

70 J. ICT Res. Appl., Vol. 16, No. 1, 2022, 70-87

Received August 13th, 2021, Revised November 7th, 2021, Accepted for publication March 3rd, 2022.
Copyright © 2022 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2022.16.1.5

Automatically Detect Software Security Vulnerabilities
Based on Natural Language Processing Techniques and

Machine Learning Algorithms

Cho Do Xuan1, *, Vu Ngoc Son2 & Duong Duc2

1Faculty of Information Assurance, Posts and Telecommunications Institute of
Technology, Hanoi, Vietnam

2Information Assurance Departement, FPT University, Hanoi, Vietnam
*E-mail: chodx@ptit.edu.vn

Abstract. Nowadays, software vulnerabilities pose a serious problem, because
cyber-attackers often find ways to attack a system by exploiting software
vulnerabilities. Detecting software vulnerabilities can be done using two main
methods: i) signature-based detection, i.e. methods based on a list of known
security vulnerabilities as a basis for contrasting and comparing; ii) behavior
analysis-based detection using classification algorithms, i.e., methods based on
analyzing the software code. In order to improve the ability to accurately detect
software security vulnerabilities, this study proposes a new approach based on a
technique of analyzing and standardizing software code and the random forest
(RF) classification algorithm. The novelty and advantages of our proposed method
are that to determine abnormal behavior of functions in the software, instead of
trying to define behaviors of functions, this study uses the Word2vec natural
language processing model to normalize and extract features of functions. Finally,
to detect security vulnerabilities in the functions, this study proposes to use a
popular and effective supervised machine learning algorithm.

Keywords: machine learning algorithms; natural language processing techniques;
software security vulnerability detection; software vulnerabilities; source code features.

1 Introduction

1.1 The Problem

According to statistics of Common Vulnerabilities and Exposures (CVE) [1,2],
in 2020 and the first six months of 2021, the world saw a record number of
exploited software security vulnerabilities. Through those statistics, one can see
the threats computer users are facing. The studies [3-5] defined common software
vulnerabilities such as pointer vulnerability, buffer overflow, etc. The studies [3-
7] proposed several approaches for detecting security vulnerabilities, including
vulnerability analysis on architecture level; static vulnerability analysis of source
code and executable programs; architecture analysis based on graph theory; and
information flow control. The two main approaches to classifying security

Detect Software Security Vulnerabilities Based on NLP and MLA 71

vulnerabilities are detecting based on known CVEs and using behavior analysis
techniques [6- 8]. Ref. [6] pointed out that behavior-based detection approaches
have been proven highly effective in detecting known software vulnerabilities.
Regarding security vulnerability detection based on behavior analysis methods,
there are two approaches, those based on machine learning algorithms and those
based on deep learning models [3,6]. Ref. [3] presents a number of difficulties
and challenges for software security vulnerability detection based on machine
learning and deep learning algorithms. The main difficulty is the problem of
defining abnormal behavior indicating software vulnerabilities. In the real world,
it is difficult to calculate, synthesize and extract abnormal behaviors indicating
vulnerabilities based on a single definition because software is designed based on
different programming languages and because the characteristics of the
vulnerabilities are different. In other words, no abnormal behavior is the same for
all vulnerabilities.

To solve this problem, this paper proposes a new approach for the task of
detecting software security vulnerabilities. This study used the Word2vec model
to normalize and aggregate data, and the RF algorithm to detect security
vulnerabilities. Instead of trying to extract or define abnormal behaviors
indicating vulnerabilities, this proposal seeks ways to normalize and aggregate
data and then taking them as the basis for analyzing abnormal behaviors.

This paper is organized as follows. After the introduction in Section 1, Section 2
lists some related studies on the problem of detecting security vulnerabilities.
Section 3 presents the architecture of the proposed model as well as ways to
analyze and evaluate security vulnerabilities. Section 4 gives experimental results
to evaluate the effectiveness of the proposed method. Finally, the conclusion
describes and re-evaluates the results and provides future research directions.

1.2 Contributions of Paper

The practical and scientific significance of our paper includes:

1. A novel security vulnerability detection model is proposed that is based on
embedding techniques and the RF machine learning algorithm. Specifically,
instead of trying to extract anomalous behavior indicating software
vulnerabilities, this study developed a way to analyze and normalize a
program or software and then use a classification algorithm to determine
whether the program or software is safe or contains vulnerabilities.

