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Abstract. Nowadays, software vulnerabilities pose a serious problem, because 
cyber-attackers often find ways to attack a system by exploiting software 
vulnerabilities. Detecting software vulnerabilities can be done using two main 
methods: i) signature-based detection, i.e. methods based on a list of known 
security vulnerabilities as a basis for contrasting and comparing; ii) behavior 
analysis-based detection using classification algorithms, i.e., methods based on 
analyzing the software code. In order to improve the ability to accurately detect 
software security vulnerabilities, this study proposes a new approach based on a 
technique of analyzing and standardizing software code and the random forest 
(RF) classification algorithm. The novelty and advantages of our proposed method 
are that to determine abnormal behavior of functions in the software, instead of 
trying to define behaviors of functions, this study uses the Word2vec natural 
language processing model to normalize and extract features of functions. Finally, 
to detect security vulnerabilities in the functions, this study proposes to use a 
popular and effective supervised machine learning algorithm. 

Keywords: machine learning algorithms; natural language processing techniques; 
software security vulnerability detection; software vulnerabilities; source code features.  

1 Introduction 

1.1 The Problem 

According to statistics of Common Vulnerabilities and Exposures (CVE) [1,2], 
in 2020 and the first six months of 2021, the world saw a record number of 
exploited software security vulnerabilities. Through those statistics, one can see 
the threats computer users are facing. The studies [3-5] defined common software 
vulnerabilities such as pointer vulnerability, buffer overflow, etc. The studies [3-
7] proposed several approaches for detecting security vulnerabilities, including 
vulnerability analysis on architecture level; static vulnerability analysis of source 
code and executable programs; architecture analysis based on graph theory; and 
information flow control. The two main approaches to classifying security 
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vulnerabilities are detecting based on known CVEs and using behavior analysis 
techniques [6- 8]. Ref. [6] pointed out that behavior-based detection approaches 
have been proven highly effective in detecting known software vulnerabilities. 
Regarding security vulnerability detection based on behavior analysis methods, 
there are two approaches, those based on machine learning algorithms and those 
based on deep learning models [3,6]. Ref. [3] presents a number of difficulties 
and challenges for software security vulnerability detection based on machine 
learning and deep learning algorithms. The main difficulty is the problem of 
defining abnormal behavior indicating software vulnerabilities. In the real world, 
it is difficult to calculate, synthesize and extract abnormal behaviors indicating 
vulnerabilities based on a single definition because software is designed based on 
different programming languages and because the characteristics of the 
vulnerabilities are different. In other words, no abnormal behavior is the same for 
all vulnerabilities.  

To solve this problem, this paper proposes a new approach for the task of 
detecting software security vulnerabilities. This study used the Word2vec model 
to normalize and aggregate data, and the RF algorithm to detect security 
vulnerabilities. Instead of trying to extract or define abnormal behaviors 
indicating vulnerabilities, this proposal seeks ways to normalize and aggregate 
data and then taking them as the basis for analyzing abnormal behaviors.  

This paper is organized as follows. After the introduction in Section 1, Section 2 
lists some related studies on the problem of detecting security vulnerabilities. 
Section 3 presents the architecture of the proposed model as well as ways to 
analyze and evaluate security vulnerabilities. Section 4 gives experimental results 
to evaluate the effectiveness of the proposed method. Finally, the conclusion 
describes and re-evaluates the results and provides future research directions. 

1.2 Contributions of Paper 

The practical and scientific significance of our paper includes: 

1. A novel security vulnerability detection model is proposed that is based on 
embedding techniques and the RF machine learning algorithm. Specifically, 
instead of trying to extract anomalous behavior indicating software 
vulnerabilities, this study developed a way to analyze and normalize a 
program or software and then use a classification algorithm to determine 
whether the program or software is safe or contains vulnerabilities. 

2. The Word2vec algorithm is used for data normalization. As described above, 
the program or software is preprocessed to look for abnormal signs and 
behaviors indicating software vulnerabilities. The originality of our proposal 
is that instead of trying to extract abnormal behaviors, an embedding 
technique is used to aggregate and normalize the data. This is a new 
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approach that has only been applied and evaluated by a small number of 
studies in different contexts. 

