was hierarchical and based on

object categories, discussed in detail in Chapter 5, where person detections took precedence and

were used to provide a relative space in which the HOF algorithm operated.

Algorithm 4.3 details the process used in this work to compute the spatial relationships for

object two tuples in an image and this algorithm was run on each localization result in the set of

usable localization results described in Chapter 3 and shown in Table 3.2. The algorithm accepted

as input a single image’s object localization results, in the form of masks or bounding boxes,
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described in Sections 3.2 and 3.3 respectively. The HOF algorithm was shape-invariant so the

mask and bounding box localization results were used as-is. Object tuple pairs were computed for

the localization results of an image using Algorithm 4.1 and the argument and referrant objects

were assigned as the first and second entries in the tuple respectively. For the argument and

referrant objects, an individual binary image was constructed using the OpenCV [5] and Numpy

[43] libraries, where a value of 1 indicated a pixel belongs to an object and a value of 0 indicated

a pixel did not belong to the object. These argument and referrant binary images were then passed

as input to the HOF Matlab [39] implementation. As mentioned previously, the inverse tuple

relationships were not preserved. As such, the HOF algorithm was only performed once per tuple

pair and spatial relationship symmetry was exploited for the referrant-argument relationship once

the argument-referrant relationship was computed. As an example, if the argument object was

“to the left of” the referrant object, it followed that the referrant object was “to the right of” the

argument object.

HOF [40] outputs a set of three histograms: constant force (F0), gravitational force (F2),

and hybrid force (FH) histograms, where hybrid force histograms were a combination of the F0

and F2 force histograms. Each histogram contained entries in up to 360 bins, where the bins

corresponded to degrees on the unit circle. The largest value bin corresponded to the direction that

the argument object was in reference to the referrant object. Further descriptions of the F0, F2,

and FH histograms is given in the original work by Matsakis in [40].

Algorithm 4.3 shows that the F0, F2, and FH histograms were output for each tuple in the

set of tuples for the object localization results. Then, a consensus value was chosen to represent

the spatial relationship, SRt in Algorithm 4.3, for a tuple object pair. The output values of the
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HOF [40] algorithm for each type of force histogram were integer values that corresponded to the

maximum angle detected. After computing SRt ∀t ∈ T , the F0, F2, and FH histogram values were

stored in a CSV file for easy retrieval.

In order to use the spatial relationship information as input to the Level Two Summary compu-

tation, described in Chapter 5, the spatial relationships were represented as triangular membership

functions [53] as shown in Figure 4.4. Triangular membership functions were used to model the

spatial relationship ranges because each cardinal direction has only one value that indicates that

exact direction. For example, consider the HOF output of 90 and consider it represented on the

unit circle in degrees. This value corresponds strictly to the “above” direction, whereas the value

91 lies somewhat in both the “above” and “left” directions on the unit circle, and the value 89

lies in somewhat both the “above” and “right” directions. Using triangular membership functions

allowed the modeling of these directions such that only four membership functions were required

and also allowed modeling the uncertainty when HOF outputs did not strictly exist in one of the

four modeled directions.

Table 4.1 shows the ranges each direction of the membership functions fall into in a more

readable format. The degree rangeswere separated into nine directions, each ofwhich corresponded

to values on the unit circle. The consensus angle, SRt , was defuzzified in order to extract the crisp

output spatial relationship direction, shown in Table 4.1, for each object tuple. These crisp outputs

were combined with the overlap results, discussed in Section 4.4, in order to construct Level One

Summaries. The fuzzy value of SRt was used as input to the Level Two Summary computations

detailed in Chapter 5. The spatial relationshipmembership functions and defuzzification operations

were implemented using the SKFuzzy [69] library in Python [45] scripts.
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Figure 4.4

Spatial Relationship Membership Functions
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Table 4.1

Spatial Relationship Directions

Range Direction
0◦ < SRt ≤ 30◦ to the right of
30◦ < SRt ≤ 60◦ above and to the right of
60◦ < SRt ≤ 120◦ above
120◦ < SRt ≤ 150◦ above and to the left of
150◦ < SRt ≤ 210◦ to the left of
210◦ < SRt ≤ 240◦ below and to the left of
240◦ < SRt ≤ 300◦ below
300◦ < SRt ≤ 330◦ below and to the right of
330◦ < SRt ≤ 360◦ to the right of

4.5.2 HOF Validation

No additional validation was performed on the original HOF work of [40]. The authors

compared HOF results from the work to a similar method, Histogram of Angles [41]. The aim of

the validation was to show that HOF generalized well to all shapes when compared to the Histogram

of Angles method. Fundamentally, the F0 histograms were equivalent to the output of Histogram of

Angles, and as such the results were nearly identical during comparison. The authors demonstrated

in [40] that the F2 and FH histograms provided richer descriptions of spatial relationships because

of several factors. First, the F2 and FH histograms specifically provide context-specific contextual

knowledge based on metrics presented by Gapp in [16], and furthermore, the F2 and FH histograms

can always be rationalized whereas the Histogram of Angles output cannot. Non-disjoint objects

were handled using the HOF algorithm, but there was no way to handle these objects in the

Histogram of Angles method. Lastly, the HOF algorithm was set up to handle fuzzy objects,

whereas the Histogram of Angles method could only handle crisp disjoint objects. While the

authors noted that the Histogram of Angles method was a viable method, the HOF method
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outperforms the Histogram of Angles method due to its additional properties discussed. Further

validation details of the HOF algorithm is reserved to the original work in [40].

However, a manual validation was performed on the defuzzification process to ensure that the

membership functions shown in Figure 4.4 generated the correct crisp spatial relationship for the

object tuples. Similar to the process discussed in Section 4.8.2, each of the 571 image localization

results deemed usable as input for Level One Summaries were visualized in a Python [45] script

using the OpenCV [5]. For each image, the crisp output for each object tuple spatial relationship

was presented as a text output for inspection to ensure that the spatial relationship between the

tuple-object pair was accurate.

(a) (b)
Figure 4.5

Person riding surfboard HOF output

(a) Mask localization output (b) Spatial relationship membership function

Figures 4.5 - 4.11 show examples of spatial relationship membership function outputs obtained

by applying the HOF [40] algorithm to localized object results. For brevity, only one tuple
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(a) (b)
Figure 4.6

Person holding surfboard HOF output

(a) Mask localization output (b) Spatial relationship membership function

(a) (b)
Figure 4.7

Person riding horse HOF output

(a) Mask localization output (b) Spatial relationship membership function
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(a) (b)
Figure 4.8

Person beside horse HOF output

(a) Mask localization output (b) Spatial relationship membership function

(a) (b)
Figure 4.9

Person riding motorcycle HOF output

(a) Mask localization output (b) Spatial relationship membership function
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(a) (b)
Figure 4.10

Person beside motorcycle HOF output

(a) Mask localization output (b) Spatial relationship membership function

(a) (b)
Figure 4.11

Person playing soccer HOF output

(a) Mask localization output (b) Spatial relationship membership function
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membership function output was displayed for the mask localization results. The membership

function outputs for each of the images were chosen to be the most interesting tuple in the image

except in instances such as Figure 4.10 where there were no “interesting” interactions. The

membership result images, (b) in each of the images, shows the degrees of the unit circle on the

x-axis, and the magnitude for each degree found by HOF is shown on the y-axis. The membership

functions for the four cardinal directions (left, below, above, and right) are shown on each image,

and the magnitude is superimposed on the membership functions such that the defuzzified output

can be inferred from the image.

Interpreting the membership function outputs allowed us to infer in what direction the HOF

algorithm thought the tuples were with respect to each other. Figure 4.5(b) shows that the person

was above the surfboard. Figure 4.6(b) shows that person_1 was to the right of the surfboard in the

image. Figure 4.7(b) shows that person_2 was above horse_1 in the image. Figure 4.8(b) shows

the person was to the right of the horse in the image. Figure 4.9(b) is interesting in that it shows

person_2 was both above and right of the motorcycle, thus the person can be said to be “above and

to the right” of the motorcycle. Figure 4.10(b) shows a similar “above and to the right” result for the

person_1 and motorcycle_1 tuple. Lastly, Figure 4.11(b) shows that person_1 was to the right of

the soccer ball. Section 4.8.2 goes into further detail about the manual validation process for both

overlap and spatial relationships, the combination of which were the final Level One Summaries,

and includes detailed statistics for the entire data set.
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4.5.3 HOF Discussion

Similar to the GIOU [51] discussion in Section 4.4.3, HOF [40] was performed on the set of

object localization results deemed usable for either Level One or Level Two Summaries. Table

3.2 shows the total count of the images with valid object localization results. As mentioned in

Section 4.5.1, the HOF algorithm was shape-invariant, so the HOF algorithm worked with both

mask and bounding box localization results as-is. The integer values for the F0, F2, and FH

histograms were all stored in CSV files using the image file name as a key to the corresponding

object localization results. The consensus value for SRt , shown in Algorithm 4.3, was computed

during the construction of Level One Summaries discussed in Section 4.6.

The next section discusses the construction of Level One Summaries, which was the primary

objective for the evaluations conducted in this chapter. This and the proceeding sections detail the

building blocks for constructing these summaries. As the spatial relationships computed with HOF

[40] and object overlap/proximity values computed using GIOU [51] were combined to construct

Level One Summaries, the primary discussion of the spatial relationship and overlap/proximity

results is reserved to Section 4.7, where a detailed description of the combined outputs is discussed.

4.6 Construction of Level One Summaries

Level One Summaries were constructed by combining the defuzzified GIOU [51] output and

defuzzified HOF [40] output, discussed in Sections 4.4 and 4.5 respectively, into a concise descrip-

tion of proximity/spatial relationships for each object-tuple pair in an image. In the case that an

object tuple overlapped, the Level One Summary contained the “overlap” label. For example, an

object tuple that overlapped would have a Level One Summary of the form: “Argument overlaps
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and α of Referrant”, where α corresponded to one of the nine directions described in Table 4.1. In

the case where the object tuples did not overlap, the “overlap” label was omitted from the Level

One Summary. An example of this instance is: “Argument α Referrant.” The spatial relationship,

α, was always included in the Level One Summary.

Level one Summaries could be viewed as the function L1 that maps each tuple of objects, (a, r),

where a and r are the argument and referrant objects respectively, from a set of object localization

results for an image (I) to a Level One Summary L1S for all object tuples (T) in I:

L1(a, r) 7→ L1S
∀(a, r) ∈ T ∈ I

(4.3)

The mapping function in Eq. 4.3 can be viewed as the combination of the HOF [40] and GIOU

[51] outputs for each tuple (a, r) in T :

L1(I) =
p∑

n=1
GIOU(an, rn) + HOF(an, rn) (4.4)

where p is the number of objects in an image. By exploiting the symmetry, Eq. 4.4 becomes:

L1(I) =
p/2∑
n=1

GIOU(an, rn) + HOF(an, rn) (4.5)

Eq. 4.5 was applied to the usable object localization results, discussed in Sections 3.2.1.3 and

3.3.1.3, and shown in Table 3.2. The results were the set of Level One Summaries generated for

the usable object localization results.

The following section provides a detailed description of the Level One Summary results in the

form of tables. Section 4.8.2 provides a discussion on the validation process used for the Level

One Summaries computed.
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4.7 Evaluation Results

Table 4.2

Level One Summaries for Figure 3.3

Localization Result Level One Summaries

• person_1 overlaps and is above
surfboard_1

Table 4.3

Level One Summaries for Figure 3.4

Localization Result Level One Summaries

• person_1 overlaps and is be-
low and to the right of surf-
board_1

• person_1 is to the right of um-
brella_1

• person_1 is to the left of per-
son_2

• person_2 is to the right of
surfboard_1

• person_2 is to the right of um-
brella_1

• surfboard_1 is to the right of
umbrella_1
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Table 4.4

Level One Summaries for Figure 3.5

Localization Result Level One Summaries

• person_1 is below and to the right
of person_2

• person_1 overlaps and is to the
right of horse_1

• person_1 is to the left of person_3

• person_2 is above and to the left
of horse_2

• person_2 is to the left of person_3

• person_2 overlaps and is above
horse_1

• person_3 is to the right of horse_1

• person_3 is above and to the right
of horse_2

• horse_1 is to the left of horse_2
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Table 4.5

Level One Summaries for Figure 3.6

Localization Result Level One Summaries

• person_1 overlaps and is to
the right of horse_1

• person_1 is to the right of
car_1

• horse_1 overlaps and is be-
low and to the right of car_1

Table 4.6

Level One Summaries for Figure 3.7

Localization Result Level One Summaries

• person_1 is to the left of person_2

• person_1 is to the left of motor-
cycle_1

• person_1 is to the left of person_3

• person_2 is to the left of person_3

• person_2 overlaps and is above
and to the right of motorcycle_1

• person_3 is to the right of motor-
cycle_1
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Table 4.7

Level One Summaries for Figure 3.8

Localization Result Level One Summaries

• person_1 is to the right of per-
son_2

• person_1 is to the right of per-
son_3

• person_1 is to the right of per-
son_4

• person_1 overlaps and is to the
right of motorcycle_1

• person_2 is to the left of person_3

• person_2 is to the left of person_4

• person_2 overlaps and is above
motorcycle_1

• person_3 is to the right of per-
son_4

• person_3 overlaps and is above
and to the left of motorcycle_1

• person_4 overlaps and is to the
left of motorcycle_1
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Table 4.8

Level One Summaries for Figure 3.9

Localization Result Level One Summaries

• person_1 is to the left of per-
son_2

• person_1 is to the right of per-
son_3

• person_1 is to the right of per-
son_4

• person_2 is to the right of per-
son_3

• person_2 is to the right of per-
son_4

• person_3 is to the left of per-
son_4

Table 4.9

Level One Summaries for Figure 3.10(b)

Localization Result Level One Summaries

• person_1 overlaps and is be-
low and to the right of tooth-
brush_1

102



Table 4.10

Level One Summaries for Figure 3.10(d)

Localization Result Level One Summaries

• toothbrush_1 overlaps and is
to the left of sink_1

Table 4.11

Level One Summaries for Figure 3.11(d)

Localization Result Level One Summaries

• oven_1 is below and to the
right of microwave_1
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Table 4.12

Level One Summaries for Figure 3.12

Localization Result Level One Summaries

• person_1 is to the right of per-
son_2

• person_1 is to the right of
sports_ball_1

• person_2 is to the right of
sports_ball_1

This section visualizes the Level One Summary results generated using the evaluations detailed

in the previous sections of this chapter. Each of the visualizations show the Level One Summaries

for the localization result images computed using the techniques described in Chapter 3. Each result

in Tables 4.2 - 4.12 displays the localization result on the left and the Level One Summaries for

the localization result on the right. Tables 4.4 - 4.8 and Table 4.12 show the Level One Summaries

for the mask localization results computed in Section 3.2. Symmetrical results were omitted from

the tables for brevity. As discussed in Section 4.3, the symmetrical inverse relationship can be

inferred given one label for a tuple of objects. As an example, consider the Level One Summary

shown in Table 4.2, where the Level One Summary shows that “person_1 overlaps and is above

surfboard_1”. It follows naturally that given this relationship, it must be true that “surfboard_1

overlaps and is below person_1”. Table 4.2 is also an example of object localization and Level One

Summary results that can be used as input to the Level Two Summary computations, discussed

in depth in Chapter 5, since the objects could logically interact and their Level One Summaries
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support an interaction. Specifically, the Level One Summary for Table 4.2 supports the scene

description “person_1 riding surfboard_1”.

Table 4.8 is an example of object localization and Level Two Summaries that can not be used

as input to the Level Two Summary computations, as there are no logical interactions between the

objects. However, as shown in the table, the Level One Summary outputs could be used as a final

output of the S2T system as a general scene description.

