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Abstract. Transmission of information across the scales of a complex
signal has some interesting potential, notably in the derivation of sub-
pixel information, cross-scale inference and data fusion. It follows the
structure of complex signals themselves, when they are considered as
acquisitions of complex systems. In this work we contemplate the prob-
lem of cross-scale information inference through the determination of
appropriate multiscale decomposition. Our goal is to derive a generic
methodology that can be applied to propagate information across the
scales in a wide variety of complex signals. Consequently, we first focus
on the determination of appropriate multiscale characteristics, and we
show that singularity exponents computed in microcanonical formula-
tions are much better candidates for the characterization of transitions
in complex signals : they outperform the classical «linear filtering» ap-
proach of the state-of-the-art edge detectors (for the case of 2D signals).
This is a fundamental topic as edges are usually considered as impor-
tant multiscale features in an image. The comparison is done within the
formalism of reconstructible systems. Critical exponents, naturally asso-
ciated to phase transitions and used in complex systems methods in the
framework of criticality are key notions in Statistical Physics that can
lead to the complete determination of the geometrical cascade proper-
ties in complex signals. We study optimal multiresolution analysis asso-
ciated to critical exponents through the concept of «optimal wavelet».
We demonstrate the usefulness of multiresolution analysis associated to
critical exponents in two decisive examples : the reconstruction of per-
turbated optical phase in Adaptive Optics (AO) and the generation of
high resolution ocean dynamics from low resolution altimetry data.

1 Introduction

Most real-world signals are complex signals, usually difficult to describe but
possessing a high degree of redundancy [6]. In particular, in the case of Fully
Developed Turbulence (FDT), there is a relation between the spectrum of sin-
gularity exponents associated to structure functions and the existence of a mul-
tiscale hierarchy [11]. Turbulent flows, although chaotic in nature, possess a



complex arrangement of geometrical structures related to the cascading proper-
ties of physical variables [5]. The same type of conclusion can be inferred from
multiscale analysis of most natural complex signals [12]. As a consequence, the
paradigm of understanding natural signals as acquisitions of complex systems
with unknown phase space is a useful one [14]. The properties of physical cascad-
ing variables reflect the transfer of energy, or more generally information, taking
place from larger scales to smaller ones. Recent developments in microcanonical
framework for the computation of singularity exponents and the derivation
of singularity spectra have lead to a sensible improvement in the numerical tech-
niques for the determination of multiscale characteristics of real signals [1, 2].
Experimental analysis on different real world signals, ranging from stock market
time series to atmospheric perturbated optical path shows that these systems
are not only found to be multiscale, but their singularity spectra are also coinci-
dent. Consequently, the precise numerical computation of geometrically localized
singularity exponents in single acquisitions of complex systems, without the av-
erages taken on grand ensembles, unveils the determination of their universality
class [1]. The statistical characteristics of information in these signals can be
described from the localisation and precise value of singularity exponents. As
a consequence, it should be possible to transfer across the scales extra physi-
cal information from lower scale to higher resolution, a procedure which unveils
considerable enhancements of high resolution mapping of natural phenomena.

In this paper, we demonstrate that microcanonical formulations for under-
standing and evaluating the mechanisms that govern the evolution of dynamical
systems lead to accurate inference schemes across the scales in complex signals.
We show that the singularity exponents can be used in multiresolution analy-
sis for accurate inference of information across the scales. The profound reason
for this fact comes from the observation that geometrically localized singular-
ity exponents encode transitions in complex signals in a much more accurate
manner than done with linear filtering processing techniques [23, 25], as will be
demonstrated in this work, in particular in the case of 2D images and the ac-
curate determination of edges (which are typically multiscale characteristics on
an image). Consequently, we study the notion of optimal wavelet for inferring
information across the scales. Our fundamental contribution in this work is to
show that multiresolution analysis associated to geometrically localized singular-
ity exponents is a very good candidate for inferring information across the scales
in complex signals. We take two specific examples: the reconstruction of the op-
tical phase shift perturbated by atmospheric turbulence (Adaptive Optics) and
the high resolution mapping of ocean dynamics using sea surface temperature
maps. In the first example, we derive a radically new and nonlinear approach for
reconstructing the perturbated optical phase; while in the second, we show that
oceanic dynamical information acquired at low resolution (pixel size : 22 kms)
from altimetry can be transferred across the scales at high resolution sea surface
temperature data (pixel size : 4 kms) to produce high resolution mapping of
oceanic currents. In both the cases we use a proper wavelet decomposition tech-



nique on the signal of the singularity exponents to help us inferring information
along the scales of the signal.