2 Related Works 

Tingyang Gu, et al. [4] have proposed a method for detecting software 
vulnerabilities based on information about the software’s flow. Specifically, the 
authors proposed several different steps. Firstly, building the definition of 
information flow vulnerability in software architecture with corresponding 
security policies. Then, propose a method for constructing service invocation 
diagrams based on graph theory to depict the information flow. Then use an 
algorithm for vulnerability determination to identify architecture-level 
vulnerabilities. Finally, conduct experiments to verify the effectiveness and 
feasibility of the proposed methods. Refs. [5,6] present an approach for software 
vulnerability detection based on a deep learning method. Ref. [7] introduced 
Bin2vec using Graph Convolutional Networks (GCN) and computational 
program graphs in order to learn a high-dimensional representation of binary 
executable programs. Similar to this approach, the authors in Ref. [8] proposed 
to use a GCN deep learning graph network. In particular, signatures of 
vulnerabilities in source code learn relationships between nodes and edges from 
their graph representation. Then, a gated graph neural network is trained by using 
several such graphs to automatically extract templates differentiating the graph 
of a vulnerable sample from a normal one. Jacob, et al. [9] proposed a method 
for automatically finding software security vulnerabilities based on machine 
learning methods. Some proposed algorithms and methods for C/C++ 
vulnerability detection used a convolutional neural network (CNN), bag-of-
words, etc. Ref. [10] proposed the idea of using deep learning to detect and 
modify software security vulnerabilities. Refs. [11-14] proposed methods to 
detect software security vulnerabilities based on architecture level. Refs. [16-22] 
proposed approaches for detecting security vulnerabilities based on static 
vulnerability analysis of source code and executable programs. Refs. [27-31] 
proposed methods combining deep learning with graph analysis for the task of 
detecting software security vulnerabilities using C, C++, Java, etc. 

3 The Method for Detecting Vulnerabilities 

3.1 The Proposed Model  

Figure 1 shows the software vulnerability detection model architecture. From 
Figure 1 it can be seen that to detect security vulnerabilities in software three 
main tasks must be performed: 
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1. Split functions. In this step, the software with detailed code is normalized to 
separate each function of the software. The implementation of this process 
is presented in detail in the next sub-section. 

2. Normalize functions. In this step, after the functions have been successfully 
split, the proposed method analyzes and normalizes them to homogenize the 
length of each function. 

3. Evaluate functions. This is the process of evaluating and concluding security 
vulnerabilities for each function. To accomplish this purpose, this study 
proposes to use machine learning and deep learning algorithms. 

 

 

Figure 1 The architecture of the security vulnerability detection model. 

3.2 Splitting Functions 

To put the data into machine learning models, the data set must be in the numeric 
vector format with a certain length. This study used the SySeVR framework [23] 
to parse C/C++ programs into individual functions. SySeVR analyzes C/C++ 
programs according to the model shown in Figure 2.  Example of splitting 
functions from a C/C++ program is shown in Figure 3. 

To get the set of semantic features of vulnerabilities, this study leveraged rules 
on C/C++ software vulnerabilities of the third-party software Checkmarx instead 
of using open-source software (open-source software for vulnerability detection 
such as RATS or Flatfinder usually only have a simple analyzer and an 
incomplete rule set). Vulnerabilities can be divided into three main categories: 

1. Array usage vulnerabilities. These are array-related vulnerabilities (e.g., 
improper use of accessing array elements, array address arithmetic, address 
transfer as a function parameter). 
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2. Pointer usage vulnerabilities. These are pointer-related vulnerabilities (e.g., 
improper use of pointer arithmetic, referencing, address transfer as a 
function parameter). 

Arithmetic expression vulnerabilities. This vulnerability type is usually related to 
memory. When the input data or operations in the program generate a big number, 
it may exceed the memory area that stores it. 

 
Figure 2 Data processing process. 