Tables 4.9 - 4.11 show the Level One Summaries for the bounding box object localization

results computed in Section 3.3. Table 4.9 once again shows the symmetrical property of Level

One Summaries, but in addition, also shows the reason masks were considered to be more reliable

than bounding box localizations when computing spatial relationships. The output of the HOF

[40] algorithm was correct in that the majority of the bounding boxes for the person was to the

right of and below the bounding box for the toothbrush. However, a tighter bound, computed via

mask localization, would likely have ensured that the HOF results would indicate the toothbrush

was to the left of the person and the person was to the right of the toothbrush. The overlap property

computed using GIOU [51] provided the necessary information to the S2T system to indicate that

the person was most likely holding the toothbrush. Using the combination of the GIOU and HOF

properties was what allowed the S2T system to use the bounding box localization results reliably

as input to the Level Two Summary evaluations of Chapter 5.

Table 4.11 shows an example of object localization results that were not usable as input to the

Level Two Summaries of Chapter 5. As with Table 4.8, the Level One Summaries visualized in

Table 4.11 could still be used as a final output of the S2T system. The following section discusses
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the data set used for Level One Summary evaluations and the manual inspection of the Level One

Summaries that served as the validation for the evaluations of this chapter.

4.8 Discussion

This chapter detailed the methods used to generate the Level One Summaries for the object

localization results generated in the evaluations of Chapter 3. Level one Summaries were used as

the primary input to the “FIS Computation” stage that constructed the “Level Two Summaries”,

discussed in Chapter 5, as was shown in the S2T pipeline diagram in Figure 4.1. Level one

Summaries were computed by combining the outputs of the GIOU [51] and the HOF [40] algo-

rithms. This combined output detailed if an object tuple a) overlapped/did not overlap and b) in

what direction the object tuples are in relation to each other. Figure 4.1 also shows that Level

One Summaries could be the final output of the constructed S2T system in this work. Section

4.7 discussed examples of when Level One Summaries were the final output of the S2T system.

As a brief recap, Level One Summaries were the final output of the S2T system when object

localization results contain no results that could logically interact to perform an action in the scene.

The evaluations detailed in this chapter in effect implement the “HOF/GIOU Computation” stage

of the S2T pipeline in Figure 4.1 and the output of the “HOF/GIOU Computation” stage were the

“Level One Summaries” with respect to the pipeline diagram. Once the Level One Summaries

were generated, the summaries were then a) passed as input to the “FIS Computation” stage of

the pipeline or b) returned as the final output of the S2T system. The remainder of this section

describes the data set used for evaluation and the manual validation of the Level One Summaries.
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4.8.1 Level One Summary Data Set Description

Table 3.2 shows the localization results that were usable for Level One and Level Two Sum-

maries. As can be seen in the table, there were 571 localization results that were usable for Level

One Summaries and 506 localization results that were usable for Level Two Summaries. The 506

Level Two usable images were a subset of the 571 Level One usable images, and as such, the Level

One Summaries were computed for the 571 images with Level One usable localization results. As

discussed in Section 3.6.1, Level One usable localization results were those results that contained

more than two object localizations, regardless if they were the same class of object, and whose

masks/bounding boxes, along with labels, were in appropriate locations for all objects in an image.

Table 4.13

Level One Summary Totals

Total
Input Images 571
Level One Summaries (Masks) 7482
Level One Summaries (Bounding Boxes) 184
Level One Summaries (Masks) Usable for Level Two 6274
Level One Summaries (Bounding Boxes) Usable for Level Two 120
Level One Summaries (Masks) Unusable for Level Two 1208
Level One Summaries (Bounding Boxes) Unusable for Level Two 64

Table 4.13 shows that for the 571 images with good localization results, 7482 Level One

Summaries were computed for the mask localization results and 184 Level One Summaries were

computed for the bounding box localization results. Table 4.13 also shows that of the 7482 Level

One Summaries computed on the mask localization results, 6274 of them were usable for Level
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Two Summaries and 1208 of them were only usable for Level One Summaries, according to the

metrics discussed in Section 3.6.2. Similarly, Table 4.13 also shows that of the 184 Level One

Summaries computed for bounding box localization results, 120 of them were usable for Level

Two Summaries and 64 of them were only usable for Level One Summaries, again based on the

metrics discussed in Section 3.6.2.

The 1274 Level One Summaries that could not be used as input to the Level Two Summary

construction of Chapter 5 were the pending final output of the S2T system constructed in this work

for the object localization results deemed unusable for Level Two Summaries. The 6394 Level One

Summaries computed on object localization results deemed usable for Level Two were the pending

input to the Level Two Summary evaluations of Chapter 5. Section 4.7 discusses each of the cases

of when a Level One Summary was usable for Level Two Summary input and when a Level One

Summary was the final output of the S2T system in detail. The following section discusses the

manual inspection process used to ensure the Level One summaries generated were valid. This

process served to prune the initial Level One Summary totals shown in Table 4.13.

4.8.2 Manual Inspection of Level One Summaries

As has been previously mentioned, both the GIOU [51] and HOF [40] algorithms were exten-

sively validated in their respective original works. As such, no validation was performed on the

individual methods used to generate the Level One Summaries. Rather, the individual validation

of GIOU and HOF was relied upon when computing spatial relationships and overlap and it was

assumed that the HOF and GIOU computations were consistent when constructing the Level One

Summaries. Manual inspection of the Level One Summaries was performed afterwards to ensure
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that the output of the evaluations of this chapter were reliable and accurate. The remainder of

this section details the manual inspection process used to verify the accuracy of the Level One

Summaries computed.

A Python [45] script was written that loaded the Level One Summaries and object localization

results into Pandas [62] data frames for an image from the corresponding CSV files. Afterwards,

the mask or bounding box localization results were visualized using methods identical to those

discussed in Sections 3.2.1.3 and 3.3.1.3 respectively. TheLevelOneSummaries for the localization

results of an image were then output to the Python console for inspection.

Table 4.14

Correct Level One Summaries

Total Correct Results
Level One Summaries (Masks) 7482 7482
Level One Summaries (Bounding Boxes) 184 184

The Level One Summaries for the 571 images with good localization results were inspected

to verify the accuracy. Similar to the manual inspection of object localization results discussed in

Section 3.6.2, the Level One Summaries were subjected to a pass/fail criteria test. This pass/fail

test was constructed as a Python [45] script where the object localization visualizations and Level

One Summaries for an image were displayed with the option to either accept or reject the Level

One Summaries. It is important to note that only “overlap/does not overlap” was inspected for the

Level One Summaries, and not the latent proximity information computed using the GIOU [51]

algorithm. Table 4.14 shows that of the 7482 Level One Summaries for masks, all results were
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accurate. Table 4.14 also shows that of the 184 Level One Summaries for bounding boxes, all results

were accurate. These results were expected because the Level One Summaries were constructed

using two methods that have been previously validated extensively in their respective original

works. This manual validation process also served to verify that the fuzzy membership functions

and defuzzification to crisp outputs used for overlap and spatial relationships were implemented

correctly. Both GIOU [51] and HOF [40] are deterministic processes, so they are not subject to

randomness. By introducing the fuzzification and defuzzification process, a degree of randomness

was introduced to both processes. Thus, the manual inspection validation process also served as

a way to validate that the randomness introduced did not degrade the quality of the underlying

algorithms. Table 4.14, shows that the randomness introduced did not degrade the performance of

either the GIOU [51] nor the HOF [40] algorithms.

4.8.3 Conclusion

The results presented in Section 4.7, specifically the Level One Summary information conveyed

in Tables 4.2 - 4.12 provide positive evidence to support that our first hypothesis correctly supports

our first research question from Chapter 1:

RQ1: How can concise and meaningful natural language descriptions (Level One Sum-

maries) of spatial relationships between all object tuples in an image be derived?

H1: Histogram of Forces (HOF) [40] and Generalized Intersection Over Union [51], both rig-

orously validated methods with strong mathematical proofs, will provide concise natural language

descriptions of spatial relationship information between object tuples in a scene.
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This chapter provided implementation details on how Level One Summaries were generated.

A detailed explanation of how the individual methods, HOF [40] and GIOU [51], were used in

the S2T system was given and the manner in which the HOF and GIOU results was combined

resulted in the final Level One Summaries for each image with valid object localization results.

The Level One Summaries that were deemed usable for Level Two Summaries will be used as

input to the evaluations conducted in Chapter 5. The Level One Summaries that were not deemed

usable as input to Level Two Summary computation were the final output of the S2T system for the

object localization results of the image in question. Chapter 5 details the construction of a natural

language scene description (Level Two Summary) by using object localization output, a result of

the evaluations in Chapter 3, combined with Level One Summaries, the results of the evaluations

conducted in this chapter.
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CHAPTER 5

EVALUATION 2: LEVEL TWO SUMMARIES

Level Two Summary generation was the final phase of constructing the S2T pipeline. Level

two Summaries provide natural language scene descriptions for an image. Level one Summaries

were used as input to the Level Two Summary computation, and as such, Level Two Summaries

have ingrained spatial relationship information. This chapter begins by revisiting the S2T pipeline

diagram shown in Figure 5.1. Following, a discussion of how the objects were categorized into an

object hierarchy is given. Level Two Summaries were constructed for the general domain, where

any object interactions were considered, and for the person domain, where only person interactions

with other objects were considered. A discussion of the implementations of a fuzzy inference

system (FIS) for each domain is given following the object hierarchy discussion. Afterwards,

details of the validation procedures for both the general domain FIS and person domain FIS are

presented, followed by a discussion of the results of Level Two Summaries computed for the COCO

[35] data set. Due to the nature of two-dimensional data, the Level Two Summaries computed by

this evaluation were subject to inherent limitations, and these limitations are discussed in depth

following the discussion of the general and person-domain Level Two Summaries. Finally, a

discussion of the overall results obtained by the evaluations performed in this chapter are given.
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Figure 5.1

Level Two Summaries in the S2T Pipeline
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5.1 S2T Pipeline

To begin, let us revisit the updated S2T pipeline diagram shown in Figure 5.1 and explore the

current and completed stages of the system. Evaluations in Chapter 3 successfully implemented the

“Object Localization” stages with the “Localized Objects” as output. “Localized Objects” served

as input to the “HOF/GIOU Computation” stage of the pipeline and the evaluations conducted in

Chapter 4 successfully implemented the “HOF/GIOU Computation”. Output of the evaluations

detailed in Chapter 4 were the “Level One Summaries” in the S2T pipeline. Figure 5.1 shows

that “Level One Summaries” can be the final output of the S2T system constructed (denoted by

orange). Section 4.7 provides an in-depth analysis for when the Level One Summaries are the

final output of the S2T system. Figure 5.1 also shows that “Level One Summaries” are used as

input to the “FIS Computation” stage of the pipeline. Implementation, results, and analysis of the

“FIS Computation” stage is the primary focus of this chapter. Figure 5.1 also shows that “Level

Two Summaries” are the final output of the S2T system, denoted in orange, when the Level One

Summaries were sufficient to be used as input to the “FIS Computation” stage. As such, an in-depth

analysis and discussion of the Level Two Summaries generated by the evaluations of this chapter

are given.

5.2 Object Hierarchy

Chapter 4 briefly introduced the concept of the object hierarchy used for the S2T pipeline.

The remainder of this section discusses the implementation of the object hierarchy in detail. It is

important to note that the ranking of objects was chosen based around the generation of person-

domain Level Two Summaries, discussed in Section 5.4. Thus, the object hierarchy is an entirely
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subjective, but necessary construct, as the object hierarchy was used as the premise to construct the

fuzzy rule base for the person-domain Level Two Summaries detailed in Section 5.4. A discussion

on the creation of the object hierarchy for the general domain Level Two Summaries follows next.

Before segmenting the set of objects into general and domain specific categories, an object

hierarchy was developed that served to rank order the tuples of objects in an image in terms of most

important to least important interactions. Three hierarchy categories were decided upon based on

an examination of the COCO [35] data set: “person,” “animate,” and “inanimate” objects. The

“person” object was assigned its own category, and was given precedence over all other objects

in the data set. The evaluations of Section 5.4 focus primarily on person interactions with other

objects, and as such, the hierarchy was developed to allow person detections to exist outside the

realm of other categories. By doing so, the object hierarchy was able to be constructed based

around the idea that the “person” category formed the basis of the hierarchy where all other

categories served as supporting categories with which the person would interact. The “animate”

hierarchy consists of any objects that are living. While it was true that the only animate objects in

the COCO [35] data set were people and various animals, separating people from animals allowed

the segmentation to give higher importance to person interactions over animal interactions. The

“inanimate” category was the most enumerated category and contained all other objects that a

person or an animate object could interact with.

The COCO [35] data set was used alongside the object hierarchy as a basis for constructing

the hierarchy. The data set contained 90 different objects that correspond to objects the mask [21]

and bounding box [37] [48] object detection algorithms could positively identify. Each of these

objects were assigned a general category and a sub-category. The general categories, as the name
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suggests, served as a general description of the type of object. For example, the “vehicle” general

category is assigned the objects: bicycle, car, motorcycle, airplane, bus, train, boat, and truck.

The sub-categories were constructed based on how a person would interact with the object. The

constructed person domain FIS hinged upon how a person would interact with the objects and as

such, the FIS rule bases revolved around the object hierarchy general and sub-categories. With

this in mind, each sub-category can be viewed as a way to segment the interactions a person would

perform with an object. For example, the vehicle category was broken into two sub-categories:

“personal” and “passenger.” The “personal” sub-category contained the following vehicles, which

a person would drive: bicycle, car, motorcycle, truck, and boat. The “passenger” sub-category

contains the following vehicles, which a person would ride in: airplane, bus, and train. Table 5.1

shows the hierarchy broken down into general categories and sub-categories.

Table 5.1

Object Hierarchy

General Category Sub-Categories
animal pet, ridden, large animal
vehicle personal, passenger
urban sidewalk, road
sports frisbee, skiing, snowboarding, flying kite
sports baseball, skateboarding, surfing, tennis, soccer
clothing worn, carried
food/tableware eaten, drank, used
furniture/decor sat on, used
electronics watched, talked on, used
household used, held
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The general-domain Level Two Summaries, discussed in Section 5.3, were not dependant

upon the use of the object hierarchy. These summaries were not concerned with the actions

being performed, rather these summaries just indicated whether two objects were interacting. The

general-domain Level Two Summaries provided a general summary of interactions between object

tuples in an image. The person-domain Level Two Summaries, discussed in Section 5.4, made

use of the sub-categories of the object hierarchy. These Level Two Summaries provided more

refined detail centered around people and how they interacted with various objects of differing

categories. As such, the person-domain Level Two Summaries provided a summary of the actions

being performed in an image.

It is important to note that any number of domains could be constructed given the set of objects

from the COCO [35] data set. The person domain category was chosen for this dissertation as an

example of how to construct a domain specific set of rules that used a FIS to make inferences about

scene interactions. Additionally, the person domain was chosen for these evaluations because it

was the most interesting domain given the general data set used. This research could be applied to

any number of domains with the caveat that a domain expert would be required to construct rules

for very specific domains. Conversely, the general-domain rules could be applied as-is to any new

domain.

The remainder of this chapter is devoted to the construction, results, and validation of the

Level Two Summaries for both the general domain and the person domain. The following section

provides an in-depth discussion of the general-domain Level Two Summaries.
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5.3 General-Domain Level Two Summaries

This section describes the design and implementation of the FIS used to generate the general-

domain Level Two Summaries. To start, a description of the fuzzy rule base for the FIS was given,

followed by a description of the implementation of the FIS itself. Afterwards, a discussion and

analysis of the results of applying the general-domain FIS to the Level One Summaries, described

in Chapter 4, is presented. Finally, the validation and computed metrics for the general domain

FIS is detailed.

5.3.1 General-Domain Fuzzy Rule Base

The first task in developing the general-domain FIS was constructing the fuzzy rule base for

the system. Developing the rule base for a FIS was a manual task and required domain knowledge

for constructing appropriate rules that reflected the desired outputs during inference. The general-

domain rule base was very succinct, as the general-domain Level Two Summaries simply described

the object tuples in an image that were interacting in some form. As such, the object hierarchy

categories, discussed in Section 5.2, were not used in the development of the general-domain fuzzy

rule base. Instead, the object hierarchies discussed in Section 5.2, were used to structure the tuples

of objects in each image.