2. The Word2vec algorithm is used for data normalization. As described above,
the program or software is preprocessed to look for abnormal signs and
behaviors indicating software vulnerabilities. The originality of our proposal
is that instead of trying to extract abnormal behaviors, an embedding
technique is used to aggregate and normalize the data. This is a new

72 Cho Do Xuan, et al.

approach that has only been applied and evaluated by a small number of
studies in different contexts.

2 Related Works

Tingyang Gu, et al. [4] have proposed a method for detecting software
vulnerabilities based on information about the software’s flow. Specifically, the
authors proposed several different steps. Firstly, building the definition of
information flow vulnerability in software architecture with corresponding
security policies. Then, propose a method for constructing service invocation
diagrams based on graph theory to depict the information flow. Then use an
algorithm for vulnerability determination to identify architecture-level
vulnerabilities. Finally, conduct experiments to verify the effectiveness and
feasibility of the proposed methods. Refs. [5,6] present an approach for software
vulnerability detection based on a deep learning method. Ref. [7] introduced
Bin2vec using Graph Convolutional Networks (GCN) and computational
program graphs in order to learn a high-dimensional representation of binary
executable programs. Similar to this approach, the authors in Ref. [8] proposed
to use a GCN deep learning graph network. In particular, signatures of
vulnerabilities in source code learn relationships between nodes and edges from
their graph representation. Then, a gated graph neural network is trained by using
several such graphs to automatically extract templates differentiating the graph
of a vulnerable sample from a normal one. Jacob, et al. [9] proposed a method
for automatically finding software security vulnerabilities based on machine
learning methods. Some proposed algorithms and methods for C/C++
vulnerability detection used a convolutional neural network (CNN), bag-of-
words, etc. Ref. [10] proposed the idea of using deep learning to detect and
modify software security vulnerabilities. Refs. [11-14] proposed methods to
detect software security vulnerabilities based on architecture level. Refs. [16-22]
proposed approaches for detecting security vulnerabilities based on static
vulnerability analysis of source code and executable programs. Refs. [27-31]
proposed methods combining deep learning with graph analysis for the task of
detecting software security vulnerabilities using C, C++, Java, etc.

3 The Method for Detecting Vulnerabilities

3.1 The Proposed Model

Figure 1 shows the software vulnerability detection model architecture. From
Figure 1 it can be seen that to detect security vulnerabilities in software three
main tasks must be performed:

Detect Software Security Vulnerabilities Based on NLP and MLA 73

1. Split functions. In this step, the software with detailed code is normalized to
separate each function of the software. The implementation of this process
is presented in detail in the next sub-section.

2. Normalize functions. In this step, after the functions have been successfully
split, the proposed method analyzes and normalizes them to homogenize the
length of each function.

3. Evaluate functions. This is the process of evaluating and concluding security
vulnerabilities for each function. To accomplish this purpose, this study
proposes to use machine learning and deep learning algorithms.

Figure 1 The architecture of the security vulnerability detection model.

3.2 Splitting Functions

To put the data into machine learning models, the data set must be in the numeric
vector format with a certain length. This study used the SySeVR framework [23]
to parse C/C++ programs into individual functions. SySeVR analyzes C/C++
programs according to the model shown in Figure 2. Example of splitting
functions from a C/C++ program is shown in Figure 3.

To get the set of semantic features of vulnerabilities, this study leveraged rules
on C/C++ software vulnerabilities of the third-party software Checkmarx instead
of using open-source software (open-source software for vulnerability detection
such as RATS or Flatfinder usually only have a simple analyzer and an
incomplete rule set). Vulnerabilities can be divided into three main categories:

1. Array usage vulnerabilities. These are array-related vulnerabilities (e.g.,
improper use of accessing array elements, array address arithmetic, address
transfer as a function parameter).

Software code

Split functions

Normalize functions

Training

Trained model

Software code

Split functions

Normalize functions

Classify

Vulnerability type Normal

Training Classification

74 Cho Do Xuan, et al.

2. Pointer usage vulnerabilities. These are pointer-related vulnerabilities (e.g.,
improper use of pointer arithmetic, referencing, address transfer as a
function parameter).

Arithmetic expression vulnerabilities. This vulnerability type is usually related to
memory. When the input data or operations in the program generate a big number,
it may exceed the memory area that stores it.

Figure 2 Data processing process.

Figure 3 Example of splitting functions from a C/C++ program.