 

Figure 3 Example of splitting functions from a C/C++ program. 
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3.3 Data Normalization  

Based on the functions analyzed in the above section, this study will normalize 
these functions to put them into the classification model. To accomplish this task, 
this study proposes to use the Word2vec model. The Word2vec model was 
created in 2013 by Mikolov [24]. The dimension of Word2vec is much smaller 
than that of one-hot encoding. The dimension is N x D, where N is the number of 
documents and D is the dimensionality of word embedding. Word2vec has two 
models, skip-gram and continuous bag-of-words (CBOW). This paper only used 
the skip-gram model to analyze and normalize the functions. In the skip-gram 
model, each word is represented by two d-dimensional vectors to calculate the 
conditional probability. Suppose the index of a word in a dictionary is i, and the 
word’s vector is represented as vi ∈  ℝ  if the word is the target word (the center 
word), and 𝑢 ∈  ℝ  if the word is a context word. Let c and o be the indexes of 
the target word wc and the context word wo in the dictionary, respectively. The 
conditional probability of generating the context word for a given target word is 
calculated by the softmax operation on the dot product of the vectors 

 𝑃(𝑤  | 𝑤 ) =  
( )

∑  ( ) ∈
                       (1) 

where, the index set in the dictionary is V = {0,1,…,|V|−1}. Suppose, in a 
document with length T, the word at time step t is denoted as w(t). Assume that 
the context words are generated independently of the given target word. When 
the context window size is m, the likelihood of the skip-gram model is the joint 
probability of generating all context words with any given target word. 

 ∏ ∏ 𝑃(𝑤( )|𝑤( )) ,                 (2) 

Here, any time step less than 1 or greater than T can be ignored. In the training 
phase of the skip-gram model, the model parameters are the target word vector 
and the context word vector for each individual word. During the training process, 
these model parameters are learned by maximizing the likelihood function, also 
known as maximum likelihood estimation. This is similar to minimizing the 
following loss function: 

 − ∑ ∑ log𝑃(𝑤( )|𝑤( )),              (3) 

Using stochastic gradient descent, in each loop, choose a smaller subsequence by 
random sampling to compute the loss for that subsequence and then compute the 
gradient to update the model parameters. The key point of the gradient calculation 
is to compute the gradient of the logarithm of conditional probability for the 
center word vector and the context word vector. First, by definition, we have: 

 log𝑃(𝑤 |𝑤 ) = u v − log (∑ exp (u v )∈ )       (4) 

Through the derivative, we get the gradient value vc from the above formula. 
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𝜕𝑙𝑜𝑔𝑃(𝑤 |𝑤 )

𝜕v
= 𝑢 −

∑ exp u v∈ u

∑ exp u v∈

 

= 𝑢
exp u v

∑ exp u v∈

u

∈

 

= 𝑢 − 𝑃(𝑤 |𝑤 )u  

(5) 

The calculation gives the conditional probability for every word in the dictionary 
with a given target word wc. Then, use that method again to find the gradients for 
other word vectors. After training, for any word with index i in the dictionary, get 
a set of two word vectors, vi and ui. In this paper, the target word vector in the 
skip-gram model is used as a vector representing a word. 

3.4 Security Vulnerability Detection Method 

Thus, after the functions have been extracted and normalized, we put them in the 
classification model to identify vulnerabilities in each function. To achieve this 
purpose, this paper proposes to use the RF machine learning algorithm. The RF 
algorithm is currently one of the best supervised classification algorithms. This 
algorithm uses an ensemble of classifiers, usually decision trees, to make the final 
prediction. The theoretical foundation of this algorithm is based on Jensen’s 
inequality [25]. Jensen’s inequality applied to the classification problems pointed 
out that the combination of multiple models may produce a smaller error rate than 
each individual model. 

4 Experiments and Evaluation  

4.1 Experimental Dataset  

For the experimental dataset, the SARD dataset was used, which consists of 
15,591 C/C++ programs [26]. After splitting the C/C++ programs in the dataset 
into functions, the dataset consisted of 267,227 files containing function data. 
Here, we used the SySeVR toolkit to check for vulnerabilities that appear in the 
dataset. Based on the results, the dataset was divided into three main vulnerability 
types. The details of the dataset are shown in Table 1.  

Table 1 Type and number of vulnerabilities. 