The general-domain Level Two Summaries were meant to provide a high-level description of

interactions in the scene. Therefore, the rule base was kept very simple and there was no ingrained

domain-specific information in the fuzzy rule base. Instead, the general-domain fuzzy rule base

was constructed based around the premise that if two objects were overlapping, or in very close

proximity, then they were likely interacting with each other. This property allowed the general-
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domain rule base to be applied to additional data sets with very little to no work at all. Table 5.2

shows the fuzzy rule base used for the general-domain FIS computations.

Table 5.2

General-Domain FIS Rule Base
IF Overlap AND Very Close OR Close THEN Interacting
IF No Overlap AND Very Close THEN Interacting
IF No Overlap AND NOT Very Close THEN Not Interacting
IF Overlap AND NOT Very Close OR Close THEN Not Interacting

Table 5.2 shows the entire rule base used to construct the general-domain FIS for these eval-

uations. As seen in the table, the general-domain FIS relied solely on the proximity and overlap

membership functions, which corresponded to the output of the GIOU [51] algorithm computed

in Section 4.4.1 for the set of input images. A detailed description of the overlap and proximity

membership functions was given in Section 4.4.1 for the reader. The following section provides

the implementation details for the general-domain FIS used in these evaluations, which used the

general-domain fuzzy rule base outlined in this section.

5.3.2 General-Domain FIS Implementation

The SKFuzzy [69] library was used to implement the FIS for this evaluation. All code for

the implementation was written using the Python [45] programming language. After generating

the general-domain Level Two Summaries, the results were stored in CSV files for easy retrieval,

using the image name as a key for mapping between input and output values. Input values to the

general-domain Level Two Summary computation were the Level One Summary numerical values

for proximity and overlap, computed in Section 4.4.1. The general domain FIS made use of the
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proximity and overlap membership functions, shown in Figures 4.3 and 4.2 respectively, to fuzzify

the overlap and proximity input values. As discussed in Section 5.3.1, the fuzzy rules were kept

high-level for this implementation and doing so allows extension to any domain with very minimal

work. The remainder of this section describes the steps used to generate the general-domain Level

Two Summaries in detail.

µy(y) = min(µy1(y), µy2(y), . . . µyn(y)), for y ∈ Y (5.1)

yt = max[min[µy1(y), µy2(y), . . . µyn(y)], for y ∈ Y (5.2)

Algorithm 5.1 General-Domain Level Two Summary Computation
input: Level One Summaries for an input image
output: General-Domain Level Two Summaries

Set T = Hierarchically ordered Level One Summary results
for t ∈ T do
Set pt to the proximity score of the Level One Summary
Set ot to the overlap score of the Level One Summary
Set pt and ot as the input of the General-Domain FIS
Set yt to the aggregate of the conjunctive rules using Equation 5.2
Set y∗t to the centroid defuzzified value of yt
Assign y∗t as the general-domain Level Two Summary of t

end for

The FIS implementation was based around a conjunctive system of rules. That is, the union of

the antecedents was taken to compute the consequent. The FIS was modeled as a Mamdani [53]

fuzzy control system using the SKFuzzy [69] library, which aggregated the set of rules shown in

Table 5.2 and the resulting consequent output of the system were the fuzzy membership values for
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“Interacting” and “Not Interacting.” Once the fuzzy consequent values were obtained, centroid

defuzzification [60] was used to assign the crisp output label to the object tuple.

Equation 5.1, also given by Ross in [53], shows the method used to compute the output of

the individual rules. Since the rules of the system were conjunctive rules, the minimum operator

was used to aggregate the input membership functions. Each µyn corresponds to an individual

membership function, such as the proximity and overlap membership functions shown in Figures

4.3 and 4.2 respectively. Each membership function takes as input a fuzzy value for y. The final

output, µy denotes the fuzzy consequent value for an individual rule, such as the rules shown in

Table 5.2. Stated another way, the consequent value for each rule was obtained by applying the

union (AND) operator to each fuzzy input. Taking Table 5.2 as an example, there will be four µy

values computed, one for each of the rules in the table.

Equation 5.2, shows the method used to aggregate the outputs of the individual rules of the

FIS. As shown in Equation 5.2, the method is just an extension of Equation 5.1, where the max

operation was performed on the conjunctive rule outputs computed using Equation 5.1 to find the

maximum membership of the output of the aggregated conjunctive rules. The value µy can be

viewed as the output of the individual rules, whereas the value yt can be viewed as the fuzzy output

of the aggregation of the consequents of all rules in the rule base. Performing the max operation

allows the FIS to assign the most likely consequent fuzzy value given the set of inputs. Viewed

another way, Equation 5.2 allowed the FIS to assign the most likely output fuzzy membership value

to a set of inputs. Centroid defuzzification [60] was used to generate the final crisp output for the

fuzzy value yt .
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Algorithm 5.1 details the process for computing the general-domain Level Two Summaries on

the set of input images. The algorithm was performed on the results for a single image’s Level

One Summaries, computed in Chapter 4 and each input image had n Level One Summaries where

n corresponded to the number of object tuples in an image. The output of the algorithm was n

general-category domain Level Two Summaries, or in other words, a Level Two Summary for each

Level One Summary. While each Level One Summary had a corresponding Level Two Summary

in the general-category domain, it is important to note that only Level Two Summaries for objects

that were interacting were presented in the results, which served to reduce the noise of the output

labels for an image. Any object tuple assigned the “Not Interacting” label were omitted from the

results presented to the user.

The Level One Summaries were ordered hierarchically, using the method described in Section

5.2. Using this ordering, Algorithm 5.1 processed Level One Summaries in the following order:

• person - person interactions

• person - animate interactions

• person - inanimate interactions

• animate - animate interactions

• animate - inanimate interactions

• inanimate - inanimate interactions

For each t in the hierarchically-ordered Level One Summaries T , the algorithm first assigned pt

as the proximity score of the Level One Summary and ot as the overlap score of the Level One

Summary. The values pt and ot were set as input to the fuzzy control system, implemented using

SKFuzzy [69], and the fuzzy control system computed the aggregate of the conjunctive rules

using Equation 5.2 for the general domain FIS. Note that the spatial relationship values for the
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Level One Summaries were not used in the general-domain FIS computation. This is because the

general-domain FIS was meant to be a very high-level description of the interactions in the scene,

and the proximity and overlap values were sufficient to determine such interaction labels. The

value yt was then defuzzified into a crisp scalar using the centroid defuzzification method [60]

and the resulting value y∗t was assigned as the general-domain Level Two Summary for the input

Level One Summary t. This process continued for all of the input Level One Summaries for an

image. Additionally, the algorithm was applied to the set of input images for which there were

adequate Level One Summaries, described in Section 4.8. The following section discusses in depth

the results obtained from applying Algorithm 5.1 to the Level One Summaries deemed viable for

Level Two Summary computation.

5.3.3 General-Domain FIS Results

Table 5.3

General-Domain Level Two Summaries for Figure 3.3

Localization Result General Level Two Summaries

• person_1 interacting with surf-
board_1
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Table 5.4

General-Domain Level Two Summaries for Figure 3.4

Localization Result General Level Two Summaries

• person_1 interacting with surf-
board_1

Table 5.5

General-Domain Level Two Summaries for Figure 3.5

Localization Result General Level Two Summaries

• person_1 interacting with horse_1

• person_1 interacting with horse_2

• person_2 interacting with horse_1
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Table 5.6

General-Domain Level Two Summaries for Figure 3.6

Localization Result General Level Two Summaries

• person_1 interacting with horse_1

• horse_1 interacting with car_1

Table 5.7

General-Domain Level Two Summaries for Figure 3.7

Localization Result General Level Two Summaries

• person_2 interacting with motor-
cycle_1
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Table 5.8

General-Domain Level Two Summaries for Figure 3.8

Localization Result General Level Two Summaries

• person_1 interacting with motor-
cycle_1

• person_2 interacting with motor-
cycle_1

• person_3 interacting with motor-
cycle_1

• person_4 interacting with motor-
cycle_1

Table 5.9

General-Domain Level Two Summaries for Figure 3.10(b)

Localization Result General Level Two Summaries

• person_1 interacting with tooth-
brush_1
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Table 5.10

General-Domain Level Two Summaries for Figure 3.10(d)

Localization Result General Level Two Summaries

• toothbrush_1 interacting with sink_1

Table 5.11

General-Domain Level Two Summaries for Figure 3.12

Localization Result General Level Two Summaries

• No applicable interactions apply

Tables 5.3 - 5.11 show the results generated by the general-domain FIS. Each table displays

the localization results on the left with the corresponding general-domain Level Two Summaries

enumerated on the right. For mask localization results, the bounding box localization results

were also visualized, such as in Table 5.3. The bounding box localization results were visualized

because the GIOU [51] algorithm required bounding boxes as input, and as such the proximity
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and overlap values were computed based on box localization results. As mentioned previously, the

general-domain summaries were meant to provide very high-level details about interactions in the

scene. As such, the same label could be applied to different images even though the objects were

performing different interactions. As an example, Table 5.3 and Table 5.4 both contained the single

label of “person_1 interacting with surfboard_1.” These labels were considered correct labels for

the general-domain summaries. Section 5.4 discusses the process of generating labels that provide

more refined descriptions of interactions in the scene.

Tables 5.3 - 5.11 also show that general-domain summaries were computed for every object

two tuple interaction in the scene. For example, Table 5.6 shows the interaction label: “horse_1

interacting with car_1.” Person-domain Level Two Summaries, discussed in Section 5.4, only

apply labels based on person - object interactions. These labels were a refined set of labels that

described in great detail what actions a person was performing in an image. However, for images

with no person detection results, the general-domain Level Two Summaries could still be used to

apply a general set of interactions occurring in the scene, with the caveat that the information will

be very high-level and not refined.

Table 5.11 shows an interesting casewhere there were no general-domain Level Two Summaries

computed, but as can be seen in Section 5.4.3, a person-domain label was generated for the image

successfully. No general-domain interactions were computed due to the lack of any object tuple

being in close proximity to each other. This highlights the case where general-domain person -

object interactions were not required in order to generate a person-domain Level Two Summary.

Specifically, for the soccer example, it was a likely scenario that no person would be detected in

close proximity to the soccer ball, as was the case in Table 5.11. Additionally, as will be discussed
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in Section 5.4.3, Table 5.11 also shows a localization result where Inception [61] metadata was

necessary to determine the actions being performed. Namely, the “sports_ball_1” detection was

not descriptive enough to determine the correct rule to apply when constructing person-domain

Level Two Summaries.

Table 5.5 shows that both person_1 and person_2 are interactingwith horse_1, and that person_1

is interacting with horse_2. While horse_2 was a bad object detection result, for the purposes of the

general-domain summaries, the label was considered correct. Section 5.4.3 shows that the invalid

detection was nullified in the person-domain labels, as person_1 was not detected as riding horse_2.

Table 5.6 shows that person_1 is interacting with horse_1 and horse_1 is interacting with car_1.

Table 5.7 shows that person_2 is interacting with motorcycle_1. Table 5.8 shows the following

interactions: person_1 interacting with motorcycle_1, person_2 interacting with motorcycle_1,

person_3 interacting with motorcycle_1, and person_4 interacting with motorcycle_1. Table 5.9

shows that person_1 is interacting with toothbrush_1. Lastly, Table 5.10 shows that toothbrush_1 is

interactingwith sink_1. The statistics for the general-domain Level TwoSummaries are reserved for

Section 5.6. The following section discusses the method of validation used for the general-domain

Level Two Summaries.

5.3.4 General-Domain FIS Validation

The validation procedure performed for the general-domain Level Two Summary validation

followed a procedure similar to the one used to validate the Level One Summaries, computed in

Chapter 4. Because there was no ground truth baseline for general-domain Level Two Summaries

for the COCO [35] data set, and because the general-domain level summaries were, to an extent,
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subjective, a manual validation strategy was decided upon to verify that the labels produced by the

general-domain FIS were an adequate reflection of the interactions being performed in the scene.

A Python [45] script was written that loaded the general-domain Level Two Summaries and

object localization results into Pandas [62] data frames. For each object tuple in an image, the

corresponding localization results were displayed using the OpenCV [5] library, identical to the

methods discussed in Sections 3.2.1.3 and 3.3.1.3. Whereas the visualizations of the general-

category Level Two Summaries only contained the objects that were determined to be interacting,

the manual inspection process displayed all of the general-category Level Two Summaries to the

user in the Python console for inspection. By doing this, the manual inspection process could

be used to determine if an object tuple that was determined to be “Not Interacting” was a false

negative, or in other words should have been labeled as “Interacting”. This process was performed

for each of the 506 images that were deemed usable as input to Level Two Summary computation.

The metrics used to determine if an image’s localization results were usable as input to Level Two

Summary computation was discussed in detail in Section 3.6.1.

Section 5.6 provides further analysis for the general-domain Level Two Summaries, but for the

purposes of validation, consider Table 5.25. Table 5.25 shows that the general-domain Level Two

FIS performed well for the purpose of computing general object interactions for a S2T system.

The remainder of the discussion of the general-domain Level Two Summary results along with in

depth analysis of computed statistics is reserved for Section 5.6.

As a final note, Table 5.25 shows that the inaccurate general-domain Level Two Summaries

were all due to the problem of missing depth information. This occurred when a system failed to

correctly label an object interaction because it was not possible to determine the depth between
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two objects in strictly a two-dimensional space. Consider the general-domain interactions in Table

5.6. While the “person_1 interacting with horse_1” label was accurate, the “horse_1 interacting

with car_1” label was not. This shows an example where depth information could alleviate invalid

labels, but such information was not available for the object detection algorithms used for this

research at the time of writing.

5.4 Person-Domain Level Two Summaries

This section presents the design and implementation details of the FIS used to generate the

person-domain Level Two Summaries. To begin, the construction of the fuzzy rule base for the

person-domain FIS is discussed. Following the discussion of the rule base, the implementation

of the person-domain FIS is detailed. Afterwards, an in-depth analysis of the generated person-

domain Level Two Summaries is given, followed lastly by a discussion of the validation procedures

and statistics obtained from the generated Level Two Summaries for the input object localization

results and Level One Summaries, computed in Chapters 3 and 4 respectively.

5.4.1 Person-Domain Fuzzy Rule Base

The first task for constructing the person-domain Level Two Summaries was generating a rule

base to use for developing the person-domain FIS. Similar to the process discussed in Section

5.3.1, constructing a rule base was a manual task, which required domain-specific knowledge

to construct rules that appropriately reflected the desired outputs during inference. Unlike the

general-domain rule base, the person-domain rule base was a very large and detailed rule base.

This was a requirement because computing the person domain interactions changed based on the

type of object a person was interacting with. The object hierarchy categories, discussed in Section
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5.2 were used extensively when developing the fuzzy rule base for the person-domain and when

determining which rules should be applied to the person - object tuple being examined. The object

hierarchies, also discussed in Section 5.2, were used to structure the person - object tuples such that

“person - animate” interactions were computed first, followed by “person - inanimate” interactions.

It is important to note that no rules were developed for “person - person” interactions. During

evaluation, it was determined that pose and depth estimation would be essential for computing such

interactions and this information was not available from the algorithms used to generate the Level

One Summaries, discussed in Chapter 4. It is also important to note that given enough manpower

and time, any number of domains can be developed using the provided object hierarchy, but this

research focused only on the person-domain as a proof of concept to construct a S2T system that

provided refined labels, which incorporated spatial relationship information.