The paper is organised as follows: in section 2 we present a brief discussion
on the evolution of the theory of singularity exponents, in section 3 we present
the numerical analysis for the singularity exponents and the idea of the most
informative set within a signal. Theory behind the reconstruction of the whole
signal from the most informative set is explained in section 4. Notion of optimal
wavelet, for inferring information pointwise in a cascade, is introduced in 5. The
experimental data used is discussed in section 6 and the results are shown in
section 7. Finally, we conclude in section 8.

2 Universality class and multiscale organisation

A power-law behaviour in the thermodynamical variables, and also time and
spatial correlation functions, is commonly observed in systems with high order
transitions. The underlying dynamics of such systems can be observed, at the
macroscopic scale, in the form of a power-law [4]. It was soon realized that
the exponents of the power laws define different classes: systems characterized
by same values of singularity exponents belong to the same universality class,
which implies the presence of a common macroscopic behaviour independent of
the microscopic dynamics of each system [10]. Different singularity spectra of
very different physical systems can match a same curve. Such a correspondance
can be explained by the existence of a common underlying dynamical system,
the universality class, responsible for similar statistical properties of information
at macroscopic scale [10].

Previous works attempt to relate the general organisation of a multiscale
structure with the existence of cascade process [4]. In these works, a multiscale
signal s is characterized by the power-law scaling in the order p moments of some
related variable Tr , in the way:

〈|Trs|p〉 = Apr
τp + o(rτp) (r → 0) (1)

The existence of multplicative cascade process was first justified by Kol-
mogorov in his theory on turbulence [5]. Kolmogorov proposed the following:
given two scales r and L, 0 < r < L, we can characterize the distribution of the
velocity field by an injection parameter ηr/L as:

|Trs| .
= ηr/L|TLs| (2)

where the symbol ‘
.
=’means that both sides are equally distributed and ηr/L =

[r/L]α. From this relation, the order p moments have the following relation:

〈|Trs|p〉 = [r/L]αp〈|TLs|p〉 (3)

Comparing equations (1) and (3) we get, τp = αp. However, experiments show
that in the case of FDT, the relationship between τp and p is not linear rather it



is a convex bell-shaped curve, a condition konwn as ’anomalous scaling’ [2]. To
apply Kolmogorov’s decomposition in anomalous scaling, certain assumptions
have to be made:

– ηr/L has to be interpreted as a random variable, independent of L.
– The variables ηr/L has to be infinitely divisible to ensure downward process

from scale L to r is verified directly or in several stages giving rise to the
famous cascade process.

It has been verified [5] that an injection mechanism as the one proposed by
Kolmogorov leads to the understanding of a underlying geometrical structure in
a multiplicative cascade process, together with the knowledge of the exponents τp
for infering information along the scales of the signal. This experimental outcome
of self-similarity led researchers to propose a different model for the generation
of exponents.

3 Singularity Analysis in the Microcanonical Framework

Criticality, and the associated critical exponents are key notions in Statistical
Physics to understand phase transitions, which are prototypes of scale invariant
phenomena [4]. The spectrum of singularity exponents in a system determine its
multiscale properties which are accessible statistically. We will say that a signal
s is multiscale in a microcanonical sense, if for at least one multiscale functional
dependant on scale r, it is assumed that for any point x the following equation
holds:

Trs(x) = α(x)rh(x) + o(rh(x))(r → 0) (4)

for some functions α(x) and h(x). The exponent h(x), which is a function of the
point x, is called a singularity exponent or Local predictability exponent (LPE)
of the point [2]. The central problem is to compute at high numerical precision
the value of h(x) at point x: bad approximations of singularity exponents lead
to poor reconstructions.