Vulnerability type 
Contain 

vulnerabilities 
Normal Total 

Array Usage 31,303 10,926 42,229 
Pointer Usage 28,391 263,400 291,791 

Arithmetic Expression 3,475 18,679 22,154 
Total 64,169 293,005 356,174 
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This study used an algorithm to convert words into vectors to train the machine 
learning models. However, after conversion, the lengths of the functions may not 
be the same, while the datasets need to have a fixed length when input into 
machine learning models. Here, the default length in the dataset was the length 
of the longest vector, depending on each vulnerability dataset. Shorter vectors 
were appended with zeros at the end. 

4.2 Experimental Scenario 

During the experimental process, we used three separate datasets with 75% of the 
data for training with cross validation (cv = 5) and 25% of the data for testing the 
accuracy of the model. 

To evaluate the effectiveness of the proposed method, we conducted four 
evaluation scenarios: 

1. Scenario 1: Evaluate the effectiveness of the skip-gram model by test-
running the BOW model. This scenario replaces skip-gram with BOW to 
compare the effectiveness of BOW with that of skip-gram. 

2. Scenario 2: Evaluate the effectiveness of the RF machine learning algorithm 
by replacing RF with other classification algorithms. In this scenario, we 
experimented with some other classification machine learning algorithms, 
i.e., Perceptron, Bayes Naive, and MLP. 

3. Scenario 3: Experiment to evaluate the effectiveness of the proposed model 
consisting of the skip-gram model and the RF algorithm. This is the 
experimental scenario for our proposed model. 

4. Scenario 4: Compare with other studies. In this scenario, we compared our 
proposed model with the CNN model proposed in Ref. [9]. 

4.3 Evaluation Criteria 

1. Accuracy: The ratio between the number of samples classified correctly and 
total number of samples: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where, TP = true positives: the number of software security vulnerabilities 
classified correctly; FN = false negatives: the number of software security 
vulnerabilities classified as normal; TN = true negatives: the number of 
normal packets classified correctly; FP = false positives: the number of 
normal packets classified as software security vulnerabilities. 
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2. Precision: The ratio between the true positive value and the total number of 
samples classified as positive. The higher the value of precision, the more 
accurate the software vulnerability detection.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3. Recall: The ratio between the true positive value and the total real software 
security vulnerabilities. The higher the value of recall, the lower rate of 
missing positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4. F1-score: The harmonic mean of precision and recall. The higher the F1 
score, the better the model. 

 2
1

precision recall
F score

precision recall

 
 


 

4.4 Experimental Results 

4.4.1 Experimental Results of Scenario 1  

In this scenario, we replaced the skip-gram model with the BOW model. Table 2 
shows the results of processing and normalizing functions by the BOW model 
and classification by the RF algorithm. 

Table 2 Experimental results using the model combining BOW and RF. 

Vulnerability type 
Evaluation 

Accuracy Precision Recall F1_score 
Pointer vulnerability 84 69 84 72 
Array vulnerability 81 76 75 75 

Arithmetic vulnerability 89 81 80 80 

The experimental results in Table 2 show that the BOW model did quite well in 
its embedding role by supporting data normalization as a premise for the RF 
algorithm to perform classification. Based on these experimental results, it can be 
seen that the pointer vulnerabilities were classified most accurately, second were 
arithmetic vulnerabilities and last were array vulnerabilities. However, in the 
opposite direction, regarding normal data detection, the algorithm gave the best 
classification results for the arithmetic type, then the array type, and finally the 
pointer type. This experimental result showed that the combination of BOW and 
RF models had good and acceptable classification results. 
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4.4.2 Experimental Results of Scenario 2 

In this scenario, we replaced the RF classification algorithm with other 
classification algorithms, i.e., Perceptron, Bayes Naive, and MLP. Tables 3 to 5 
show the experimental results for these algorithms. 

Table 3 Experimental results using the Naive Bayes algorithm. 

Vulnerability type 
Evaluation 

Accuracy Precision Recall F1_score 
Pointer vulnerability 55 56 66 48 
Array vulnerability 51 57 59 51 

Arithmetic vulnerability 71 56 58 56 

Table 4 Experimental results using the Perceptron algorithm. 