The person-domain Level Two Summaries were meant to provide refined descriptions of person

- object interactions in the scene. In order to accomplish this task, a rule base was constructed for

each of the object categories shown in Table 5.1. Each rule base contained encoded information

around how a person would interact with objects from the category in question. Additionally,

unlike the general-domain FIS implementation, a FIS was required for each category, and the

object category determined which FIS should be called for the person - object tuple. These FIS

implementations are discussed in detail in Section 5.4.2. It is important to note that the sub-

categories of a category could potentially require the construction of different rules to determine

the appropriate interaction being performed. As such, the sub-categories of the object hierarchy

were also used to determine the appropriate set of rules to apply to a person - object tuple. Table

5.12 shows the person - animal rule base, which exhibited the properties of both a rule base limited
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to a specific object category, but also rules that fired based on the sub-category of the object the

person was interacting with.

Table 5.12

Person-Animal Domain FIS Rule Base
IF Pet AND Overlap AND Very Close OR Close AND NOT Below THEN Petting
IF Pet AND No Overlap AND Very Close AND NOT Below THEN Petting
IF Ridden AND Overlap AND Very Close OR Close AND Above THEN Riding
IF Ridden AND No Overlap AND Very Close AND Above THEN Riding
IF Large Animal AND Overlap AND Very Close THEN Interacting

Consider, as an example, Table 5.12, which shows the rule base for the person - animal domain.

This table shows the rules for the person - animal domain interactions. Only the rules for positive

interactions are shown in order to keep the table succinct. The entire list of rules for the person

- animal domain, as well as all other domains, is shown in Appendix A. Table 5.12 shows

that the person - animal domain used the overlap, proximity, and spatial relationship fuzzy input

values, which were represented by the fuzzy membership functions in Figures 4.2, 4.3, and 4.4

respectively. The underlying algorithms, GIOU [51] and HOF [40], used for computing these

fuzzy values were discussed in Sections 4.4.1 and 4.5.1 respectively. Table 5.12 shows an instance

of a rule base that was applied based on the general category of the object hierarchy, namely the

animal category. Additionally, Table 5.12 shows how an individual category used the sub-category

information to determine the appropriate rules to apply. As can be seen in the table, the animal

category contained rules for three sub-categories: pets, ridden animals, and large animals. Each

sub-category contained a specific interaction that a person and an animal could perform: petting,

riding, and interacting. For the Petting interaction, the rule base shows that a person needed to be
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relatively close and not below the animal in order to be considered to be petting the animal. The

Riding interaction shows that a person needed to be relatively close and above the animal in order

to be considered as riding the animal. For large animal interactions, the rule was similar to the

rules for general-domain interactions, where the person needed to be overlapping and very close to

fire the Interacting label. The COCO [35] data set, only contained images for large animals (bears,

giraffes, and zebras) where a person was either in close or far proximity to the animal. As such,

the rule was modeled to follow similarly to the general-category rules where a person either was

or was not interacting with the animal.

As mentioned previously, the person-domain Level Two Summaries required an extensive and

fairly large set of rules. These rules were necessary to infer appropriate Level Two Summaries

centered around a person and object interaction. For brevity, the entire rule base is not presented in

this chapter, rather the person-domain rule base for Level Two Summaries is reserved to Appendix

A. The following section discusses the implementation of the FIS for the person-domain Level

Two Summaries in detail.

5.4.2 Person-Domain FIS Implementation

This section describes the overall implementation details for the person-domain Level Two

Summary FIS. As mentioned in the previous section, an individual FIS was constructed for each

object category in the object hierarchy, but the process for implementing the FIS remained the same

throughout with the exception of rules used. The SKFuzzy [69] library was used to implement each

FIS and all code was written using the Python [45] programming language. The person-domain

Level Two Summaries were stored in CSV files for easy retrieval and the image name was used as
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Algorithm 5.2 Person-Domain Level Two Summary Computation
input: Level One Summaries for an input image
output: Person-Domain Level Two Summaries

Set T = Hierarchically-ordered Level One Summary results that contain a person
for t ∈ T do
Set pt to the proximity score of the Level One Summary
Set ot to the overlap score of the Level One Summary
Set sr t to the spatial relationship score of the Level One Summary
Set ct to the object hierarchy category of the object the person is interacting with
Set FISct to the FIS corresponding to the object category ct
Set pt , ot and sr t as the input of FISct
Set yt to the aggregate of the conjunctive rules using Equation 5.2
Set y∗t to the centroid defuzzified value of yt
Assign y∗t as the person-domain Level Two Summary of t

end for

a key to map between the input image and output person-domain Level Two Summaries. Inputs to

the person-domain Level Two Summaries consisted of the Level One Summary numerical values

for overlap, proximity, and spatial relationships, which were computed in Sections 4.4.1 and 4.5.1.

The person-domain FIS used the overlap, proximity and spatial relationship membership functions,

shown in Figures 4.2, 4.3, and 4.4 respectively, to fuzzify the input values. Section 5.4.1 shows

an example rule base for the person - animal interaction FIS and described the complexity of the

entire rule base. The entire rule bases used to construct the person domain Level Two Summary

FIS are reserved to Appendix A. The remainder of this section expands on the implementation

details for a person domain Level Two Summary FIS.

Similar to the process discussed in Section 5.3.2, each FIS constructed for the person-domain

Level Two Summaries were based around a conjunctive system of rules where the union of the

antecedents were taken to compute the consequent. These FIS were modeled as Mamdani [53]

fuzzy control systems using the SKFuzzy [69] library. The rules were aggregated using the
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Mamdani fuzzy control systems and centroid defuzzification [60] was performed on the output

consequent values to assign the crisp output to the corresponding person - object tuple. The reader

is directed to Appendix A for a full listing of the fuzzy rules, which were used to construct the

individual control systems.

Because the person-domain Level Two FIS used the same underlying process, namely the

Mamdani [53] fuzzy control system, Equations 5.1 and 5.2 were used in each FIS to aggregate the

rule output of each system. Once rules were aggregated, centroid defuzzification [60] was applied

to the consequent output to determine the final label to assign as the person-domain Level Two

Summary, identical to the process discussed in Section 5.3.2. Computation of the person-domain

Level Two Summaries does follow a similar process to computation of general-domain Level Two

Summaries (Algorithm 5.1) but with a few additions to incorporate necessary information to make

a more informed decision about the person - object interactions occurring in the scene. This

process and the additions are shown in Algorithm 5.2.

Algorithm 5.2 details the process used to compute the person-domain Level Two Summaries

from the set of Level One Summaries implemented in Chapter 4. Like the general-domain

Level Two Summary computations, the person-domain Level Two Summary computations were

performed on a single image’s Level One Summaries. Thus, Algorithm 5.2 was applied to each

image’s Level One Summaries that contained at least one person - object interaction. In other

words, any images with Level One Summaries that did not describe a person interacting with an

object were omitted from the person-domain Level Two Summary computation. This restricted

set of Level One Summaries is denoted by T in Algorithm 5.2. The output of Algorithm 5.2 was

the set of person-domain Level Two Summaries for an input image. It is important to note that for
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the purposes of visualizing the results of this research, only the positive person interaction labels

from the person-domain FIS were presented as the output of the FIS to reduce the noise in the

results section. For example, consider the person - horse interactions, where one of “riding” or

“not riding” would be assigned as a label. While the system itself would output either of these

labels, the results in Section 5.4.3 omit the “not riding” labels.

Algorithm 5.2 begins by ordering the set T hierarchically from greatest to least: “person

animate object interactions” and “person inanimate object interactions” where each tuple t ∈ T was

processed using the process that follows. The values pt , ot , and sr t were assigned as the proximity

score, overlap score, and spatial relationship score of the Level One Summary corresponding to t.

The value ct was set to the object hierarchy category of the object in the Level One Summary that

the person was interacting with. Based on ct , the values spt , ot , and sr t were assigned as input to

FISct , where FISct corresponded to the FIS for the object category ct . Algorithm 5.2 then followed

the same process used in Algorithm 5.1, where the value yt was assigned to the aggregate of the

conjunctive rules of FISct using Equation 5.2. The value yt was then defuzzified using centroid

defuzzification [60] to generate the crisp output label y∗t and this value was assigned as the person-

domain Level Two Summary of the tuple t. This process was performed for all images with Level

One Summaries that contained a person - object interaction. The initial pruning of the Level One

Summaries to determine the viability for use in Level Two Summary computations was discussed

in Section 4.8, but an additional pruning process was performed to limit the person-domain Level

Two Summary computation to those Level One Summaries with a person - object interaction.

Figures 5.2 - 5.8 show examples of the output obtained by processing the input images we

have been working with throughout this dissertation through the person-domain FIS. All images
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were generated using the SKFuzzy [69] library in Python [45]. Similar to Figures 4.5 - 4.11,

FIS output was generated for only one tuple, deemed to be the most interesting interaction for

each image, for brevity. The membership function outputs, (b) in each image, show the degree of

membership of the positive/negative interaction being performed. On the x-axis, the interaction

type is shown, where positive interactions ranged from 0 to 1 and negative interactions ranged from

0 to -1. The black solid vertical line indicates what the FIS determined was the label to assign, and

this determination was made via centroid defuzzification. This assigned label was essentially the

output of the Level Two Summary FIS for the person-domain. Figure 5.2(b) shows that the person

was detected as riding the surfboard in the image. Figure 5.3(b) shows that the system detected

person_1 was not riding the surfboard in the image. Figure 5.4(b) infers that person_2 was riding

horse_1 in the image. Figure 5.5(b) indicates that the person was not riding the horse. Figure 5.6(b)

presents a result where there was some degree of membership for both the positive and negative

interactions, but the end result from defuzzification generated a label indicating the person was

riding the motorcycle. Figure 5.7(b) shows that person_1 (and all other people, excluded for

brevity) was detected as not riding the motorcycle in the image. Finally, Figure 5.8(b) was another

instance where both the positive and negative interactions had some degree of membership, but

the end result was that the system detected that person_1 was playing soccer with sports_ball_1.

The following section details the results obtained from applying Algorithm 5.2 to the limited set

of Level One Summaries in detail.
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(a) (b)
Figure 5.2

Person riding surfboard FIS output

(a) Mask localization output (b) FIS output

(a) (b)
Figure 5.3

Person holding surfboard FIS output

(a) Mask localization output (b) FIS output
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(a) (b)
Figure 5.4

Person riding horse FIS output

(a) Mask localization output (b) FIS output

(a) (b)
Figure 5.5

Person beside horse FIS output

(a) Mask localization output (b) FIS output
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(a) (b)
Figure 5.6

Person riding motorcycle FIS output

(a) Mask localization output (b) FIS output

(a) (b)
Figure 5.7

Person beside motorcycle FIS output

(a) Mask localization output (b) FIS output
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(a) (b)
Figure 5.8

Person playing soccer FIS output

(a) Mask localization output (b) FIS output

5.4.3 Person-Domain FIS Results

Table 5.13

Person-Domain Level Two Summaries for Figure 3.3

Localization Result Person Level Two Summaries

• person_1 riding surfboard_1
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Table 5.14

Person-Domain Level Two Summaries for Figure 3.4

Localization Result Person Level Two Summaries

• person_1 overlaps and is be-
low and to the right of surf-
board_1

Table 5.15

Person-Domain Level Two Summaries for Figure 3.5

Localization Result Person Level Two Summaries

• person_2 riding horse_1
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Table 5.16

Person-Domain Level Two Summaries for Figure 3.6

Localization Result Person Level Two Summaries

• person_1 overlaps and is to
the right of horse_1

Table 5.17

Person-Domain Level Two Summaries for Figure 3.7

Localization Result Person Level Two Summaries

• person_2 riding motorcycle_1
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Table 5.18

Person-Domain Level Two Summaries for Figure 3.8

Localization Result Person Level Two Summaries

• person_1 overlaps and is to the
right of motorcycle_1

• person_2 overlaps and is above
motorcycle_1

• person_3 overlaps and is above
and to the left of motorcycle_1

• person_4 overlaps and is to the
left of motorcycle_1

Table 5.19

Person-Domain Level Two Summaries for Figure 3.10(b)

Localization Result Person Level Two Summaries

• person_1 brushing teeth with
toothbrush_1
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Table 5.20

Person-Domain Level Two Summaries for Figure 3.12

Localization Result Person Level Two Summaries

• person_1 playing soccer with
sports_ball_1

• person_2 playing soccer with
sports_ball_1

Tables 5.13 - 5.20 show the results generated by the person-domain FIS. Each table displays

the localization results on the left with the corresponding person-domain Level Two Summaries

on the right. Additionally, the localization results were limited to the person and the set of objects

they were interacting with for these summaries. If an image contained a mask localization, the

bounding box localization for that object was also displayed as the bounding box information was

used as input to the GIOU [51] algorithm and thus used for constructing the fuzzy input values

for proximity and overlap. The person-domain Level Two Summary labels were meant to provide

very specific details about how a person(s) was interacting with objects in the scene. As mentioned

previously, the negative labels that indicated a person was not performing an interaction were

omitted from the results shown in Tables 5.13 - 5.20.

Also previously discussed was the ability to use Level One Summaries as the final output

of the system. In order to provide a more interesting description of the scene, it was decided

that in instances where the person was not performing a specific action, the Level One Summary

was used to give a bit more descriptive information. As an example, consider Table 5.14, where
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the person was holding the surfboard. Rather than assigning the output label “person_1 not

riding surfboard_1,” the Level One Summary, “person_1 overlaps and is below and to the right of

surfboard_1,” was used as an output label. As can be seen in Appendix A, the rule base for the

person-domain is large and would easily explode exponentially if all interactions were accounted

for. While it is indeed possible to construct such systems for any number of interactions the end user

is interested in, for the purposes of this research, the rule base was limited to keep the evaluations

tractable in time. It is also important to note that while Table 5.10 contained a general-domain

Level Two Summary for the toothbrush and sink interaction, there was no person-domain Level

Two Summary computed for this image due to the lack of a person detection.

Table 5.13 shows the person-domain Level Two Summary for the original raw input image

in Figure 3.3(a). The Level Two Summary of “person_1 riding surfboard_1” was an adequate

reflection of what action the person was performing in the scene. Table 5.14, which was previously

discussed as an example, shows the Level One Summary, “person_1 overlaps and is below and to the

right of surfboard_1,” used as output of the S2T system for the original raw input image in Figure

3.4(a). Table 5.15 shows an interesting property of the person-domain Level Two results for the

original raw input image in Figure 3.5(a). While the interaction of “person_2 riding horse_1” was

computed correctly, the omission of “person_1 riding horse_2” was also important. Considering

the general-domain Level Two Summaries shown in Table 5.5, one would expect to see the

aforementioned person-domain Level Two Summary. This highlights the ability of incorporating

proximity and spatial relationship information to generate accurate S2T scene descriptions. This

lack of result also highlights that even if an object detection algorithm is incorrect, the system can

account for incorrectness with appropriate fuzzy rule base design.
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Table 5.16 was another instance where the Level One Summary was used as the final output

of the S2T system. This shows the label “person_1 overlaps and is to the right of horse_1” and

was a valid summation of the person’s interaction with the horse in the scene for the original

input image in Figure 3.6(a). Table 5.17 shows the person-domain Level Two Summary “person_2

riding motorcycle_1,” for the raw input image shown in Figure 3.7(a), which was a correct and

accurate description of not only what actions were being performed in the scene, but also of who

was performing the action. Table 5.18 shows the robustness of the system when dealing with

tricky images. This can also be attributed to the constructed fuzzy rule base for person - vehicle

interactions, where the rules were robust enough to encode that even though some of the people are

above and overlapping the motorcycle, the degree of overlap and proximity to the motorcycle, as

well as the cardinal direction of the person in relation to the motorcycle were not sufficient enough

to warrant the “riding” interaction. Table 5.18 shows the Level One Summaries as output for each

person in relation to the motorcycle for the original input image in Figure 3.8(a). Table 5.19 shows

the person-domain Level Two Summary: “person_1 brushing teeth with toothbrush_1” which was

an accurate reflection of the action being performed by the person in the scene for the original

input image in Figure 3.10(a). Table 5.19 was also an instance where no mask detections were

available but the S2T system was still able to construct valid labels when using the bounding box

localization results for a spatial relationship computation.

