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On the Possibility of Automatic
Multisensor Image Registration

Jordi Inglada and Alain Giros

Abstract—Multisensor image registration is needed in a large
number of applications of remote sensing imagery. The accuracy
achieved with usual methods (manual control points extraction, es-
timation of an analytical deformation model) is not satisfactory for
many applications where a subpixel accuracy for each pixel of the
image is needed (change detection or image fusion, for instance).
Unfortunately, there are few works in the literature about the fine
registration of multisensor images and even less about the exten-
sion of approaches similar to those based on fine correlation for the
case of monomodal imagery. In this paper, we analyze the problem
of the automatic multisensor image registration and we introduce
similarity measures which can replace the correlation coefficient in
a deformation map estimation scheme. We show an example where
the deformation map between a radar image and an optical one is
fully automatically estimated.

Index Terms—Image registration, multisensor, similarity
measures.

I. INTRODUCTION

T
HE PROBLEM we want to deal with is the one of the
automatic fine registration of images acquired with dif-

ferent sensors. By different sensors, we mean sensors that pro-
duce images with different radiometric properties, i.e., sensors
which measure different physical magnitudes: optical sensors
operating in different spectral bands, radar and optical sensors,
etc.

For this kind of image pairs, the classical approach of fine
correlation [1], [2], cannot always be used to provide the re-
quired accuracy, since this similarity measure (the correlation
coefficient) can only measure similarities up to an affine trans-
formation of the radiometries.

There are two main questions which can be asked about what
we want to do.

1) Can we define what the similarity is between, for instance,
a radar and an optical image?

2) What does fine registration mean in the case where the
geometric distortions are so big and the source of infor-
mation can be located in different places (e.g., the same
edge can be produced by the edge of the roof of a building
in an optical image and by the wall–ground bounce in a
radar image)?

We can answer by saying that the images of the same object
obtained by different sensors are two different representations
of the same reality. For the same spatial location, we have two
different measures. Both items of information come from the
same source, and thus, they have a lot of common information.

Manuscript received October 6, 2003; revised July 6, 2004.
The authors are with the Centre National d’Études Spatiales, DCT/SI/AP,

F-31401 Toulouse Cedex 9, France (e-mail: jordi.inglada@cnes.fr).
Digital Object Identifier 10.1109/TGRS.2004.835294

This relationship may not be perfect, but it can be evaluated in
a relative way: different geometrical distortions are compared,
and the one leading to the strongest link between the two mea-
sures is kept.

The paper is organized as follows. Section II is a review of
the existing remote sensing image registration literature. In Sec-
tion III, we introduce a theoretical approach to image registra-
tion. The problem of modeling image deformations1 is analyzed
in Section IV. In Section V, we evaluate a set of similarity mea-
sures that can be used for the multisensor image registration
problem, and we use one of them in Section VI in order to es-
timate the deformations between a radar image and an optical
image of the same scene. Finally, in Section VII, we propose
the use of deformation maps for the estimation of topography
using radar and optical acquisitions.

II. REVIEW OF EXISTING WORK

In this section, we will review the works published in the
literature about the automatic multisensor image registration.
The literature about the subject is rather limited in the field
of remote sensing compared to what has been published in the
fields of medical imaging and computer vision. An interesting
survey of image registration techniques can be found in [3]. This
survey poses the problem of image registration using the con-
cepts of similarity measure, geometric transformations, and fea-
ture space. We will take a similar approach in Section III.

The approach taken in most of the works consists in auto-
matically extracting homologous points (HPs) in both images
and using them to estimate a parametric analytical deformation
model.

Ton and Jain [4] were among the pioneers in the research of
automatic algorithms to emulate photointerpreter-based regis-
tration. They proposed an algorithm for HP selection allowing
for the estimation of rotational and translational transformations
on Landsat images. Their approach is similar to the one by Li
et al. [5], who used the salient points of active contours as HPs.
The main problem of this approach is the heavy computation
needed for the implementation of active contours.

Several authors, as for instance Cracknell and Paithoonwat-
tanakij [6], combine an orbital model and a HP search using
correlation and heuristic planning. The idea consists in
searching for couples of HP with a good correlation. The set
of HPs selected is used to solve a least squares estimation of a

1We prefer the term deformation to the classical disparity because the latter
is related to stereo-optical vision. In the case of optical-radar image pairs, the
geometric relative deformations due to topography (depth) do not correspond
to that kind of model. We will use the term deformation as a generalization of
disparity.
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parametric model. They claim to have subpixel accuracy on the
National Oceanic and Atmospheric Administration’s Advanced
Very High Resolution Radiometer images.