Vulnerability type 
Evaluation 

Accuracy Precision Recall F1_score 
Array vulnerability 79 74 76 74 

Arithmetic vulnerability 84 73 83 76 
Pointer vulnerability 86 68 76 71 

Table 5 Experimental results using the MLP model. 

Vulnerability type 
Evaluation 

Accuracy Precision Recall F1_score 
Array vulnerability 82 77 76 76 

Arithmetic vulnerability 90 84 79 81 
Pointer vulnerability 84 69 86 73 

Based on the experimental results in Tables 3 to 5, it can be seen that the MLP 
model gave relatively stable and good classification results on individual 
vulnerabilities. Specifically, regarding detecting arithmetic vulnerabilities, the 
MLP model had classification results with Accuracy, Precision, Recall, and 
F1_score measures of 90%, 84%, 79%, and 81%, respectively. Likewise, for 
pointer vulnerabilities, the measures were 84%, 69%, 86%, and 73%, 
respectively. These classification results were higher than those of Naive Bayes 
and Perceptron. Especially the Naive Bayes algorithm performed poorly. 
Comparing the classification results in Tables 5 and 2, it can be seen that there 
was a small difference between the classification results of the MLP model and 
the RF algorithm. Specifically for some vulnerabilities, the RF algorithm in 
Scenario 1 gave better results than the MLP model in Scenario 2. In contrast, the 
MLP model had better results for arithmetic vulnerability classification than in 
Scenario 1.   
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4.4.3 Experimental Results of Scenario 3  

This study fine-tuned some key parameters of the RF algorithm: max features, 
n_estimators, and 24 min_sample_leaf. By default, the max_feature parameter is 
set to auto, i.e., the square root of the total number of objects. The n_estimators 
parameter is the number of created trees with a default of 100. The 
min_sample_leaf parameter represents leaves of the tree with a default of 1. This 
means that a decision branch is created until no more decisions exist; the end 
node is the leaf node. The specific datasets are then split according to each 
vulnerability. The summary results are presented in detail in Table 6. 

The experimental results in Table 4 show that the RF algorithm gave 
classification results at an acceptable accuracy level. Accordingly, with the 
pointer vulnerability type, the RF algorithm had relatively good results. These 
results had a great difference when changing the parameters of the decision tree 
in the algorithm. Specifically, when increasing the number of decision trees, the 
accuracy of the classification process also increased. The algorithm had the 
lowest efficiency on all measures when the number of decision trees was 20, and 
the highest efficiency when the number of decision trees was 100 and 1000. 
Similarly, for array usage vulnerabilities, the RF algorithm also gave relatively 
high efficiency, and these results also had a large difference between the best 
classification model and the worst classification model.  

Table 6 Experimental results of detecting security vulnerabilities using skip-
gram model and RF algorithm. 

Vulnerability 
type 

N_estimator 
Evaluation 

Accuracy Precision Recall F1_score 

Pointer usage 
vulnerability 

20 79.02 88.82 45.19 59.97 
30 89.07 67.78 50.33 58.02 
50 88.16 78.95 48.35 60.12 

100 92.25 80.89 84.59 82.21 
1000 92.47 81.10 84.123 82.59 

Array usage 
vulnerability 

 

30 76.07 60.08 77.02 75.00 
50 80.86 79.08 77.25 76.25 

100 84.20 80.05 78.88 79.99 
1000 84.38 80.08 79.99 80.8 

Arithmetic 
expression 

vulnerability 

30 90.56 85.26 78.63 81.62 
50 90.49 85.05 78.81 81.63 

100 90.05 85.10 79.02 80.35 
1000 90.61 85.08 78.00 82.20 

In particular, the difference between the best model and the worst model was up 
to 8% to 9%, and when the number of decision trees was large enough, the 
accuracy of the model did not change much. This shows that the algorithm 
reached stability and balance at a number of decision trees of 100. For arithmetic 
expression vulnerabilities, there was a slight difference, i.e., the difference in the 
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classification results was not too large when changing the number of trees. 
Specifically, with the number of decision trees from 30 to 1000, the difference 
was only about 0.5%. This shows that the arithmetic expression vulnerability 
dataset had relatively good and balance, so changing the number of decision trees 
did not affect the accuracy of the algorithm much. 