3.1 Local Predictability Exponents

According to microcanonical formulations [4], a multiscale signal is supposed to
satisfy equation (4) for a family of functionals Tr, at any point x in the signal
domain, and have a singularity spectrum computed from singularity exponents
as a convex curve function of h [4]. Equation (4) is a pointwise and localized
version of the definition used in introducing singularity spectrum [1, 3]: we do
not make use of statistical averages and grand ensembles as in practice such an
ensemble average is not accessible. Rather, we seek to evaluate h(x) at point x.
We denote Fh the component in the signal’s domain associated to singularity
exponent value h as:

Fh = {x : h(x) = h} (5)



In other words, we can say that each point x in the signal is characterized by
a singularity exponent h(x) which is typical to one component Fh, i.e., the
components are level sets of the function h(x). This family of sets is naturally
associated to the multiscale hierarchy in a signal and in the case of natural
images, it is expected that there exists a particular set which comprises the
point where sharp transitions within the signal are well recorded. We will call
this set as the Most Singular Manifold or MSM. Geometrically speaking, it is the
singularity component associated with the smallest possible value h∞ , finite for
signals corresponding to physical variables that cannot diverge. We will denote
this set by F∞ and can be expressesd as:

F∞ = {x : h(x) = h∞ = min(h(x))} (6)

The MSM plays a fundamental role in the multiscale geometrical hierarchy of
natural images. Visual inspection of this set reveals a structure which is char-
acterized by the presence of ‘edges’ or contours in natural images [6]. It will
be understood hereafter that the MSM contains the most informative set in an
image so that the whole signal can be reconstructed from the restriction of its
gradient to the MSM. Moreover we will see that singularity exponents lead to a
notion of edge that matches much better across the scales than the edges com-
puted from classical filtering methods. Before we go deeper into the subject of
MSM and its application to reconstructible systems, we give a brief overview for
the determination of the singualrity exponents.

3.2 Singularity Analysis

The singularity exponents for experimental, discretized data can be calculated
using different methods [2], but for our case we will use the Unpredictable Points
Manifold (herein referred to as UPM) [16]. According to this method, we make
point estimates of the singularity exponent, namely:

h(x) =
log(τΨs(x, r0))/〈τΨs(., r0〉)

logr0
+ o(

1

logr0
) (7)

where 〈τΨs(., r0〉 is the average value of the wavelet projection over the whole
signal and o( 1

logr0
) is a diminishing quantity and r0 is the minimum scale. If the

signal s is an image of size M × N , then we choose r0 = 1/
√
M × N . The

singularity exponents computed on our experimental dataset are shown in Fig 1.
The values h(x) are computed for all points x within the signal domain. Now,

coming back to MSM, sorting of these singularity exponent values based on a
typical threshold value 0 defines the standard reconstruction set in the MSM
method. Such a set often provides a robust and accurate reconstruction and is
defined by:

EMSM =
⋃

h∞≤h≤0

Fh (8)



Fig. 1: Top left: Image of a simulated optical phase perturbated by atmospheric
turbulence. The image corresponds to a 128 × 128 pixels sub-image extracted
from an original 256 × 256 pixels image to avoid the pupil boundary. Top right:

Image of the singularity exponents computed from the phase data. Bottom left:

Excerpt of the Agulhas current below the coast of South Africa (sea surface
temperature image: each pixel record the temperature of the upper layer of the
sea). Bottom right: Singularity exponents of the Agulhas current.

4 Reconstructible Systems

In this section, we are led to find mathematically a functional G which permits
the reconstruction of the signal’s gradient from its restriction to the MSM. The
functional must satisfy the properties of being deterministic, linear, translationally-
invariant, isotropic and yield correct power spectrum of natural images. We
consider the gradient measure of the signal s = ∇s(x) and integrate it over the
multifractal set of most unpredictable points F∞. A deterministic representation
of the gradient measure for the signal can be:

∇s(x) = G(∇s|F∞
)(x) (9)



Considering the fact of G being linear, an integral representation can be given
by:

∇s(x) =

∫

F∞

∇s(y)G(x,y)dy (10)

where G(x,y) is a density measure of the function G and is a 2 × 2 matrix.
Using isotropy, standard power spectrum (in the form 1/||f ||2) for the associated
spectral measures of natural images, one obtains the following formula [4, 6]
expressed in Fourier space:

ŝ(f) =
f .∇̂s|F∞

(f)

i||f ||2 (11)

where i is the imaginary unit, i ≡
√
−1 and ˆ denotes the Fourier transform.