Within the family of methods using automatic correlation,
one can highlight the work of Foroosh et al. [7], where a closed-
form expression for subpixel shift estimation is given. However,
this approach can only be applied to translations. It is also in-
teresting to point out the work of Stone et al. [8] where an algo-
rithm for subpixel shift registration based on Fourier transforms
is presented. This algorithm has the advantage of being very fast
and robust to aliasing.

These approaches are not really multisensor in the sense that
they use a similarity measure which is not. A way to trans-
form these approaches into multisensor ones is by comparing
extracted image primitives. For example, Inglada and Adragna
[9] use a simple edge detection and a genetic algorithm in order
to find the best set HP in the case of a Système Pour l’Obser-
vation de la Terre (SPOT)–European Remote Sensing Satellite
(ERS) registration. The control points of the master image are
randomly taken amongst the extracted edges.

Thépaut et al. [10] do a first geometrical correction using
orbit information, and then a residual translation compensation
using the correlation between the edges extracted from both,
ERS synthetic aperture radar (SAR), and SPOT images. Other
approaches exist for edge matching, as for instance the one of
Wu and Maître [11], where a multiresolution analysis is used
together with a hypothesis testing.

One of the first works on feature-based image registration
was proposed by Ventura et al. [12]. They even applied it to the
problem of image to map registration. The approach was also
finding HP by matching extracted features.

Dai and Khorram [13] use a feature-based approach: they
extract closed edges that are characterized using invariant mo-
ments. Then, the extracted areas are matched using their charac-
terization. Finally, the centers of gravity of each area are used as
HPs for the estimation of an affine transformation. They apply
the approach to Landsat images, and they obtain an accuracy
better than one pixel, which is similar to the accuracy obtained
with manual registration.

Djamdji et al. [14] propose a multiresolution approach, where
the discrete wavelet transform is used. The automatic extraction
of HPs is done by comparing thresholded wavelet coefficients.

All these approaches try to extract HP in order to compute an
analytical deformation model. On the other hand, when working
with images acquired with the same (type of) sensor, one can use
a very effective approach. Since a correlation coefficient mea-
sure is robust and fast for similar images, one can afford to apply
it in every pixel of one image in order to search for the corre-
sponding HP in the other image. One can, thus, build a deforma-
tion grid (a sampling of the deformation map). If the sampling
step of this grid is short enough, the interpolation using an an-
alytical model is not needed, and high-frequency deformations
can be estimated. The obtained grid can be used as a resampling
grid and, thus, obtain the registered images.

No doubt, this approach, combined with image interpolation
techniques (in order to estimate subpixel deformations) and

multiresolution strategies, allows for obtaining the best perfor-
mances in terms of deformation estimation and, hence, for the
automatic image registration.

Unfortunately, in the multisensor case, the correlation coeffi-
cient cannot be used. This will be justified in Section V-B. We
will, thus, try to find similarity measures that can be applied in
the multisensor case with the same approach as the correlation
coefficient.

III. MODEL FOR THE IMAGE REGISTRATION PROBLEM

In this section, we give several definitions that allow for the
formalization of the image registration problem. First of all, we
define the master image and the slave image.

Definition 1 (Master Image): Image to which other images
will be registered. Its geometry is considered as the reference.

Definition 2 (Slave Image): Image to be geometrically trans-
formed in order to be registered to the master image.

Two main concepts are the one of similarity measure and the
one of geometric transformation.

Definition 3: Let and be two images, and let be a sim-
ilarity criterion. We call a similarity measure any scalar strictly
positive function

(1)

has an absolute maximum when the two images and
are identical in the sense of criterion .

Definition 4: A geometric transformation is an operator
that, applied to the coordinates of a point in the slave
image, gives the coordinates of its HP in the master image

(2)

Finally, we introduce a definition for the image registration
problem.

Definition 5 (Registraton Problem):

1) Determine a geometric transformation that maximizes
the similarity between a master image and the result of
the transformation

Arg (3)

2) Resampling of by applying .
We must note that Le Moigne et al. have proposed in a re-

cent contribution [15] a modular approach for registration that
allows the analysis of different similarity measures and different
optimization strategies. The presented results, which are still
preliminary, are very promising. The multisensor case has been
dealt with, but only for optical images (Ikonos and Landsat En-
hanced Thematic Mapper Plus). The case of very different im-
ages (e.g., optical and radar) has not been explored.