Comparing the experimental results in Scenarios 1, 2, and 3, it can be seen that 
our proposed model had superior performance compared to the other models and 
algorithms. Next, we conducted experiments for security vulnerability detection 
to evaluate the effectiveness of the classification model. Figure 4 shows the 
confusion matrix results of the vulnerability detection process when using the RF 
algorithm with the optimal parameters. 

  
(a) (b) 

 
(c) 

Figure 4 Confusion matrix results, where a is the pointer vulnerability, b is the 
array vulnerability, c is the arithmetic vulnerability. 
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Figure 4 shows some results of the testing process. For the pointer vulnerability 
type, the RF algorithm correctly predicted 3,927 functions containing 
vulnerabilities, incorrectly predicted 2,131 normal functions as functions 
containing vulnerabilities, and wrongly predicted 1,420 functions containing 
vulnerabilities.  

Similarly, for array usage vulnerabilities, the RF algorithm correctly predicted 
1,748 functions containing vulnerabilities, incorrectly predicted 650 normal 
functions, and wrongly predicted 904 functions containing vulnerabilities. With 
the test dataset of arithmetic expression vulnerabilities, the RF algorithm 
correctly predicted 616 functions containing vulnerabilities, incorrectly predicted 
175 normal functions, and wrongly predicted 419 functions containing 
vulnerabilities. The algorithm worked best with parameter n_estimator at 1000. 

4.4.4 Experimental Results of Scenario 4  

In this scenario, we conducted the experiments presented in Ref. [9] to evaluate 
the proposed model. Table 7 below describes the experimental results of this 
scenario. Table 7 shows the results of the vulnerability detection process using 
the CNN model.  

Table 7 Experimental results of detecting security vulnerabilities using CNN [9]. 

Vulnerability type 
Evaluation 

Accuracy Precision Recall F1_score 
Pointer usage vulnerability 84 69 84 72 
Array usage vulnerability 80 74 77 76 

Arithmetic expression vulnerability 90 84 75 78 

 
From Table 7, it can be seen that the CNN model had a relatively good and 
uniform effectivity on all security vulnerabilities. Especially for pointer usage 
vulnerabilities and array usage vulnerabilities, the CNN model detected 
vulnerabilities more accurately than normal functions. The reason is that the CNN 
network, with the support of hidden layers, extracts some features of abnormal 
functions, thus bringing high efficiency in the classification process. Figure 5 lists 
the results of the confusion matrix of the CNN model. 
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(a) (b) (c) 

Figure 5 Confusion matrix results, where a is pointer vulnerability, b is array 
vulnerability, c is arithmetic vulnerability. 

Based on the experimental results of the confusion matrix in Figure 5, it can be 
seen that: 

1. With a dataset of 47,205 different samples containing pointer vulnerabilities, 
the CNN model gave the following classification results: 

a. 39,614 correctly labeled samples: 35,154 samples with label 1; 4,460 
samples with label 0. 

b. 7,591 incorrectly labeled samples: 6,704 samples were mislabeled from 
0 to 1; 887 samples were mislabeled from 1 to 0 

2. With a dataset of 6,637 different samples containing array vulnerabilities, 
there were: 

a. 5,300 correctly labeled samples: 4,048 normal samples; 1,252 attack 
samples. 

b. 1,337 incorrectly labeled samples: 835 samples were mislabeled from 
normal to attack; 502 samples were mislabeled from attack to normal. 

3. With a dataset of 4,218 different samples containing arithmetic 
vulnerabilities, the confusion matrix results were: 

a. 3,787 correctly labeled samples: 3,437 normal samples; 350 attack 
samples. 

b. 431 incorrectly labeled samples: 91 samples were mislabeled from 
normal to attack; 340 samples were mislabeled from attack to normal.  