Detect Software Security Vulnerabilities Based on NLP and MLA 75

3.3 Data Normalization

Based on the functions analyzed in the above section, this study will normalize
these functions to put them into the classification model. To accomplish this task,
this study proposes to use the Word2vec model. The Word2vec model was
created in 2013 by Mikolov [24]. The dimension of Word2vec is much smaller
than that of one-hot encoding. The dimension is N x D, where N is the number of
documents and D is the dimensionality of word embedding. Word2vec has two
models, skip-gram and continuous bag-of-words (CBOW). This paper only used
the skip-gram model to analyze and normalize the functions. In the skip-gram
model, each word is represented by two d-dimensional vectors to calculate the
conditional probability. Suppose the index of a word in a dictionary is i, and the
word’s vector is represented as vi ∈ ℝ if the word is the target word (the center
word), and 𝑢 ∈ ℝ if the word is a context word. Let c and o be the indexes of
the target word wc and the context word wo in the dictionary, respectively. The
conditional probability of generating the context word for a given target word is
calculated by the softmax operation on the dot product of the vectors

 𝑃(𝑤 | 𝑤) =
()

∑ () ∈
 (1)

where, the index set in the dictionary is V = {0,1,…,|V|−1}. Suppose, in a
document with length T, the word at time step t is denoted as w(t). Assume that
the context words are generated independently of the given target word. When
the context window size is m, the likelihood of the skip-gram model is the joint
probability of generating all context words with any given target word.

 ∏ ∏ 𝑃(𝑤()|𝑤()) , (2)

Here, any time step less than 1 or greater than T can be ignored. In the training
phase of the skip-gram model, the model parameters are the target word vector
and the context word vector for each individual word. During the training process,
these model parameters are learned by maximizing the likelihood function, also
known as maximum likelihood estimation. This is similar to minimizing the
following loss function:

 − ∑ ∑ log𝑃(𝑤()|𝑤()), (3)

Using stochastic gradient descent, in each loop, choose a smaller subsequence by
random sampling to compute the loss for that subsequence and then compute the
gradient to update the model parameters. The key point of the gradient calculation
is to compute the gradient of the logarithm of conditional probability for the
center word vector and the context word vector. First, by definition, we have:

 log𝑃(𝑤 |𝑤) = u v − log (∑ exp (u v)∈) (4)

Through the derivative, we get the gradient value vc from the above formula.

76 Cho Do Xuan, et al.

𝜕𝑙𝑜𝑔𝑃(𝑤 |𝑤)

𝜕v
= 𝑢 −

∑ exp u v∈ u

∑ exp u v∈

= 𝑢
exp u v

∑ exp u v∈

u

∈

= 𝑢 − 𝑃(𝑤 |𝑤)u

(5)

The calculation gives the conditional probability for every word in the dictionary
with a given target word wc. Then, use that method again to find the gradients for
other word vectors. After training, for any word with index i in the dictionary, get
a set of two word vectors, vi and ui. In this paper, the target word vector in the
skip-gram model is used as a vector representing a word.

3.4 Security Vulnerability Detection Method

Thus, after the functions have been extracted and normalized, we put them in the
classification model to identify vulnerabilities in each function. To achieve this
purpose, this paper proposes to use the RF machine learning algorithm. The RF
algorithm is currently one of the best supervised classification algorithms. This
algorithm uses an ensemble of classifiers, usually decision trees, to make the final
prediction. The theoretical foundation of this algorithm is based on Jensen’s
inequality [25]. Jensen’s inequality applied to the classification problems pointed
out that the combination of multiple models may produce a smaller error rate than
each individual model.

4 Experiments and Evaluation

4.1 Experimental Dataset

For the experimental dataset, the SARD dataset was used, which consists of
15,591 C/C++ programs [26]. After splitting the C/C++ programs in the dataset
into functions, the dataset consisted of 267,227 files containing function data.
Here, we used the SySeVR toolkit to check for vulnerabilities that appear in the
dataset. Based on the results, the dataset was divided into three main vulnerability
types. The details of the dataset are shown in Table 1.

Table 1 Type and number of vulnerabilities.

Vulnerability type
Contain

vulnerabilities
Normal Total

Array Usage 31,303 10,926 42,229
Pointer Usage 28,391 263,400 291,791

Arithmetic Expression 3,475 18,679 22,154
Total 64,169 293,005 356,174

Detect Software Security Vulnerabilities Based on NLP and MLA 77

This study used an algorithm to convert words into vectors to train the machine
learning models. However, after conversion, the lengths of the functions may not
be the same, while the datasets need to have a fixed length when input into
machine learning models. Here, the default length in the dataset was the length
of the longest vector, depending on each vulnerability dataset. Shorter vectors
were appended with zeros at the end.