We normalize the result by taking the vector field v0 unitary and normal to the
MSM instead of ∇s|F∞

; where v0(x) = ∇s(x)δF∞
, δF∞

being the density of
the proper Hausdorff measure restricted to the set F∞ [6]. We therefore perform
integration over all the space (the restriction is still present, but now introduced
by v0):

ŝ(f) =
f .v̂0|E(f)
i||f ||2 (12)

Fourier inversion of this formula gives the reconstruction of the image from
the restriction of the gradient field to the MSM. Results of reconstruction on
the MSM of experimental datasets, and their performance over classical edge
detection algorithms, are shown in tables 2 and 1. It is seen that in the case of
acquisitions of turbulent signals, the reconstruction based on the MSM (we call
it MSM in tables 2 and 1) performs significantly better among the algorithms
tested. In fact, when it comes to the case of turbulent signals, the classical
edge detectors like Sobel [20], Prewitt [18], Roberts [17], Laplacian of Gaus-
sian (LoG) [19, 21], Zerocross [22, 24], Canny [23] to a more recent non-linear
approach called NLFS [7], dedicated to the computation of edges in digital im-
ages, are systematically outperformed by MSM in terms of reconstruction from
a compact representation of its edge pixels. As a consequence, the fundamental
notion of edge, which is a basic multiscale feature, is much more well encoded
by the set EMSM defined in equation (8). This tends to show that singularity
exponents are good candidates for an accurate multiresolution analysis. In the
next section, we develop the notion of optimal wavelet.

5 Inferring Information across the scales using

microcanonical analysis

To infer the cascading properties pointwise (called microcanonical cascade) we
introduce the concept of optimal wavelet. Let s(x) be a multiscale signal and let
Ψ(x) be a wavelet. We define the wavelet projection of s on Ψ at position x and
resolution r as:

TΨ |∇s|(x, r) =
∫

|∇s|(y)Ψ(x− y

r
)dy (13)



We can now define a random variable ζr/L(x) as

TΨ |∇s|(x, r) = ζr/L(x)TΨ |∇s|(x, L) (14)

Now, we can talk about a wavelet Ψ which, if determined, will make ζr/L(x)
independent of TΨ |∇s|(x, L). Such a wavelet is called an optimal wavelet. In
subsection Optimal Wavelet Analysis, we propose a new algorithm for a very
robust detection of the optimal wavelet in 2D signals. The new methodology
helps us to detect the presence of an optimal wavelet, in a totally unconstrained
way, from the signal itself. Once determined, the optimal wavelet has the poten-
tial of unlocking the signal’s microcanonical cascading properties through simple
wavelet multiresolution analysis [8].

5.1 Multiresolution Analysis & fast wavelet transform

Multiresolution analysis is a mathematical formalism that deals with the phe-
nomenon of detail-structured viewing of objects [8]. Data redundancy is mini-
mized by use of dyadic wavelet sequences which are hilbertian frames associated
to dyadic partition of the space/frequency domain.

Any signal |s〉 can be represented in a dyadic wavelet basis of mother wavelet
|Ψ〉 [13] as follows (from now on we use the notation |s〉 for the signal):

|s〉 =
∞∑

j=−∞

∑

k

αj,k|Ψj,k〉 (15)

where
|Ψj,k〉(x) = 2j/2Ψ(2jx− k) (16)

and αj,k, are called wavelet coefficients. The wavelet coefficients αj,k can be
obtained by a simple projection of the signal |s〉 onto the basis function Ψj,k,
namely:

αj,k = 〈s|Ψj,k〉 (17)

The decomposition process using multiresolution analysis gives rise to an
image fourth smaller than the previous one. Therefore, each parent coefficient
αp ≡ αj−1,[k/2], at the coarser scale j − 1, covers the same spatial extent of four
children coefficients αc ≡ αj,k at the finer scale j.