IV. GEOMETRIC DEFORMATION MODELING

The geometric transformation of Definition 4 is used for the
correction of the existing deformation between the two images
to be registered. This deformation contains information, which
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TABLE I
CHARACTERIZATION OF THE GEOMETRIC DEFORMATION SOURCES

is linked to the observed scene and the acquisition conditions.
The deformations can be classified into the following three
classes, depending on their physical source:

1) deformations linked to the mean attitude of the sensor (in-
cidence angle, presence or absence of yaw steering, etc.);

2) deformations linked to a stereo vision (mainly due to the
topography);

3) deformations linked to attitude evolution during the ac-
quisition (vibrations that are mainly present in pushbroom
sensors).

These deformations are characterized by their spatial fre-
quencies and intensities, which are summarized in Table I.

Depending on the type of deformation to be corrected, its
model will be different. For example, if the only deformation
to be corrected is the one introduced by the mean attitude, a
physical model for the acquisition geometry (independent of
the image contents) will be enough. If the sensor is not well
known, this deformation can be approximated by a simple an-
alytical model. When the deformations to be modeled are high
frequency, analytical (parametric) models are not suitable for
a fine registration. In this case, one has to use a fine sampling
of the deformation, which means the use of deformation grids.
These grids give, for a set of pixels of the master image, their
location in the slave image.

The following points summarize the problem of the deforma-
tion modeling.

1) An analytical model is just an approximation of the defor-
mation. It is often obtained as follows:
a) directly from a physical model without using any

image content information;
b) by estimation of the parameters of an a priori model

(polynomial, affine, etc.). These parameters can be
estimated
i) either by solving the equations obtained by

taking HP. The HP can be manually or automat-
ically extracted;

ii) or by maximization of a global similarity
measure.

2) A deformation grid is a sampling of the deformation map.

The last point implies that the sampling period of the grid
must be short enough in order to account for high-frequency de-
formations (Shannon theorem). Of course, if the deformations
are nonstationary (it is usually the case of topographic deforma-
tions), the sampling can be irregular.

As a conclusion, we can say that Definition 5 poses the regis-
tration problem as an optimization problem. This optimization
can be either global or local with a similarity measure, which can
also be either local or global. All this is synthesized in Table II.

TABLE II
APPROACHES TO IMAGE REGISTRATION

The ideal approach would consist in a registration that is lo-
cally optimized, both in similarity and deformation, in order to
have the best registration quality. This is the case when deforma-
tion grids with dense sampling are used. Unfortunately, this case
is the most computationally heavy, and one often uses either a
low sampling rate of the grid or the evaluation of the similarity in
a small set of pixels for the estimation of an analytical model.2

Both of these choices lead to local registration errors, which,
depending on the topography, can amount to several pixels.

Even if this registration accuracy can be enough in many ap-
plications, (orthoregistration, import into a geographic informa-
tion system, etc.), it is not acceptable in the case of data fusion,
multichannel segmentation, or change detection [16]. This is
why we will focus on the problem of deformation estimation
using dense grids.

None of the references presented in Section II uses the local
optimization approach. We can also note that in the multisensor
case only few authors [15] have used any similarity measure
other than the correlation coefficient. However, in the medical
imaging field, as we will see in Section V, a lot of similarity
measures have been proposed as a generalization of the correla-
tion coefficient. These measures enable the registration of very
different imagery modalities. Nevertheless, these works are not
directly usable in our problem, since the geometric deformations
present in medical images can be easily represented by global
analytical models. Indeed, often a rigid model (rotation, trans-
lation, scale) or slightly elastic (affine plus a term) is
enough, since: 1) the sensors are stable; 2) the stereo effect is
small; 3) and only the point of view changes. As we have noted
above, deformations due to topography can locally have high
frequencies for medium- and high-resolution sensors (30 m and
better), thus our need for a fine modeling. We also point out that
the problem of hidden faces is beyond the scope of this paper.

V. SIMILARITY MEASURES

The fine modeling of the geometric deformation we are
looking for needs for the estimation of the coordinates of
nearly every pixel in the master image inside the slave image.
In the classical monosensor case where we use the correlation
coefficient, we proceed as follows.