4.2 Experimental Scenario

During the experimental process, we used three separate datasets with 75% of the
data for training with cross validation (cv = 5) and 25% of the data for testing the
accuracy of the model.

To evaluate the effectiveness of the proposed method, we conducted four
evaluation scenarios:

1. Scenario 1: Evaluate the effectiveness of the skip-gram model by test-
running the BOW model. This scenario replaces skip-gram with BOW to
compare the effectiveness of BOW with that of skip-gram.

2. Scenario 2: Evaluate the effectiveness of the RF machine learning algorithm
by replacing RF with other classification algorithms. In this scenario, we
experimented with some other classification machine learning algorithms,
i.e., Perceptron, Bayes Naive, and MLP.

3. Scenario 3: Experiment to evaluate the effectiveness of the proposed model
consisting of the skip-gram model and the RF algorithm. This is the
experimental scenario for our proposed model.

4. Scenario 4: Compare with other studies. In this scenario, we compared our
proposed model with the CNN model proposed in Ref. [9].

4.3 Evaluation Criteria

1. Accuracy: The ratio between the number of samples classified correctly and
total number of samples:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where, TP = true positives: the number of software security vulnerabilities
classified correctly; FN = false negatives: the number of software security
vulnerabilities classified as normal; TN = true negatives: the number of
normal packets classified correctly; FP = false positives: the number of
normal packets classified as software security vulnerabilities.

78 Cho Do Xuan, et al.

2. Precision: The ratio between the true positive value and the total number of
samples classified as positive. The higher the value of precision, the more
accurate the software vulnerability detection.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

3. Recall: The ratio between the true positive value and the total real software
security vulnerabilities. The higher the value of recall, the lower rate of
missing positive samples.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

4. F1-score: The harmonic mean of precision and recall. The higher the F1
score, the better the model.

 2
1

precision recall
F score

precision recall

4.4 Experimental Results

4.4.1 Experimental Results of Scenario 1

In this scenario, we replaced the skip-gram model with the BOW model. Table 2
shows the results of processing and normalizing functions by the BOW model
and classification by the RF algorithm.

Table 2 Experimental results using the model combining BOW and RF.

Vulnerability type
Evaluation

Accuracy Precision Recall F1_score
Pointer vulnerability 84 69 84 72
Array vulnerability 81 76 75 75

Arithmetic vulnerability 89 81 80 80

The experimental results in Table 2 show that the BOW model did quite well in
its embedding role by supporting data normalization as a premise for the RF
algorithm to perform classification. Based on these experimental results, it can be
seen that the pointer vulnerabilities were classified most accurately, second were
arithmetic vulnerabilities and last were array vulnerabilities. However, in the
opposite direction, regarding normal data detection, the algorithm gave the best
classification results for the arithmetic type, then the array type, and finally the
pointer type. This experimental result showed that the combination of BOW and
RF models had good and acceptable classification results.

Detect Software Security Vulnerabilities Based on NLP and MLA 79

4.4.2 Experimental Results of Scenario 2

In this scenario, we replaced the RF classification algorithm with other
classification algorithms, i.e., Perceptron, Bayes Naive, and MLP. Tables 3 to 5
show the experimental results for these algorithms.

Table 3 Experimental results using the Naive Bayes algorithm.

Vulnerability type
Evaluation

Accuracy Precision Recall F1_score
Pointer vulnerability 55 56 66 48
Array vulnerability 51 57 59 51

Arithmetic vulnerability 71 56 58 56

Table 4 Experimental results using the Perceptron algorithm.

Vulnerability type
Evaluation

Accuracy Precision Recall F1_score
Array vulnerability 79 74 76 74

Arithmetic vulnerability 84 73 83 76
Pointer vulnerability 86 68 76 71

Table 5 Experimental results using the MLP model.

Vulnerability type
Evaluation

Accuracy Precision Recall F1_score
Array vulnerability 82 77 76 76

Arithmetic vulnerability 90 84 79 81
Pointer vulnerability 84 69 86 73

Based on the experimental results in Tables 3 to 5, it can be seen that the MLP
model gave relatively stable and good classification results on individual
vulnerabilities. Specifically, regarding detecting arithmetic vulnerabilities, the
MLP model had classification results with Accuracy, Precision, Recall, and
F1_score measures of 90%, 84%, 79%, and 81%, respectively. Likewise, for
pointer vulnerabilities, the measures were 84%, 69%, 86%, and 73%,
respectively. These classification results were higher than those of Naive Bayes
and Perceptron. Especially the Naive Bayes algorithm performed poorly.
Comparing the classification results in Tables 5 and 2, it can be seen that there
was a small difference between the classification results of the MLP model and
the RF algorithm. Specifically for some vulnerabilities, the RF algorithm in
Scenario 1 gave better results than the MLP model in Scenario 2. In contrast, the
MLP model had better results for arithmetic vulnerability classification than in
Scenario 1.