5.2 Approximation of microcanonical cascade

In the wavelet analysis of 2D signals, persistence along the scales implies a real-
tion of the form between the wavelet coefficients:

αc = η1αp + η2 (18)

with η1,η2: random variables independant of αc and αp and also independant of
each other. For an optimal wavelet the above equation takes the form αc = η1αp.



(a) (b) (c)

Fig. 2: (a) Sub-image at 48 × 48 pixels resolution obtained after orientation
with the sign with the MCE (b) 2-D plot of the sub-image (c) 2-D plot for the
sum over the columns.

5.3 Optimal Wavelet Analysis

Any given signal |s〉 can be represented in terms of their cascade variables η and
wavelet coefficients α as:

|s〉 =
∑

j 6=0,k

∏

j′,k

ηj′,[k/2j−j′ ]α0,0|Φj,k〉+ α0,0|Φ0,0〉 (19)

where Φj,k is the wavelet basis for the optimal wavelet. Experimental observa-
tions show that the expectation of the signal 〈|s〉〉 = 0 as 〈α0,0〉 = 0 due to
symmetry.

We multiply the sign of α0,0 i,e, σ0,0 with the signal s and then compute
the average. Since, in our case we have an ensemble of dynamically equivalent
signals, we compute the average over |si〉 to get the expected value for all these
signals; where i is the index of an ordering of the signals. Equation (19) can be
generalized to:

〈σi
0,0|s

i〉〉 = 〈|α0,0|〉|Φ0,0〉 (20)

We try to estimate the sign of α0,0. Let ǫ0,0 be the estimation, we then have

〈ǫi0,0|si〉〉 = 〈ǫ0,0σ0,0|α0,0|〉|Φ0,0〉 ∝ Φ0,0 (21)

Principle application of finding the optimal wavelet on a given set of images
is quite simple. The procedure is as follows:

– We subdivide a given image |si〉 over small areas of equal sizes and normalize
individually every sub-image.

– We find the correlation between the sub-images of |si〉: Ci = 〈si|sk〉.
– For every i we find the average of the correlation.

– We then find for which l, the average correlation is maximum. Let it be i∗.

– We call |si∗〉 as the most central element (MCE).



Since we don’t know Φ0,0, we make the wavelet projection of the signal on the
element which has the most dependancy with all the other elements (dominant
presence of the term 〈|α0,0|〉|Φ0,0〉); i,e, the MCE. So, we have

ǫi0,0 = σ(Ci,i∗) = σ(〈si|si∗〉)
= |α∗

0,0|σ0,0σ
∗
0,0〈s|Φ0,0〉 (22)

If we have a correct estimate of the sign, we can say 〈ǫi0,0|si〉〉 ∝ 〈σi
0,0|si〉〉.

And we estimate the wavelet from equation (21). Since wavelets are normalized
by definition, we can cancel the proportionality factor in equation (21):

〈ǫi0,0|si〉〉 = 〈σ(Ci,i∗)|si〉〉 = 〈σ(〈si|si∗〉)|si〉〉 (23)

We have tested this algorithm on Benzi model [9] to construct multiaffine fields
based on an order 2 gaussian wavelet decomposition. The preliminary results
are shown in Fig 2. Since, the process of finding an optimal wavelet is still
under review and subjected to constant experimentation, we approximate the
optimal wavelet by a Battle-Lemarié wavelet which is found to give an acceptable
approximation of the optimal wavelet.

6 DATA

6.1 Atmospheric Phase

The data is shown in Fig 1 (top). The datasets consists in simulated optical
phase perturbated by the Earth’s upper layer turbulent atmosphere. The optical
phase corresponds to the acquisition of a point source (representing a star far
away enough in outer space so that the optical phase reaching the telescope is in
the form of planar wavefronts). These data are provided by the French Aerospace
Lab-ONERA, and they have the following imaging characteristics:

– diameter of the telescope: 8 m,

– seeing at 5 microns: 0.85 arcseconds,

– wind’s speed: 12.5 m/s,

– acquisition frequency: 250 Hz,

– pupil size: 256 × 256 pixels, but for our experimental purpose we take
128 × 128 pixels from the centre to eliminate boundary effects.