2However, computation time is not nowadays a real issue. As an illustration,
we can give the example of the PAN+XS fusion procedure developed at the
Centre National d’Études Spatiales (CNES) for the SPOT 5 ground segment
where the subpixel registration between the Panchromatic band and the multi-
spectral channels is done on 24 000� 24 000 images in less than 1 h on a Sun
Sparc Ultra-4 workstation.
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Fig. 1. Estimation of the correlation surface.

The geometric deformation is modeled by local rigid dis-
placements. One wants to estimate the coordinates of each pixel
of the master image inside the slave image. This can be repre-
sented by a displacement vector associated to every pixel of the
master image. Each of the two components (lines and columns)
of this vector field will be called deformation grid.

We use a small window taken in the master image, and we
test the similarity for every possible shift within an exploration
area inside the slave image (Fig. 1).

That means that, for each position, we compute the correla-
tion coefficient. The result is a correlation surface whose max-
imum gives the most likely local shift between both images

(4)

In this expression, is the number of pixels of the analysis
window; and are the estimated mean values inside the
analysis window of, respectively, image and image ; and
and are their standard deviations.

Quality criteria can be applied to the estimated maximum in
order to give a confidence factor to the estimated shift: width of
the peak, maximum value, etc. Subpixel shifts can be measured
by applying fractional shifts to the sliding window. This can be
done by image interpolation.

The interesting parameters of the procedure are the following.

• The size of the exploration area: it determines the com-
putational load of the algorithm (we want to reduce it),
but it has to be large enough in order to cope with large
deformations.

• The size of the sliding window: the robustness of the cor-
relation coefficient estimation increases with the window
size, but the hypothesis of local rigid shifts may not be
valid for large windows.

The correlation coefficient cannot be used with original
gray-level images in the multisensor case. It could be used on
extracted features (edges, etc.), but the feature extraction can
introduce localization errors. Also, when the images come from
sensors using very different modalities, it can be difficult to find
similar features in both images. In this case, one can try to find
the similarity at the pixel level, but with other similarity mea-
sures and apply the same approach as we have just described.

Fig. 2. Measure of �(�x) for three different pairs of images.

The concept of similarity measure has been presented in Def-
inition 3. The difficulty of the procedure lies in finding the func-
tion , which properly represents the criterion . We also need
that be easily and robustly estimated with small windows. We
extend here what we proposed in [17].

A. Correlation Coefficient

We remind here the computation of the correlation coefficient
between two image windows and . The coordinates of the
pixels inside the windows are represented by

(5)

In order to qualitatively characterize the different similarity
measures we propose the following experiment. We take two
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(a) SPOT 5 B1

(b) Joint Histogram

Fig. 3. Joint histogram of an image with itself.

images that are perfectly registered, and we extract a small
window of size from each of the images (this size is
set to 101 101 for this experiment). For the master image, the
window will be centered on coordinates (the center
of the image), and for the slave image, it will be centered on
coordinates . With different values of (from

10 pixels to 10 pixels in our experiments), we obtain an
estimate of as a function of , which we write as

for short. The obtained curve should have a maximum
for , since the images are perfectly registered. We
would also like to have an absolute maximum with a high value
and with a sharp peak, in order to have a good precision for the
shift estimate.

In the following, we will make this experiment with different
image pairs and different similarity measures. Fig. 2 shows the
results obtained when the correlation coefficient is applied to
[Fig. 2(a)] one extract of the B1 channel of a SPOT 5 image
with itself, [Fig. 2(b)] an extract of channel B1 with the extract
of channel B3, and [Fig. 2(c)] the extract of channel B1 with an
extract of an ERS-2 SAR image. The images are presented in
Figs. 3–5.

We can see that the correlation coefficient has a good behavior
for the first pair, but its performances are bad when the im-
ages radiometries are different. The correlation coefficient can
be characterized as follows:

• well-known algorithm;
• fits the registration needs when using radiometrically sim-

ilar images;
• simple and fast computation;
• high precision in the estimation of the deformation;
• robust to noise.

(a) SPOT 5 B1

(b) SPOT 5 B3

(c) Joint Histogram

Fig. 4. Joint histogram of two channels (B1-B3) of the same SPOT 5 image.

However, its main disadvantage is that it can only take into
account affine transformations between radiometries (

), so it cannot be used in the general multisensor case.

B. Generalization: Probabilistic Interpretation

The correlation coefficient formulation [see (5)] can be revis-
ited with a probabilistic interpretation

(6)

where the sum is taken over the list of radiometry pairs ,
and is the value of the joint normalized histogram (estima-
tion of the joint probability density function (pdf) ) of
the pair of images.
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(a) SPOT 5 B3

(b) ERS-2

(c) Joint Histogram

Fig. 5. Joint histogram of a SPOT 5 B3 image and a ERS-2 image.