Table 5.20 was a very interesting result as it showed a number of unique properties of the S2T

system. As discussed in Section 5.3.3, it was not necessary for two objects to be interacting in the

general-domain in order to have an accurate person-domain Level Two Summary. Furthermore,

Table 5.20 shows the ability to incorporate metadata, specifically the Inception [61] metadata
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computed in Section 3.4, when constructing the person-domain Level Two Summaries. This meta

data was ingrained in the fuzzy rule base for sports such that any time a “sports_ball” object

detection result was input to the person-domain FIS, the Inception metadata was passed to the

person - sports category FIS to make a determination of the most likely sport being played in

the scene. Namely, soccer, baseball, and tennis used the Inception meta data as they were all

instances of a category where a “sports_ball” detection could occur in the COCO [35] data set.

The person-domain Level Two Summary for Table 5.20 shows that both “person_1 and person_2”

were “playing soccer with sports_ball_1” as a result for the raw input image in Figure 3.12.

The following section describes the validation procedure used for person-domain Level Two

Summaries. Additionally, the metrics used and the results of inference using the person-domain

Level Two FIS are presented.

5.4.4 Person-Domain FIS Validation

A process similar to the validation process of Section 5.3.4 for general-domain Level Two

Summaries was used to validate the person-domain Level Two Summaries. As with the general-

domain summaries, there was no ground truth baseline data for the person-domain Level Two

Summaries with regards to the COCO [35] data set. Also, the FIS used to generate the person-

domain Level Two Summaries was based upon a rule base that was subjective to the authors of

this research, who were acting as the domain experts required to construct a S2T rule base for the

person-domain. With these factors in mind, a manual validation strategy was used to verify that

the labels generated by the person-domain Level Two FIS adequately described the person - object

interactions occurring in the scene.
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A Python [45] script was written that first loaded the person-domain Level Two Summaries and

object localization results into Pandas [62] data frames. For each person - object tuple in an image,

the OpenCV [5] library was used to display the object localization results, identical to the methods

in Sections 3.2.1.3 and 3.3.1.3. Although the results presented were limited to only those which

showed a person performing an interaction with an object, all of the person-domain Level Two

Summaries were presented on the Python console for inspection during validation. Each person-

domain Level Two Summary was validated individually for each image. Once visualized, the

user was presented with a prompt to “accept” or “reject” the person-domain Level Two Summary.

This process was performed for each of the person-domain Level Two Summaries computed for

the 506 input images deemed as usable as input to Level Two Summaries, which was discussed

in Section 4.8.1. As mentioned previously, a pruning process was also used to limit the Level

One Summaries used for Level Two inference to those that contained at least one person - object

interaction. Thus, even though the person-domain Level Two summary FIS were applied to each

of the 506 input images, there were images that did not have any person - object interactions and

as such, no person-domain Level Two Summaries.
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Table 5.21

Incorrect Level Two Summary

Localization Result Person Level Two Summaries

• person_1 riding snowboard_1

• person_2 riding snowboard_1

• person_3 riding snowboard_1

Section 5.6 provides further insight into the accuracy of the person-domain Level Two Sum-

maries along with detailed statistics. Table 5.26 is discussed in detail in Section 5.6, but for the

purposes of validation, the table shows that the system adequately performed the task of computing

Level Two Summaries in the person-domain. The only person-domain Level Two Summary that

was determined to be invalid during the validation process is shown in Table 5.21. As can be seen

in the localization result visualization, this image poses a rather tricky case for a S2T system to

process in terms of determining which person was riding which snowboard.

General-domain Level Two Summaries were subject to the problem of invalid labels due to

missing depth. Person-domain Level Two Summaries were also subject to this problem, in addition

to the problem of occlusion and the bad localization result problem. These three known limitations

are the focus of the following section.
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5.5 Known Limitations

Table 5.22

Incorrect Level Two Summary - Missing Depth

Localization Result Person Level Two Summaries

• person_1 eating banana_1

• person_1 reading book_1

Table 5.23

Incorrect Level Two Summary - Occlusion

Localization Result Person Level Two Summaries

• person_2 riding surfboard_1

152



Table 5.24

Incorrect Level Two Summary - Bad Localization

Localization Result Person Domain Level Two Summaries

• person_1 playing tennis with
sports_ball_1

• person_1 throwing frisbee_1

This section details the known limitations of the constructed S2T system. These limitations

were briefly mentioned in Sections 5.3.4 and 5.4.4 and consisted of missing depth, occlusion, and

bad localization results.

The missing depth problem is highlighted in Table 5.22. As is shown in the localization results,

the “person_1 eating banana_1” label was accurate, but the “person_1 reading book_1” label was

not due to the book being some distance away from the person. It is easy for a human eye to infer

depth information, and doing so lets us come to the logical conclusion that the book was not at the

same depth as the person in the image. However, it was not possible for the underlying bounding

box [37] [48] and mask [21] localization algorithms used in the S2T system to make such an

153



inference in strictly a two-dimensional space. Furthermore, the localization results showed that the

person and book bounding box localization results overlapped and were in close proximity in the

two-dimensional space, coupled with the mask localization results that showed the person was to

the right of the book in the two-dimensional space. These fuzzy inputs would have triggered to fire

for a person reading a book (shown in Appendix A) that required the person to be overlapping and

in close proximity and not below the book in order to be considered reading. The missing depth

problems account for the majority of inaccurate labels for both the general- and person-domain

when constructing Level Two Summaries, as shown in Tables 5.25 and 5.26 respectively.

The easiest way to remedy the depth problem would be to make use of algorithms that compute

object localization results in three dimensions, such as some of the methods discussed by Wang

in [68]. However, these techniques all rely on point cloud information, which was not readily

available for standard object detection data sets like COCO [35]. Another possible remedy for

the depth problem would be to use methods that attempt to infer three-dimensional objects given

two-dimensional image object localization results, such as the system proposed by Huang in [25].

At the time of performing the object localization evaluation, none of the proposed methods were

readily available, and these methods still require supervised training of a model that will perform

the three-dimensional projection, a process for which training data is not readily available.

An additional way to remedy the depth problem would be to use algorithms that incorporate

three-dimensional information into spatial relationship computations. Reed et al. [49] proposed an

implementation of HOF [40] that computes force histograms in three-dimensional space. Similarly,

Kaur et al. [29] propose an implementation of HOF that computes force histograms in three-

dimensional space using fast Fourier transforms. The incorporation of these algorithms could
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serve to alleviate issues that arise from the depth problem in future S2T system designs. At the

time of writing, these implementations weren’t readily available for open source use. Additionally,

to use the algorithms for computing overlap and proximity, an alternative to the GIOU [51]

algorithmwould be required to be developed that works with the three-dimensional force histogram

computations. The original implementation of HOF [40] was chosen for this research because

it allowed easy separation of the proximity/overlap computations from the spatial relationship

computations. This was a design choice for the constructed S2T system to show a proof of concept,

and it is important to note there is no right or wrong answer when choosing the underlying methods

used.

The occlusion problem is highlighted in Table 5.23. As shown in the localization results,

the mask and bounding box location reflect that the person was indeed above and overlapping

the surfboard, hence the “person_2 riding surfboard_1” label. Again, it is easy for a human to

infer that the entirety of the person is not above the surfboard, but this is not an easy task for

a machine. This image in particular shows that the surfboard is occluding the majority of the

lower torso of the person, and as such, the object detection algorithm only detected the upper torso

of the person, leading to the inaccurate label. General-domain Level Two Summaries were not

subjected to the problem of occlusion, as an argument object either was or was not interacting

with a referrant object. Thus, the general-category Level Two Summary of “person_2 interacting

with surfboard_1” was still valid. The problem of occlusion, then, only arises when computing

person-domain Level Two Summaries.

One potential solution to this problemwould be the improvement of object detection algorithms

that could accurately compute objects that were segmented due to occlusion. At the time of writing,
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no such object detection algorithms exist and the improvement is beyond the scope of this research.

Table 5.26 shows that the occlusion problem accounts for four invalid person-domain Level Two

Summaries.

The bad localization result problem is highlighted in Table 5.24. The object localization results

show that the tennis racket was incorrectly predicted as “frisbee_1”. This invalid detection in effect

trickles down to the person-domain Level Two Summary of “person_1 throwing frisbee_1.” We as

humans know this object localization was incorrect, but the machine had difficulty distinguishing

between a tennis racket and frisbee disk in this particular instance. Also shown in the localization

results and person-domain Level Two Summaries were that the person was playing tennis with

“sports_ball_1” which was a valid detection.

In this particular instance, the argument can be made that since the sports ball was inferred

to be a tennis ball, using the Inception [61] meta data, the system could be designed to infer that

object localization results were likely incorrect. While that is true for instances where a person

was interacting with more than one object, inferring incorrect object localization results was not

possible when there existed only one object in the scene the person was interacting with. The

simplest way to alleviate the bad localization problem is to improve the underlying object detection

algorithms used. While a near-perfect object detection algorithm would surely alleviate the bad

detection problem, improvement of object detection algorithms is beyond the scope of this research.

General-domain Level Two Summaries were not subject to the bad localization result problem

for the COCO [35] data set used in construction of the S2T system. As with the occlusion problem,

bad localization results were not considered for the general-domain because an argument object

either was or was not interacting with a referrant object. Table 5.26 shows that 16 person-domain
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Level Two Summaries were deemed inaccurate due to the bad localization result problem. The

following section discusses the results and computed statistics of the general-domain Level Two

Summaries and person-domain Level Two Summaries in extensive detail.

5.6 Discussion

This section first presents an in-depth analysis of the results obtained from generating the

general-domain Level Two Summaries, followed by an in-depth analysis of the results of computing

the person-domain Level Two Summaries. This chapter concludes with a summary of the Level

Two Summary evaluation, where the second research question and hypothesis posed in Chapter 1

are revisited.

5.6.1 General-Domain Level Two Summaries

Table 5.25

General-Domain Level Two Summary Results

Total Images 506
Total General-Domain Level Two Summaries 3833
Accurate General-Domain Level Two Summaries 3779
Incorrect General-Domain Level Two Summaries 54
Incorrect - Depth Problem 54
Incorrect - Occlusion Problem 0
Incorrect - Bad Localization Result 0
Incorrect 0

Section 5.3.2 provided the implementation details for the general-domain Level Two Summary

FIS. This FIS completes the last component of the S2T system for the general-domain. Section

5.3.3 presented the general-domain Level Two Summaries, used as output for the S2T system in
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the general domain, for the original input images first presented in Chapter 3. A manual validation

process performed on the general-domain Level Two Summary implementation was presented

in Section 5.3.4 and the remainder of this subsection is devoted to analyzing the results of the

validation.

Table 5.25 shows that the general-domain Level Two Summaries were computed for the 506

input images with Level One Summaries deemed valid for use with Level Two Summary computa-

tion. The metrics used to consider a Level One Summary as valid input for Level Two Summaries

was discussed in Section 4.8.1. Table 5.25 shows that for the 506 images, there were 3833 object

tuple Level One Summaries used as input to the general-domain Level Two Summary computation.

As mentioned previously, there was no pruning process for the general-domain as there was for the

person-domain, thus the general-domain Level Two Summaries were computed for every object

tuple in an image.

Table 5.25 shows that of the 3833 computed general-domain Level Two Summaries, 3779 of

the summaries were accurate. The table also shows that of the 54 inaccurate results, all 54 of

the incorrect results were attributed to the missing depth problem. The missing depth problem is

discussed in extensive detail in Section 5.5. Table 5.25 shows that the general domain summaries

provided an accuracy of 99% for the COCO [35] data set. It is important to note that “correctness”

of the system was a subjective measure, as the general-domain Level Two Summaries themselves

were inherently subjective, and was measured by the author’s agreement with the label generated

by the S2T system. The results presented in Section 5.3.3 provide evidence to support that the

general-domain Level Two FIS evaluation satisfied the second research question and associated

hypothesis posed in Chapter1:

158



RQ2: How can the Level One Summaries provide meaningful information to the creation

of informative, high-level, natural language descriptions (Level Two Summaries) of the object

interactions in a scene?

H2: By utilizing a fuzzy inferencing approach in the generation of scene labels, the uncer-

tainty in spatial relationship reasoning can be effectively modeled and incorporated into scene

descriptions generated by the S2T system.

5.6.2 Person-Domain Level Two Summaries

Table 5.26

Person-Domain Level Two Summary Results

Total Images 506
Images with Person - Object Interactions 335
Total Person - Object Interactions 602
Correct Level Two Summaries 559
Incorrect - Depth Problem 22
Incorrect - Occlusion Problem 4
Incorrect - Bad Localization Result 16
Incorrect 1

Section 5.4.2 provided the implementation details for the person-domain Level Two Summary

FIS. Construction of the person-domain Level Two Summary FIS was the last component of the

S2T system for the person-domain. Section 5.4.3 shows the results used as S2T system output in

the person-domain for the original raw input images first presented in Chapter 3. Section 5.4.4

detailed the manual validation strategy used to validate the Level Two Summaries computed in the

person-domain. The remainder of this subsection is devoted to an analysis of the metrics obtained

by applying the person-domain Level Two Summary FIS to the COCO [35] data set.
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Table 5.26 shows that of the 506 input images with Level Two usable Level One Summaries,

335 images contained person - object interactions. From the 335 images, there were 602 person

- object Level One Summaries for which a person-domain Level Two Summary was computed.

Of the 602 computed person-domain Level Two Summaries, Table 5.26 shows that 559 of these

were deemed accurate. All but one of the 43 inaccurate results fell into one of three categories:

depth problem, occlusion problem, and bad localization problem. These problems were discussed

extensively in Section 5.5. Table 5.26 also shows that of the 43 inaccurate results, 22 were due

to the depth limitation problem, 4 were due to the occlusion problem, and 16 were due to the bad

localization result problem.

In total, there was only one result from the person-domain Level Two Summaries that was not

a result of any of the problems discussed. Not withholding the missing depth, occlusion, and bad

detection inaccurate results, the system performed with an accuracy of 93%. When withholding the

inaccurate Level Two Summaries due to known limitations, the system performed with an accuracy

of 99%. It is important to point out once again, that “correctness” was a subjective measure for

this system because the Level Two Summaries themselves were subjective, and correctness was

primarily a function of the system designer agreeing with the output Level Two Summary for a

person - object tuple. Based on the accuracy of the S2T system and the results presented in Section

5.4.3, the person-domain Level Two Summary FIS evaluation provided positive evidence for the

second research question and supported the associated hypothesis posed in Chapter 1 for the person

domain:
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RQ2: How can the Level One Summaries provide meaningful information to the task of

creating informative, high-level, natural language descriptions (Level Two Summaries) of the

object interactions in a scene?

H2: By taking a fuzzy inferencing approach in generating scene labels, the uncertainty in

spatial relationship reasoning can be effectively modeled and incorporated into scene descriptions

generated by the S2T system.

5.7 Potential System Usage

This section briefly presents one potential usage of the S2T system developed by this research.

At the time of writing, deep neural networks were the most widely used machine learning tech-

nique in the field. Training these networks is not only expensive in terms of resources and time

consumption, but training also requires large amounts of data to adequately train the larger models

that are popular. To date, the data sets that exist that do incorporate scene labels contain labels

that are required to be manually curated. These labels also do not incorporate spatial relationship

information. The S2T system constructed by this research could potentially be used as an auto-

mated process to generate scene description labels that incorporate spatial relationship information

between each of the object tuples in an image.