We have the Hartmann-Shack (HS) acquisition of the x and y slopes for the phase
data provided by onera given by 208 effective HS sub-pupils (size 16 × 16) which
samples the pupil of the telescope. The distribution of the sub-pupils within the
telescope is shown in Fig 4(a). Fig 4(b) and Fig 4(c) shows the x and y low
resolution acquisition of the phase data, which gives us an approximation of low
resolution x and y components of the gradients for the phase, by the HS sensor.



(a)

(b) (c)

Fig. 3: (a) Altimetry data (b) Sea Surface Temperature (SST) acquired by
MODIS satellite on August 2, 2007 (c) low-resolution motion field derived from
altimetry.



(a) (b) (c)

Fig. 4: (a) Distribution of the sub-pupils within the telescope (b) HS acquisition
of the x slope for the phase data (c) HS acquisition of the y slope for the phase
data.

6.2 Sea Surface Temperature

Sea surface temperature data (SST) are global acquisitions of the temperature
of the ocean’s upper layer. Data is radiometrically corrected so that pixels values
represent celsius degrees. Data is acquired by the MODIS instrument orbiting
around earth, pixel resolution is 4 kms, data is acquired on 02 August 2007.
In our experiment, we also use low resolution products representing geostrophy
and Ekman currents deduced from altimetry data according to method exposed
in [26]. Pixel size of altimetry products is 22 kms. Figure 3(a) shows the altimetry,
figure 3(b) the MODIS data and figure 3(c) shows the low-resolution motion field
derived from altimetry according to [26].

7 Results

7.1 Edge detection and singularity exponents

First we detail the comparison results on edge detection using classical linear
filtering and the set provided by equation (8). Reconstruction has been performed
on the edge files computed on the phase and sea surface temperature images.
Performance of the reconstruction on classical edge detectors to a more recent
nonlinear derivative approach (called NLFS) [7] and MSM has been presented in
table 1. Also, we evaluate the quality of the reconstruction using the peak signal
to noise ratio (psnr, expressed in decibels dB) defined by:

psnr = −20.0× log10

(
1

λ(Ω)

(∫
Ω
(s(x)− sr(x))

2dx
)1/2

∆s

)
(24)

where Ω is the image domain, λ(Ω) its Lebesgue measure (image size), s the
original image, sr the reconstructed image, and ∆s is the dynamical range of s ,



i.e. the difference between the maximal and minimal values. Better reconstruc-
tions tend to have a higher psnr. A quantitative evaluation of the results are
presented in table 2.

7.2 Reconstruction of optical phase

Also, we show that the application of wavelet multiresolution analysis technique
on the signal (optical phase perturbated by atmospheric turbulence) of the sin-
gularity exponents provided by a simple approximation of an optimal wavelet
(here a third order Battle-Lemarié wavelet) help us to infer information along
the scales of the signal which in turn can be used to properly reconstruct the
signal from low resolution to high resolution. The process is summarized below:

– We first compute the third order Battle-Lemarié wavelet coefficients associ-
ated to the signal of the singularity exponents computed on the perturbated
phase signal,

– for each component (x and y) of the phase gradient at low reslution (16 × 16
sub-image, see section 6.1), back project the component from low to high
resolution to get a phase’s gradient at higher spatial resolution of 128 × 128.

Consequently, we reconstruct the phase by performing inverse gradient operation
on the norms of the gradients. We also check the robustness of our reconstruction
algorithm by adding different proportions of gaussian white noise to the data.
Results obtained, as shown in Fig 6, show visual resemblance of the reconstructed
signal with the original one.