That means that we are assuming a linear model

(7)

and we evaluate its likelihood by weighting with the probability
of each radiometry couple .

One could assume different models for the radiometry pairs
leading to different measures as, for instance, the identity model

, which leads to the norm

(8)

or more complex models based on textural approaches, as
follows:

Diagonal moment:

MD (9)

Fig. 6. Image shift experiment: Woods criterion.

Cluster Shade:

(10)

Cluster Prominence:

(11)

An assessment of these measures for image registration can
be found in [18]. They are very sensitive to noise and are not
useful for the comparison of gray levels of multisensor image
pairs.
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Fig. 7. Image shift experiment: Correlation ratio.

C. Estimation of Similarity Measures and

In the expression of the correlation coefficient the term is
an estimation of the joint pdf of the radiometries of the images
we are comparing. It can be seen as a link (transfer function)
between both radiometries.

We show here several examples of the estimation of the
joint histogram. In Figs. 3–5 are shown, respectively, the joint
histograms of one image with itself (B1-B1), two different
channels of the same SPOT 5 image (B1-B3), and a SPOT 5
B3–ERS-2 pair.

As expected, the joint histogram of an image with itself is a
straight line with slope 1. It shows the full correlation between
the two images: the identity transfer function. This kind of situ-
ation is well dealt with by the correlation coefficient.

Fig. 8. Image shift experiment: Distance to independence.

TABLE III
EXPRESSIONS OF FUNCTION f IN THE f -DIVERGENCE FAMILY

The B1-B3 case (Fig. 4) shows two nearly linear tendencies
that are mixed up. This case cannot be dealt with by the corre-
lation coefficient.
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Fig. 9. Image shift experiment: Kolmogorov distance.

Finally, Fig. 5 shows the impossibility of finding any corre-
lation link between two sensors, which are as different as an
optical and a radar one.

1) Computation Time: The main difference between the two
expressions of the correlation coefficient given by (5) and (6)
is the estimation of the joint pdf needed in the second expres-
sion. This estimation is usually done by computing the joint
histogram. The joint histogram can be computed with different
methods, but their discussion is beyond the scope of this paper.
However, it is important to note that the method chosen for his-
togram computation may induce significant changes in the com-
putation cost of the similarity measure. As an example, with our
implementation (counting with optimization of the number of
classes), there is an increase factor of 4 in computation time be-
tween (5) and (6).

The multisensor measures that will be introduced in the next
section need the estimation of the joint histogram. Hence, their
computation time is comparable to the one of (6). The differ-
ences of computation complexity between these measures are
negligible, since the longest part of the algorithm is taken by
the joint histogram estimation.

D. Multisensor Measures

We introduce here several similarity measures that have been
proved useful in the problem of multimodality medical image
registration [19].

In the following, the sums will be computed over radiometry
values. We will use the conditional mean

(12)

and the conditional variance

(13)

For each of the following measures, we will perform the ex-
periment described in Section V-A.

1) Measures Using the Radiometry Values and the Probabil-

ities: Within this class, we will not take into account the mea-
sures that are based on the differences of radiometries ( norm
of the difference) [20]–[22] or textural measures, since they give
low-quality results.

a) Normalized sandard deviation or Woods crite-

rion: The work by Woods et al. first on monomodal reg-
istration [23] and then on multimodal registration [24] lead to
the elaboration of this similarity measure. Given the intensity
on one image, i.e., the set of pixels having this value, this
measure takes into account the variability of the intensities
of the homologous pixels in the other image. The underlying
hypothesis is that this variability (which is actually a measure
of variance) will be minimum when the images are registered

Woods (14)

In order to have a criterion which has to be maximized, we
will use

(15)

The results on our three test image pairs are shown in Fig. 6.
We see that for the monosensor case, the results are similar to
those of the correlation coefficient. For the two multisensor ex-
amples, we obtain high values near the zero-shift, but the loca-
tion of these maxima is not accurate.

b) Correlation ratio: This is a very well known measure
in statistics. It has been first proposed in the framework of image
registration by Roche et al. [25]. It is defined as follows:

(16)
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Fig. 10. Image shift experiment: Mutual information.