During evaluation, one idea was that the final S2T system constructed in this research could

be used to apply S2T labels to an image data set to use for training a deep neural network. The

S2T system could be used alongside any existing object detection algorithm to process the object

localization results. Doing this would provide the following information for each object localization

tuple in an image. The Level One Summaries for each object tuple would provide the overlap and

161



spatial relationship information for each object tuple in an image. The general-domain Level

Two Summaries would provide information about which objects were or were not interacting for

each object tuple in an image. The person-domain Level Two Summaries would provide refined

information about the person - object interactions in a scene. Combining all of this information

with the object localization results would provide much more informative information in terms of

training a large scale deep learning algorithm. In theory, the constructed S2T system can provide

all of this information with minimal effort, as the system is agnostic to the localization algorithm

used. With this in mind, the S2T system developed would be able to generate training labels

alongside the object localization results by simply attaching the S2T system to the output of the

object localization algorithm. Chapter 6 revisits this topic as the sensitivity analysis validation

performed effectively acts as a proof of concept for applying the S2T system to an unlabeled data

set to generate informative labels.
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CHAPTER 6

SYSTEM SENSITIVITY ANALYSIS VALIDATION

This chapter presents a sensitivity analysis validation that was performed in order to ensure

that the S2T system constructed via the methods of Chapters 3 - 5 could generalize well to other

data sets. Unlike the evaluations in Chapters 3 - 5 where each evaluation and the corresponding

results were generated individually for the purposes of validating each stage of the S2T system, the

validations in this chapter were all performed sequentially, where the result of each stage of the

S2T system becomes the input of the stage that follows.

First, this chapter discusses the data set and which images were used for the sensitivity analysis

validation. The validation design and setup is discussed after the data set discussion, followed

by a discussion of the methods used to perform the sensitivity analysis validation. Lastly, the

results obtained from the validation are discussed in-depth and the remaining research questions

and hypotheses from Chapter 1 are revisited.

6.1 Data Set

This validation made use of the 2017 version of the COCO [35] data set. The 2017 data set is

an updated version of the 2014 COCO data set. The COCO 2014 data set was used to construct the

S2T pipeline in Chapters 3 - 5. The COCO 2017 data set contains images not available in the 2014

data set, and as such the images in the 2017 data set were not utilized in development of the system.
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Figure 6.1

Completed S2T Pipeline
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In other words, the COCO 14 data set can be viewed as the training set, and the COCO 17 data

set can be viewed as the validation/testing data set. The FiftyOne [8] library was used in a Python

[45] script to download the COCO 17 data set. During downloading, the FiftyOne library allowed

filtering of data set images to only download specific object categories. As the S2T system was

developed to generate Level Two Summaries in the person-domain, image downloads were filtered

to only those which likely contained a person detection. For brevity, the download was limited to

2000 images from the COCO 17 data set.

The FiftyOne [8] library also allowed the download of segmentation results and labels for the

COCO 17 data set, but for completeness of the validation, a stand alone object detection algorithm

was used to apply the full S2T pipeline developed by the research of this dissertation, shown in

Figure 6.1. The following section describes the validation design that processed the COCO 17 [35]

images through each stage of the S2T pipeline in detail.

6.2 Validation Design

This section discusses how each stage of the S2T pipeline of Figure 6.1was applied to the COCO

17 [35] data set. When developing the S2T pipeline, each phase was separated into individual

validations that mimicked the diagram in Figure 5.1. For this validation, a single “driver” script

was used to perform all of the stages of the pipeline sequentially. The remainder of this section

discusses how each stage of the S2T pipeline was implemented for this validation.

6.2.1 Object Localization

Figure 6.1 shows that object localization was the first step performed on the set of raw input

images. For this validation, the YOLOv3 [48] object detection model was used to compute the
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object localization results for the subset of 2000 images for the COCO 17 [35] data set. YOLOv3

was chosen for a few reasons. First, the GIOU [51] computations require only bounding boxes,

and the HOF [40] computations work on either bounding boxes or masks. YOLOv3 provided

the necessary input for both of the algorithms used to compute the Level One and Level Two

Summaries of Sections 6.2.2 and 6.2.3 respectively. Secondly, the entirety of the YOLOv3 object

localization results can be stored in CSV or JSON files. This allowed for easily sharing the code

and results where the object localizations for an image did not have to be recomputed. Mask

localization results, such as those computed by Mask R-CNN [21], were not chosen because in

order to share the results, the binary mask images, which were quite large, would also have to be

shared. Lastly, the YOLOv3 library demonstrated better object localization results compared to

the SSD [37] library during the evaluations of Chapter 3.

To begin, the OpenCV [5] library was used to load the YOLOv3 [48] model from disk. Each of

the 2000 raw input images from theCOCO17 [35] data set was then processed through theYOLOv3

model to generate potential object localization results with corresponding confidence scores. Each

potential result was then subjected to non-maxima suppression (NMS) [24] thresholding, where

the threshold value was chosen as 0.4. NMS thresholding served to eliminate multiple overlapping

object localization results. The NMS threshold value was chosen identical to themethods discussed

in Section 3.3.1.2. After NMS thresholding, the object localization results were stored in a Pandas

[62] data frame that contained the following information for each image:

• relative path of the image

• bounding box localization results for each object

• class label for each localization result

• number of object localization results
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Table 6.1

Object Localization Results

Original Input Images 2000
Images with two or more object localization results 1637
Images with at least one person detection 1243

The candidate object localization results were then further refined by first eliminating any

image where there were not two or more objects detected in the scene. This refinement was

performed because both Level One and Level Two Summaries required at least one object tuple

interaction. Table 6.1 shows that of the 2000 original raw input images, 1637 images contained

at least two object localization bounding boxes. The second refinement performed was to remove

any images that did not contain a “person” localization result. While Level One Summaries

and general-domain Level Two Summaries can both operate on any object tuple in an image, the

person-domain Level Two Summaries require a person - object interaction. As such, this additional

refinement was performed such that each raw input image contained object localization results that

could be processed by all stages of the S2T pipeline shown in Figure 6.1. Table 6.1 shows that

of the 1637 images that contained at least two object localization results, 1243 of those images

contained a “person” object detection. The entire set of localization results was stored as a Pandas

[62] data frame and the data frame was written to disk for inspection if so desired.

Each of the 1243 images with at least two object localization results, one of which being a

“person” localization, was then processed using the Inception [61] model in order to generate meta

data for each image. Chapter 5 showed that meta data was necessary in some instances in order to

allow the S2T system to determine the appropriate fuzzy rule base to apply given the object tuple.
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The PyTorch [44] library was used to load the Inception model and also used to process each of the

1243 images. For each image, the Inception model output a list of class labels with corresponding

confidence scores. Each of these class labels described the overall scene, as opposed to object

segmentations. The class labels were sorted according to their respective confidence scores, and

the top five labels were retained to be used as meta data for input to the Level Two Summaries

computed in Section 6.2.3. The meta data generated by the Inception model for the entire image

set was stored as a Pandas [62] data frame and the data frame was written to disk such that it could

be loaded and inspected if the user desired to do so.

The object localization results for the 1243 images with a “person” object localization result

were used as input to the Level One Summary computation discussed next in Section 6.2.2. These

same object localization results, along with the meta data generated by the Inception [61] model

for each image, were used as input to the Level Two Summary computation discussed in Section

6.2.3.

6.2.2 Level One Summaries

Figure 6.1 shows that the second phase of the S2T pipeline is the generation of Level One

Summaries. To recap, the Level One Summaries provide spatial relationship information about

each object tuple in an image. As mentioned previously, the 1243 images that contained more than

one object localization result, one of which was a “person” detection, were used as input to the

Level One Summary phase of the S2T pipeline. Similar to the evaluations of Chapter 4, the GIOU

[51] and HOF [40] algorithms were used to construct the Level One Summaries for the data set.

168



The object localization results were loaded from the Pandas [62] data frame constructed in

Section 6.2.1. For each input image’s object localization results, the object tuples were organized

by first taking the two-permutations of the objects in the image. Afterwards, the tuples were

ordered hierarchically where persons took precedence over animate objects and animate objects

took precedence over inanimate objects. After the object tuple permutations were constructed, the

GIOU [51] and HOF [40] algorithms were applied to each tuple.

The GIOU [51] algorithm was implemented using the Python [45] programming language and

the Numpy [43] Python library. Section 4.4.1 discusses the GIOU algorithm implementation in

detail and the same process detailed in that section was used to implement the GIOU algorithm

for this validation. The result of the GIOU algorithm were two values: intersection over union

(IOU) and generalized intersection over union (GIOU), both of which were floating point values.

The IOU value was used to compute the “overlap” relationship, whereas the GIOU value was used

to compute the “proximity” relationship. Both the IOU and GIOU numerical values were used as

input to the Level Two Summary computation detailed in Section 6.2.3. The GIOU value was not

used for constructing Level One Summaries as proximity information was not incorporated into

the Level One Summaries. The IOU value was used to compute the “overlap” relationship and that

relationship was incorporated into the Level One Summaries.

The overlap relationship was represented as a fuzzy variable, using the fuzzy membership

function shown in 4.2. The IOU value was used as the fuzzy input value and the centroid [60]

defuzzification method was used to generate the crisp output value. The crisp output value was

one of “Overlap” or “No Overlap” for each object tuple in the image’s localization results. The
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membership functions and defuzzification methods were all constructed using the SKFuzzy [69]

library within a Python [45] script.

The HOF [40] algorithm implementation made use of a combination of Matlab [39] and

Python [45] scripts. The underlying code for the HOF algorithm was generated by the authors

of the original HOF work, and was graciously provided for use within this research. The HOF

algorithm implementation is detailed extensively in Section 4.5.1 and a similar implementation

process was used for the purposes of this validation. After applying the GIOU [51] algorithm to

an object tuple, the HOF algorithm was applied to generate the spatial relationship value for the

tuple. This value fell in the range 0− 360 where each value represented an angle. There were three

types of HOF values computed: constant force (F0), gravitational force (F2), and hybrid force (FH)

histograms. Each of these values were stored for the object tuple for use when constructing Level

One and Level Two Summaries.

The spatial relationship value was used to compute the cardinal direction in which the argument

object waswith respect to the referrant object. To achieve this, the consensus value of the three force

histogram outputs was chosen, shown in Algorithm 4.3. The spatial relationships were represented

as a fuzzymembership function, shown in Figure 4.4, and the consensus angle was used as the fuzzy

input value to compute the crisp output spatial relationship label. Centroid [60] defuzzification was

used to determine the crisp output spatial relationship label given the fuzzy HOF [40] consensus

value as input. As can be seen in Table 4.1, the crisp output for spatial relationships fell into one of

nine cardinal directions. All code used to develop the fuzzy membership functions and to perform

defuzzification was developed using the SKFuzzy [69] library inside of a Python [45] script. The
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final result of centroid defuzzification was an output label that represented the direction of the

argument object with respect to the referrant object.

After applying the GIOU [51] and HOF [40] algorithms, identical to the methods shown in

Algorithms 4.2 and 4.3 respectively, the numerical values for GIOU, IOU, and the three force

histogram types were stored in a Pandas [62] data frame. Unlike the object localization results that

used one row per image, the Level One Summary data frame contained a row for each object tuple.

After these values were generated for an object tuple, the centroid [60] defuzzification method

was applied to the IOU and consensus force histogram to generate the “overlap” and “spatial

relationship” labels respectively. Using these labels, the Level One Summary for the object tuple

was constructed and stored as an additional field in the Pandas row. Examples of the Level

One Summaries computed during this validation are provided in Section 6.2.2.1. The resulting

Pandas data frame after constructing the Level One Summaries for each object tuple contained the

following information for each object tuple in an image:

• result key, represented as the image path plus the argument and referrant object

• the relative path of the image

• the class label of the argument object

• the bounding box that corresponds to the argument object

• the class label of the referrant object

• the bounding box that corresponds to the referrant object

• the IOU numerical value used to compute the overlap relationship

• the GIOU numerical value used to compute the proximity relationship

• the F0, F2, and FH force histogram values used to compute spatial relationships

• the Level One Summary for the object tuple
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Table 6.2

Total Level One Summaries
Object Localization Result Images 1243
Level One Summaries 10318
Level One Summaries that contain a “person” 8466

Table 6.2 shows that for the 1243 images with at least two object localization bounding boxes for

which one was a “person” detection, there were a total of 10,318 Level One Summaries computed.

In other words, there were 10,318 object tuples the GIOU [51] and HOF [40] algorithms processed

for the 1243 images. Each of these Level One Summary results could be used to generate a Level

Two Summary in the general-domain. However, only Level One Summary results that contain

a “person” detection were processed for the person-domain Level Two Summaries. Table 6.2

shows that 8466 Level One Summaries contained a person - object interaction and as such only

8466 person-domain Level Two Summaries were computed. Both the general-domain and person-

domain Level Two Summary computations are discussed in detail in Section 6.2.3. In the following

section, results for the Level One Summary computation are presented to the user and discussed.
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6.2.2.1 Results

Table 6.3

“Umbrella” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is be-
low and to the right of um-
brella_1

Table 6.4

“Cake” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
cake_1
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Table 6.5

“Broccoli” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
and to the left of broccoli_1

Table 6.6

“Bench” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
and to the right of bench_1
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Table 6.7

“Tie” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
and to the right of tie_1

Table 6.8

“Dog” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
dog_1
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Table 6.9

“Cell Phone” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is to
the left of cell_phone_1

Table 6.10

“Cup” Level One Summary Results

Localization Result Level One Summaries

• person_1 overlaps and is above
cup_1

Tables 6.3 - 6.10 shows examples of Level One Summary results for the COCO 17 [35] data set.

In each table, the image’s object localization results are shown on the left with the corresponding

Level One Summary shown on the right. Each of these results were chosen because each image has
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a person - object interaction and as such, both general- and person-domain Level Two Summaries

can be computed for them.

Table 6.3 shows a correct Level One Summary of a person that overlaps and is below and to

the right of an umbrella. Table 6.4 shows a Level One Summary for a person overlapping and

above a cake. Table 6.5 shows that a person is overlapping and is above and to the left of a piece of

broccoli. Table 6.6 shows that the person overlaps and is above and to the right of the bench. Each

consensus angle indicated that the cardinal direction computed was in the “above right” direction,

likely due to the center of mass of the detection result. Table 6.7 shows that the person overlaps

and is above and to the right of the tie. Table 6.8 shows that the person is overlapping and above

the dog. Table 6.9 shows that the person and cell phone overlap and the person is to the left of the

cell phone. Lastly, Table 6.10 shows that the person overlaps and is above the cup.

Each of the Level One Summaries sufficiently reflect the spatial relationships between the

person and the object they are interacting with in the scene. Additionally, each of these Level

One Summaries show that the use of bounding box localization results for computing Level One

Summaries provide less refined information as opposed to using mask localization results. For

example, in Table 6.6, it can be argued that the person is simply “above” the bench and not “above

and to the right,” a relationship that would likely be reflected with mask localization results due

to the tighter bounds. These Level One Summary results, as shown in Figure 6.1, can be used

as a final output of the system if so desired. Figure 6.1 also shows that the Level One Summary

results serve as input to the Level Two Summary computations. The computations of Level Two

Summaries for both the general- and person-domain are discussed in the next section.
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6.2.3 Level Two Summaries

Figure 6.1 shows that the final phase of the S2T pipeline is the computation of the Level Two

Summaries. The general-domain Level Two Summaries provide information describing whether

or not two objects are interacting. As the name suggests, they are a general description of the

interactions occurring in the scene. The person-domain Level Two Summaries provide refined

detail toward whether or not a person is performing a specific action with regards to an object. This

validation used the Level One Summary results, computed in Section 6.2.2, as input to the general-

and person-domain Level Two Summary computations. The methods developed in Chapter 5 were

used for this validation to compute these summaries. Specifically, Algorithms 5.1 and 5.2 were

used to compute the general-domain and person-domain Level Two Summaries respectively. The

Level One Summaries were loaded from the Pandas [62] data frame constructed in Section 6.2.2.

For each Level One Summary, the GIOU [51], IOU, and three HOF [40] angles were loaded from

the data frame. The GIOU value was converted into a fuzzy input value for proximity using the

fuzzy membership functions shown in Figure 4.3 from Chapter 4. The IOU value was converted

into a fuzzy input value for the overlap relationship using the fuzzy membership functions shown

in Figure 4.2 from Chapter 4. The consensus HOF angle was converted into a fuzzy input value

using the fuzzy membership functions shown in Figure 4.4, also from Chapter 4. Once these values

had been fuzzified, they were set as input to the general-domain and person-domain FIS in order

to compute the general-domain and person-domain Level Two Summaries.