7.3 High resolution ocean dynamics

In this experiment, the low resolution vector field shown in figure 3(c) and de-
rived from altimetry data is used to generate a high resolution vector field cor-
responding to SST data. First, the singularity exponents are computed on SST
data. Then a multiresolution analysis is performed on the resulting singularity
exponents from SST spatial resolution (4 kms) down to altimetry resolution (22
kms). The low resolution vector field shown in figure 3(c) is propagated, compo-
nentwise, up to SST resolution and the resulting vector field is prefiltered using
an 1/||f || filter. The results are shown in figure 5: a high resolution vector field
representing the ocean dynamics at resolution 4 kms is obtained from the mul-
tiresolution analysis of the singularity exponents. Validation has been performed
on the outputs of a 3D simulation model, and shows proper reconstruction of
the high resolution vector field both in norm and direction: 80% of vectors are
correctly computed. This method provides a very interesting alternative to clas-
sical motion computation techniques that use conservation hypothesis (optical
flow) or Maximum Correlation methods.



Table 1: Performance of different edge detection algorithms. row 1: Atmospheric phase data. row 2: SST data of the Agulhas
current below the coast of South Africa.

Original MSM NLFS Canny LoG Sobel Zero-Cross Roberts Prewitt

Table 2: Evaluation of edge detection algorithms

Image Algorithm Parameter(s) Density Reconstruction
(psnr)

sea temp. NLFS [7] σ = 0.2 22.24 % 10.15 dB
sea temp. Canny σ = 0.001, α = 01 13.094 % 9.65 dB
sea temp. Laplacian σ = 0.001, α = 01 24.47 % 10.16 dB
sea temp. Sobel σ = 0.001 24.58 % 9.58 dB
sea temp. Zero-crossing σ = 0.001 13.95 % 9.60 dB
sea temp. Roberts σ = 0.001 27.97 % 10.22 dB
sea temp. Prewitt σ = 0.001 24.83 % 9.83 dB
sea temp. MSM parameter free 17.24 % 11.30 dB

phase NLFS [7] σ = 0.25 24.92 % 8.30 dB
phase Canny σ = 0.001, α = 01 14.11 % 7.25 dB
phase Laplacian σ = 0.001, α = 01 28.48 % 7.24 dB
phase Sobel σ = 0.3 5.83 % 6.48 dB
phase Zero-crossing σ = 0.001 15.88 % 6.61 dB
phase Roberts σ = 0.001 34.74 % 7.77 dB
phase Prewitt σ = 0.001 26.72 % 6.96 dB
phase MSM parameter free 15.75 % 13.18 dB



Fig. 5: Vector field computed at high resolution SST MODIS data using the
low resolution altimetry of Fig 3(c) and the multiresolution analysis of the SST
singularity exponents as explained in section 7. The color of the vectors indicate
their norm from 0.0 cm · s−1 (blue) to 83.9 cm · s−1 (red). In the background we
also display the singularity exponents.

8 Conclusion

In this work we set up and study a multiresolution analysis scheme general
enough to suit the case of acquisitions of general complex systems. We first study
geometrically localized singularity exponents in natural signals, computed in a
microcanonical framework, from which singularity spectra can be derived. We
study their relations with high order transitions in associated phase spaces, and
conclude that they unlock a notion of transition that outperforms all classical
«linear filtering» approaches for edge detection in the case of 2D images. Edges



(a) (b) (c)

(d) (e) (f)

Fig. 6: (a) The original phase. Reconstructed phase (b) without noise. (c) with
an input SNR of 40 dB. (d) with an input SNR of 26 dB. (e) with an input SNR
of 14 dB. (f) with an input SNR of 6 dB.

are typical multiscale features, which should maximize information content in
natural signals. We study the performance of reconstructible systems both with
transitions associated to singularity exponents and the edge pixels provided by
standard edge detection techniques. Examples are chosen among the most dif-
ficult natural signals: acquisition of turbulent phenomena (perturbated optical
phase and ocean dynamics acquired from space). We study a multiresolution
analysis scheme associated to the signal of singularity exponents, and in doing
so we provide an effective determination of optimal wavelets, which are wavelets
whose associated multiresolution analysis is optimal w.r.t inference across the
scales. We show the power of the approach by studying two specific examples:
the reconstruction of the phase perturbated by atmospheric turbulence applied
to adaptive optics and the generation of high resolution ocean dynamics from
low resolution acquired altimetry signals. The method is general enough to pro-
vide an effective approach to infer sub-pixel information in most natural complex
signals.
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