80 Cho Do Xuan, et al.

4.4.3 Experimental Results of Scenario 3

This study fine-tuned some key parameters of the RF algorithm: max features,
n_estimators, and 24 min_sample_leaf. By default, the max_feature parameter is
set to auto, i.e., the square root of the total number of objects. The n_estimators
parameter is the number of created trees with a default of 100. The
min_sample_leaf parameter represents leaves of the tree with a default of 1. This
means that a decision branch is created until no more decisions exist; the end
node is the leaf node. The specific datasets are then split according to each
vulnerability. The summary results are presented in detail in Table 6.

The experimental results in Table 4 show that the RF algorithm gave
classification results at an acceptable accuracy level. Accordingly, with the
pointer vulnerability type, the RF algorithm had relatively good results. These
results had a great difference when changing the parameters of the decision tree
in the algorithm. Specifically, when increasing the number of decision trees, the
accuracy of the classification process also increased. The algorithm had the
lowest efficiency on all measures when the number of decision trees was 20, and
the highest efficiency when the number of decision trees was 100 and 1000.
Similarly, for array usage vulnerabilities, the RF algorithm also gave relatively
high efficiency, and these results also had a large difference between the best
classification model and the worst classification model.

Table 6 Experimental results of detecting security vulnerabilities using skip-
gram model and RF algorithm.

Vulnerability
type

N_estimator
Evaluation

Accuracy Precision Recall F1_score

Pointer usage
vulnerability

20 79.02 88.82 45.19 59.97
30 89.07 67.78 50.33 58.02
50 88.16 78.95 48.35 60.12

100 92.25 80.89 84.59 82.21
1000 92.47 81.10 84.123 82.59

Array usage
vulnerability

30 76.07 60.08 77.02 75.00
50 80.86 79.08 77.25 76.25

100 84.20 80.05 78.88 79.99
1000 84.38 80.08 79.99 80.8

Arithmetic
expression

vulnerability

30 90.56 85.26 78.63 81.62
50 90.49 85.05 78.81 81.63

100 90.05 85.10 79.02 80.35
1000 90.61 85.08 78.00 82.20

In particular, the difference between the best model and the worst model was up
to 8% to 9%, and when the number of decision trees was large enough, the
accuracy of the model did not change much. This shows that the algorithm
reached stability and balance at a number of decision trees of 100. For arithmetic
expression vulnerabilities, there was a slight difference, i.e., the difference in the

Detect Software Security Vulnerabilities Based on NLP and MLA 81

classification results was not too large when changing the number of trees.
Specifically, with the number of decision trees from 30 to 1000, the difference
was only about 0.5%. This shows that the arithmetic expression vulnerability
dataset had relatively good and balance, so changing the number of decision trees
did not affect the accuracy of the algorithm much.

Comparing the experimental results in Scenarios 1, 2, and 3, it can be seen that
our proposed model had superior performance compared to the other models and
algorithms. Next, we conducted experiments for security vulnerability detection
to evaluate the effectiveness of the classification model. Figure 4 shows the
confusion matrix results of the vulnerability detection process when using the RF
algorithm with the optimal parameters.

(a) (b)

(c)

Figure 4 Confusion matrix results, where a is the pointer vulnerability, b is the
array vulnerability, c is the arithmetic vulnerability.

82 Cho Do Xuan, et al.

Figure 4 shows some results of the testing process. For the pointer vulnerability
type, the RF algorithm correctly predicted 3,927 functions containing
vulnerabilities, incorrectly predicted 2,131 normal functions as functions
containing vulnerabilities, and wrongly predicted 1,420 functions containing
vulnerabilities.

Similarly, for array usage vulnerabilities, the RF algorithm correctly predicted
1,748 functions containing vulnerabilities, incorrectly predicted 650 normal
functions, and wrongly predicted 904 functions containing vulnerabilities. With
the test dataset of arithmetic expression vulnerabilities, the RF algorithm
correctly predicted 616 functions containing vulnerabilities, incorrectly predicted
175 normal functions, and wrongly predicted 419 functions containing
vulnerabilities. The algorithm worked best with parameter n_estimator at 1000.