The general-domain Level Two Summaries were computed identical to the algorithm shown

in Algorithm 5.1 of Chapter 5. The rule base used for the general-domain was the same rule base

as is shown in Table 5.2 from Chapter 5. Construction of the rule base, membership functions,
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and FIS made use of the SKFuzzy [69] library and all code for this validation was written in

a Python [45] script. Section 5.3.2 discusses the implementation of the general-domain FIS in

further detail and an identical process was followed to construct the general-domain FIS for this

validation. The result of the general-domain FIS was a label that indicated whether or not two

objects were interacting. Results were computed for each Level One Summary, and as such each

object tuple in the set of Level One Summaries had a corresponding general-domain Level Two

Summary. The general-domain Level Two Summaries were stored in a Pandas [62] data frame

that contained all information stored in the Level One Summaries with an additional field for the

general-domain Level Two Summaries. Specifically, the general-domain Level Two Summary data

frame contained the following information for each object tuple in an image:

• result key, represented as the image path plus the argument and referrant object

• the relative path of the image

• the class label of the argument object

• the bounding box that corresponds to the argument object

• the class label of the referrant object

• the bounding box that corresponds to the referrant object

• the IOU numerical value used to compute the overlap relationship

• the GIOU numerical value used to compute the proximity relationship

• the F0, F2, and Hybrid force histogram values used to compute spatial relationships

• the Level One Summary for the object two tuple

• the general-domain Level Two Summary for the object tuple

As mentioned previously, each Level One Summary has a corresponding Level Two Summary.

Table 6.2 shows that 10,318 Level One Summaries were computed for the input data set, therefore
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there were 10,318 general-domain Level Two Summaries generated for the input data set. The

Pandas data frame was written to a CSV file for retrieval if the user wished to manually inspect the

results as well.

The person-domain Level Two Summaries were computed identical to the algorithm shown in

Algorithm 5.2 in Chapter 5. The rule base used for the person-domain was the same as the rule base

used for the evaluations in Section 5.4.1. The entire rule base for the person-domain Level Two

Summaries is shown in Appendix A. The rule base, membership functions and person domain FIS

were all implemented using the SKFuzzy [69] library and all code was written in the Python [45]

programming language. The process used to construct person-domain Level Two Summaries was

discussed extensively in Section 5.4.2 and an identical process was used to construct the person-

domain Level Two Summaries for this validation. The output of the person-domain FIS was a label

indicating a specific interaction that a person was or was not performing given a referrant object.

These interactions were based on the specific category of the object in question. This category was

determined based an object hierarchy and an extensive discussion of the object hierarchy used for

this validation was given in Section 5.2. As with the evaluations of Chapter 5, the object category

determines which rules to apply to the person - object tuple Level Two Summary computation.

Person-domain Level Two Summaries required a person - object interaction, and thus any object

tuple that did not contain a person localization result were not processed using the person-domain

Level Two FIS. The person-domain Level Two Summaries were stored in a Pandas [62] data frame

that contained the same information stored in the general-domain Level Two Summaries data

frame with the exception that the person-domain Level Two Summaries are stored as opposed to

the general-domain Level Two Summaries.
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Table 6.2 shows that for the 10,318 Level One Summaries, 8466 of those Level One Summaries

contained a person object localization. As such, person-domain Level Two Summaries were

computed for those 8466 Level One Summaries. After computation, the resulting Pandas data

frame was written to a CSV file for easy retrieval. The following section discusses results obtained

during validation for the general- and person-domain Level Two Summaries.

6.2.3.1 Results

Table 6.11

“Umbrella” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interact-
ing with umbrella_1

• Person: person_1 carrying
umbrella_1
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Table 6.12

“Cake” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interacting
with cake_1

• Person: person_1 eating cake_1

Table 6.13

“Broccoli” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interacting
with broccoli_1

• Person: person_1 eating broc-
coli_1
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Table 6.14

“Bench” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interact-
ing with bench_1

• Person: person_1 sitting on
bench_1

Table 6.15

“Tie” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interact-
ing with tie_1

• Person: person_1 wearing
tie_1
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Table 6.16

“Dog” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interacting
with dog_1

• Person: person_1 petting dog_1

Table 6.17

“Cell Phone” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interact-
ing with cell_phone_1

• Person: person_1 talking on
cell_phone_1
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Table 6.18

“Cup” Level Two Summary Results

Localization Result Level Two Summaries

• General: person_1 interact-
ing with cup_1

• Person: person_1 drinking
cup_1

Tables 6.11 - 6.18 show the Level Two Summary results for the corresponding Level One

Summaries of Tables 6.3 - 6.10. Each table presents the object localization results on the left with

the general-domain Level Two Summaries, denoted by General:, and person-domain Level Two

Summaries, denoted by Person:, on the right of the table.

Table 6.11 shows that the general-domain Level Two Summary indicates that the person

is interacting with the umbrella. The person-domain Level Two Summary further refines the

description and indicates that the person is carrying the umbrella. Table 6.12 shows the general

description of a person interacting with the cake. The person-domain Level Two Summary further

refines this information by indicating the person is likely eating the cake. Table 6.13 shows the

general label of a person interacting with a piece of broccoli, which is further refined by the person-

domain summary of the person eating broccoli. Table 6.14 describes the general interaction of

the person interacting with the bench. The person-domain Level Two Summary shows the more
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detailed description of the person sitting on the bench. Table 6.15 provides the general domain

interaction of person interacting with a tie and the refined person-domain interaction of the person

wearing the tie. Table 6.16 shows that the person is interacting with the dog in the general-domain.

In the person-domain, the table shows that the person is petting the dog in the image. Table 6.17

shows that in general, the person is interacting with a cell phone. Using the refined rules for the

person-domain, the label becomes the person is talking on a cell phone. Lastly, Table 6.18 presents

the general domain interaction of a person interacting with a cup. The person-domain refinement

generated the label indicating that the person is drinking from the cup. The following section

presents the methods used to verify the validations conducted in this chapter.

6.3 Validation

The validation process followed a similar process to the Level One Summary and Level Two

Summary validations described in Sections 4.8.2, 5.3.4, and 5.4.4. The validation processes

discussed in those sections were a manual process as there were no baseline Level One or Level

Two Summaries to use for comparison. The validation processes discussed served to verify that

the generated summaries were an accurate reflection of what could be inferred given the object

localization results in a scene. Furthermore, since S2T labels were already subjective in a sense, the

manual validation process did not introduce any additional subjectivity to the S2T scene labeling

process.

Validation was performed on a subset of the person-domain Level Two Summaries. Person-

domain Level Two Summaries were chosen because they contained a label for Level One Sum-

maries, general-domain Level Two Summaries, and person-domain Level Two Summaries. As
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such, selecting this subset of results verified that the same amount of results were analyzed for each

type of Level Two Summary. To select the image subset, the person-domain Level Two Summary

result file, generated from the validations of Section 6.2.3, was randomly sampled. To accomplish

this, the person-domain Level Two Summary file was loaded into a Pandas [62] data frame and the

Python [45] programming language’s built in random functionality was used to randomly select

500 image paths. For the selected 500 image paths, the Pandas library was used to filter the person-

domain Level Two Summary file to just the rows that corresponded to the randomly selected image

paths.

The validation process was performed in two stages. The first stage of validation was the

inspection of the general-domain Level Two Summaries. The second stage of validation performed

was the inspection of person-domain Level Two Summaries. As shown in Section 4.8.2, the Level

One Summaries were reliably accurate during construction of the system, and since both of the

Level Two Summary types incorporated the Level One Summary information, explicit validation

of the Level One Summaries was omitted from this validation process.

Though there were two validation procedures, both were implemented using almost identical

code. First, the Level Two Summary CSV file was loaded into a Pandas [62] data frame, where

each row was inspected individually. It is important to note that inspecting each row individually

inherently implies that each general-domain Level Two Summary and person-domain Level Two

Summary was inspected individually because of how the output Level Two Summary data frame

was constructed in Section 6.2.3. After loading a row, the argument and referrant bounding boxes,

along with their corresponding class labels, were drawn on the original image with the appropriate

class label. This process was implemented using the OpenCV [5] library. After drawing the
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localization results for the row, the general-domain Level Two Summary, or the person-domain

Level Two Summary depending onwhich validation procedure was being performed, was displayed

to the console at which point the user was prompted to “accept” or “reject” the result. Accepted

and rejected results were stored in individual data frames and written to CSV files for inspection

after the validation process was completed. The following tables show the result for the sensitivity

analysis validation. It is important to note that person - person interactions were computed only for

the general-domain. For the person-domain, only person - animate object and person - inanimate

object interactions were computed.

Table 6.19

Validation Data Set Breakdown
Sampled Images 500
General-Domain Level Two Summaries 4179
Person-Domain Level Two Summaries 2029

Table 6.20

Incorrect Image Totals

Sampled Images 500
Images With Incorrect General Results 9
Images With Incorrect Person Results 58

Table 6.19 shows for the 500 sampled images, there were 4179 corresponding general-domain

Level Two Summaries and there were 2029 corresponding person-domain Level Two Summaries.

As mentioned previously, only person - animate and person - inanimate person-domain Level Two
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Summaries were inspected, which explains the large discrepancy in the numbers. Table 6.20 shows

that nine images account for all of the incorrect general-domain Level Two Summaries and that 58

images account for all of the incorrect person-domain Level Two Summaries. This implies that a

small percentage of the images were responsible for the inaccurate labels.

Table 6.21

General-Domain Results
Total Interactions 1027
Accepted Interactions 998
Rejected Interactions 29
Total Non Interactions 3152
Accepted Non Interactions 3152
Rejected Non Interactions 0

Table 6.21 shows the results obtained for the general-domain Level Two Summaries computed

for the set of 500 randomly sampled images. The general-domain Level Two Summaries were

broken into two categories: summaries that contained an interaction and summaries that did not.

The table shows that of the 4179 general-domain Level One Summaries, 1027 of those summaries

contain labels that show two objects are interacting. Conversely, the table shows that of the

4179 total summaries, 3152 of those summaries are summaries that indicated the object tuple

was not interacting. The results were separated in this manner to provide further insight to the

system’s strengths and weaknesses. The table shows that of the 1027 computed positively labeled

interactions, only 29 of those interactions were incorrect. The table also shows that all 3152

negatively labeled interactions were accurate. These results are similar to the results presented

in Section 5.6.1. Table 6.23 breaks down the results of the inaccurate labels in further details,
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but when taking the 29 invalid general-domain Level Two Summaries into consideration, the S2T

system was able to achieve an accuracy of 99% on the COCO 17 [35] data set, a number on par

with the results of Section 5.6.1 during initial development of the system which used the COCO

14 data set.

Table 6.22

Person Domain Results
Total Actions 544
Accepted Actions 496
Rejected Actions 46
Total Non Actions 1485
Accepted Non Actions 1461
Rejected Non Actions 24

Table 6.22 shows the results obtained for the person-domain Level Two Summaries computed

for the 500 randomly sampled images of the COCO 17 [35] Level One Summaries. Identical to

Table 6.21, the person-domain Level Two Summaries were separated by those that contained a

person interacting with an object and those that contained a person not interacting with an object.

As mentioned previously, only object tuples that contained a person potentially interacting with

an object were considered for the person-domain Level Two Summary computation. Table 6.22

shows that of the 2029 total summaries, 544 of them contained a positive interaction system output

and 1485 contained a negative interaction system output. Of the 544 person-domain Level Two

Summaries labeled as a positive person - object interaction, 496 were deemed accurate. Of the

1485 person-domain Level Two Summaries labeled as a negative person - object interaction, 1461

of the summaries were deemed correct. Not withholding the incorrect results due to the known
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limitations, discussed in detail in Section 5.5, the S2T system was able to achieve an accuracy

of 96% on the COCO 17 data set. Again, these were images not presented to the system during

development, so these results provide preliminary evidence that the system generalizes well to new

data sets.

Table 6.23

Incorrect Result Breakdown
General Domain Person Domain

Total Incorrect 29 72
Bad Detection 20 7
Depth Problem 9 34
Occlusion Problem 0 5
Bad Result 0 26

As a final analysis, Table 6.23 provides additional details about where the system falls short.

As can be seen in the table, of the 29 total incorrect general-domain Level One Summaries, all

29 of them are due to either the bad detection problem or the depth problem. These two known

limitations are discussed in great detail in Section 5.5. Unlike the results in Chapter 5, the general-

domain Level Two Summaries were affected by the bad localization problem. The results subject

to the bad localization problem occurred when the YOLOv3 [48] algorithm generated a bounding

box that was too large for an object, and the subsequent overlapping resulted in the generation of an

invalid general-domain Level Two Summary. The table also shows that none of the general-domain

summary invalid labels were due to the occlusion problem or a bad result in general. Based on the

results shown in Tables 6.23, the general-domain Level Two Summaries were 98% accurate on the

sampled validation set. This is similar to the results shown in Section 5.6.1. The accuracy of the
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general-domain Level Two Summaries will likely always be fairly high because the general-domain

Level Two Summary computations are based on a very simple rule base, as shown in Table 5.2 and

the simplicity of design allows for the general-domain computations to generalize easily.

Table 6.23 shows that of the 72 person-domain Level Two Summaries: seven were due to the

bad detection problem, 34 were due to the depth problem, five were due to the occlusion problem,

and 26 were an actual bad person-domain Level Two Summary. Possible remedies for the known

limitations were discussed in Section 5.5. During validation, the 26 Level Two Summaries that

were inaccurate because of system output were further analyzed. During analysis, it was observed

that all of the inaccurate labels were in the “grey area” of the FIS output. In other words, the proper

fuzzy output and improper fuzzy output both had a degree of membership but the improper output

was the eventual output generated during centroid defuzzification [60]. Withholding the 46 results

due to known system limitations, the person-domain S2T system performed with an accuracy of

98% on the COCO 17 [35] data set. As mentioned previously, the COCO 17 data set samples used

during validation were all images the system did not encounter during development, discussed in

Section 5.4.2, and these results provide positive evidence to support the person-domain Level Two

Summary FIS does generalize well to additional data sets. This chapter concludes by revisiting the

remaining research questions and hypotheses from Chapter 1.

6.4 Discussion

This chapter described a sensitivity analysis validation performed by applying the S2T system

developed during this research to the COCO 17 [35] data set, a data set which the system had not

yet been applied to. The validation made use of the YOLOv3 [48] model for object localization,
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the results of which were used to construct Level One Summaries using the GIOU [51] and HOF

[40] methods. These Level One Summaries were then used as input to the computation of the

general-domain and person-domain Level Two Summaries. Unlike the evaluations performed in

Chapters 3 - 5 where each phase of the S2T pipeline was constructed individually, the entire S2T

pipeline was implemented in a streamlined manner for the sensitivity analysis validation. As such,

given the raw input images of the COCO 17 data set, the output of the system were CSV files for

each of: object localization results, Level One Summaries for each object tuple, general-domain

Level Two Summaries for each Level One Summary, and person-domain Level Two Summaries

for each appropriate Level One Summary. The YOLOv3 model was decided upon so that each

resulting CSV output file would contain all necessary information to replicate the system results,

as opposed to requiring binary mask images to replicate the object localization results.

The primary focus of the sensitivity analysis was verification that Level Two Summary compu-

tation could be performed on a data set not used to develop the initial system and retain accuracy.

Two types of Level Two Summaries were computed, the general-domain Level Two Summaries

and the person-domain Level Two Summaries. Section 6.2.3 presented the implementation details

of the methods used to construct both types of Level Two Summaries for this validation. The

validations of this chapter built off of work developed in Chapter 5, where the general-domain FIS

and person-domain FIS were both implemented used the COCO 14 [35] data set as baseline data

to construct the system. The rule base for the general-domain FIS was visualized in Table 5.2 and

the entire rule based used to construct the person-domain FIS is reserved to Appendix A.