Its interpretation is similar to the one of the Woods criterion.
The results are shown in Fig. 7, and they are worse than those
of the Woods criterion.

2) Measures Using Only the Probabilities: This class of
measures does not directly use the radiometries of the pixels,
but only the estimation of the joint pdf. Of course, the pixel
pairs are used for the estimation of this probability.

a) Distance to independence: It is a normalized version
of the test

(17)

It measures the degree of statistical dependence between both
images, since for two independent random variables, the joint

Fig. 11. Image shift experiment: CRA.

pdf is equal to the product of the marginals. The correlation
coefficient is a test of independence of order 2, and this one is the
generalization to any order. The results are shown in Fig. 8. In
this case, for the three pairs, we obtain an absolute maximum for
the zero-shift case, which is sharp enough for a robust automatic
detection.

b) -divergence family: An -divergence [26] measures
the expectation of the diversity of the likelihood ratio between
two distributions and

(18)

is the expectation with respect to ; is the
derivative with respect to a density; and is continuous and
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TABLE IV
DEFORMATION GRID ESTIMATION MEAN SQUARE ERROR

(a) SPOT 4 B3 (b) ERS-2 SAR (c) DEM

Fig. 12. Images and DEM for the test area.

(a) Columns (b) Lines

Fig. 13. Deformation grid. CRA, estimation window is 51� 51 pixels, and the sampling rate is ten pixels.

convex on . A divergence can be seen as a relative en-
tropy. In order to simplify the notation, we will use ,

, and .
Depending on the choice of (see Table III), we can obtain

several interesting cases, as follows.

1) Kolmogorov distance:

(19)

2) Kullback information or mutual information:

(20)

3) Kullback divergence:

(21)
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(a) Columns (b) Lines

Fig. 14. Deformation grid. CRA, estimation window is 81� 81 pixels, and the sampling rate is ten pixels.

4) -divergence:

(22)

5) Hellinger distance:

(23)

6) Toussaints distance:

(24)

7) Lin -divergence:

(25)

All these measures give very similar results [27]. We study
two of them.

1) Kolmogorov distance:

(26)

It can be seen as a norm version of the criterion.
The results are shown in Fig. 9.

2) Mutual information:

(27)

The results are shown in Fig. 10.
Both measures give satisfactory results, which are very sim-

ilar to the ones obtained with the distance to the independence.

c) Cluster reward algorithm: Let be the joint
histogram of the pair of images, and let and , re-
spectively, be the marginal histograms and the number of
pixels. We define

(28)

where

(29a)

(29b)

(29c)

(29d)

The index will have a high value when the joint his-
togram has little dispersion. This lack of dispersion can be due
to a correlation (histogram distributed along a line) or to the
clustering of radiometry values within the histogram. In both
cases, one can predict the values of one image from the values
of the other.

In order to compare with the -divergences, we can
rewrite (28) as

(30)

If we consider the denominator as a normalization term, we can
focus only in the numerator. This numerator contains the same
terms as the -divergences, i.e., a term that depends on the joint
pdf and a term that depends on the product of the marginals.
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Fig. 15. Region of interest and test points for the validation.

TABLE V
RESULTS OF THE FIRST VALIDATION METHOD. SEE TEXT AND

FIGS. 15–20 FOR THE DETAILS

We can, thus, make an interpretation that is similar to the inde-
pendence tests. As expected, the obtained results (Fig. 11) are
similar to those obtained with the -divergences.

The main interest of the CRA with respect to the -divergence

family is that the joint histogram noise due to estimation has less
influence in the similarity measure. This allows us to use smaller
estimation windows. The only drawback in doing this is that the
peak of the measure will be less sharp.

E. Characterization of Similarity Measures

Similarity measures can be characterized using the following
criteria:

• the geometric resolution: maximum frequency of the
deformations;

• ability to deal with images acquired from different sensors.
The first point is directly linked to the number of pixels

needed to obtain a good estimate of the measure. Indeed,
since when estimating deformation grids we assume that the
deformation can be decomposed on local shifts, that means that
there should be no deformation inside the estimation window.
However, if we need large windows for the estimation, the
likelihood for our assumption to be true can be very low.

In order to illustrate this problem, we have made the following
experiment. We have taken the pair B1-B3 of a SPOT 5 image,
and we have applied a sinusoidal deformation, with period
pixels to the slave (B3) image in the horizontal direction. We

have made the estimation of the deformation using the mutual
information, and we have computed the mean square error be-
tween the estimated and the real deformation grids

where is the real sinusoidal deformation, and
is the estimated deformation grid. The experiment has been
made for different values of the period and the estimation
window size. The results, which are measured in square pixels,
are shown in Table IV. We observe the following.