4.4.4 Experimental Results of Scenario 4

In this scenario, we conducted the experiments presented in Ref. [9] to evaluate
the proposed model. Table 7 below describes the experimental results of this
scenario. Table 7 shows the results of the vulnerability detection process using
the CNN model.

Table 7 Experimental results of detecting security vulnerabilities using CNN [9].

Vulnerability type
Evaluation

Accuracy Precision Recall F1_score
Pointer usage vulnerability 84 69 84 72
Array usage vulnerability 80 74 77 76

Arithmetic expression vulnerability 90 84 75 78

From Table 7, it can be seen that the CNN model had a relatively good and
uniform effectivity on all security vulnerabilities. Especially for pointer usage
vulnerabilities and array usage vulnerabilities, the CNN model detected
vulnerabilities more accurately than normal functions. The reason is that the CNN
network, with the support of hidden layers, extracts some features of abnormal
functions, thus bringing high efficiency in the classification process. Figure 5 lists
the results of the confusion matrix of the CNN model.

Detect Software Security Vulnerabilities Based on NLP and MLA 83

(a) (b) (c)

Figure 5 Confusion matrix results, where a is pointer vulnerability, b is array
vulnerability, c is arithmetic vulnerability.

Based on the experimental results of the confusion matrix in Figure 5, it can be
seen that:

1. With a dataset of 47,205 different samples containing pointer vulnerabilities,
the CNN model gave the following classification results:

a. 39,614 correctly labeled samples: 35,154 samples with label 1; 4,460
samples with label 0.

b. 7,591 incorrectly labeled samples: 6,704 samples were mislabeled from
0 to 1; 887 samples were mislabeled from 1 to 0

2. With a dataset of 6,637 different samples containing array vulnerabilities,
there were:

a. 5,300 correctly labeled samples: 4,048 normal samples; 1,252 attack
samples.

b. 1,337 incorrectly labeled samples: 835 samples were mislabeled from
normal to attack; 502 samples were mislabeled from attack to normal.

3. With a dataset of 4,218 different samples containing arithmetic
vulnerabilities, the confusion matrix results were:

a. 3,787 correctly labeled samples: 3,437 normal samples; 350 attack
samples.

b. 431 incorrectly labeled samples: 91 samples were mislabeled from
normal to attack; 340 samples were mislabeled from attack to normal.

4.5 Discussion

4.5.1. Comments on the Results

Based on the experimental results in Scenarios 1, 2, 3, 4, it can be seen that the
combination of the skip-gram model with the RF algorithm gave better results
than the other classification algorithms in the task of detecting software security
vulnerabilities. For array usage vulnerabilities, the RF algorithm had an Accuracy
measure of 84.38%, higher than 2.38% with the MLP model and 4.38% with the

84 Cho Do Xuan, et al.

CNN model [9]. Likewise, the Recall measure when using the RF algorithm was
also higher than with the other algorithms (4% higher than that of MLP and 3%
higher than that of CNN). For vulnerabilities related to arithmetic expressions,
RF, CNN, MLP all had relatively same efficiency, with only 1% to 2% difference.
Finally, for the pointer usage vulnerability type, the RF algorithm continued to
show its superiority, yielding results higher than the other algorithms from 10%
to 12%. However, for accurately detecting pointer vulnerabilities, the RF
algorithm gave results 0.1% worse than the CNN model and 1.9% worse than the
MLP model.

4.5.2. Some Limitations and Directions to Solve

1. Regarding the data

- The problem. The data imbalance problem causes difficulties in the
security vulnerability detection task. Obviously, in reality, to detect
security vulnerabilities, it is necessary to have proposals for selecting and
sampling data reasonably. In this study, the experimental dataset we used
had a disparity of about five times. This disparity is not too big. However,
in reality, it could be from a few hundred to a few thousand times. This
will make the task of detecting security vulnerabilities in the system more
difficult. Therefore, it is necessary to have solutions for such imbalanced
datasets.

- Solving the problem. To solve this task, there are two methods to choose
from: i) using algorithms changing the distribution of the dataset, i.e.,
single methods (NearMiss, Tomek links, SMOTE, etc.) or combined
methods (combining SMOTE with Tomek links; SMOTE with Edited
NearestNeighbour, etc.); ii) using a representation learning model. For
this method, algorithms such as GRU, BGRU, Triplet Loss or Circle Loss
can be applied.