The results in Section 6.2.3.1, specifically Tables 6.11 - 6.18 show examples of general- and

person-domain Level Two Summary results for sample images of the COCO 17 [35] data set.
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These results, combined with the metrics presented in Section 6.3, provide positive evidence to

answer the third research question and support the associated hypothesis (H3) from Chapter 1:

RQ3: When applying the S2T framework to a data set other than the data set used to

construct the system, will the results be as reliable as the initial data set results?

H3: Since the S2T system was modeled as a fuzzy inferencing system at its core, the rule-base

will be data set agnostic and as such the developed S2T system will be as reliable on an additional

data set as it was on the training data set.

Importantly, none of the images used in the validation process had been incorporated during

the S2T system development, and this implies that the S2T system does generalize well to other

data sets in both the general- and person-domains, in support of H3.

The last outstanding research question and hypothesis fromChapter 1 that needs to be addressed

is:

RQ4: How can the S2T framework developed in this research be used as a mechanism

for applying scene interaction labels that incorporate spatial reasoning information to a

previously unlabeled data set?

H4: The developed S2T system requires no a priori information regarding scene labels, thus

applying the framework to a previously unlabeled data set will not limit the effectiveness of the

system in regards to generating accurate scene descriptions.

Based on the results shown in Tables 6.11 - 6.18 coupled with the computed validation metrics,

it is a reasonable conclusion that the S2T framework can indeed be used to label a raw image data

set reliably, supporting hypothesis H4. Section 5.7 discussed this as a potential system usage, and

using the S2T system in this manner could prove to be an invaluable resource when training larger
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scale machine learning models that require massive data sets for input. In the final chapter, the

conclusions drawn from this research will be discussed.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The research, evaluations, and validations presented in this research constructed a S2T system

that incorporated spatial relationship information when deriving natural language scene descrip-

tions. The goal of the constructed S2T system was the ability to generate more informative

scene descriptions given an unlabeled image as input. The S2T pipeline, shown in Figure 7 was

constructed in three phases that corresponded to the three evaluations performed throughout the

research. A final validation was performed on the S2T system on a data set the system had not yet

encountered.

Generation of the object localization results for the set of raw input images was the focus of

Chapter 3. These localization results were generated as one of either bounding box segmentation

results or pixel-wise mask segmentation results for each object detected in an image. The local-

ization results were generated using pre-trained off the shelf object detection models and since the

goal of the research of this dissertation was not improving object detection models, all localization

results were used as is from the model. Additionally, each image was processed using the Inception

[61] model in order to generate image meta data for each image in the data set. This meta data was

used solely as latent input to the computation of Level Two Summaries, detailed in Chapter 5. The
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Figure 7.1

Level Two Summaries in the S2T Pipeline
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object localization results for each input image were then passed along to the second phase of the

S2T pipeline.

The second phase of the constructed S2T pipeline introduced the concept of Level One Sum-

maries. Chapter 4 focused on the generation and refinement of Level One Summaries. The Level

One Summaries described the spatial relationships that exist between each object tuple in an image.

The GIOU [51] and HOF [40] methods were used to construct Level One Summaries. The GIOU

algorithm provided information regarding the overlap and proximity relationship between object

tuples in an image. The HOF algorithm provided information pertaining to the cardinal direction-

ality relationship between the object tuples in an image. The result of each of these algorithms

were numerical values that were inherently fuzzy. These fuzzy values were defuzzified to obtain

crisp values, and the crisp values for the overlap and spatial relationship were used in order to

construct a Level One Summary for each object tuple in the set of object tuples for an input image.

The Level One Summary results and validation of Chapter 4 provided evidence to answer the first

research question and and support the associated hypothesis (H1) posed in Chapter 1:

RQ1: How can concise and meaningful natural language descriptions (Level One Sum-

maries) of spatial relationships between all object tuples in an image be derived?

H1: Histogram of Forces (HOF) [40] and Generalized Intersection Over Union [51], both rig-

orously validated methods with strong mathematical proofs, will provide concise natural language

descriptions of spatial relationship information between object tuples in a scene.

The resulting output of the Level One Summaries, when viewed as fuzzy variables, were the

proximity, overlap, and spatial relationship values. These fuzzy values were used alongside the

198



object localization results and image meta data generated in Chapter 3 as input to the final phase

of the S2T pipeline.

The final phase of the S2T pipeline introduced the concept of Level Two Summaries. The

evaluations and research detailed in Chapter 5 were focused on the construction and refinement of

Level Two Summaries. Level two Summaries were generated in two domains. The first domain,

the general domain, constructed Level Two Summaries that describe the general interactions of

object tuples in a scene. The second domain, the person domain, generated a refined set of labels

that pertained to interactions between a person and object tuple in an image. For each domain, a

FIS was constructed that was responsible for the generation of Level Two Summaries. These FIS

both took as input the fuzzy values for proximity, overlap and spatial relationships, which were

in essence the information contained in Level One Summaries as well as the object localization

results computed in Chapter 3. One important caveat was that the meta data generated during

the object localization evaluation was also used as input to the computation of the person-domain

Level Two Summaries.

As the general-domain consisted of high-level descriptions of interactions, a simple rule base

was designed for the general-domain FIS and the entire rule base consisted of a handful of

rules, shown in Table 5.25 of Chapter 5. Arguably, the more interesting scene descriptions were

generated by the FIS responsible for constructing person-domain Level Two Summaries. The

person-domain FIS relied on an object hierarchy and a very detailed set of domain specific rules,

shown in completion in Appendix A, that were manually crafted to represent how a person would

interact with each of the objects in the set of possible object classes in the COCO [35] data set.

Construction of the person-domain Level Two FIS highlighted the requirement that in order to
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generate refined labels for a specific domain, domain expert knowledge was required to construct

the rule base. While these evaluations focused on the person - object interaction domain, any

number of domain-specific Level Two Summary rule bases can be constructed given an expert

with enough knowledge about the desired system outputs. The Level Two Summary results and

validation metrics computed for both domains provided evidence to support the second hypothesis

(H2) and answer the second research question asked in Chapter 1:

RQ2: How can the Level One Summaries provide meaningful information to the creation

of informative, high-level, natural language descriptions (Level Two Summaries) of the object

interactions in a scene?

H2: By utilizing a fuzzy inferencing approach in the generation of scene labels, the uncer-

tainty in spatial relationship reasoning can be effectively modeled and incorporated into scene

descriptions generated by the S2T system.

Chapter 5 effectively completed the S2T pipeline construction and finalized the system shown

in the pipeline diagram of Figure 6.1.

The validation outlined in this research was geared toward verification of the S2T system

constructed in Chapters 3 - 5, and was the focus of Chapter 6. During construction of the S2T

system, the COCO 14 [35] data set was used. For this validation, the COCO 17 data set was

used such that images the S2T system had not yet encountered could be processed and inspected.

Unlike the object localization, Level One Summary generation, and Level Two Summary generation

evaluations, which were all implemented as standalone evaluations in order to validate each phase

of the system, the sensitivity analysis validation showed that the pipeline could be implemented in a

streamlined manner. For this validation, the same methodology in the corresponding chapters was
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used to generate the object localization results (Chapter 3), which fed into Level One Summaries

(Chapter 4), which then fed into Level Two Summaries (Chapter 5). This validation also was

designed to be easily shareable so that the code could be transmitted without the need for large

downloads. The sensitivity analysis validation of Chapter 6 provided Level One Summaries and

both general- and person-domain Level Two Summaries for the COCO 17 data set. A detailed

inspection of the generated general- and person-domain Level Two Summaries was performed on

a subset of the entire set of results in order to verify that the system performed at the same standard

as the results generated by the S2T system on the COCO 14 data set.

The results and computed metrics obtained during the sensitivity analysis validation performed

in Chapter 6 provided positive evidence to answer the third research question and support the third

hypothesis (H3) originally stated in Chapter 1:

RQ3: When applying the S2T framework to a data set other than the data set used to

construct the system, will the results be as reliable as the initial data set results?

H3: Since the S2T system was modeled as a fuzzy inferencing system at its core, the rule-base

will be data set agnostic and as such the developed S2T system will be as reliable on an additional

data set as it was on the training data set.

Additionally, the results and computed metrics provided sufficient evidence to support the final

research hypothesis (H4) and answer the fourth research question of Chapter 1:

RQ4: How can the S2T framework developed in this research be used as a mechanism

for applying scene interaction labels that incorporate spatial reasoning information to a

previously unlabeled data set?
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H4: The developed S2T system requires no a priori information regarding scene labels, thus

applying the framework to a previously unlabeled data set will not limit the effectiveness of the

system in regards to generating accurate scene descriptions.

As stated previously, the goal of this research was to construct a S2T system that successfully

incorporated spatial relationship information that provided more accurate information than existing

S2T systems. The evaluations and validations in Chapters 3 - 6 demonstrate that the constructed

S2T system can generate informed scene descriptions which do inherently incorporate spatial

relationship information. Additionally, these labels do provide accurate descriptions of scene

interactions that can not be generated without the inclusion of spatial relationships. Currently, no

S2T models generate such labels, and the only existing data sets that incorporate this information

and provide scene descriptions are those which were manually labeled.

7.1 Research Contributions

As demonstrated in Chapter 4, Level One Summaries provide additional information to image

data sets in the form of spatial reasoning information between object tuples. This research applied

that information to the task of constructing more informative scene descriptions, however these

Level One Summaries themselves can be used as an additional feature of a data set if so desired.

Chapters 5 and 6 demonstrated the ability of the system to be used as a standalone image an-

notation tool. These chapters show that the S2T system incorporates spatial reasoning information

into image annotations, a property not readily available for current image annotation data sets.

Additionally, Chapter 6 showed that the S2T system can be applied to a previously non-annotated

data set with virtually no additional work.
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In addition, Chapter 6 also demonstrated the ability to use the S2T system as an image annotation

tool for labeling training data sets for deep learning applications. Validations performed in Chapter

6 provide a proof of concept of how the S2T system can be used in this manner. As the S2T

system was applied to a previously unseen data set, and generated labels with no required a priori

information, it follows that the S2T system can accomplish the task of image training data set

annotation.

7.2 Future Work

Initial future work will focus on the incorporation of depth information into the S2T system to

alleviate erroneous results. Depth estimation appears to be the primary bottleneck of the current

system and the hypothesis is that incorporating the appropriate depth information will alleviate the

“depth problem” discussed in Section 5.5. Additionally, the incorporation of depth information

also opens the door for applying the system to any three-dimensional data set, a very interesting

problem space. The work by Kaur et al in [29] presents one potential avenue of incorporating

depth information into the current S2T system.

In addition to incorporating depth information, the system can be extended such that n-tuples

as opposed to tuples are processed by the S2T system. Current work, such as the work by Scott et

al. in [56], is a potential method for extending the current system to n-tuple processing.

An additional avenue of future work involves applying the S2T system to a domain other than

the “person domain.” For this work, a subject matter expert from the domain will be necessary to

provide input toward constructing the rule base for the domain. However, applying the S2T system
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in this manner would provide supporting evidence that the system is extensible and can work across

multiple domains with the only leg work involved being the construction of the rule base.

Deep learningmodels are the current hot button topic in the field of computer vision andmachine

learning in general [7], [71], [27], [12], [30], and [13]. Training such models requires a substantial

amount of data. Current computer vision data sets do not contain spatial reasoning information

like the person-domain Level Two Summaries provided by this research. An interesting future

work would include using the S2T system as an image annotation tool, as discussed in Chapter 6,

and determining if enough data can be labeled via the S2T system to determine if state-of-the-art

deep learning techniques could be “taught” to infer spatial reasoning.

Additional work for the S2T system will be focused on streamlining the process such that it

works in real-time. If the S2T system can achieve real-time execution speeds, it can very easily be

applied to video as opposed to still images. As such, future work will also include applying the S2T

system to video sources, with the caveat the system can achieve real-time execution speeds. Lastly,

an ambitious future work, then, is to apply the S2T system to video sources with three-dimensional

information, a very interesting problem space as this involves autonomous vehicles and robotics.

Further additional work will involve exploring the capabilities of using the degree of mem-

bership of the Level Two summaries. As the system currently stands, only the crisp outputs are

used, which results in at least some information loss with regards to object-object interactions. By

using the fuzzy output values of the system, Level Two summaries can be constructed in a manner

that reflects not only the action being performed, but also the confidence the system has in the

associated label. Adding in this functionality would provide more information, specifically the

system’s confidence of the assigned label, to the user.
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7.3 Plan of Publication

Currently, the S2T system is the subject of an International Joint Conference onNeuralNetworks

(IJCNN) conference paper pending acceptance. As this conference is focused heavily on neural

networks, the ability to use the S2T system as a data set annotation tool is the primary focus of the

submitted paper.

Future publications will also center around the completion of the future work listed above.

Primarily, extending the S2T system to three-dimensions and application of the S2T system to

video sources will each be the topic of future publications.
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APPENDIX A

PERSON DOMAIN FUZZY RULE BASE
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This appendix contains the rule base used to construct the person domain level two summaries

of Chapter 5. The rules are separated by category for ease of readability. While the SKFuzzy [69]

library requires enumeration of all negative values, only the positive interaction rules are shown in

this appendix for brevity.

A.1 Person - Animal Rules
• IF pet AND very close OR close AND above THEN petting

• IF ridden animal AND very close AND above THEN riding

• IF large animal AND very close OR close THEN interacting

A.2 Person - Appliance Rules
• IF overlap AND very close OR close THEN using

• IF no overlap AND very close THEN using

A.3 Person - Clothing Rules
• IF worn clothing AND overlap AND very close OR close THEN wearing

• IF carried clothing AND overlap AND very close OR close THEN carrying

A.4 Person - Electronics Rules
• IF tv AND overlap AND very close OR close OR medium THEN watching

• IF tv AND no overlap AND very close OR close THEN watching

• IF cell phone AND overlap AND very close THEN talking on

• IF other device AND very close OR close THEN using

A.5 Person - Food Rules
• IF utensil AND overlap AND very close OR close THEN using

• IF beverage AND overlap AND very close THEN drinking

• IF food AND overlap And very close OR close THEN eating
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A.6 Person - Furniture Rules
• IF couch AND overlap AND very close THEN sitting on

• IF bed AND overlap AND very close THEN laying on

• IF chair AND overlap AND very close AND above THEN sitting in

• IF other furniture AND overlap AND very close OR close THEN sitting at

• IF decoration AND overlap AND very close THEN interacting with

A.7 Person - Household Item Rules
• IF overlap AND very close THEN interacting

A.8 Person - Sports Rules
• IF ridden board AND overlap AND very close OR close OR medium AND above THEN
riding

• IF ridden board AND no overlap AND very close OR close AND above THEN riding

• IF baseball bat AND very close OR close AND below THEN playing baseball

• IF tennis racket AND overlap AND very close OR close THEN playing tennis

• IF frisbee AND very close OR close OR medium THEN throwing frisbee

• IF kite AND no overlap AND medium OR far OR very far THEN flying kite

• IF sports ball IS soccer ball AND very close OR close OR medium THEN playing soccer

• IF sports ball IS baseball AND overlap AND very close OR close ORmedium THEN playing
baseball

• IF sports ball IS tennis ball AND very close OR close AND not below THEN playing tennis

A.9 Person - Urban Rules
• IF bench AND overlap AND very close OR close AND above THEN sitting

• IF traffic light AND no overlap AND medium OR far OR very far AND below THEN at
intersection

• IF parking meter AND overlap AND very close THEN using

• IF other urban object AND overlap AND very close OR close THEN interacting
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A.10 Person - Vehicle Rules
• IF cycle AND overlap AND very close AND above THEN riding

• IF passenger vehicle AND overlap AND very close THEN riding in

• IF personal vehicle AND overlap AND very close AND not below THEN driving
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