• For medium to long periods, the quality of the estimation
increases with the window size.

• For short periods ( and ), the increase of
the window size produces a decrease of the performances.
This is due to the fact that geometrical deformations are
strong inside the estimation window.

F. Behavior in Presence of Noise

One could also analyze how the different similarity measures
behave when noise is present in the data. The presence of addi-
tive noise in the data produces a dispersion of the joint histogram
of the images. For the -divergence family, since the estima-
tion windows used in the experiments contain a high number
of samples, noisy data does not cause noisy estimations of the
similarity, but rather wider similarity peaks. However, the lo-
cation of the similarity optimum is not affected by noise. This
behavior is confirmed by the SPOT-ERS couple, since the radar
image contains a strong multiplicative noise.

VI. GRID ESTIMATION: A REAL CASE

The similarity measures introduced in the previous sections
have been tested in a simple framework of integer shifts in one
dimension and with low frequency (Table IV). In order to further
test the performances of these methods, we will apply them in
the same way as we would do using the correlation coefficient,
i.e., estimating a deformation grid between a radar and an optical
image.

Our dataset consists in the following pair (a region of a size
of 2000 2000 pixels is used for our tests):

• the B3 channel of a SPOT 4 image (20-m pixel resolution)
acquired on June 24, 2001 over the East of the Bucharest
area [Fig. 12(a)];

• a ERS-2 SAR three-looks intensity image (12.5-m pixel
size and approximately 20-m pixel resolution) acquired on
May 10, 2001 over the same area [Fig. 12(b)].

Both images were orthorectified: for the SPOT 4 image, a
digital elevation model (DEM) [Fig. 12(c)] with an altimetric
precision better than 10 m and a planimetric precision around
10 m has been used, together with the acquisition model (orbits,
attitude) for the satellite; for the ERS-2 image, no DEM was
used, but a constant altitude and homologous points manually
taken on the SPOT 4 image were used in the orthorectification
process. Globally, the images show a good superposition, but
local errors exist, which can amount to several pixels due to
the simple geometric modeling of the deformation of the radar
image. We have discussed these problems in Section IV.
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(a) Point A in the master image (b) Point A in the slave image

Fig. 16. Location of point A for a null displacement (+) and for the measured displacement (�).

(a) Point B in the master image (b) Point B in the slave image

Fig. 17. Location of point B for a null displacement (+) and for the measured displacement (�).

If we analyze the DEM, we see that a gentle slope descending
from northwest to southeast exists and that abrupt topography
features appear in the northeast and the southwest. The shape of
the river can also be identified in the DEM.

We will estimate the residual deformation between the two
images with the cluster reward algorithm (CRA). We will
estimate the local shifts (lines and columns) every ten pixels,
thus building the deformation grids. Using noninteger shifts
for the estimation window, we can estimate the deformation
with subpixel accuracy. The noninteger shifts are applied by
interpolating the slave image using a sinc function weighted
by a Gaussian function whose variance is chosen so as to keep
90% of the energy in a filter with a length of 13 samples.

First of all, we will use an estimation window of size 51 51
pixels and an exploration area of pixels around each pixel.
The map of the measured deformations is shown in Fig. 13.

Applying quality criteria to the peak of the measure (value and
shape), we find that 70% of the measured points are considered
as valid and that 24% of the remaining pixels are not valid be-
cause the peak is in the limit of the exploration area.

Analyzing these grids we can draw the following conclusions.

• The grids are noisy. This is due to the size of the estimation
window.

• The main deformations are measured in the column direc-
tions, i.e., the direction for which there is an stereoscopic
effect between the two acquisitions (ERS-2 and SPOT 4
have polar orbits).

• The measured deformations are strongly correlated to
the topography, mainly near the river area and at the two
abrupt changes in the northeast and the southwest areas.
This shows the limitations of the analytical models for
the topographic deformations.



INGLADA AND GIROS: POSSIBILITY OF AUTOMATIC MULTISENSOR IMAGE REGISTRATION 2117

(a) Point C in the master image (b) Point C in the slave image

Fig. 18. Location of point C for a null displacement (+) and for the measured displacement (�).

(a) Point D in the master image (b) Point D in the slave image

Fig. 19. Location of point D for a null displacement (+) and for the measured displacement (�).