4.5 Discussion 

4.5.1. Comments on the Results 

Based on the experimental results in Scenarios 1, 2, 3, 4, it can be seen that the 
combination of the skip-gram model with the RF algorithm gave better results 
than the other classification algorithms in the task of detecting software security 
vulnerabilities. For array usage vulnerabilities, the RF algorithm had an Accuracy 
measure of 84.38%, higher than 2.38% with the MLP model and 4.38% with the 
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CNN model [9]. Likewise, the Recall measure when using the RF algorithm was 
also higher than with the other algorithms (4% higher than that of MLP and 3% 
higher than that of CNN). For vulnerabilities related to arithmetic expressions, 
RF, CNN, MLP all had relatively same efficiency, with only 1% to 2% difference. 
Finally, for the pointer usage vulnerability type, the RF algorithm continued to 
show its superiority, yielding results higher than the other algorithms from 10% 
to 12%. However, for accurately detecting pointer vulnerabilities, the RF 
algorithm gave results 0.1% worse than the CNN model and 1.9% worse than the 
MLP model. 

4.5.2. Some Limitations and Directions to Solve 

1. Regarding the data 

- The problem. The data imbalance problem causes difficulties in the 
security vulnerability detection task. Obviously, in reality, to detect 
security vulnerabilities, it is necessary to have proposals for selecting and 
sampling data reasonably. In this study, the experimental dataset we used 
had a disparity of about five times. This disparity is not too big. However, 
in reality, it could be from a few hundred to a few thousand times. This 
will make the task of detecting security vulnerabilities in the system more 
difficult. Therefore, it is necessary to have solutions for such imbalanced 
datasets. 

- Solving the problem. To solve this task, there are two methods to choose 
from: i) using algorithms changing the distribution of the dataset, i.e., 
single methods (NearMiss, Tomek links, SMOTE, etc.) or combined 
methods (combining SMOTE with Tomek links; SMOTE with Edited 
NearestNeighbour, etc.); ii) using a representation learning model. For 
this method, algorithms such as GRU, BGRU, Triplet Loss or Circle Loss 
can be applied. 

4.5.3. Regarding the feature extraction algorithm: 

1. The problem. As described above, the Word2Vec model processes 
input strings into vectors. These vectors have different lengths 
depending on the input data. To classify these input strings, we need to 
normalize them so that they are the same length. In natural language 
processing problems, one must find important segments and positions 
to choose the length of feature vectors. However, for data chunks in 
programming languages (C, C++, Java), such a principle is impossible 
to apply. 

2. Solving the problem. To solve this, in this research, we analyzed and 
evaluated the experimental dataset. During the analysis, we found that 
after being analyzed by the Word2Vec model, the length of the feature 
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vectors was commonly in the range from 5000 to 5700. However, in 
codes going through the Word2Vec model, there were also very short 
code segments. Therefore, we normalized the vectors by taking a length 
of 5000. Then, the shorter vectors were padded with zeros to reach a 
length of 5000 and longer vectors were truncated. The characteristic of 
this method is that it unifies the length of the vectors, but this may lead 
to the loss of important information in the data. Therefore, we have to 
survey and analyze to see the convergence of the dataset to find other 
ways to normalize. The results given in this study were selected based 
on comparing several models with vectors of different lengths. 

5 Conclusion  

This paper presented an approach of software security vulnerability detection 
based on embedding techniques and the RF classification algorithm. This 
proposal yielded good experimental results in the task of classifying known 
software vulnerabilities. The RF algorithm gave better performance than the other 
classification algorithms. The reason for this is that the experimental dataset in 
the algorithm was relatively small and there was not too much difference between 
the number of vulnerability data and normal data, in which case machine learning 
algorithms often have better results. Besides, based on the experimental results 
for four scenarios, it was seen that there was a huge difference in the classification 
results.  

We think that the difference between the security vulnerabilities leads to different 
embedding processes, so there will be differences in the characteristics and 
features of the embedding vectors. Therefore, the BOW model did not work as 
well as the skip-gram model. In the future, we will continue to research new 
approaches to process and normalize the data to obtain important features of 
vulnerabilities by using models such as graph embedding. In addition, the 
approaches to detecting zero-day vulnerabilities will also be updated in our 
subsequent studies. 
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