4.5.3. Regarding the feature extraction algorithm:

1. The problem. As described above, the Word2Vec model processes
input strings into vectors. These vectors have different lengths
depending on the input data. To classify these input strings, we need to
normalize them so that they are the same length. In natural language
processing problems, one must find important segments and positions
to choose the length of feature vectors. However, for data chunks in
programming languages (C, C++, Java), such a principle is impossible
to apply.

2. Solving the problem. To solve this, in this research, we analyzed and
evaluated the experimental dataset. During the analysis, we found that
after being analyzed by the Word2Vec model, the length of the feature

Detect Software Security Vulnerabilities Based on NLP and MLA 85

vectors was commonly in the range from 5000 to 5700. However, in
codes going through the Word2Vec model, there were also very short
code segments. Therefore, we normalized the vectors by taking a length
of 5000. Then, the shorter vectors were padded with zeros to reach a
length of 5000 and longer vectors were truncated. The characteristic of
this method is that it unifies the length of the vectors, but this may lead
to the loss of important information in the data. Therefore, we have to
survey and analyze to see the convergence of the dataset to find other
ways to normalize. The results given in this study were selected based
on comparing several models with vectors of different lengths.

5 Conclusion

This paper presented an approach of software security vulnerability detection
based on embedding techniques and the RF classification algorithm. This
proposal yielded good experimental results in the task of classifying known
software vulnerabilities. The RF algorithm gave better performance than the other
classification algorithms. The reason for this is that the experimental dataset in
the algorithm was relatively small and there was not too much difference between
the number of vulnerability data and normal data, in which case machine learning
algorithms often have better results. Besides, based on the experimental results
for four scenarios, it was seen that there was a huge difference in the classification
results.

We think that the difference between the security vulnerabilities leads to different
embedding processes, so there will be differences in the characteristics and
features of the embedding vectors. Therefore, the BOW model did not work as
well as the skip-gram model. In the future, we will continue to research new
approaches to process and normalize the data to obtain important features of
vulnerabilities by using models such as graph embedding. In addition, the
approaches to detecting zero-day vulnerabilities will also be updated in our
subsequent studies.

Acknowledgment

This work was sponsored by the Posts and Telecommunications Institute of
Technology, Vietnam.

References

[1] The State of Open-Source Vulnerabilities 2021, https://www.
whitesourcesoftware.com/resources/research-reports/the-state-of-open-
source-vulnerabilities/, (25 December 2021).

86 Cho Do Xuan, et al.

[2] 2020 Vulnerability and Threat Trends Report,
https://www.skyboxsecurity.com/wp-content/uploads/2020/07/2020-VT_
Trends_Executive_Summary.pdf, (25 December 2021).

[3] Zhidong, S. & Si, C., A Survey of Automatic Software Vulnerability
Detection, Program Repair, and Defect Prediction Techniques, Security
and Communication Networks, 2020. DOI: 10.1155/2020/8858010.

[4] Gu, T., Lu, M., Li, L. & Li, Q., An Approach to Analyze Vulnerability of
Information Flow in Software Architecture, Appl. Sci., 10, 393, 2020. DOI:
10.3390/app10010393.

[5] Lin, G., Wen, S., Han, Q.L., Zhang, J. & Xiang, Y., Software Vulnerability
Detection Using Deep Neural Networks: A Survey, in Proceedings of the
IEEE, 108(10), pp. 1825-1848, 2020. DOI: 10.1109/JPROC.2020.
2993293.

[6] Akimova Elena, N., Alexander Yu Bersenev, Deikov Artem. A., Kobylkin
Konstantin, S. & Konygin Anton, V., A Survey on Software Defect
Prediction Using Deep Learning, Mathematics Basel, 9, 1180, 2021. DOI:
10.3390/math9111180.

[7] Arakelyan, S., Arasteh, S., Hauser, C., Kline, E. & Galstyan, A., Bin2vec:
Learning Representations of Binary Executable Programs for Security
Tasks, Cybersecurity, 4, 26, 2021. DOI: 10.1186/s42400-021-00088-4.

[8] Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J. & Morari, A., Learning to
Map Source Code to Software Vulnerability Using Code-As-A-Graph,
2021. arXiv:2006.08614.

[9] Jacob, A., Automated Software Vulnerability Detection with Machine
Learning, 2018. arXiv:1803.04497.