• Low-frequency gradients of small amplitude appear on
both grids. This may be due to a bad choice of the degree
of the polynomial modeling.

In order to validate the assumption that links the estimation
window size to the noisy aspect of the grid, we perform a new
test with a window size of 81 81 pixels. We also increase the
exploration area to pixels in order to increase the number
of valid points. We obtain the following results: 78% of valid
points; 21% of the points have the peak in the limit of the ex-
ploration area. The deformation grids are shown in Fig. 14. We
observe a decrease of the noise.

A. Validation of the Results

In order to validate the displacements obtained in the defor-
mation grids, we have used three different approaches.

1) We select a set of points in the master (SPOT 4) image,
and we manually find the HP in the slave (ERS-2) image
and compare the obtained displacements with the ones
measured in the grids. This method compares the result
of the automatic processing with a manual HP selection.

2) For the same set of points of the master image, we point
out the two points in the slave image: the point with the
same coordinates (zero-shift) and the point that results
in applying the shift measured in the grid. This method
shows the relative improvement in registration with re-
spect to the original image pair.

3) We resample the slave image using the measured grids
and visually check the quality of the registration before
and after resampling.

The set of test points for the first and second validation
methods are shown in Fig. 15. The results of method 1 are
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(a) Point E in the master image (b) Point E in the slave image

Fig. 20. Location of point E for a null displacement (+) and for the measured displacement (�).

(a) Before registration (b) After registration

Fig. 21. Checkerboard visualization of the registration.

shown in Table V where, for each test point, we give the
following:

• its coordinates (line and column) in both (ERS and SPOT)
images as obtained by manual point selection;

• the deformation as a result of the difference of coordinates
above;

• the deformation computed by the automatic algorithm;
• and the deformation error, i.e., the difference between

manual and automatic approaches.
We see that the automatic processing yields results that are

very close to manual operation. Indeed, the Euclidean distance
between manual and computed deformations is always less than
0.65 pixels. One has to bear in mind that the manual measure is
not perfect, so this can be considered a very good result.

The results of the second method are shown on Figs. 16–20.
One can see that for every point, the measured displacement
gives a better relative position of the studied point than the null
displacement.

Fig. 21 shows the results of the third validation method. One
can see that the resampling of the radar image using the esti-
mated deformation grids [Fig. 21(b)] leads to a better registra-
tion of the images [Fig. 21(a)].

VII. DEM ESTIMATION

Besides the image registration approach, the results of the
previous section allow for the estimation of topography using an
optical-radar image pair. In this section, we show how this could
be done using a single satellite. This procedure is given here as
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Fig. 22. DEM estimation from a single platform.

Fig. 23. Factor sin 2�=2 for � in degrees.

an illustration and should not be considered as a substitution of
parametric sensor models when they are available.

Fig. 22 shows a geometric model for the problem. Both sen-
sors (optical and radar) are onboard of the same satellite at point

whose vertical projection to the ground is point , and is
the height of the orbit. Both image acquisitions are simultaneous
and the incidence angle is . We want to measure the height
of point . We can locally make the assumption of flat earth.

In the optical image, the point is actually seen at point
, while it is projected into point in the radar image, if

we assume a flat wavefront. If we call the
measured shift of the point between both images, we obtain

(31)

That means that the height of the point is proportional to the
measured shift. It is interesting to note that it does not depend
neither on any baseline between the two instruments nor on their
altitude. Fig. 23 shows the dependency of the proportionality
factor with the incidence angle. Typically, for optical sensors

and for radar acquisitions, . That means that
the proportionality factor will be between 0.3–0.45.

In the case where the acquisitons are made with different inci-
dence angles and (different platforms, for example), (31)
becomes

(32)

VIII. CONCLUSION

We have formalized the problem of remote sensing image
registration. We also have described which are the limitations of

the correlation coefficient in the multisensor case, and we have
shown how other similarity measures can be used to extend the
correlation coefficient approach to the multisensor problem.

These measures have been widely used in the medical
imaging field, but they have always been used together with
analytical models and global similarity research. We have
shown that these approaches are not enough in the case of
remote sensing.

A simple case study with an optical-radar pair has allowed
us to show that it is possible to automatically measure high-fre-
quency deformations between multisensor images by using a
local similarity estimation leading to the estimate of deforma-
tion grids of subpixel accuracy. This result opens the possi-
bility of automatic optical-radar DEM estimation from a single
satellite.
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