[10] Chen, Z., Kommrusch, S. & Monperrus, M., Neural Transfer Learning for
Repairing Security Vulnerabilities in C Code, 2021. arXiv:2104.08308v1.

[11] Kazman, R. & Woody, C., Identifying the Architectural Roots of
Vulnerabilities, https://resources.sei.cmu.edu/library/asset-view.cfm?
assetid=451035, (4 February 2016).

[12] Al-Azzani, S. & Bahsoon, R., SecArch: Architecture-level Evaluation and
Testing for Security, in Proceedings of the 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture, 2012.

[13] Karppinen, K., Lindvall, M. & Yonkwa, L., Detecting Security
Vulnerabilities with Software Architecture Analysis Tools, in Proceedings
of the 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, 2008.

[14] Su, J., Xu, T., Wang, Y., Cui, B. & Jiang, L. & Sun, W., Vulnerability
Analysis of Software Structure, Acta Electron, 37, pp. 2404-2408, 2009.

[15] Bo, X., Jiang, J., Luo, X. & Zhang, Y., Simulation and verification of
C4ISR Architecture based on UML&OPN, Syst. Eng. Electron. Technol.,
30, pp. 617-676, 2008.

Detect Software Security Vulnerabilities Based on NLP and MLA 87

[16] Xu, Z., Static Analysis of C Program, Institute of Software Chinese
Academy of Sciences, 2009.

[17] Larochelle, D. & Evans D., Statically Detecting Likely Buffer Overflow
Vulnerabilities, in Proceedings of the SSYM 2001 10th conference on
USENIX Security Symposium, 2001.

[18] Xie, Y., Chou, A. & Engler, D., ARCHER: Using Symbolic, Path-Sensitive
Analysis to Detect Memory Access Errors, in Proceedings of the European
Software Engineering Conference Held Jointly with ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2003.

[19] Zhang, D., Liu, D., Wang, W., Lei, J., Kung, D. & Csallner, C., Testing C
Programs for Vulnerability Using Trace-Based Symbolic Execution and
Satisfiability Analysis, in Proceedings of the International Conference on
Computational Science and Engineering, 2010.

[20] Ganapathy, V., Jha, S., Ch, D., Melski, D. & Vitek, D., Buffer Overrun
Detection using Linear Programming and Static Analysis, in Proceedings
of the 10th ACM Conference on Computer and Communications Security,
pp. 345-354, 2003.

[21] Aiken, A., Introduction to Set Constraint-Based Program Analysis,
Springer, 1999.

[22] Nelson, G., Extended Static Checking for Java, in Proceedings of the
International Conference on Mathematics of Program Construction, pp.
22-33, 2002.

[23] Zhen, Li., SySeVR: A Framework for Using Deep Learning to Detect
Software Vulnerabilities, 2018. arXiv:1807.06756v3.

[24] Tomas, M., Efficient Estimation of Word Representations in Vector Space,
2013. arΧiv:1301.3781.

[25] Breiman, L., Random Forests, Machine Learning, 45(1), pp. 5-32, 2001.
[26] Software Assurance Reference Dataset Project.

https://samate.nist.gov/SARD/, (25 March 2021).
[27] Chakraborty, S., Krishna, R., Ding, Y. & Ray, B., Deep Learning based

Vulnerability Detection: Are We There Yet, in IEEE Transactions on
Software Engineering, 2021. DOI: 10.1109/TSE.2021.3087402.

[28] Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, S. & Jin, H., VulDeeLocator: A Deep
Learning-based Fine-grained Vulnerability Detector, in IEEE
Transactions on Dependable and Secure Computing, 2021. DOI:
10.1109/TDSC.2021.3076142.

[29] Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M. & Jin, H., A Comparative
Study of Deep Learning-Based Vulnerability Detection System, in IEEE
Access, 7, pp. 103184-103197, 2019. DOI: 10.1109/ACCESS.2019.
2930578.

[30] Yu, L., Lu, Y., Shen, Y., Huang, H. & Zhu, K., BEDetector: A Two-
Channel Encoding Method to Detect Vulnerabilities Based on Binary

88 Cho Do Xuan, et al.

Similarity, in IEEE Access, 9, pp. 51631-51645, 2021. DOI:
10.1109/ACCESS.2021.3064687.

[31] Zagane, M., Abdi, M.K. & Alenezi, M., Deep Learning for Software
Vulnerabilities Detection Using Code Metrics, in IEEE Access, 8, pp.
74562-74570, 2020. DOI: 10.1109/ACCESS.2020.2988557.

